Linear-Algebraic Results Associated with

Antiferromagnetic Heisenberg Chains*

by
Man-Duen Choi, Jeffrey S. Rosenthal, and Peter Rosenthal
Department of Mathematics, University of Toronto, Toronto, Canada M5S 1A1

Abstract. This paper analyses the $3^{N} \times 3^{N}$ self-adjoint matrix $H_{N}=\sum_{j=1}^{N-1} S_{x}^{(j)} S_{x}^{(j+1)}+$ $S_{y}^{(j)} S_{y}^{(j+1)}+S_{z}^{(j)} S_{z}^{(j+1)}$, the Hamiltonian of a spin-1, one-dimensional, Heisenberg antiferromagnet. Various results are obtained, including alternative representations of H_{N}, families of operators commuting with H_{N}, a complete description of the spin-0 subspace (which includes all one- and two-dimensional eigenspaces of H_{N}), and a proof that H_{N} must have an eigenvalue smaller than $-\frac{4}{3}(N-1)$.

Key words. Antiferromagnets, Hamiltonian, eigenvalues, spin operators, spin chains AMS(MOS) subject classification. 81 G 10

Abbreviated title: Antiferromagnetic Heisenberg Chains

[^0]
1. Introduction.

There are several interesting, important and difficult problems concerning the eigenvalues and eigenvectors of a certain sequence of Hermitian matrices that arise in the quantummechanical study of antiferromagnetic Heisenberg chains.

Let \mathcal{V} be the three-dimensional inner-product space \mathbf{C}^{3}. The "spin-1 operators" (see, e.g. [8]) are the operators on \mathcal{V} defined by

$$
S_{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad S_{y}=\frac{i}{\sqrt{2}}\left(\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right), \quad S_{z}=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),
$$

with respect to an orthonormal basis which we denote by $\left\{v_{-1}, v_{0}, v_{1}\right\}$. The choice of subscripts on the v_{j} is such that $S_{z}\left(v_{j}\right)=j v_{j}$, for $j=-1,0,1$. (Physicists write v_{-1} as $|-1\rangle, v_{0}$ as $|0\rangle$, and v_{1} as $|1\rangle$.)

For each positive integer N, denote the N-fold tensor product of \mathcal{V} with itself by $\mathcal{V}^{\otimes N}$. For each linear operator $F: \mathcal{V} \rightarrow \mathcal{V}$, let $F^{(j)}: \mathcal{V}^{\otimes N} \rightarrow \mathcal{V}^{\otimes N}$ be the operator

$$
F^{(j)}=F_{1} \otimes F_{2} \otimes \cdots \otimes F_{N}
$$

with $F_{j}=F$ and $F_{k}=I$ for $k \neq j$.
The operator we are concerned with is defined on $\mathcal{V}^{\otimes N}$ (for $N \geq 2$) by

$$
H_{N}=\sum_{j=1}^{N-1} S_{x}^{(j)} S_{x}^{(j+1)}+S_{y}^{(j)} S_{y}^{(j+1)}+S_{z}^{(j)} S_{z}^{(j+1)}
$$

The operator H_{N} is the Hamiltonian of the spin-1, antiferromagnetic, Heisenberg (= isotropic), one-dimensional (= linear) spin chain with N sites. This Hamiltonian is of great importance in interpretting certain results in expermental physics (see [5], [12]). Physically, such a Hamiltonian describes a crystal lattice of atoms of spin 1, in which all interactions take place along a preferred direction, and are given by the dot-product of the spin vectors of all nearest-neighbour pairs.

The operator H_{N} has been widely studied by solid state physicists (see [1], [3], [7], and references therein). There have also been numerical ([4], [11]) and experimental ([5], [12]) investigations of the eigenvalues and eigenvectors of H_{N}. Much of the recent work has been motivated by a conjecture of Haldane ([9], [10]). Let λ_{N}^{0} and λ_{N}^{1} be the smallest and the second smallest eigenvalues of H_{N}. Haldane's conjecture may be stated as saying that $\lim _{N \rightarrow \infty}\left(\lambda_{N}^{1}-\lambda_{N}^{0}\right)>0$. While numerical and experimental work appears to support this statement, the conjecture remains unproven. Even the precise mathematical formulation of the conjecture is controversial; in [1] it is argued that the conjecture should be studied in an (inequivalent) "infinite chain" context.

We study H_{N} by direct, linear-algebraic methods in the present paper. We obtain a number of results that may provide insight into its underlying structure. Results presented here include alternative representations of H_{N} (Corollary 2.2 and Proposition 2.4), families of operators commuting with H_{N} (Theorems 3.3 and 3.5), properties of the "spin-0" subspace (Propositions 4.3 and 4.5), a complete description of this subspace (Theorems 5.4 and 5.8), and a new proof that H_{N} must have an eigenvalue smaller that $-\frac{4}{3}(N-1)$ for all N (Theorem 6.7). The value $-\frac{4}{3}(N-1)$ is reasonably close to the estimate of $-1.40(N-1)$ for the smallest eigenvalue of H_{N}, which has been extrapolated from certain numerical approximations [11]. The spin-0 subspace is important in relation to Haldane's conjecture since it contains all one-dimensional (and two- dimensional) eigenspaces of H_{N} (see Corollary 4.2 and Proposition 6.8 below), and since it is shown in [1] that the eigenspace of H_{N} corresponding to λ_{N}^{0} is one-dimensional for even N. This paper also includes simple, direct proofs of certain well-known facts about H_{N}, to make the presentation self-contained.

One way that physicists have varied the problem is by replacing H_{N} by the "periodic

Hamiltonian"

$$
P_{N}=H_{N}+S_{x}^{(N)} S_{x}^{(1)}+S_{y}^{(N)} S_{y}^{(1)}+S_{z}^{(N)} S_{z}^{(1)}
$$

It is expected, on physical grounds, that the Haldane conjectures should be decided in the same way for P_{N} as for H_{N}. There are, however, no definitive results concerning P_{N} either. We consider below both P_{N} and H_{N}. We often find it more natural (see section 2) to study operators K_{N} and Q_{N} which are equal to the negatives of H_{N} and P_{N}, respectively.

This paper is organized as follows. In section 2, we derive several representations of H_{N} and P_{N}. In section 3 , we list a number of operators on $\mathcal{V}^{\otimes N}$ which commute with H_{N} and P_{N}. In section 4, we use some of these operators to present the standard decomposition of H_{N} and P_{N} into direct sums, and in section 5 we investigate in detail the spin- 0 subspace of $\mathcal{V}^{\otimes N}$. Some bounds on the eigenvalues of H_{N} and P_{N} are obtained in section 6. In section 7, we describe the corresponding problems for spins other than 1, and state the more general Haldane conjecture, which remains one of most important open mathematical problems in solid state physics.

The authors are grateful to R.L. Armstrong and W.J.L. Buyers for introducing us to these questions.

2. Other representations of the operators.

The following leads to new representations of H_{N} and P_{N} that we have found useful.

Theorem 2.1. There exists an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of \mathcal{V} with respect to which the triple (S_{x}, S_{y}, S_{z}) has matrix representation $(i R, i S, i T)$, where

$$
R=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad S=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad T=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Proof. Define the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ by

$$
\begin{aligned}
& e_{1}=\frac{i}{\sqrt{2}}\left(v_{-1}-v_{1}\right) \\
& e_{2}=\frac{-1}{\sqrt{2}}\left(v_{-1}+v_{1}\right) \\
& e_{3}=i v_{0}
\end{aligned}
$$

Then the stated matrix representations are easily checked.

Corollary 2.2. The operators H_{N} and P_{N} are equal, respectively, to the negatives of the operators K_{N} and Q_{N} defined (in the basis of $\mathcal{V}^{\otimes N}$ induced by $\left\{e_{1}, e_{2}, e_{3}\right\}$) by

$$
K_{N}=\sum_{j=1}^{N} R^{(j)} R^{(j+1)}+S^{(j)} S^{(j+1)}+T^{(j)} T^{(j+1)}
$$

and

$$
Q_{N}=K_{N}+R^{(N)} R^{(1)}+S^{(N)} S^{(1)}+T^{(N)} T^{(1)}
$$

Proof. This follows immediately from the preceeding theorem.

The representations given in the corollary above will be used throughout the rest of this paper. It should be observed that R, S, and T are skew-symmetric matrices, with $R S-S R=T, S T-T S=R, T R-R T=S$, and $R^{2}+S^{2}+T^{2}=-2 I$. Also, it is clear that the triple (R, S, T) is simultaneously unitarily equivalent to the triples (S, T, R) and
(T, R, S). A possible interpretation of the matrices R, S, and T is suggested by the fact that for $v \in \mathbf{R}^{3}, R v=e_{1} \times v, S v=e_{2} \times v$, and $T v=e_{3} \times v$, where \times indicates the ordinary cross-product (vector-product) on \mathbf{R}^{3}. We also have the following uniqueness property of the matrices R, S, and T.

Proposition 2.3. Let A, B, and C be three skew- Hermetian operators on \mathbf{R}^{3}, with $A B-B A=C, B C-C B=A$, and $C A-A C=B$. Then either $A=B=C=0$, or there is an orthonormal basis $\left\{f_{1}, f_{2}, f_{3}\right\}$ of \mathbf{R}^{3} such that in this basis A, B, and C have the matrix representations of R, S, and T above.

Proof. Since $\operatorname{det} A=\operatorname{det} A^{*}=-\operatorname{det} A$, there is a vector $f_{1} \in \mathbf{R}^{3}$ with $\left\|f_{1}\right\|=1$ and $A f_{1}=0$. If $C f_{1}=0$, then $B f_{1}=(C A-A C) f_{1}=0$, so with respect to any orthonormal basis containing f_{1}, each of A, B, and C are of the form

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -k \\
0 & k & 0
\end{array}\right) .
$$

Hence, A, B and C all commute, and thus are all zero. If $C f_{1} \neq 0$, then write $C f_{1}=c f_{2}$, with $\left\|f_{2}\right\|=1$ and $c>0$. Since

$$
\left\langle C f_{1}, f_{1}\right\rangle=\left\langle f_{1}, C^{*} f_{1}\right\rangle=\left\langle f_{1},-C f_{1}\right\rangle=-\left\langle C f_{1}, f_{1}\right\rangle,
$$

we have $f_{1} \perp f_{2}$. Extend $\left\{f_{1}, f_{2}\right\}$ to an orthonormal basis $\left\{f_{1}, f_{2}, f_{3}\right\}$ of \mathbf{R}^{3}. With respect to this basis, we have

$$
A=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -a \\
0 & a & 0
\end{array}\right), \quad B=\left(\begin{array}{ccc}
0 & * & * \\
* & 0 & * \\
* & * & 0
\end{array}\right), \quad C=\left(\begin{array}{ccc}
0 & -c & 0 \\
c & 0 & * \\
0 & * & 0
\end{array}\right)
$$

for some $a \in \mathbf{R}$. Direct computation then shows that

$$
A=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -a \\
0 & a & 0
\end{array}\right), \quad B=\left(\begin{array}{ccc}
0 & 0 & b \\
0 & 0 & 0 \\
-b & 0 & 0
\end{array}\right), \quad C=\left(\begin{array}{ccc}
0 & -c & 0 \\
c & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

for some $b \in \mathbf{R}$, with $a b=c, b c=a$, and $c a=b$. Replacing f_{3} by $-f_{3}$ if necessary, we may assume $a>0$. It then follows that $a=b=c=1$, completing the proof.

An interesting representation of the operator $K_{2}=R \otimes R+S \otimes S+T \otimes T$ can be obtained by considering the space $M_{3}(\mathbf{C})$ of 3×3 complex matrices with inner product $\langle A, B\rangle=$ trace $A B^{*}$. We identify $e_{i} \otimes e_{j}$ with the matrix unit $E_{i j}$, where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the orthonormal basis of Theorem 2.1; this induces a unitary equivalence of $\mathcal{V}^{\otimes 2}$ with $M_{3}(\mathbf{C})$. Under this equivalence, an operator on $\mathcal{V}^{\otimes 2}$ of the form $F \otimes G$ corresponds to the operator on $M_{3}(\mathbf{C})$ given by $A \mapsto F A G^{t}$, where F and G are written as matrices in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$.

Proposition 2.4. Under the above unitary equivalence of $\mathcal{V}^{\otimes 2}$ with $M_{3}(\mathbf{C})$, the operator K_{2} corresponds to the operator Γ defined on $M_{3}(\mathbf{C})$ by

$$
\Gamma(A)=-A^{t}+(\operatorname{tr} A) I
$$

where A^{t} is the transpose of $A, \operatorname{tr} A$ is the trace of A, and I is the identity matrix.

Proof. We have

$$
\Gamma\left(E_{i j}\right)=-E_{j i}+\delta_{i j} I=-E_{j i}+\delta_{i j}\left(E_{11}+E_{22}+E_{33}\right)
$$

where δ is the Kronecker delta. On the other hand,

$$
\begin{aligned}
& K_{2}\left(E_{i j}\right)= R E_{i j} R^{t}+S E_{i j} S^{t}+T E i j T^{t} \\
&=\left(E_{32}-E_{23}\right) E_{i j}\left(E_{23}-E_{32}\right)+\left(E_{13}-E_{31}\right) E_{i j}\left(E_{31}-E_{13}\right) \\
&+\left(E_{21}-E_{12}\right) E_{i j}\left(E_{12}-E_{21}\right)
\end{aligned}
$$

and the two expressions are easily seen to be equal.

The spectrum of K_{2} is very well-known. It is not hard to compute this spectrum in any representation, but the proposition above makes it particularly easy.

Corollary 2.5. The eigenvalues of K_{2} are 2,1 and -1 with multiplicities 1,3 , and 5 respectively. The corresponding eigenspaces of Γ are the subspaces respectively spanned by the identity matrix, the skew-symmetric matrices, and the symmetric matrices with trace 0 .

Proof. This follows immediately from the observation that $\Gamma(I)=2 I, \Gamma(A)=A$ if $A=-A^{t}$, and $\Gamma(A)=-A$ if $A=A^{t}$ and $\operatorname{tr} A=0$.

3. Operators commuting with the Hamiltonian.

As mentioned in the introduction, it is shown in [1] that the eigenspaces of H_{N} and P_{N} corresponding to the smallest eigenvalue λ_{N}^{0} have dimension 1 for N even. It is therefore important to study one-dimensional eigenspaces of H_{N} and P_{N} or, equivalently, of K_{N} and Q_{N}. Clearly, any such eigenspace is invariant under all operators commuting with K_{N} or Q_{N}. Hence, each operator A communting with H_{N} or P_{N} puts a constraint on any eigenvector w of H_{N} or P_{N} corresponding to an eigenvalue of multiplicity 1, namely that $A w$ must be a scalar multiple of w. This section describes two families of such operators. These families include operators which are known to physicists.

Lemma 3.1. Let F be a linear operator on \mathcal{V}. Then $F \otimes F$ commutes with K_{2} if and only if, in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of Theorem 2.1, $F F^{t}=F^{t} F=\lambda I$, for some complex number λ, where I is the 3×3 identity matrix.

Proof. We use Proposition 2.4. Under the equivalence given there, the operator $F \otimes F$ corresponds to multiplying an element of $M_{3}(\mathbf{C})$ on the left by F and on the right by F^{t}, where F is written as a matrix in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. Hence $F \otimes F$ commutes with K_{2}
if and only if, for each $J \in M_{3}(\mathbf{C})$,

$$
\Gamma\left(F J F^{t}\right)=F \Gamma(J) F^{t}
$$

i.e.,

$$
-F J^{t} F^{t}+\operatorname{tr}\left(F J F^{t}\right) I=F\left(-J^{t}+\operatorname{tr}(J) I\right) F^{t}
$$

which is true if and only if

$$
\operatorname{tr}\left(F J F^{t}\right) I=\operatorname{tr}(J) F F^{t}
$$

If $F F^{t}=F^{t} F=\lambda I$, then (\dagger) clearly holds. Conversely, if (\dagger) holds, then setting $J=I$ shows that $F F^{t}=\frac{1}{3} \operatorname{tr}\left(F F^{t}\right) I$, a multiple of the identity. If $F F^{t} \neq 0$, we clearly have $F^{t} F=F F^{t}$. If $F F^{t}=0$, then setting $J=\left(F^{t} F\right)^{*}$ in (\dagger) shows that $\left\langle F^{t} F, F^{t} F\right\rangle=$ $\operatorname{tr}\left(F^{t} F J\right)=\operatorname{tr}\left(F J F^{t}\right)=0$, so that $F^{t} F=0$.

Remark. The condition $F F^{t}=F^{t} F=\lambda I$ is not unitarily invariant, since in general $F^{t} \neq F^{*}$.

Lemma 3.2. Let F be a linear operator on \mathcal{V}. Let $\Theta_{N}^{(i j)}=R^{(i)} R^{(j)}+S^{(i)} S^{(j)}+T^{(i)} T^{(j)}$, where $i, j \in\{1,2, \ldots, N\}, i \neq j$. Let $F^{\otimes N}$ denote the N-fold tensor product of F with itself. Then $F^{\otimes N}$ commutes with $\Theta_{N}^{(i j)}$ if and only if, in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of Theorem 2.1, $F F^{t}=F^{t} F=\lambda I$, for some complex number λ. .

Proof. Let Z be the operator on $\mathcal{V}^{\otimes N}$ defined by

$$
Z\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{N}\right)=v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(N)}
$$

extended by linearity, where σ is any fixed element of S_{N} (the symmetric group on N letters) with $\sigma(i)=1$ and $\sigma(j)=2$. Then Z clearly commutes with $F^{\otimes N}$, and $\Theta_{N}^{(i j)}=$ $Z^{-1} \Theta_{N}^{(12)} Z$. Hence, $F^{\otimes N}$ commutes with $\Theta_{N}^{(i j)}$ if and only if it commutes with $\Theta_{N}^{(12)}$.

We can write $\Theta_{N}^{(12)}=K_{2} \otimes I \otimes I \otimes \cdots \otimes I$. The lemma now follows easily from Lemma 3.1, by noting that $\left[F^{\otimes N}, \Theta_{N}^{(12)}\right]=\left[F \otimes F, K_{2}\right] \otimes F^{\otimes N-2}$.

Theorem 3.3. Let $F^{\otimes N}$ be a linear operator on \mathcal{V}. Then $F^{\otimes N}$ commutes with K_{N} and with Q_{N} (and hence also with H_{N} and P_{N}) if and only if, in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, $F F^{t}=F^{t} F=\lambda I$, for some complex number λ.

Proof. Since each of K_{N} and Q_{N} are sums of $\Theta_{N}^{(i j)}$'s, it follows immediately from Lemma 3.2 that K_{N} and Q_{N} commute with operators of the given form.

For the converse, let F be any operator on \mathcal{V} such that $F^{\otimes N}$ commutes with K_{N} or Q_{N}. We shall show that $F^{\otimes N}$ must commute with $\Theta_{N}^{(1,2)}$; the result will then follow from the previous lemma.

Write the commutator of $F^{\otimes N}$ and $\Theta_{N}^{(12)}$ as

$$
\left[F^{\otimes N}, \Theta_{N}^{(12)}\right]=\sum_{j} A_{j} \otimes B_{j} \otimes I^{\otimes N-2}
$$

for some finite collection of operators A_{j} and B_{j} on \mathcal{V}. (In fact, it is easily seen that we only need 3 of each.) Now, recalling the definitions of K_{N} and Q_{N}, the only way we could possibly have

$$
\left[F^{\otimes N}, K_{N}\right]=0 \quad \text { or } \quad\left[F^{\otimes N}, Q_{N}\right]=0
$$

would be if for each j, either $A_{j}=I$ or $B_{j}=I$, and if furthermore $\sum_{j} B_{j}=-\sum_{j} A_{j}$. This would imply that

$$
\left[F^{\otimes N}, \Theta_{N}^{(12)}\right]=(I \otimes C-C \otimes I) \otimes I^{\otimes N-2}
$$

for some operator C on \mathcal{V}. But by symmetry, we must also have

$$
\left[F^{\otimes N}, \Theta_{N}^{(12)}\right]=(C \otimes I-I \otimes C) \otimes I^{\otimes N-2}
$$

It follows that $C=0$, so that $F^{\otimes N}$ commutes with $\Theta_{N}^{(12)}$. The theorem follows.

Lemma 3.4. Let F be a linear operator on \mathcal{V}. Then $F \otimes I+I \otimes F$ commutes with K_{2} if and only if, in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}, F+F^{t}=\lambda I$, for some complex number λ.

Proof. We again use Proposition 2.4. We have that

$$
\begin{aligned}
(F \otimes I+I \otimes F) \Gamma(A) & =-F A^{t}-A^{t} F^{t}+(\operatorname{tr} A) F+(\operatorname{tr} A) F^{t} \\
& =-F A^{t}-A^{t} F^{t}+(\operatorname{tr} A)\left(F+F^{t}\right),
\end{aligned}
$$

and that

$$
\begin{aligned}
\Gamma(F \otimes I+I \otimes F)(A) & =-F A^{t}-A^{t} F^{t}+(\operatorname{tr} F A) I+\left(\operatorname{tr} A F^{t}\right) I \\
& =-F A^{t}-A^{t} F^{t}+\left(\operatorname{tr} A\left(F+F^{t}\right)\right) I
\end{aligned}
$$

The two operators commute if and only if the above two expressions are equal for every matrix A, and this is easily seen to be true if and only if $F+F^{t}$ is a multiple of the identity matrix.

Theorem 3.5. Let F be a linear operator on \mathcal{V}. Then $\sum_{j=1}^{N} F^{(j)}$ commutes with K_{N} and with Q_{N} if and only if, in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}, F+F^{t}=\lambda I$ for some complex number λ.

Proof. This follows easily from the lemma above, by techniques very similar to the proof of Lemma 3.2 and Theorem 3.3.

Two other operators, both well-known to physicists, deserve mention. Another operator in the commutant of K_{N} and of Q_{N} is the "left-right symmetry" L, of order 2, defined by

$$
L\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{N-1} \otimes v_{N}\right)=v_{N} \otimes v_{N-1} \otimes \cdots \otimes v_{2} \otimes v_{1}
$$

extended by linearity. The commutant of Q_{N} also contains the "rotation" operator Π, of
order N, defined by

$$
\Pi\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{N-1} \otimes v_{N}\right)=v_{N} \otimes v_{1} \otimes v_{2} \otimes \cdots \otimes v_{N-1}
$$

extended by linearity. Since K_{N} and Q_{N}, and also Π and L, are real in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, an element w of an eigenspace of K_{N} or Q_{N} of dimension one must satisfy $L(w)= \pm w$, and in the case of Q_{N} must also satisfy $\Pi(w)= \pm w$.

4. A decomposition of K_{N} and Q_{N}.

Let k be an integer with $-N \leq k \leq N$. Let \mathcal{M}_{k}^{z} be the eigenspace of $\sum_{j=1}^{N} S_{z}^{(j)}$ corresponding to the eigenvalue k. Similarly, let \mathcal{M}_{k}^{x} and \mathcal{M}_{k}^{y} be the eigenspaces of $\sum_{j=1}^{N} S_{x}^{(j)}$ and $\sum_{j=1}^{N} S_{y}^{(j)}$, respectively, corresponding to the eigenvalue k. Recall that in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, the operators S_{x}, S_{y}, S_{z} have matrix representations $i R, i S, i T$, respectively.

Using the orthonormal basis $\left\{v_{-1}, v_{0}, v_{1}\right\}$ of \mathcal{V}, note that

$$
S_{z}^{(j)}\left(v_{r_{1}} \otimes \ldots \otimes v_{r_{N}}\right)=r_{j}\left(v_{r_{1}} \otimes \ldots \otimes v_{r_{N}}\right),
$$

so that \mathcal{M}_{k}^{z} is the span of

$$
\left\{v_{r_{1}} \otimes v_{r_{2}} \otimes \ldots \otimes v_{r_{N}} \mid r_{1}, \ldots, r_{N} \in\{-1,0,1\}, r_{1}+r_{2}+\ldots+r_{N}=k\right\} .
$$

This shows that $\mathcal{V}^{\otimes N}=\bigoplus_{k=-N}^{N} \mathcal{M}_{k}^{z}$, and by symmetry we have that $\mathcal{V}^{\otimes N}=\bigoplus_{k=-N}^{N} \mathcal{M}_{k}^{x}$ and $\mathcal{V}^{\otimes N}=\bigoplus_{k=-N}^{N} \mathcal{M}_{k}^{y}$.

The following theorem and its corollary are well-known to physicists.

Proposition 4.1. Let q be one of x, y, or z. Then each \mathcal{M}_{k}^{q} is invariant under K_{N} and under Q_{N}. Furthermore, every one-dimensional eigenspace of K_{N} or of Q_{N} is contained in \mathcal{M}_{0}^{q}.

Proof. By symmetry, it suffices to consider the case $q=x$. The invariance of the \mathcal{M}_{k}^{x} follows from the fact that $\sum_{j=1}^{N} R^{(j)}$ commutes with K_{N} and with Q_{N}, by Theorem 3.5. For the second statement, note that if \mathcal{E} is a one-dimensional eigenspace, then since K_{N} and Q_{N} are real in the basis generated by $\left\{e_{1}, e_{2}, e_{3}\right\}$, we can choose $w \in \mathcal{E}$ with $w \neq 0$ and with w real in this basis. Suppose $w \in \mathcal{M}_{k}^{x}$. Then w is an eigenvector of $\sum_{j=1}^{N} R^{(j)}$ with eigenvalue $-i k$. But since $\sum_{j=1}^{N} R^{(j)}$ and w are real in the same basis, the eigenvalue must be real, so we must have $k=0$.

Corollary 4.2. Any eigenspace of K_{N} or Q_{N} of dimension 1 is contained in the subspace \mathcal{M}_{0} defined by

$$
\mathcal{M}_{0}=\mathcal{M}_{0}^{x} \cap \mathcal{M}_{0}^{y} \cap \mathcal{M}_{0}^{z}
$$

Furthermore, \mathcal{M}_{0} is invariant under K_{N} and Q_{N}.
Physically, \mathcal{M}_{0} corresponds to the subspace of $\mathcal{V}^{\otimes N}$ with spin 0 . If we had $\mathcal{M}_{0}=\{0\}$, then K_{N} and Q_{N} would have no eigenspaces of multiplicity 1, contradicting [1]. However, it is known (see, e.g. [7]) that \mathcal{M}_{0} is in fact fairly large. In the next section we describe \mathcal{M}_{0} precisely. We first present alternative characterizations of some of the subspaces considered in this section.

Proposition 4.3. The subspace \mathcal{M}_{0} is equal to the intersection of the kernels of all operators on $\mathcal{V}^{\otimes N}$ of the form $\sum_{j=1}^{N} F^{(j)}$ where F is a linear operator on \mathcal{V} with $F^{t}=-F$ in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$.

Proof. Since each of the matrices R, S, and T of Theorem 2.1 are skew-symmetric, it is clear that \mathcal{M}_{0} contains the given intersection. On the other hand, since every skewsymmetric matrix F is a linear combination of R, S, and T, it follows that $\sum_{j=1}^{N} F^{(j)}$ for
such an F must annihilate every element in the kernels of each of $\sum_{j=1}^{N} R^{(j)}, \sum_{j=1}^{N} S^{(j)}$, and $\sum_{j=1}^{N} T^{(j)}$, and hence the given intersection must contain \mathcal{M}_{0}.

Proposition 4.4. The subspaces $\mathcal{M}_{0}^{x}, \mathcal{M}_{0}^{y}$, and \mathcal{M}_{0}^{z} are equal to the set of vectors in $\mathcal{V}^{\otimes N}$ left fixed by all operators of the form $F^{\otimes N}$, where F is a linear operator on \mathcal{V} corresponding to a rotation about the e_{1}-axis, the e_{2}-axis, and the e_{3}-axis, respectively.

Proof. We prove only the \mathcal{M}_{0}^{z} part; the other statements then follow by permuting the roles of the e_{i} 's. It is easily checked that a rotation through an angle θ about the e_{3} - axis has eigenvectors v_{-1}, v_{0}, and v_{1}, with eigenvalues $e^{-i \theta}, 1$, and $e^{i \theta}$, respectively. Hence, any element of \mathcal{M}_{0}^{z} is fixed by any N-fold tensor product of such a rotation.

Conversely, if a vector w is left invariant by all such N-fold products of rotations, choose any θ with θ / π irrational. Then the only way w can be fixed by the N-fold product of a rotation about the e_{3}-axis through that θ is if, in the basis generated by $\left\{v_{-1}, v_{0}, v_{1}\right\}$, each non-zero term in the expression for w has an equal number of v_{-1} 's and v_{1} 's. Hence $w \in \mathcal{M}_{0}^{z}$.

Proposition 4.5. The subspace \mathcal{M}_{0} is equal to the set of vectors in $\mathcal{V}^{\otimes N}$ which are left fixed by all operators of the form $F^{\otimes N}$, where F is a linear operator on \mathcal{V} with $F^{t} F=I$ in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, and with $\operatorname{det} F=1$.

Proof. If an element of $\mathcal{V}^{\otimes N}$ is left fixed by all such $F^{\otimes N}$, then by the above proposition it must be in each of $\mathcal{M}_{0}^{x}, \mathcal{M}_{0}^{y}$, and \mathcal{M}_{0}^{z}, and hence in \mathcal{M}_{0}.

For the converse, note that it follows by direct computation (by writing $F=A+i B$
and using the polar decomposition of A) that, in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, we must have

$$
F=O_{1}\left(\begin{array}{ccc}
\sqrt{1+b^{2}} & i b & 0 \\
-i b & \sqrt{1+b^{2}} & 0 \\
0 & 0 & 1
\end{array}\right) O_{2}
$$

for some real number b and some real, orthogonal matrices O_{1} and O_{2}. Furthermore, since $\operatorname{det} F=1$, we can assume (by multiplying O_{1} and O_{2} by -1 if necessary) that $\operatorname{det} O_{1}=\operatorname{det} O_{2}=1$. Now, every real, orthogonal matrix of determinant 1 can be written as a product of rotations about the e_{1}-axis and e_{2}-axis, so by Proposition 4.4 every element of \mathcal{M}_{0} is fixed by every such matrix. As for the matrix

$$
\left(\begin{array}{ccc}
\sqrt{1+b^{2}} & i b & 0 \\
-i b & \sqrt{1+b^{2}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

it has eigenvectors v_{-1}, v_{0}, and v_{1}, with eigenvalues $\gamma, 1$, and γ^{-1}, respectively, where $\gamma=\sqrt{1+b^{2}}-b$, so it clearly fixes every element of \mathcal{M}_{0}^{z}.

Remarks.

1. The proof above also shows that in fact $\mathcal{M}_{0}=\mathcal{M}_{0}^{x} \cap \mathcal{M}_{0}^{y}$, etc. In other words, we can omit any one of the three sets being intersected in the definition of \mathcal{M}_{0}. However, we do not make use of this fact here.
2. Part of the theorem above can be generalized to the statement that if $F F^{t}=F^{t} F=$ λI, then $F^{\otimes N}$ multiplies each element of \mathcal{M}_{0} by $(\operatorname{det} F)^{N}$. For $\lambda \neq 0$ this follows immediately by considering $F /(\operatorname{det} F)$. For $\lambda=0$, direct computation shows that up to real orthogonal matrices

$$
F=\left(\begin{array}{ccc}
1 & i & 0 \\
-i & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

so that $F\left(v_{-1}\right)=2 v_{-1}$ and $F\left(v_{0}\right)=F\left(v_{1}\right)=0$, from which it follows that $F^{\otimes N}$ annihilates each element of \mathcal{M}_{0}^{z}.

5. The structure of \mathcal{M}_{0}.

In this section, we examine the subspaces $\mathcal{M}_{0}^{x}, \mathcal{M}_{0}^{y}, \mathcal{M}_{0}^{z}$ and \mathcal{M}_{0} described above. Our main result (Theorems 5.4 and 5.8) is an explicit description of \mathcal{M}_{0}. Other, alternative descriptions of \mathcal{M}_{0} have been obtained in [7] by the "valence-bond basis" approach.

We require some notation. For $\sigma \in S_{N}$ (the symmetric group on N letters), we define the linear operator Ω_{σ} on $\mathcal{V}^{\otimes N}$ by

$$
\Omega_{\sigma}\left(u_{1} \otimes \cdots \otimes u_{N}\right)=u_{\sigma(1)} \otimes \cdots \otimes u_{\sigma(N)}
$$

extended by linearity.

Definition. Given a set $Y \subseteq \mathcal{V}^{\otimes N}$, the permutation set of Y is $P(Y)=\left\{\Omega_{\sigma}(y) \mid \sigma \in\right.$ $\left.S_{N}, y \in Y\right\}$, and the permutation-span of Y, written $P-\operatorname{sp}(Y)$, is the linear span of $P(Y)$.

In this notation, we may write \mathcal{M}_{0}^{z} as

$$
\mathcal{M}_{0}^{z}=P-\operatorname{sp}\left\{\left(v_{-1} \otimes v_{1}\right)^{\otimes a} \otimes v_{0}^{\otimes b} \mid 2 a+b=N\right\}
$$

where, given a vector $u, u^{\otimes k}$ denotes the k-fold tensor product of u with itself.
In the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of Theorem 2.1, this becomes

$$
\mathcal{M}_{0}^{z}=P-\operatorname{sp}\left\{\left(\left(-i e_{1}-e_{2}\right) \otimes\left(i e_{1}-e_{2}\right)\right)^{\otimes a} \otimes e_{3}^{\otimes b} \mid 2 a+b=N\right\} .
$$

Now note that this is the same as

$$
P-\operatorname{sp}\left\{\left(\left(i e_{1}-e_{2}\right) \otimes\left(-i e_{1}-e_{2}\right)\right) \otimes\left(\left(-i e_{1}-e_{2}\right) \otimes\left(i e_{1}-e_{2}\right)\right)^{\otimes a-1} \otimes e_{3}^{\otimes b} \mid 2 a+b=N\right\} .
$$

By taking sums and differences of corresponding vectors in these two expressions, we obtain the "real" and "imaginary" parts of two tensor positions of these vectors (in the basis $\left.\left\{e_{j_{1}} \otimes \cdots \otimes e_{j_{N}} \mid j_{i} \in\{1,2,3\}\right\}\right)$, so we conclude that

$$
\begin{aligned}
\mathcal{M}_{0}^{z}= & P-\operatorname{sp}\left(\left\{\left(e_{1} \otimes e_{1}+e_{2} \otimes e_{2}\right) \otimes\left(\left(-i e_{1}-e_{2}\right) \otimes\left(i e_{1}-e_{2}\right)\right)^{\otimes a-1} \otimes e_{3}^{\otimes b} \mid 2 a+b=N\right\}\right. \\
& \left.\cup\left\{\left(e_{1} \otimes e_{2}-e_{2} \otimes e_{1}\right) \otimes\left(\left(-i e_{1}-e_{2}\right) \otimes\left(i e_{1}-e_{2}\right)\right)^{\otimes a-1} \otimes e_{3}^{\otimes b} \mid 2 a+b=N\right\}\right) .
\end{aligned}
$$

Continuing in this way, we obtain, finally, that

$$
\mathcal{M}_{0}^{z}=P-\operatorname{sp}\left\{\psi^{\otimes a} \otimes \chi^{\otimes b} \otimes e_{3}^{\otimes c} \mid 2 a+2 b+c=N\right\}
$$

where $\psi=e_{1} \otimes e_{2}-e_{2} \otimes e_{1}$ and $\chi=e_{1} \otimes e_{1}+e_{2} \otimes e_{2}$.
Now, note that $\psi \otimes \psi=\Omega_{\sigma_{1}}(\chi \otimes \chi)-\Omega_{\sigma_{2}}(\chi \otimes \chi)$, where σ_{1} and σ_{2} are the transpositions $\sigma_{1}=\left(\begin{array}{ll}2 & 3\end{array}\right)$ and $\sigma_{2}=\left(\begin{array}{l}24\end{array}\right)$ (this can be checked simply by expanding both sides). This implies that we may assume in ($\dagger \dagger$) that $a=0$ or 1 . Also, we can clearly replace χ by

$$
\phi=\chi+e_{3} \otimes e_{3}=e_{1} \otimes e_{1}+e_{2} \otimes e_{2}+e_{3} \otimes e_{3},
$$

so we have

$$
\text { (*) } \mathcal{M}_{0}^{z}=P-\operatorname{sp}\left(\left\{\phi^{\otimes a} \otimes e_{3}^{\otimes b} \mid 2 a+b=N\right\} \cup\left\{\psi \otimes \phi^{\otimes a} \otimes e_{3}^{\otimes b} \mid 2+2 a+b=N\right\}\right) .
$$

Let R, S, and T be as in Theorem 2.1. We can obtain $-S$ from T by interchanging the vectors e_{2} and e_{3} in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. Similarly, we obtain $-R$ from T by interchanging e_{1} and e_{3}. Since $\mathcal{M}_{0}^{z}=\operatorname{ker}\left(\sum_{j=1}^{N} T^{(j)}\right), \quad \mathcal{M}_{0}^{x}=\operatorname{ker}\left(\sum_{j=1}^{N} R^{(j)}\right)$, and $\mathcal{M}_{0}^{y}=\operatorname{ker}\left(\sum_{j=1}^{N} S^{(j)}\right)$, we have immediately from $(*)$ that

$$
\begin{aligned}
\mathcal{M}_{0}^{x}=P-\operatorname{sp}(& \left\{\phi^{\otimes a} \otimes e_{1}^{\otimes b} \mid 2 a+b=N\right\} \\
& \left.\cup\left\{\left(e_{2} \otimes e_{3}-e_{3} \otimes e_{2}\right) \otimes \phi^{\otimes a} \otimes e_{1}^{\otimes b} \mid 2+2 a+b=N\right\}\right)
\end{aligned}
$$

and

$$
\begin{align*}
\mathcal{M}_{0}^{y}=P-\operatorname{sp}(& \left\{\phi^{\otimes a} \otimes e_{2}^{\otimes b} \mid 2 a+b=N\right\} \\
& \left.\cup\left\{\left(e_{3} \otimes e_{1}-e_{1} \otimes e_{3}\right) \otimes \phi^{\otimes a} \otimes e_{2}^{\otimes b} \mid 2+2 a+b=N\right\}\right) . \tag{***}
\end{align*}
$$

Since the vector ϕ will be important in what follows, we pause to note that ϕ will be seen to be the unique (up to scalar multiple) element of \mathcal{M}_{0} for $N=2$, and that $K_{2} \phi=2 \phi$.

Having derived these expressions for $\mathcal{M}_{0}^{x}, \quad \mathcal{M}_{0}^{y}$, and \mathcal{M}_{0}^{z}, we now consider their intersection, \mathcal{M}_{0}. We sometimes write $\mathcal{M}_{0, N}^{x}$ for $\mathcal{M}_{0}^{x}, \quad \mathcal{M}_{0, N}^{y}$ for $\mathcal{M}_{0}^{y}, \quad \mathcal{M}_{0, N}^{z}$ for \mathcal{M}_{0}^{z}, and $\mathcal{M}_{0, N}$ for \mathcal{M}_{0}, to emphasize the value of N under consideration.

Lemma 5.1.

(1) Let q be one of x, y, and z. Let $u_{1} \in \mathcal{M}_{0, N_{1}}^{q}$, and $u_{2} \in \mathcal{M}_{0, N_{2}}^{q}$. Then $u_{1} \otimes u_{2} \in$ $\mathcal{M}_{0, N_{1}+N_{2}}^{q}$. The same result holds if we replace \mathcal{M}_{0}^{q} by \mathcal{M}_{0}.
(2) Let $w \in \mathcal{M}_{0, N}$. Then $P-\operatorname{sp}\{w\} \subseteq \mathcal{M}_{0, N}$.

Proof. For (1), we have

$$
\sum_{j=1}^{N_{1}+N_{2}} S_{q}^{(j)}\left(u_{1} \otimes u_{2}\right)=\sum_{j=1}^{N_{1}} S_{q}^{(j)}\left(u_{1} \otimes u_{2}\right)+\sum_{j=N_{1}+1}^{N_{1}+N_{2}} S_{q}^{(j)}\left(u_{1} \otimes u_{2}\right)
$$

Since $u_{1} \in \mathcal{M}_{0, N_{1}}^{q}$, the first of these two sums is zero. Since $u_{2} \in \mathcal{M}_{0, N_{2}}^{q}$, the second is also zero. Hence $u_{1} \otimes u_{2} \in \operatorname{ker}\left(\sum_{i=1}^{N_{1}+N_{2}} S_{q}^{(i)}\right)=\mathcal{M}_{0, N_{1}+N_{2}}^{q}$. The statement for \mathcal{M}_{0} follows immediately. (2) is obvious.

Lemma 5.2. Let $N \geq 2$ be even. Then

$$
\begin{aligned}
\mathcal{M}_{0, N}= & P-\operatorname{sp}\left\{\phi^{\otimes a} \otimes e_{1}^{\otimes b} \mid 2 a+b=N\right\} \cap P-\operatorname{sp}\left\{\phi^{\otimes a} \otimes e_{2}^{\otimes b} \mid 2 a+b=N\right\} \\
& \cap P-\operatorname{sp}\left\{\phi^{\otimes a} \otimes e_{3}^{\otimes b} \mid 2 a+b=N\right\} .
\end{aligned}
$$

Proof. We use equations $(*),(* *)$, and $(* * *)$. Equation $(*)$ shows that $\mathcal{M}_{0, N}^{z} \subseteq \operatorname{span}\left\{e_{j_{1}} \otimes \cdots \otimes e_{j_{N}} \mid e_{3}\right.$ appears in an even number of positions $\}$.

Combining this with equations $(* *)$ and $(* * *)$ shows that
$\mathcal{M}_{0, N} \subseteq \operatorname{span}\left\{e_{j_{1}} \otimes \cdots \otimes e_{j_{N}} \mid\right.$ each of e_{1}, e_{2}, and e_{3} appears in an even number of positions $\}$.

Now, an examination of equation $(*)$ shows that the only elements of $\mathcal{M}_{0, N}^{z}$ in this span are those in

$$
P-\operatorname{sp}\left\{\phi^{\otimes a} \otimes e_{3}^{\otimes b} \mid \quad 2 a+b=N\right\} .
$$

Similarly, the only elements of $\mathcal{M}_{0, N}^{x}$ and $\mathcal{M}_{0, N}^{y}$ in this span are, respectively, those in

$$
P-\operatorname{sp}\left\{\phi^{\otimes a} \otimes e_{1}^{\otimes b} \mid 2 a+b=N\right\}
$$

and in

$$
P-\operatorname{sp}\left\{\phi^{\otimes a} \otimes e_{2}^{\otimes b} \mid 2 a+b=N\right\} .
$$

Since $\mathcal{M}_{0, N}=\mathcal{M}_{0, N}^{x} \cap \mathcal{M}_{0, N}^{y} \cap \mathcal{M}_{0, N}^{z}$, this completes the proof.

Corollary 5.3. Let $N \geq 2$ be even and let F be a linear operator on \mathcal{V} which permutes the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. Then $F^{\otimes N}$ fixes $\mathcal{M}_{0, N}$.

Proof. \quad Since every element of $P-\operatorname{sp}\left\{\phi^{\otimes a} \otimes e_{3}^{\otimes b} \mid 2 a+b=N\right\}$ is unchanged upon interchanging e_{1} and e_{2}, the theorem is true when F arises from the transposition (12). Similarly, the theorem is true when F arises from the transposition (2 3). Since (12) and (2 3) generate S_{3}, we are done. (This corollary also follows from Proposition 4.5.)

Theorem 5.4. Let $N \geq 2$ be even, and let $\phi=e_{1} \otimes e_{1}+e_{2} \otimes e_{2}+e_{3} \otimes e_{3}$. Then

$$
\mathcal{M}_{0, N}=P-\operatorname{sp}\left\{\phi^{\otimes N / 2}\right\}
$$

Proof. Equations ($*$), ($* *$), and $(* * *)$ show $\mathcal{M}_{0, N} \supseteq P-\operatorname{sp}\left\{\phi^{\otimes N / 2}\right\}$. Conversely, given $w \in \mathcal{M}_{0, N}$, we proceed to show that $w \in P-\operatorname{sp}\left\{\phi^{\otimes N / 2}\right\}$.

By Lemma 5.2,

$$
w \in P-\operatorname{sp}\left\{\phi^{\otimes a} \otimes e_{3}^{\otimes b} \mid 2 a+b=N\right\}
$$

so we can write

$$
w=\sum_{\substack{b=0 \\ b \text { even }}}^{N / 2} \sum_{\sigma \in S_{N}} \alpha_{b, \sigma} \Omega_{\sigma}\left(\phi^{\otimes(N-b) / 2} \otimes e_{3}^{\otimes b}\right)
$$

where the coefficients $\alpha_{b, \sigma}$ are complex numbers. Let $b_{\max }$ be the largest value of b for which some $\alpha_{b, \sigma} \neq 0$, and let us suppose our expression for w is such that $b_{\max }$ is as small as possible. We wish to show that this minimal $b_{\max }$ is 0 , for then $w \in P-\operatorname{sp}\left\{\phi^{\otimes N / 2}\right\}$, as desired.

Suppose $b_{\max }>0$, so $b_{\max } \geq 2$. By Corollary 5.3, w is invariant upon interchanging e_{1} and e_{3}, so we have
($)$

$$
w=\sum_{\substack{b=0 \\ b \text { even }}}^{N} \sum_{\sigma \in S_{N}} \alpha_{b, \sigma} \Omega_{\sigma}\left(\phi^{\otimes(N-b) / 2} \otimes e_{1}^{\otimes b}\right) .
$$

Define the operator Φ_{N} on $\mathcal{V}^{\otimes N}$ to be the orthogonal projection onto $\mathcal{M}_{0, N}^{z}$. Thinking in the basis $\left\{v_{-1}, v_{0}, v_{1}\right\}$ and using Lemma 5.1 (1), it is clear that if $w_{1} \in \mathcal{M}_{0, N_{1}}^{z}$, and if $w_{2} \in \mathcal{V}^{\otimes N_{2}}$, then $\Phi_{N_{1}+N_{2}}\left(w_{1} \otimes w_{2}\right)=w_{1} \otimes \Phi_{N_{2}}\left(w_{2}\right)$. Now, $\Phi_{N}(w)=w$, so we have

$$
\begin{aligned}
w & =\Phi_{N}\left(\sum_{\substack{b=0 \\
b \text { even }}}^{N} \sum_{\sigma \in S_{N}} \alpha_{b, \sigma} \Omega_{\sigma}\left(\phi^{\otimes(N-b) / 2} \otimes e_{1}^{\otimes b}\right)\right) \\
& =\sum_{\substack{b=0 \\
b \text { even }}}^{N} \sum_{\sigma \in S_{N}} \alpha_{b, \sigma} \Phi_{N}\left(\Omega_{\sigma}\left(\phi^{\otimes(N-b) / 2} \otimes e_{1}^{\otimes b}\right)\right) \\
& =\sum_{\substack{b=0 \\
b \text { even }}}^{N} \sum_{\sigma \in S_{N}} \alpha_{b, \sigma} \Omega_{\sigma}\left(\Phi_{N}\left(\phi^{\otimes(N-b) / 2} \otimes e_{1}^{\otimes b}\right)\right) \\
& =\sum_{\substack{b=0 \\
b \text { even }}}^{N} \sum_{\sigma \in S_{N}} \alpha_{b, \sigma} \Omega_{\sigma}\left(\phi^{\otimes(N-b) / 2} \otimes \Phi_{b}\left(e_{1}^{\otimes b}\right)\right),
\end{aligned}
$$

the last equality following from the fact that $\phi^{\otimes(N-b) / 2} \in \mathcal{M}_{0, N-b}^{z}$. Now,

$$
\begin{aligned}
\Phi_{b}\left(e_{1}^{\otimes b}\right) & =\Phi_{b}\left(\left(\frac{i}{\sqrt{2}}\left(v_{-1}-v_{1}\right)\right)^{\otimes b}\right) \\
& =\left(-\frac{1}{2}\right)^{b / 2} \frac{1}{\left(\frac{b}{2}!\right)^{2}} \sum_{\sigma \in S_{b}} \Omega_{\sigma}\left(\left(-v_{-1} \otimes v_{1}\right)^{\otimes b / 2}\right) \\
& =\left(\frac{1}{2}\right)^{b / 2} \frac{1}{\left(\frac{b}{2}!\right)^{2}} \sum_{\sigma \in S_{b}} \Omega_{\sigma}\left(\left(v_{-1} \otimes v_{1}\right)^{\otimes b / 2}\right) \\
& =\left(\frac{1}{2}\right)^{b / 2} \frac{1}{\left(\frac{b}{2}!\right)^{2}} \sum_{\sigma \in S_{b}}\left(\frac{1}{2}\right)^{b / 2} \Omega_{\sigma}\left(\left(v_{-1} \otimes v_{1}+v_{1} \otimes v_{-1}\right)^{\otimes b / 2}\right) \\
& =\frac{1}{2^{b}} \frac{1}{\left(\frac{b}{2}!\right)^{2}} \sum_{\sigma \in S_{b}} \Omega_{\sigma}\left(\left(\phi-e_{3} \otimes e_{3}\right)^{\otimes b / 2}\right) \\
& =\frac{(-1)^{b / 2} b!}{2^{b}\left(\frac{b}{2}!\right)^{2}} e_{3}^{\otimes b}+\ldots,
\end{aligned}
$$

where the "..." indicates terms involving at least one ϕ, and hence no more than $b-2$ e_{3} 's. Hence,

$$
w=\sum_{\substack{b=0 \\ b \text { even }}}^{N} \sum_{\sigma \in S_{N}} \alpha_{b, \sigma} \Omega_{\sigma}\left(\phi^{\otimes(N-b) / 2} \otimes\left(\beta_{b} e_{3}^{\otimes b}+\ldots\right)\right),
$$

where $\beta_{b}=\frac{(-1)^{b / 2} b!}{2^{b}\left(\frac{b}{2}!\right)^{2}}$. Note that for any $b \geq 2, \beta_{b}$ is not 1 . Subtracting this expression for w from $\beta_{b_{\max }}$ times (\diamond) yields

$$
\left(\beta_{b_{\max }}-1\right) w=\sum_{\substack{b=0 \\ b \text { even }}}^{N} \sum_{\sigma \in S_{N}} \alpha_{b, \sigma} \Omega_{\sigma}\left(\phi^{\otimes(N-b) / 2} \otimes\left(\left(\beta_{b_{\max }}-\beta_{b}\right) e_{3}^{\otimes b}+\ldots\right)\right) .
$$

Dividing this last expression by $\left(\beta_{b_{\max }}-1\right)$ yields an expression for w which has terms corresponding only to values of b strictly less than $b_{\max }$. This contradicts the assumption that our $b_{\max }$ in (\diamond) was minimal. Hence, it must have been that the true minimal $b_{\max }$ was 0 , and therefore that $w \in P-\operatorname{sp}\left\{\phi^{\otimes N / 2}\right\}$.

Remark. Note that the vector $\Omega_{\sigma}\left(\phi^{\otimes N / 2}\right)$ depends on σ only through the unordered, indistinguishable pairs $\{\sigma(1), \sigma(2)\},\{\sigma(3), \sigma(4)\}, \ldots,\{\sigma(N-1), \sigma(N)\}$. Hence, when considering a vector of the form $\Omega_{\sigma}\left(\phi^{\otimes N / 2}\right)$, we can assume without loss of generality that σ is canonical in the sense that $\sigma(2 j-1)<\sigma(2 j)$ for $1 \leq j \leq N / 2$, and that $\sigma(2)<\sigma(4)<$ $\ldots<\sigma(N)$.

To determine the structure of $\mathcal{M}_{0, N}$ for N odd, we require two additional linear operators. For $N \geq 1$, for any $w \in \mathcal{V}^{\otimes N-1}$, and (i, j, k) any cyclic permutation of $(1,2,3)$, we define $\Psi: \mathcal{V}^{\otimes N} \rightarrow \mathcal{V}^{\otimes N+1}$ by

$$
\Psi\left(w \otimes e_{i}\right)=\frac{1}{2}\left(w \otimes\left(e_{j} \otimes e_{k}-e_{k} \otimes e_{j}\right)\right)
$$

and define $\Lambda: \mathcal{V}^{\otimes N+1} \rightarrow \mathcal{V}^{\otimes N}$ by

$$
\begin{aligned}
\Lambda\left(w \otimes e_{i} \otimes e_{i}\right) & =0 \\
\Lambda\left(w \otimes e_{i} \otimes e_{j}\right) & =w \otimes e_{k} \\
\text { and } \quad \Lambda\left(w \otimes e_{j} \otimes e_{i}\right) & =-w \otimes e_{k} .
\end{aligned}
$$

We extend Ψ and Λ by linearity.

Lemma 5.5.

(1) $\Lambda \circ \Psi$ is the identity on $\mathcal{V}^{\otimes N}$.
(2) $\Psi\left(\mathcal{M}_{0, N}\right) \subseteq \mathcal{M}_{0, N+1}$.
(3) $\Lambda\left(\mathcal{M}_{0, N+1}\right) \subseteq \mathcal{M}_{0, N}$.

Proof. (1) is obvious. For (2), note that it suffices to show that

$$
\left(\sum_{j=1}^{N+1} X^{(j)}\right) \Psi=\Psi\left(\sum_{j=1}^{N} X^{(j)}\right)
$$

where $X=R, S$, and T, as defined in Theorem 2.1. By symmetry, it suffices to consider the case $X=R$, and clearly we need only show

$$
\left(R^{(N)}+R^{(N+1)}\right) \Psi=\Psi R^{(N)}
$$

This follows by direct computation on elements of the form $w \otimes e_{i}$, where $i=1,2,3$. Similarly, for (3), it suffices to show

$$
R^{(N)} \Lambda=\Lambda\left(R^{(N)}+R^{(N+1)}\right)
$$

and this follows by direct computation on elements of the form $w \otimes e_{i} \otimes e_{j}$, where $i, j=$ $1,2,3$.

Proposition 5.6. For any $N \geq 2$,

$$
\mathcal{M}_{0, N}=\Lambda\left(\mathcal{M}_{0, N+1}\right)
$$

Proof. By (3) of the previous lemma, it suffices to show $\Lambda\left(\mathcal{M}_{0, N+1}\right) \supseteq \mathcal{M}_{0, N}$. Using (2) and (1) of the previous lemma, we have

$$
\Lambda\left(\mathcal{M}_{0, N+1}\right) \supseteq \Lambda\left(\Psi\left(\mathcal{M}_{0, N}\right)\right)=\mathcal{M}_{0, N}
$$

completing the proof.

Lemma 5.7. Let $\Delta=\sum_{\sigma \in S_{3}}(\operatorname{sgn} \sigma) e_{\sigma(1)} \otimes e_{\sigma(2)} \otimes e_{\sigma(3)}$, where S_{3} is the symmetric group on three letters, and $\operatorname{sgn} \sigma$ is the sign of the permutation σ. Then $\Delta \in \mathcal{M}_{0,3}$.

Proof. We first show that $\left(\sum_{j=1}^{3} R^{(j)}\right)(\Delta)=0$. Note that

$$
\begin{aligned}
\left(R^{(1)}+R^{(2)}+R^{(3)}\right)\left(e_{1} \otimes e_{2} \otimes e_{3}\right) & =0+e_{1} \otimes e_{3} \otimes e_{3}-e_{1} \otimes e_{2} \otimes e_{2} \\
& =\left(R^{(1)}+R^{(3)}+R^{(2)}\right)\left(e_{1} \otimes e_{3} \otimes e_{2}\right)
\end{aligned}
$$

Hence, $\left(\sum_{j=1}^{3} R^{(j)}\right)\left(e_{1} \otimes e_{2} \otimes e_{3}-e_{1} \otimes e_{3} \otimes e_{2}\right)=0$. The other terms in $\left(\sum_{j=1}^{3} R^{(j)}\right)(\Delta)$ cancel similarly. Hence, $\Delta \in \mathcal{M}_{0}^{x}$. Similarly, $\Delta \in \mathcal{M}_{0}^{y}$ and $\Delta \in \mathcal{M}_{0}^{z}$.

Theorem 5.8. Let $N \geq 3$ be odd. Then

$$
\mathcal{M}_{0, N}=P-\operatorname{sp}\left\{\phi^{\otimes(N-3) / 2} \otimes \Delta\right\}
$$

with $\Delta=\sum_{\sigma \in S_{3}}(\operatorname{sgn} \sigma) e_{\sigma(1)} \otimes e_{\sigma(2)} \otimes e_{\sigma(3)}$.
Proof. Theorem 5.4 and Lemmas 5.1 and 5.7 show

$$
\mathcal{M}_{0, N} \supseteq P-\operatorname{sp}\left\{\phi^{\otimes(N-3) / 2} \otimes \Delta\right\}
$$

Conversely, Proposition 5.6 and Theorem 5.4 show that

$$
\begin{aligned}
\mathcal{M}_{0, N} & =\Lambda\left(\mathcal{M}_{0, N+1}\right) \\
& =\Lambda\left(P-\mathrm{sp}\left\{\phi^{\otimes(N+1) / 2}\right\}\right)
\end{aligned}
$$

so it suffices to show

$$
\Lambda\left(\Omega_{\sigma}\left(\phi^{\otimes(N+1) / 2}\right)\right) \in P-\operatorname{sp}\left\{\phi^{\otimes(N-3) / 2} \otimes \Delta\right\}
$$

for any $\sigma \in S_{N+1}$. By the remark following Theorem 5.4, we can assume σ is "canonical", and in particular that $\sigma(N+1)=N+1$, and either $\sigma(N)=N$ or $\sigma(N-1)=N$. In the first case, $\Lambda\left(\Omega_{\sigma}\left(\phi^{\otimes(N+1) / 2}\right)\right)$ is zero, while in the second case

$$
\Lambda\left(\Omega_{\sigma}\left(\phi^{\otimes(N+1) / 2}\right)\right)=\Omega_{\tau}\left\{\phi^{\otimes(N-3) / 2} \otimes \Delta\right\}
$$

where τ equals σ restricted to $\{1,2, \ldots, N\}$. This completes the proof.

Remark. The proof above actually shows that

$$
P-\text { sp }\left\{\phi^{\otimes(N-3) / 2} \otimes \Delta\right\}=\operatorname{span}\left\{\Omega_{\sigma}\left(\phi^{\otimes(N-3) / 2} \otimes \Delta\right) \mid \sigma \in S_{N}, \sigma(N-1)=N\right\} .
$$

In other words, we need only consider those σ with $\sigma(N-1)=N$. Since Δ is skewsymmetric upon interchanging its last two tensor positions, we may instead assume $\sigma(N)=$ N. Combining this with reasoning as in the remark following Theorem 5.4, we see that we can assume σ is canonical in the sense that $\sigma(N)=N, \sigma(2 j-1)<\sigma(2 j)$ for $1 \leq j \leq(N-$ 1) $/ 2$, and $\sigma(2)<\sigma(4)<\ldots \sigma(N-3)$. (Note that we cannot assume $\sigma(N-3)<\sigma(N-1)$, since the unordered pair $\{\sigma(N-2), \sigma(N-1)\}$ is special and must be allowed to occur anywhere.)

We now turn our attention to the dimension of $\mathcal{M}_{0, N}$. By Proposition 5.6, this dimension is an increasing function of N. It is shown in [6] (see [7]) that for N even,

$$
\operatorname{dim} \mathcal{M}_{0, N}=\sum_{m=0}^{N / 2} \frac{N!}{(m!)^{2}(N-2 m)!}-\sum_{m=0}^{(N / 2)-1} \frac{N!}{m!(m+1)!(N-2 m-1)!} .
$$

This expression, while exact, is difficult to work with. Furthermore, it holds for even N only.

We present here some upper bounds on $\operatorname{dim} \mathcal{M}_{0, N}$ in closed form, which follow directly from the results of this section.

Proposition 5.9. Let $N \geq 4$ be even. Then

$$
\operatorname{dim} \mathcal{M}_{0, N} \leq(N-1) \operatorname{dim} \mathcal{M}_{0, N-2}
$$

Proof. Recall that

$$
\mathcal{M}_{0, N}=\operatorname{span}\left\{\Omega_{\sigma}\left(\phi^{\otimes N / 2}\right)\right\} .
$$

Furthermore, by the remark following Theorem 5.4, we need only consider "canonical" σ, so that $\sigma(N)=N$. There are then $(N-1)$ possible values of $\sigma(N-1)$. If we "delete" tensor positions N and $\sigma(N-1)$, we are left with an element of $\mathcal{M}_{0, N-2}$, so that

$$
\operatorname{dim} \operatorname{span}\left\{\Omega_{\sigma}\left(\phi^{\otimes N / 2}\right) \mid \sigma(N)=N, \sigma(N-1)=j\right\}=\operatorname{dim} \mathcal{M}_{0, N-2}
$$

for $j=1,2, \ldots, N-1$. The result follows.

Corollary 5.10. Let $N \geq 2$ be even. Then

$$
\operatorname{dim} \mathcal{M}_{0, N} \leq(N-1)(N-3) \ldots \cdot 3 \cdot 1=\frac{N!}{\left(\frac{N}{2}\right)!2^{N}}
$$

Furthermore, equality holds for $N=2,4$, or 6 .

Proof. For $N=2$, clearly $\operatorname{dim} \mathcal{M}_{0,2}=\operatorname{dim}\{\phi\}=1$. The inequality now follows from the previous proposition by induction. For $N=6$, to show equality it suffices to show the set

$$
\left\{\Omega_{\sigma}\left(\phi^{\otimes 3}\right) \mid \sigma \in S_{6}, \sigma \text { canonical }\right\}
$$

is linearly independent. This follows from the observation that for σ_{1} and σ_{2} canonical,

$$
\left\langle\Omega_{\sigma_{1}}\left(\phi^{\otimes 3}\right), \Omega_{\sigma_{2}}\left(e_{1} \otimes e_{1} \otimes e_{2} \otimes e_{2} \otimes e_{3} \otimes e_{3}\right)\right\rangle
$$

is 1 or 0 as $\sigma_{1}=\sigma_{2}$ or $\sigma_{1} \neq \sigma_{2}$. The proof of equality for $N=4$ is similar, involving $e_{1} \otimes e_{1} \otimes e_{2} \otimes e_{2}$ in place of $e_{1} \otimes e_{1} \otimes e_{2} \otimes e_{2} \otimes e_{3} \otimes e_{3}$.

Proposition 5.11. Let $N \geq 3$ be odd. Then

$$
\operatorname{dim} \mathcal{M}_{0, N} \leq\left(\frac{N-1}{2}\right)(N-2)(N-4) \ldots \cdot 3 \cdot 1
$$

Furthermore, equality holds for $N=3$ and $N=5$.
Proof. The inequality follows immediately from the fact that the number of "canonical" elements of S_{N}, in the sense of the remark following Theorem 5.8, is precisely $\left(\frac{N-1}{2}\right)(N-$ $2)(N-4) \ldots \cdot 3 \cdot 1$. For $N=3$, clearly $\operatorname{dim} \mathcal{M}_{0,3}=\operatorname{dim}\{\Delta\}=1$. For equality when $N=5$, note that if σ_{1} and σ_{2} are two canonical elements of S_{5}, then

$$
\left\langle\Omega_{\sigma_{1}}(\phi \otimes \Delta), \Omega_{\sigma_{2}}\left(e_{1} \otimes e_{1} \otimes e_{2} \otimes e_{3} \otimes e_{1}\right)\right\rangle
$$

is 1 or 0 as $\sigma_{1}=\sigma_{2}$ or $\sigma_{1} \neq \sigma_{2}$. Hence, the set

$$
\left\{\Omega_{\sigma}(\phi \otimes \Delta) \mid \sigma \in S_{5}, \sigma \text { canonical }\right\}
$$

is linearly independent.
6. Some special vectors; bounds on eigenvalues of K_{N} and Q_{N}.

As mentioned in the Introduction, Haldane's conjecture ([9], [10]) involves the lowest eigenvalues of H_{N} and P_{N}, or equivalently the highest eigenvalues of $K_{N}=-H_{N}$ and $Q_{N}=-P_{N}$. Numerical work by physicists (see, e.g., [11]) suggests that for large N the lowest eigenvalues of P_{N} are approximately $-1.4015 N$, with a difference (or "gap") of about 0.41 between the two lowest ones, and it is believed the the corresponding values for H_{N} are similar. In this section, we present a few bounds on eigenvalues of K_{N} and Q_{N}, and show (Theorem 6.7) that H_{N} and P_{N} have eigenvalues lower than $-\frac{4}{3}(N-1)$ and about $-\frac{4}{3} N$, respectively.

A similar result to this is obtained by a "valence bond approach" in [2]. There, vectors $\Omega_{\alpha \beta}(\alpha, \beta \in\{1,2\})$ are constructed, and the expected values of H_{N} are considered. (The vectors $\Omega_{\alpha \beta}$ are defined more explicitly in [3].) Our approach will be somewhat similar, in that we will construct vectors $\omega_{j, N}$ and consider expressions like $\left\langle H_{N}\left(\omega_{j, N}\right), \omega_{j, N}\right\rangle$. Our vectors $\omega_{j, N}$ are different than the vectors $\Omega_{\alpha \beta}$, and are defined in a quite different way. However, there are certain strong connections. For example, the identity $\Omega_{12}+(-1)^{N} \Omega_{21}=$ $2 \omega_{0, N}$ appears to hold in general.

We begin with an obvious bound.

Proposition 6.1. The spectrum of K_{N} is contained in $[-(N-1), 2(N-1)]$, and that of Q_{N} is contained in $[-N, 2 N]$.

Proof. Recall from Corollary 2.5 that the spectrum of K_{2} is $\{-1,1,2\}$. This is clearly the same as the spectrum of $\Theta_{N}^{(i j)}$ as defined in Lemma 3.2. The proposition follows from the fact that K_{N} is the sum of $N-1$ operators of the form $\Theta_{N}^{(i j)}$, and Q_{N} is the sum of N operators of the form $\Theta_{N}^{(i j)}$.

The smallest eigenvalues above are not relevant to Haldane's conjecture, but they are important in the study of ferromagnets, where the Hamiltonian is the negative of the operator H_{N} presented here. To examine these, we require the following definitions, also to be used elsewhere in this section.

Definitions. A vector $u \in \mathcal{V}^{\otimes N}$ is
(a) symmetric,
(b) skew-symmetric,
(c) scalar, or
(d) of trace 0 ,
in tensor positions 1 and 2 , if
(a) $\Omega_{(12)}(u)=u$,
(b) $\Omega_{(12)}(u)=-u$,
(c) $u=\phi \otimes u_{0}$, for some $u_{0} \in \mathcal{V}^{\otimes N-2}$, where $\phi=e_{1} \otimes e_{1}+e_{2} \otimes e_{2}+e_{3} \otimes e_{3}$, or
(d) $u=\sum_{i j} e_{i} \otimes e_{j} \otimes u_{i j}$, with $u_{11}+u_{22}+u_{33}=0$.
(Here Ω permutes the tensor positions, and is defined in the beginning of section 5.) The vector u has one of the above properties in tensor positions k and $l(k<l)$ if $\Omega_{(2 l)(1 k)}(u)$ has the corresponding property in tensor positions 1 and 2 . We say u is scalar plus skewsymmetric in tensor positions k and l if $u+\Omega_{(k l)}(u)$ is scalar in tensor positions k and l, or equivalently if $u=u_{1}+u_{2}$ with u_{1} scalar and u_{2} skew-symmetric in tensor positions k
and l.

By Corollary 2.5, u is scalar in tensor positions k and l if and only if $\Theta_{N}^{(k l)}(u)=2 u, u$ is skew-symmetric in tensor positions k and l if and only if $\Theta_{N}^{(k l)}(u)=u$, and u is symmetric and of trace 0 in tensor positions k and l if and only if $\Theta_{N}^{(k l)}(u)=-u$.

The following proposition, important in the study of ferromagnets, is well-known to physicists.

Proposition 6.2. The eigenspace of K_{N} corresponding to the eigenvalue $-(N-1)$ is the same as the eigenspace of Q_{N} corresponding to the eigenvalue $-N$. This common eigenspace has dimension $2 N+1$.

Proof. For a vector $w \in \mathcal{V}^{\otimes N}$ to be in the eigenspace for K_{N}, it must be that $\Theta_{N}^{(i, i+1)}(w)=$ $-w$, for all adjacent positions i and $i+1$. ¿From the above, this happens precisely when w is symmetric and of trace 0 in each two adjacent positions. This condition translates into the following. If we write

$$
w=\sum_{h} \alpha_{h} e_{h(1)} \otimes e_{h(2)} \otimes \ldots e_{h(N)}
$$

where the sum is taken over all functions $h:\{1,2, \ldots, N\} \rightarrow\{1,2,3\}$ and the coefficients α_{h} are complex numbers, then we must have
(A) $\alpha_{h_{1}}=\alpha_{h_{2}}$ whenever $h_{1}=h_{2} \circ \tau$ for some $\tau=(i i+1) \in S_{N}$, and
$(B) \alpha_{h_{1}}+\alpha_{h_{2}}+\alpha_{h_{3}}=0$ whenever for some $i, h_{1}(i)=h_{1}(i+1)=1, h_{2}(i)=h_{2}(i+1)=$ $2, h_{3}(i)=h_{3}(i+1)=3$, and $h_{1}(k)=h_{2}(k)=h_{3}(k)$ for $k \neq i, i+1$.

In the case of Q_{N}, we require the same conditions, but must also allow the pair ($N, 1$) in place of $(i, i+1)$. In either case, conditions (A) and (B) are easily seen to be equivalent to
($\left.A^{\prime}\right) \alpha_{h_{1}}=\alpha_{h_{2}}$ whenever $h_{1}=h_{2} \circ \tau$ for any $\tau \in S_{N}$, and
$\left(B^{\prime}\right) \alpha_{h_{1}}+\alpha_{h_{2}}+\alpha_{h_{3}}=0$ whenever for some $i \neq j, h_{1}(i)=h_{1}(j)=1, h_{2}(i)=h_{2}(j)=$ $2, h_{3}(i)=h_{3}(j)=3$, and $h_{1}(k)=h_{2}(k)=h_{3}(k)$ for $k \neq i, j$.

Conditions $\left(A^{\prime}\right)$ and $\left(B^{\prime}\right)$ make it clear that we can choose arbitrarily the coefficients α_{h} for "primitive" functions h, i.e. functions h with at most one element in $h^{-1}\{3\}$, and with $h(1) \leq h(2) \leq \ldots \leq h(N)$. The coefficients α_{h} with at most one element in $h^{-1}\{3\}$, but with arbitrary ordering, are then forced by condition $\left(A^{\prime}\right)$. The coefficients α_{h} with h having more and more elements in $h^{-1}\{3\}$ are then forced in turn by condition $\left(B^{\prime}\right)$. Under such a procedure, condition $\left(A^{\prime}\right)$ is satisfied automatically. Since there are $2 N+1$ "primitive" functions h, this is the dimension in question.

As a simple example of vectors in the eigenspace described above, note that if $u=v_{-1}$ or v_{1}, then $K_{2}(u \otimes u)=-u \otimes u$, so $K_{N}\left(u^{\otimes N}\right)=-(N-1) u^{\otimes N}$ and $Q_{N}\left(u^{\otimes N}\right)=-N u^{\otimes N}$.

To investigate the largest eigenvalues of K_{N} and Q_{N}, we make the following defini-
tions. For even N, let
$\mathcal{J}_{0, N}=\operatorname{span}\left\{e_{j_{1}} \otimes e_{j_{2}} \otimes \ldots \otimes e_{j_{N}} \mid\right.$ each of e_{1}, e_{2}, and e_{3} appears in an
even number of positions $\},$
$\mathcal{J}_{1, N}=\operatorname{span}\left\{e_{j_{1}} \otimes e_{j_{2}} \otimes \ldots \otimes e_{j_{N}} \mid\right.$ each of e_{2} and e_{3} appears in an
odd number of positions, and e_{1} appears in an
even number of positions $\},$
$\mathcal{J}_{2, N}=\operatorname{span}\left\{e_{j_{1}} \otimes e_{j_{2}} \otimes \ldots \otimes e_{j_{N}} \mid\right.$ each of e_{1} and e_{3} appears in an odd number of positions, and e_{2} appears in an even number of positions $\}$,
$\mathcal{J}_{3, N}=\operatorname{span}\left\{e_{j_{1}} \otimes e_{j_{2}} \otimes \ldots \otimes e_{j_{N}} \mid\right.$ each of e_{1} and e_{2} appears in an odd number of positions, and e_{3} appears in an even number of positions $\}$.

For odd N, make the same definitions, except write "odd" for "even" and "even" for "odd".
Clearly, $\mathcal{V}^{\otimes N}=\mathcal{J}_{0, N} \oplus \mathcal{J}_{1, N} \oplus \mathcal{J}_{2, N} \oplus \mathcal{J}_{3, N}$. Each of these four subspaces is easily seen to be invariant under an operator of the form $X^{(i)} X^{(j)}$, where X is one of R, S, and T, and hence to be invariant under K_{N} and Q_{N}. Furthermore, by Theorems 5.4 and 5.8, we have $\mathcal{M}_{0, N} \subseteq \mathcal{J}_{0, N}$.

For a function $h:\{1,2, \ldots, N\} \rightarrow\{1,2,3\}$, define

$$
e_{h} \equiv e_{h(1)} \otimes e_{h(2)} \otimes \ldots \otimes e_{h(N)} \in \mathcal{V}^{\otimes N}
$$

and

$$
(-1)^{h} \equiv(-1)^{\#(h)},
$$

where

$$
\#(h) \equiv \text { number of pairs }(i, j) \text { with } i<j \text { and } h(i)>h(j) .
$$

Define $\omega_{j, N} \in \mathcal{J}_{j, N}$, for $j=0,1,2,3$, by

$$
\omega_{j, N}=\sum_{\substack{h \\ e_{h} \in \mathcal{J}_{j, N}}}(-1)^{h} e_{h}
$$

where the sum is taken over all functions $h:\{1,2, \ldots, N\} \rightarrow\{1,2,3\}$ with e_{h} in the given subspace.

It is easily seen that $\Pi\left(\omega_{0, N}\right)=\omega_{0, N}$, where Π is the "rotation" operator defined at the end of section 3. Furthermore, $\omega_{0,1}=0, \omega_{0,2}=\phi$, and $\omega_{0,3}=\Delta$,

$$
\omega_{0, N}=\omega_{1, N-1} \otimes e_{1}+(-1)^{N} \omega_{2, N-1} \otimes e_{2}+\omega_{3, N-1} \otimes e_{3}
$$

and

$$
\omega_{0, N}=\omega_{0, N-2} \otimes \phi+(-1)^{N-1} \Psi\left(\omega_{0, N-1}\right)
$$

It follows immediately that with Λ and Ψ as defined in section 5 ,

$$
\Lambda\left(\omega_{0, N}\right)=(-1)^{N-1} \omega_{0, N-1}
$$

and

$$
\omega_{0, N}=\omega_{0, N-2} \otimes \phi+(-1)^{N-1} \Psi\left(\omega_{0, N-1}\right) ;
$$

this second equation shows $\omega_{0, N} \in \mathcal{M}_{0, N}$ for all N. More generally, it follows by similar reasoning that for $j=0,1,2,3$,

$$
\Lambda\left(\omega_{j, N}\right)=(-1)^{j+N-1} \omega_{j, N-1}
$$

and

$$
\omega_{j, N}=\omega_{j, N-2} \otimes \phi+(-1)^{j+N-1} \Psi\left(\omega_{j, N-1}\right) .
$$

It is easily seen from the definitions that each of $\omega_{0, N}, \omega_{1, N}, \omega_{2, N}$, and $\omega_{3, N}$ is "scalar plus skew-symmetric" in each two adjacent tensor positions. It follows immediately that $\left\langle\Theta^{(k, k+1)}\left(\omega_{j, N}\right), \omega_{j, N}\right\rangle \geq\left\langle\omega_{j, N}, \omega_{j, N}\right\rangle$ for any k and for $j=0,1,2,3$. We improve this result in Lemma 6.6 below.

The vector $\omega_{0, N}$ has the following uniqueness property.

Lemma 6.3. Let $N \geq 2$ be even. Let $y \in \mathcal{J}_{0, N}$ be scalar plus skew-symmetric in each two adjacent tensor positions. Then y is a scalar multiple of $\omega_{0, N}$.

Proof. Note that $\left\langle\omega_{0, N}, e_{1}^{\otimes N}\right\rangle=1$, so there is a complex number λ such that if $z=$ $y+\lambda \omega_{0, N}$, then $\left\langle z, e_{1}^{\otimes N}\right\rangle=0$. We wish to show that $z=0$. We proceed by induction on even N, the induction hypothesis being that if $z \in \mathcal{J}_{0, N}$ is such that z satisfies the hypothesis of y in the statement of the lemma, and if furthermore z is perpendicular to $e_{1}^{\otimes N}$, then $z=0$. For $N=2$, the hypothesis is clearly true. Assuming it is true for $N-2$, with $N \geq 4$, write
$z=\phi \otimes u_{0}+\left(e_{1} \otimes e_{2}-e_{2} \otimes e_{1}\right) \otimes u_{3}+\left(e_{2} \otimes e_{3}-e_{3} \otimes e_{2}\right) \otimes u_{1}+\left(e_{3} \otimes e_{1}-e_{1} \otimes e_{3}\right) \otimes u_{2}$, for some vectors $u_{0}, u_{1}, u_{2}, u_{3} \in \mathcal{V}^{\otimes N-2}$. Note that u_{0} satisfies the same properties as does z, so by the induction hypothesis $u_{0}=0$. This means that z is skew-symmetric in tensor positions 1 and 2. Similarly, z is skew-symmetric in tensor positions k and $k+1$ for each k. Since $N \geq 4$, and z must be built out of only the 3 vectors e_{1}, e_{2}, and e_{3}, this implies that $z=0$. This completes the induction step, and proves the lemma.

Proposition 6.4. Let N be even. Then

$$
\omega_{0, N}=\sum_{\substack{\sigma \in \mathcal{S}_{N} \\ \sigma \text { canonical }}}(\operatorname{sgn} \sigma) \Omega_{\sigma}\left(\phi^{\otimes N / 2}\right),
$$

with "canonical" as in the remark following Theorem 5.4. Hence, $\omega_{0, N} \in \mathcal{M}_{0, N}$.

Proof. Let

$$
y=\sum_{\substack{\sigma \in S_{N} \\ \sigma \text { canonical }}}(\operatorname{sgn} \sigma) \Omega_{\sigma}\left(\phi^{\otimes N / 2}\right) .
$$

Then y satisfies the hypothesis of the previous lemma, so y is a scalar multiple of $\omega_{0, N}$. To show the scalar is 1 , note that $\left\langle\omega_{0, N}, e_{1}^{\otimes N}\right\rangle=1$, while

$$
\left\langle y, e_{1}^{\otimes N}\right\rangle=\sum_{\substack{\sigma \in S_{N} \\ \sigma \text { canonical }}}(\operatorname{sgn} \sigma),
$$

and this last expression is easily seen to be 1 by induction.

Remarks.

1. The analogous statements to Lemma 6.3 for $\omega_{j, N}$, for $j=0,1,2,3$, and for N even or odd, are also true.
2. In addition to Proposition 6.4, we also have the following. For odd N,

$$
\omega_{0, N}=\sum_{\substack{\sigma \in S_{N} \\ \sigma \text { canonical }}}(\operatorname{sgn} \sigma) \Omega_{\sigma}\left(\phi^{\otimes(N-3) / 2} \otimes \Delta\right)
$$

with "canonical" as in the remark following Theorem 5.8. Also, for $j=1,2,3$,

$$
\omega_{j, N}=\sum_{\sigma}(\operatorname{sgn} \sigma) \Omega_{\sigma}\left(\phi^{\otimes(N-1) / 2} \otimes e_{j}\right),
$$

with the sum taken over all $\sigma \in S_{N}$ with $\sigma(2 i-1)<\sigma(2 i)$ for $i=1,2, \ldots,(N-1) / 2$, and with $\sigma(2)<\sigma(4)<\ldots<\sigma(N-1)$. For even N, and for $j=1,2,3$,

$$
\omega_{j, N}=\sum_{\sigma}(\operatorname{sgn} \sigma) \Omega_{\sigma}\left(\phi^{\otimes(N-2) / 2} \otimes\left(e_{k} \otimes e_{l}-e_{l} \otimes e_{k}\right)\right),
$$

where $k<l$ and $\{j, k, l\}=\{1,2,3\}$ as sets, and with the sum taken over all $\sigma \in S_{N}$ with $\sigma(2 i-1)<\sigma(2 i)$ for $i=1,2, \ldots, N / 2$, and with $\sigma(2)<\sigma(4)<\ldots<\sigma(N-2)$.

Lemma 6.5. For even $N,\left\|\omega_{0, N}\right\|^{2}=\frac{1}{4}\left(3^{N}+3\right)$, and $\left\|\omega_{1, N}\right\|^{2}=\left\|\omega_{2, N}\right\|^{2}=\left\|\omega_{3, N}\right\|^{2}=$ $\frac{1}{4}\left(3^{N}-1\right)$. For odd $N,\left\|\omega_{0, N}\right\|^{2}=\frac{1}{4}\left(3^{N}-3\right)$, and $\left\|\omega_{1, N}\right\|^{2}=\left\|\omega_{2, N}\right\|^{2}=\left\|\omega_{3, N}\right\|^{2}=$ $\frac{1}{4}\left(3^{N}+1\right)$.

Proof. Let N be even. We have that

$$
\left\|\omega_{0, N}\right\|^{2}=\sum_{\substack{h \\ e_{h} \in \mathcal{J}_{0, N}}} 1
$$

To evaluate this number, note that it is equal to the number of ways of partitioning the integers $\{1,2, \ldots, N\}$ into three disjoint subsets, each of which has even cardinality. Hence,

$$
\left\|\omega_{0, N}\right\|^{2}=\sum_{\substack{N_{1}+N_{2} \leq N \\ N_{1}, N_{2} \text { even }}}\binom{N}{N_{1}}\binom{N-N_{1}}{N_{2}} .
$$

This last expression is simply the sum of the coefficients of all terms in the expansion of the polynomial $(a+b+c)^{N}$ corresponding to even powers of each of a, b, and c, and is thus equal to

$$
\frac{1}{4}\left((1+1+1)^{N}+(-1+1+1)^{N}+(1-1+1)^{N}+(1+1-1)^{N}\right)=\frac{1}{4}\left(3^{N}+3\right)
$$

The other norms may be similarly evaluated.

Lemma 6.6. For even N,

$$
\begin{gathered}
\frac{\left\langle K_{N}\left(\omega_{0, N}\right), \omega_{0, N}\right\rangle}{\left\langle\omega_{0, N}, \omega_{0, N}\right\rangle}=(N-1)\left(\frac{4}{3}+\frac{8}{3^{N}+3}\right), \\
\frac{\left\langle Q_{N}\left(\omega_{0, N}\right), \omega_{0, N}\right\rangle}{\left\langle\omega_{0, N}, \omega_{0, N}\right\rangle}=N\left(\frac{4}{3}+\frac{8}{3^{N}+3}\right),
\end{gathered}
$$

and

$$
\begin{aligned}
\frac{\left\langle K_{N}\left(\omega_{1, N}\right), \omega_{1, N}\right\rangle}{\left\langle\omega_{1, N}, \omega_{1, N}\right\rangle}=\frac{\left\langle K_{N}\left(\omega_{2, N}\right), \omega_{2, N}\right\rangle}{\left\langle\omega_{2, N}, \omega_{2, N}\right\rangle}= & \frac{\left\langle K_{N}\left(\omega_{3, N}\right), \omega_{3, N}\right\rangle}{\left\langle\omega_{3, N}, \omega_{3, N}\right\rangle} \\
& =(N-1)\left(\frac{4}{3}-\frac{8}{3^{N+1}-3}\right)
\end{aligned}
$$

while for odd N,

$$
\frac{\left\langle K_{N}\left(\omega_{0, N}\right), \omega_{0, N}\right\rangle}{\left\langle\omega_{0, N}, \omega_{0, N}\right\rangle}=(N-1)\left(\frac{4}{3}-\frac{8}{3^{N}-3}\right)
$$

$$
\frac{\left\langle Q_{N}\left(\omega_{0, N}\right), \omega_{0, N}\right\rangle}{\left\langle\omega_{0, N}, \omega_{0, N}\right\rangle}=N\left(\frac{4}{3}-\frac{8}{3^{N}-3}\right),
$$

and

$$
\begin{aligned}
\frac{\left\langle K_{N}\left(\omega_{1, N}\right), \omega_{1, N}\right\rangle}{\left\langle\omega_{1, N}, \omega_{1, N}\right\rangle}=\frac{\left\langle K_{N}\left(\omega_{2, N}\right), \omega_{2, N}\right\rangle}{\left\langle\omega_{2, N}, \omega_{2, N}\right\rangle}= & \frac{\left\langle K_{N}\left(\omega_{3, N}\right), \omega_{3, N}\right\rangle}{\left\langle\omega_{3, N}, \omega_{3, N}\right\rangle} \\
& =(N-1)\left(\frac{4}{3}+\frac{8}{3^{N+1}+3}\right)
\end{aligned}
$$

Proof. Recall that

$$
\omega_{0, N}=\omega_{0, N-2} \otimes \phi+(-1)^{N-1} \Psi\left(\omega_{0, N-1}\right) .
$$

Now, $\omega_{0, N-2} \otimes \phi$ is symmetric in tensor positions $N-1$ and N, while $(-1)^{N-1} \Psi\left(\omega_{0, N-1}\right)$ is skew-symmetric in these tensor positions. Hence, $\Theta_{N}^{(N-1, N)}\left(\omega_{0, N}\right)=2 \omega_{0, N-2} \otimes \phi+$ $(-1)^{N-1} \Psi\left(\omega_{0, N-1}\right)=\omega_{0, N}+\omega_{0, N-2} \otimes \phi$. It follows that

$$
\begin{aligned}
\left\langle\Theta_{N}^{(1,2)}\left(\omega_{0, N}\right), \omega_{0, N}\right\rangle & =\left\|\omega_{0, N}\right\|^{2}+\left\langle\omega_{0, N}, \omega_{0, N-2} \otimes \phi\right\rangle \\
& =\left\|\omega_{0, N}\right\|^{2}+\left\|\omega_{0, N-2}\right\|^{2}\|\phi\|^{2} \\
& =\left\|\omega_{0, N}\right\|^{2}+3\left\|\omega_{0, N-2}\right\|^{2}
\end{aligned}
$$

By symmetry, the same result holds when $(N-1, N)$ is replaced by $(k, k+1)$, so

$$
\left\langle K_{N}\left(\omega_{0, N}\right), \omega_{0, N}\right\rangle=(N-1)\left(\left\|\omega_{0, N}\right\|^{2}+3\left\|\omega_{0, N-2}\right\|^{2}\right) .
$$

The results for $K_{N}\left(\omega_{0, N}\right)$ now follow from Lemma 6.5 and simple algebraic manipulation. The results for $Q_{N}\left(\omega_{0, N}\right)$ follow similarly, using the fact that $\Pi\left(\omega_{0, N}\right)=\omega_{0, N}$. The results for $\omega_{1, N}, \omega_{2, N}$, and $\omega_{3, N}$ are proved similarly.

Theorem 6.7. The operators $\left.K_{N}\right|_{\mathcal{M}_{0, N}},\left.Q_{N}\right|_{\mathcal{M}_{0, N}},\left.K_{N}\right|_{\mathcal{J}_{1, N}},\left.K_{N}\right|_{\mathcal{J}_{2, N}}$, and $\left.K_{N}\right|_{\mathcal{J}_{3, N}}$ have eigenvalues at least as large as the values, respectively, of $\frac{\left\langle K_{N}\left(\omega_{0, N}\right), \omega_{0, N}\right\rangle}{\left\langle\omega_{0, N}, \omega_{0, N}\right\rangle}$, $\frac{\left\langle Q_{N}\left(\omega_{0, N}\right), \omega_{0, N}\right\rangle}{\left\langle\omega_{0, N}, \omega_{0, N}\right\rangle}, \frac{\left\langle K_{N}\left(\omega_{1, N}\right), \omega_{1, N}\right\rangle}{\left\langle\omega_{1, N}, \omega_{1, N}\right\rangle}, \frac{\left\langle K_{N}\left(\omega_{2, N}\right), \omega_{2, N}\right\rangle}{\left\langle\omega_{2, N}, \omega_{2, N}\right\rangle}$, and $\frac{\left\langle K_{N}\left(\omega_{3, N}\right), \omega_{3, N}\right\rangle}{\left\langle\omega_{3, N}, \omega_{3, N}\right\rangle}$ as given in the previous lemma. In particular, for any N, K_{N} has an eigenvalue larger than $\frac{4}{3}(N-1)$, and has at least 4 eigenvalues (counting multiplicity) asymptotically larger than or equal to $\frac{4}{3} N$. Also Q_{N} has an eigenvalue asymptotically larger than or equal to $\frac{4}{3} N$.

Proof. Since the operators K_{N} and Q_{N} are Hermetian, this is immediate.

The methods of this section also allow us to prove the following generalization of Corollary 4.2. It is previously known, and in fact follows from the representation theory of $S U(2)$.

Proposition 6.8. The subspace $\mathcal{M}_{0, N}$ contains all eigenspaces of H_{N} and P_{N} of dimension 1 or 2.

Proof. Let \mathcal{E} be an eigenspace of H_{N} or P_{N} not contained in $\mathcal{M}_{0, N}$. Then by the decomposition of Section 4, there is a non- zero vector $w \in \mathcal{E} \cap \mathcal{M}_{k}^{q}$ for some $k \neq 0$ and $q=x, y$, or z. Now, it is easily seen that for any $k \neq 0, \mathcal{M}_{k}^{q}$ does not intersect $\mathcal{J}_{0, N}$. Indeed, $S_{q}^{(i)}\left(\mathcal{J}_{0, N}\right)$ is orthogonal to $\mathcal{J}_{0, N}$, for each i, so no element of $\mathcal{J}_{0, N}$ can be an eigenvector of $\sum_{i=1}^{N} S_{q}^{(i)}$ corresponding to a non-zero eigenvalue. Hence, $w \notin \mathcal{J}_{0, N}$. But this means that w has a non-zero projection onto some $\mathcal{J}_{j, N}, j>0$. Since the $\mathcal{J}_{j, N}$ are invariant subspaces of H_{N} and P_{N}, this projection is an element of \mathcal{E}. Then permuting the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ yields a non-zero element of \mathcal{E} in each $\mathcal{J}_{j, N}, j=1,2,3$. Since the $\mathcal{J}_{j, N}$ are orthogonal, we must have $\operatorname{dim} \mathcal{E} \geq 3$, completing the proof.

7. Other spin values.

The vector space \mathcal{V} and spin operators S_{x}, S_{y}, and S_{z} discussed in this paper correspond to atoms with spin 1 . In general, spin values may be any element of $\left\{\frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\right\}$. In this section, we discuss the spin operators for all spin values (see, e.g. [8]), and Haldane's more general conjecture ([9], [10]).

For spin $s \in\left\{\frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\right\}$, the vector space required is $\mathcal{V}_{s}=\mathbf{C}^{2 s+1}$ with orthonormal basis $\left\{v_{-s}, v_{-s+1}, \ldots, v_{s-1}, v_{s}\right\}$. The operator S_{z} on \mathcal{V}_{s} is defined by $S_{z}\left(v_{j}\right)=j v_{j}$, extended by linearity. The operators S_{x} and S_{y} are defined, for $m, n \in\{-s,-s+1, \ldots, s\}$, by the relations

$$
\left\langle v_{m}, S_{x} v_{n}\right\rangle=\frac{1}{2}\left[\sqrt{s(s+1)-n(n+1)} \delta_{m, n+1}+\sqrt{s(s+1)-m(m+1)} \delta_{m+1, n}\right]
$$

and

$$
\left\langle v_{m}, S_{y} v_{n}\right\rangle=\frac{1}{2 i}\left[\sqrt{s(s+1)-n(n+1)} \delta_{m, n+1}-\sqrt{s(s+1)-m(m+1)} \delta_{m+1, n}\right]
$$

extended by linearity, where δ is the Kronecker delta.
Once we have specified $s, \mathcal{V}_{s}, S_{x}, S_{y}$, and S_{z}, we may define the operators H_{N} and P_{N} on $\mathcal{V}_{s}^{\otimes N}$ exactly as before. These operators may be decomposed into operators on \mathcal{M}_{k}^{z}, $k \in\{-s N,-s N+1, \ldots, s N\}$, by exact analogy with section 4 of this paper (invariance can be easily checked directly).

We may now state the general form of Haldane's conjecture ([9], [10]). Let $\lambda_{N}^{0(s)}$ and $\lambda_{N}^{1(s)}$ be the smallest and second-smallest eigenvalues, respectively, of H_{N} (or P_{N}) with spin value s. Then Haldane's conjecture may be stated as saying that $\lim _{N \rightarrow \infty}\left(\lambda_{N}^{1(s)}-\lambda_{N}^{0(s)}\right)>0$ if and only if s is an integer. (Again, there are other, inequivalent, mathematical formulations of the conjecture; see [1].) The mathematical proof or disproof of this conjecture would be of extreme interest in solid state physics. See [1] for a proof of the non-integer s statement,
at least for P_{N}. The integer s statement, however, is considered to be more surprising, and remains unproven.

The following proposition is known, and follows from the representation theory of $S U(2)$.

Proposition 7.1. If $s \in\left\{\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots\right\}$, and if N is odd, then each eigenspace of H_{N} and P_{N} has even dimension.

Proof. As mentioned above, we decompose the space $\mathcal{V}_{s}^{\otimes N}$ into spaces \mathcal{M}_{k}^{z}, for $k=$ $-s N,-s N+1, \ldots, s N$. Note that each of these values of k differs by $\frac{1}{2}$ from an integer, and in particular that k is never 0 . It is easily checked that the mapping $v_{m} \mapsto v_{-m}$ induces a unitarily equivalence of $\left.H_{N}\right|_{\mathcal{M}_{k}^{z}}$ with $\left.H_{N}\right|_{\mathcal{M}_{-k}^{z}}$, and of $\left.P_{N}\right|_{\mathcal{M}_{k}^{z}}$ with $\left.P_{N}\right|_{\mathcal{M}_{-k}^{z}}$. Let $\mathcal{M}^{+}=\bigcup_{k>0} \mathcal{M}_{k}^{z}$, and let $\mathcal{M}^{-}=\bigcup_{k<0} \mathcal{M}_{k}^{z}$. Then $\mathcal{V}_{s}^{\otimes N}=\mathcal{M}^{+} \oplus \mathcal{M}^{-}$, and we have $H_{N}=H_{N}^{+} \oplus H_{N}^{-}$and $P_{N}=P_{N}^{+} \oplus P_{N}^{-}$, where $H_{N}^{+}=\left.H_{N}\right|_{\mathcal{M}^{+}}$, etc. The result now follows from the observation that H_{N}^{+}is unitarily equivalent to H_{N}^{-}, and P_{N}^{+}is unitarily equivalent to P_{N}^{-}.

REFERENCES

[1] Affleck, I., Lieb, E.H.: A proof of part of Haldane's conjecture on spin chains. Lett. Math. Phys. 12, 57-69 (1986)
[2] Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799-802 (1987)
[3] Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115, 477-528 (1988)
[4] Botet, R., Jullien, R.: Ground-state properties of a spin-1 antiferromagnetic chain. Phys. Rev. B. 27, 613-615 (1983)
[5] Buyers, W.J.L., Morra, R.M., Armstrong, R.L., Hogan, M.J., Gerlach, P., Hirakawa, K.: Experimental evidence for the Haldane gap in a spin-1, nearly isotropic, antiferromagnetic chain. Phys. Rev. Lett. 56, 371-374 (1986)
[6] Chang, K.: Senior thesis, Department of Physics, Princeton University (1987)
[7] Chang, K., Affleck, I., Hayden, G.W., Soos, Z.G.: A study of the bilinear-biquadratic spin-1 antiferromagnetic chain using the valence-bond basis. J. Phys.: Condens. Matter 1, 153-167 (1989)
[8] Cohen-Tannoudji, C., Diu, D., Laloë, F.: Quantum Mechanics, vol. 1 (Chapter VI). Paris: Hermann 1977
[9] Haldane, F.D.M.: Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the $O(3)$ nonlinear sigma model. Phys. Lett. 93A, 464-468 (1983)
[10] Haldane, F.D.M.: Nonlinear field theory of large- spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Neél state. Phys.

Rev. Lett. 50, 1153-1156 (1980)
[11] Nightingale, M.P., Blöte, H.W.J.: Gap of the linear spin-1 Heisenberg antiferromagnet: A Monte Carlo calculation. Phys. Rev. B 33, 659-661 (1986)
[12] Steiner, M., Kakurai, K., Kjems, J.K., Petitgrand, D., Pynn, R.: Inelastic neutron scattering studies on 1D near-Heisenberg antiferromagnets: a test of the Haldane conjecture. J. Appl. Phys., 61(8), 3953-3955 (1987)

[^0]: *Supported in part by NSERC of Canada.

