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Abstract. We consider the extent to which Markov chain convergence
properties are affected by the presence of computer floating-point round-
off error. This paper extends previous work of Roberts, Rosenthal, and
Schwartz (1998) to the case of proportional errors.

1. Introduction.

Geometric ergodicity is an important concept in convergence of Markov chains to their

stationary distributions. For example, this property is used to justify the applicability of

the central limit theorem to ergodic averages along the path of the chain. When run on an

actual computer, Markov chains are subject to floating-point roundoff errors. This paper

considers the extent to which geometric (and other) ergodicity is affected by small roundoff

errors.

A Markov chain on a state space X , with transition probabilities P (x, ·) and stationary

distribution π(·), is said to be geometrically ergodic if there is ρ < 1 and M : X → [0,∞)

such that

‖Pn(x, ·)− π(·)‖ ≤ M(x) ρn ,

where

‖Pn(x, ·)− π(·)‖ ≡ sup
A⊆X

|Pn(x,A)− π(A)|
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is the total variation distance between the law of the Markov chain after n steps (when

started at the point x ∈ X ), and the stationary distribution π(·).
This is known (cf. Roberts and Rosenthal, 1997) to be equivalent to the existence of

λ < 1, b < ∞, and a small set C ⊆ X such that

PV (x) ≤ λV (x) + b1C(x) , x ∈ X , (1)

where PV (x) =
∫

V (y)P (x, dy). (Recall that a set is small for a Markov chain if there

exists a positive integer n0, a positive constant ε, and a probability measure ν on X , such

that Pn0(x, ·) ≥ εν(A) for all x ∈ C and A ⊆ X .)

Roberts, Rosenthal, and Schwartz (1998) considered issues related to running such a

Markov chain on a computer, and in particular the effect of various roundoff errors during

the simulation. They introduced a summary roundoff function h : X → X , with h(x)

“close” to x for all x. This leads to a modified Markov chain P̃ given by

P̃ (x, A) = P (x, h−1(A)) . (2)

In this framework, the assumption of small computer errors can be taken as

‖h(x)− x‖ ≤ δ , x ∈ X , (3)

where ‖x‖ is the norm of x ∈ X . (We assume throughout that X is a normed vector space

over R, e.g. X ⊆ Rd.) It is shown by Roberts et al. (1998) that, if P is geometrically

ergodic with drift function V such that log V is uniformly continuous, and δ is sufficiently

small, then P̃ will also be geometrically ergodic. That is, geometric ergodicity is preserved

under small perturbations in that case.

A common case not included in the above arises when instead we have merely

‖h(x)− x‖ ≤ δ‖x‖ , x ∈ X , (4)

as may occur with floating-point computations (cf. Section 2 below). That is, the roundoff

errors may have magnitude proportional to the magnitude of x, rather than being uniformly

bounded. In this note, we shall show that this case is amenable to a technique similar to

that of Roberts et al. (1998).

We note that the results we present are only the beginning of a rigorous analysis of

how computer engineering realities affect the dynamics of mathematically specified Markov

chains. We hope to pursue such questions more comprehensively in the future.
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Remark. Even if a modified Markov chain P̃ is proven to converge as quickly as the

original chain, there is still the question of what the new target distribution is. Roberts et

al. (1998) investigate this issue in total variation distance and in the weak topology. The

methods in our paper could also be extended to consider this issue, but we do not pursue

that here.

2. Floating point representations in computers.

IEEE standard 754 (IEEE, 1985) is a specification commonly adhered to for the rep-

resentation of floating point numbers in computers, using a fixed number B of bits (e.g.

B = 32 with single precision numbers or B = 64 with double precision numbers). Mathe-

matically, numbers x are encoded using B = M + N + 1 bits to a finite precision, in the

following way (called normalized floating point representation):

x := σ · (1 + k/2N ) · 2e,

where σ = ±1 is the sign (1 bit), k ∈ {0, . . . , 2N − 1} is the fractional part (N bits), and

e ∈ {−2M−1 + 2, . . . , 2M−1 − 1} is the exponent (M bits). Single precision numbers use

M = 8 and N = 23, giving an effective range (excluding the sign) of 2−126 ≈ 10−44.85

to (2 − 2−23) · 2127 ≈ 1038.53, while double precision is represented by M = 11, N = 52,

with an effective range (excluding sign) of 2−1022 ≈ 10−323.3 to (2− 2−52) · 21023 ≈ 10308.3.

Numbers larger than this are represented by the special symbol +Infinity, which is often

encoded as σ = 0, k = 0, e = 2M−1. Moreover, the number zero is nonunique; more

precisely there exist two distinct values +0 and −0 which are only equal when compared

directly.

Clearly, not all real numbers x can be represented with a fixed number B of bits in

this way. Indeed, given a real number x, setting e = blog2 |x|c and σ = sign(x), the closest

the computer can come to approximating x is as

h(x) = σb1
2

+ |x|2N−1−ec2−(N−1−e) .

It follows that

|h(x)− x| ≤ 2−(N−1−e) ≤ 2−(N−1)|x| .

We see from the above that the error |h(x)− x| is proportional to |x|, thus violating

(3). (Strictly speaking, (3) holds for a sufficiently large δ since |x| is bounded by the finite

range of the computer. However, in the present paper, we ignore issues related to finite
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range, and concentrate solely on issues related to finite precision, i.e. to roundoff errors.

It is in that sense that (3) is violated.) However, the assumption (4) does hold here with

δ = 2−(N−1).

With regard to Markov chain algorithms and their implementations on computer sys-

tems, we shall therefore assume that the final error for each update behaves as (4). Of

course, this is meant as a convenient summary of the cumulative effect of various compli-

cated roundoff errors introduced at each stage of the update calculation. (For example,

a side effect of using floating point representations is that the corresponding arithmetic

becomes inexact and non-commutative, e.g. perhaps (x · y)/y 6= x or x + y 6= y + x.)

3. Geometric ergodicity under perturbations satisfying (4).

Suppose a Markov chain P is geometrically ergodic, thus satisfying (1) for some func-

tion V and small set C. Suppose further that P̃ is obtained via (2), for some roundoff

function h satisfying (4) for some δ > 0. Assume also that V satisfies

V (y + u)− V (y) ≤ δKV (y), ‖u‖ ≤ δ‖y‖, y ∈ X , (5)

for some K < ∞. (Of course, we could subsume the product of δ and K into a single

constant, but our notation better emphasizes the dependence upon δ.) For example,

condition (5) holds if X = R and V (x) = C1|x|n + C2. with C1, C2 ≥ 0.

Note that the condition (5) is implied, if X is finite-dimensional and V (x) is continu-

ously differentiable, by

‖∇ log V (y)‖ ≤ K ′ / ‖y‖ , (6)

where K ′ = δ−1 log(1 + Kδ) ≈ K.

Proposition 1. If (1) and (5) hold, and if P̃ is derived from P via (2), where h satisfies

(4), then

P̃ V (x) ≤ (1 + δK)(λV (x) + b1C(x)) .

Proof. We have that

P̃ V (x) = PV (x) + (P̃ − P )V (x)

= PV (x) +
∫

(V (h(y))− V (y))P (x, dy)

≤ λV (x) + b1C(x) +
∫

δ K V (y) P (x, dy)

≤ λV (x) + b1C(x) + δK(λV (x) + b1C(x)) ,
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which gives the result.

This ensures geometric ergodicity provided that (1 + δK)λ < 1, or equivalently

δ < K−1(λ−1 − 1). (7)

We thus obtain

Theorem 2. Suppose a Markov chain P is geometrically ergodic, satisfying (1) for some

V and C. Assume that V satisfies (5) for some K < ∞. Suppose further that P̃ is

obtained via (2), for some perturbation function h satisfying (4) and (7). Then P̃ is also

geometrically ergodic.

This theorem thus proves that geometric ergodicity is preserved, under sufficiently

small floating-point-type perturbations, provided that the drift function V satisfies the

smoothness condition (5) (or (6)).

Remark. If {Xt} satisfies (1) for some drift function V and small set C, and ϕ :

X → X ′ is a bi-measurable bijection, we can define a Markov chain {Xϕ
t } on X ′ by

Xϕ
t = ϕ(Xt), with corresponding transition kernel Pϕ. Then ϕ(C) is a small set for {Xϕ

t },
and furthermore

PϕV ϕ(x′) ≤ λV ϕ(x′) + b1ϕ(C)(x′) , x′ ∈ X ′ , (8)

where V ϕ(x′) = V (ϕ−1(x′)). Hence, {Xϕ
t } is also geometrically ergodic with the same

constants, and indeed ‖(Pϕ)n(ϕ(x), ·) − πϕ‖ = ‖Pn(x, ·) − π‖ for all n, where πϕ(dx′) =

π(ϕ−1(dx′)) is stationary for {Xϕ
t }. Furthermore, if X̃ is a perturbation of X with ap-

proximation function h, then ϕ(X̃) is a perturbation of Xϕ with approximation function

hϕ ≡ ϕhϕ−1. In the special case that X = R, X ′ = R+, and ϕ(x) = exp(x), then h

satisfies (3) if and only if hexp satisfies (4). In that case, if P exp is geometrically ergodic,

then by Proposition 6 of Roberts et al. (1998), P exp is robust to perturbations of the kind

satisfying (4) provided that log V (·) = log V exp(exp(·)) is uniformly continuous.

Example. Consider the Gaussian Random Walk Metropolis algorithm of the form

Xt+1 =

{
Yt , π(Yt)

/
π(Xt) > ξt,

Xt , otherwise ,
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where Yt ∼ N(Xt, 1), and where the ξt are independently chosen as i.i.d. Uniform[0, 1].

This chain (assuming no roundoff errors) is geometrically ergodic with drift function

V (x) = exp(|x|) (see e.g. Mengersen and Tweedie, 1996). Furthermore, it follows from

Roberts et al. (1998) that, if this chain is perturbed by a roundoff function h satisfy-

ing (3), geometric ergodicity is preserved. However, this Markov chain is not robust to

perturbations of type (4). For example, let

h(x) = sign(x) · 2blog2 |x|c · (1 + 2−52b252(|x|2−blog2 |x|c − 1)c)

(which is an idealisation of the IEEE discretisation described in Section 2, without any

truncation). Then for zi ∈ Image(h) with |zi| → ∞, we have limi→∞ infy∈(h−1(zi))C |y −
zi| = ∞, which implies that limi→∞P(zi, {zi}C) = 0. Therefore the algorithm is not geo-

metrically ergodic (see Roberts and Tweedie, 1996). On the other hand, the Markov chain

Xexp
t ≡ exp(Xt) is also geometrically ergodic, with V exp(x) = V (exp−1(x)) = V (log x) =

exp(| log x|) = max{x, x−1}. Furthermore, by the previous remark, the geometric ergodic-

ity of {Xexp
t } is robust to perturbations satisfying (4). Furthermore, the target distribution

π can be “recovered” from {Xexp
t } by inversion: log Xexp

t converges in distribution to the

desired stationary distribution π.

Remark. Recall that a Markov chain with transition kernel P converges at the polyno-

mial rate α if

‖Pn(x, ·)− π(·)‖ ≤ C(x)n−(α/1−α) , n ∈ N ,

for some 0 < α < 1. This is implied (Roberts and Jarner, 2000) by the existence of a

function V ≥ 1, a small set C, and constant a > 0 such that

PV ≤ V − aV α + b1C (9)

Suppose that P is polynomial ergodic with polynomial rate α, and satisfies (9) for some

small set C and some drift function V which satisfies

V (y + u)− V (y) ≤ δK(V (y))γ , ‖u‖ ≤ δ‖y‖ε , y ∈ X ,

for some constants γ ≤ min(1, α) and ε > 0. Define P̃ by (2), and assume that ‖h(x)−x‖ ≤
c‖x‖β for some β ≤ ε and c ≤ δ. Then it is straightforward to show that

P̃ V ≤ V − aV α + b′ 1C + cKV α,
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for some b′ < ∞. In particular, if c < a/K, then the chain defined by P̃ is also polynomially

ergodic, with the same polynomial rate α.
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