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Summary. Bounds on convergence rates for Markov chains are a very widely-studied
topic, motivated largely by applications to Markov chain Monte Carlo algorithms. For
Markov chains on finite state spaces, previous authors have obtained a number of very
useful bounds, including those which involve choices of paths. Unfortunately, many Markov
chains which arise in practice are not finite. In this paper, we consider the extent to which
bounds for finite Markov chains can be extended to infinite chains.

Our results take two forms. For countably-infinite state spaces X , we consider the
process of enlargements of Markov chains, namely considering Markov chains on finite
state spaces X1,X2, . . . whose union is X . Bounds for the Markov chains restricted to Xd,
if uniform in d, immediately imply bounds on X . Results for finite Markov chains, involving
choices of paths, can then be applied to countable chains. We develop these ideas and apply
them to several examples of the Metropolis-Hastings algorithm on countable state spaces.

For uncountable state spaces, we consider the process of refinements of Markov chains.
Namely, we break the original state space X into countable numbers of smaller and smaller
pieces, and define a Markov chain on these finite pieces which approximates the original
chain. Under certain continuity assumptions, bounds on the countable Markov chains,
including those related to choices of paths, will imply bounds on the original chain. We
develop these ideas and apply them to an example of an uncountable state space Metropolis
algorithm.
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1. Introduction.

Quantitative geometric rates of convergence for Markov chains is now a widely studied

topic, motivated in large part by applications to Markov chain Monte Carlo algorithms (see

Gelfand and Smith, 1990; Smith and Roberts, 1993). On finite state spaces, much progress

has recently been made, both in the form of general results (Diaconis, 1988; Sinclair and

Jerrum, 1988; Jerrum and Sinclair, 1988; Diaconis and Stroock, 1991; Sinclair, 1992), and

of results specifically related to Markov chain Monte Carlo (Hanlon, 1992; Frieze, Kannan,

and Polson, 1994; Frigessi, Hwang, Sheu, and Di Stefano, 1993; Ingrassia, 1994; Liu, 1992;

Belsley, 1993). On infinite state spaces, however, progress is much more limited (though

for partial results see Lawler and Sokal, 1988; Amit and Grenander, 1991; Amit, 1991,

1993; Hwang, Hwang-Ma and Sheu, 1993; Meyn and Tweedie, 1993; Rosenthal, 1995a,

1995b, 1994; Baxter and Rosenthal, 1995; Roberts and Rosenthal, 1994).

In this paper we consider the extent to which previous bounds for finite chains (es-

pecially those involving choices of paths) can be extended to bounds for infinite chains.

Our results fall into two categories. To study countably infinite chains, we consider en-

largements of a sequence of related finite chains, and show that many of the finite results

carry over to the countable chains. To study uncountable chains, we consider refinements

of a sequence of related countable chains, and derive related quantitative bounds in this

manner. Both techniques are illustrated through examples, all of which come from the

Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970).

A review of results about finite Markov chains is given in Section 2. In Section 3

we discuss enlargements, and in Section 4 we discuss refinements. Three examples of

enlargements, plus one example of a refinement, are given in Section 5.

2. Needed facts about finite chains.

Let X be a finite state space, and let P (x, y) be an irreducible matrix of transition

probabilities on X . Assume P has a stationary distribution π, so that πP = π, and

π(x) > 0 for all x ∈ X . Let M be the set of all functions from X to C, and let P act

on M by (fP )(y) =
∑
x

f(x)P (x, y). Let an initial distribution be given by µ0, regarded

as an element of M, so that µk = µ0P
k is the distribution of the Markov chain after k
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iterations. We are interested in bounds on the total variation distance

‖µk − π‖var = sup
A
|µk(A)− π(A)| =

1
2

∑
x

|µk(x)− π(x)|

between the distribution of the Markov chain after k iterations, and the stationary distri-

bution π.

We introduce some notation (which shall also apply in the next section for countably

infinite X ). Define an inner product on M by < f, g >L2(1/π)=
∑

x∈X

f(x)g(x)/π(x), and

set ‖f‖L2(1/π) =
√

< f, f >L2(1/π). Finally, let W = {f ∈ M|
∑
x

f(x) = 0}, and set

‖P
∣∣
W
‖L2(1/π) = sup{‖fP‖L2(1/π) | f ∈ W, ‖f‖L2(1/π) = 1}.

Proposition 1. We have

‖µk − π‖var ≤ 1
2
‖µ0 − π‖L2(1/π) ‖P

∣∣
W
‖k

L2(1/π) .

Proof. We have that

‖µk − π‖var =
1
2
〈|µk − π|, π〉L2(1/π)

≤ 1
2
‖µk − π‖L2(1/π)

=
1
2
‖(µ0 − π)P k‖L2(1/π)

≤ 1
2
‖µ0 − π‖L2(1/π) ‖P

∣∣
W
‖k

L2(1/π)

as required. (We have used the Cauchy-Schwarz inequality and the definition of ‖P
∣∣
W
‖L2(1/π),

plus the observation that (µ0 − π) ∈ W .)

Remarks.

1. The quantity ‖P
∣∣
W
‖L2(1/π) is often referred to as the “second eigenvalue” of the

Markov chain. For reversible Markov chains it is equal to the largest absolute value

of any eigenvalue of P , excluding the eigenvalue 1 corresponding to the stationary

distribution π.
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2. It is easily computed that ‖µ0 − π‖L2(1/π) =
( ∑

x∈X

µ0(x)2

π(x)

)
− 1; this may be helpful

for computations.

3. If µ0 = δx0 is a point mass at x0, then ‖µ0 − π‖2L2(1/π) = 1−π(x0)
π(x0)

. For such µ0,

with P reversible, this proposition reduces to Proposition 3 of Diaconis and Stroock

(1991). The greater generality for µ0 allowed here shall be especially important when

we consider refinements in Section 4 below; there the individual probabilities π(x0)

will all be approaching zero, so the bound of Diaconis and Stroock cannot be used

directly.

In what follows we shall assume P is reversible with respect to π, meaning that

π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ X . Furthermore, for simplicity, we shall assume

that P satisfies the following strong form of aperiodicity:

P (x, x) ≥ a > 0, x ∈ X .

This immediately implies that the eigenvalues of P are all real and are all at least −1+2a.

Weaker conditions can be used instead to get lower bounds on the eigenvalues; see for

example Proposition 2 of Diaconis and Stroock (1991). But such methods are not usually

required, and for simplicity we do not consider them further here.

Under these assumptions, we can state general bounds of previous authors regarding

‖P
∣∣
W
‖L2(1/π). Suppose, for each x, y ∈ X with x 6= y, we have chosen a path γxy from x to y

consisting of a finite sequence of distinct directed “edges” ((v0, v1), (v1, v2), . . . , (vL−1, vL))

with v0 = x, vL = y, and P (vi, vi+1) > 0 for each i. Then in terms of these paths, we have

(a) (Sinclair, 1992, Corollary 4)

‖P
∣∣
W
‖L2(1/π) ≤ max(1− 2a, 1− 1

8η2
) ,

where η = sup
e

Q(e)−1
∑

γxy3e
π(x)π(y), and if e = (u, v) is a directed edge, then Q(e) =

π(u)P (u, v).

(b) (Sinclair, 1992, Theorem 5)

‖P
∣∣
W
‖L2(1/π) ≤ max(1− 2a, 1− 1

K
) ,
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where K = sup
e

Q(e)−1
∑

γxy3e
|γxy|π(x)π(y), and |γxy| is the number of edges in γxy.

(c) (Diaconis and Stroock, 1991, Proposition 1)

‖P
∣∣
W
‖L2(1/π) ≤ max(1− 2a, 1− 1

κ
) ,

where κ = sup
e

∑
γxy3e

|γxy|Qπ(x)π(y), and |γxy|Q =
∑

e∈γxy

Q(e)−1.

Remarks.

1. In each of these bounds, the supremum is taken over all directed edges e = (u, v) with

P (u, v) > 0, and the sum is over points x and y such that (u, v) appears in γxy.

2. On a finite space X , there are of course only a finite number of possible edges e, so

the supremums above are actually maximums. However, we write the expressions as

supremums so that the same formula will also apply in the next section.

3. If the collection of paths {γxy} is itself symmetric, in the sense that for all x 6= y, γyx

is simply the reversal of γxy, then clearly the direction of the edge e does not matter,

so it suffices to take the supremums over edges pointed in only one direction. This

shall be the case in all of the examples we consider.

4. These bounds remain true if the paths {γxy} are chosen randomly, with η, κ, and

K instead defined as supremums of expected values of the respective quantities (see

Sinclair, 1992, Section 4). This fact shall be important in the final proof in Section 4

below.

5. In continuous time the situation is even simpler. Write P
t
(x, y) =

∞∑
n=0

e−t tn

n! P
n(x, y)

for the corresponding continuous-time Markov operator (with mean-1 exponential

holding times). Then if P is reversible with eigenvalues {βi}, then the eigenvalues of

P
t

are {
∞∑

n=0
e−t tn

n! β
n
i } = {e−t(1−βi)} and hence are all positive. The bounds corre-

sponding to the above are then

‖P t∣∣
W
‖L2(1/π) ≤ e

−t max( 1
8η2 , 1

K , 1
κ )

.

In particular, the condition P (x, x) ≥ a > 0 is no longer required.
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3. Enlargements of Markov chains.

We suppose now that X is a countably infinite state space, and P (x, y) is an irreducible

Markov chain defined on X with initial distribution µ0. We further assume that P is

reversible with respect to a stationary distribution π on X .

The idea of enlargements is as follows. We decompose X as X = ∪dXd where each

Xd ⊆ X is finite, and X1 ⊆ X2 ⊆ . . .. For d large enough so that π(Xd) > 0 and

µ0(Xd) > 0, let πd be the probability measure on Xd defined by πd(x) = π(x)/π(Xd) for

x ∈ Xd, and similarly let µ0,d(x) = µ0(x)/µ0(Xd) for x ∈ Xd. Further define Pd(x, y)

on Xd by Pd(x, y) = P (x, y) for x, y ∈ Xd, x 6= y, and Pd(x, x) = 1 −
∑
y 6=x

Pd(x, y) =

P (x, x) + P (x,XC
d ). Then clearly Pd is reversible with respect to πd on Xd.

Proposition 2. Let P (·, ·) be an irreducible Markov chain on a countable state space

X , reversible with respect to π(·), and with initial distribution µ0(·). Let Xd, πd, µ0,d,

and Pd(·, ·) be as above. Set µk = µ0P
k and µk,d = µ0,dP

k
d . Then for each fixed x ∈ X

and k ≥ 0, as d → ∞ we have πd(x) → π(x) and µk,d(x) → µk(x), and furthermore

‖µ0,d − πd‖L2(1/πd) → ‖µ0 − π‖L2(1/π) and ‖µk,d − πd‖var → ‖µk − π‖var.

Proof. Since {Xd} are increasing, we have π(Xd) → π(X ) = 1. Hence for d large

enough that x ∈ Xd, we have πd(x) = π(x)/π(Xd) → π(x). For the second statement,

write µk(x) = P (Ad)+P (Bd)+P (Cd), where Ad is the event that the path of the original

Markov chain ends up at x (after k steps) without ever leaving Xd and without ever holding

at a point, while Bd is the event that it ends up at x but does leave Xd at some point

during the first k steps, and Cd is the event that it ends up at x without leaving Xd but

with holding at least once. Now, as for µk,d(x), since µ0,d(s) = µ0(s)/µ0(Xd) for s ∈ Xd,

we have that µk,d(x) = P (Ad)/µ0(Xd) + P (Dd), where Dd is the event that the chain

corresponding to Pd(·, ·) ends up at x but holds at least once. Now, as d → ∞, we have

µ0(Xd) → 1, P (Dd) → P (Cd), and P (Bd) → 0, so that µk,d(x) → µk(x).

For the statement about L2(1/π), we have that

‖µ0,d − πd‖2L2(1/πd) =
∑

x∈Xd

µ0,d(x)2

πd(x)
− 1 =

π(Xd)
µ0(Xd)2

∑
x∈Xd

µ0(x)2

π(x)
− 1
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→
∑
x∈X

µ0(x)2

π(x)
− 1 = ‖µ0 − π‖2L2(1/π) .

For the statement about variation distance, given ε > 0, choose a finite subset S ⊆ X

with π(S) ≥ 1 − ε/4 and µk(S) ≥ 1 − ε/4. Then choose d0 with S ⊆ Xd0 , and with

|µk,d(x) − µk(x)| ≤ ε/4|S| and |πd(x) − π(x)| ≤ ε/4|S| for all d ≥ d0 and all x ∈ S. We

then have, for d ≥ d0, that πd(SC) ≤ ε/2 and µk,d(SC) ≤ ε/2, so

2‖µk,d − πd‖var =
∑

x∈Xd

|µk,d(x)− πd(x)|

≤ ε/2 +
∑
x∈S

|µk,d(x)− µk(x) + µk(x)− π(x) + π(x)− πd(x)|

≤ ε/2 +
∑
x∈S

(ε/4|S|+ ε/4|S|+ |µk(x)− π(x)|)

≤ ε + 2‖µk − π‖var .

It follows that lim sup ‖µk,d − πd‖var ≤ ‖µk − π‖var. Similarly lim inf ‖µk,d − πd‖var ≥

‖µk − π‖var. The result follows.

Combining the above two propositions, and letting d → ∞ (along a subsequence if

necessary), we obtain

Corollary 3. Under the above assumptions, if lim inf
d→∞

‖Pd

∣∣
W
‖L2(1/πd) ≤ β, then

‖µk − π‖var ≤ 1
2
‖µ0 − π‖L2(1/π) βk .

This corollary says that we can bound the distance to stationarity on the countably

infinite chain X by any uniform bound on the sequence of finite chains {Xd}. (A similar

idea is used in Belsley, 1993, Theorem VI-4-2.)

To make use of this fact, we make the following definition. A set of paths {γxy} on

X is unfolding if there exists a sequence of finite subsets Xd of X with X1 ⊆ X2 ⊆ . . .

and X = ∪dXd, such that for any x, y ∈ Xd, the path γxy connecting x to y lies entirely

inside Xd. Not all collections of paths will be unfolding: for example, suppose X is the
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non-negative integers, and for each x > y, the path from x to y includes the point x + 1.

However, natural choices of paths will usually be unfolding. And for such unfolding paths,

we can use the finite-chain bounds to obtain information about the infinite chain, as follows.

Theorem 4. Let P (x, y) be an irreducible Markov chain on a countably infinite state

space X , reversible with respect to a probability distribution π, and with P (x, x) ≥ a > 0

for all x ∈ X . Suppose that for each x, y ∈ X with x 6= y we have chosen a path γxy from x

to y, and suppose further that this collection of paths is unfolding as defined above. Then

given an initial distribution µ0 on X , and setting µk = µ0P
k, we have

‖µk − π‖var ≤ 1
2
‖µ0 − π‖L2(1/π) βk

where β = max(1− 2a,min(1− 1
8η2 , 1− 1

K , 1− 1
κ )), with η, K, and κ as defined in Section

2. (Note that these quantities now involve supremums over infinite numbers of edges and

hence might be infinite, in which case we adopt the convention that 1
∞ = 0.)

Proof. Let {Xd} be a nested sequence of subsets of X with respect to which the paths

{γxy} are unfolding. Then {γxy}x,y∈Xd
is a collection of paths on Xd. The finite-chain

bounds of the previous section, together with Proposition 1, immediately imply the anal-

ogous bounds for the finite chain Pd as above. The stated results for X follow by taking

the limit d →∞ and using the previous corollary.

Remarks.

1. As in the final remark of Section 2, in continuous time the situation is even simpler,

and we obtain

‖P t − π‖var ≤ 1
2
‖µ0 − π‖L2(1/π) e

−t max( 1
8η2 , 1

K , 1
κ )

,

with no requirement that P (x, x) ≥ a > 0.

2. Our original goal was to generalize to infinite chains the elegant results of Ingrassia

(1994) regarding bounds on finite versions of Metropolis-Hastings and Gibbs sampler
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algorithms. Unfortunately, this appears not to be possible. For example, his results

use quantities such as bΓ = max
e

#{γxy | e ∈ γxy} and d∗ = max
x∈X

#{y |P (x, y) > 0},

and it is easily seen that if both of these quantities are finite, then (since a point x ∈ X

must be connected to every point y 6= x) we must have |X | ≤ bΓ d∗ + 1 < ∞. Hence,

we have instead concentrated on generalizing the less specific results involving choices

of paths.

4. Refinements of Markov chains.

In this section we consider extensions of the theory to uncountable state spaces. We

assume throughout that X is an open subset of Rm with C1 boundary. (More general

spaces are also possible, but we will use differentiability properties so the generalizations

are non-trivial.) We consider a Markov chain with initial distribution µ0(·), and tran-

sition probabilities P (x, ·), reversible with respect to a stationary distribution π(·), and

irreducible with respect to Lebesgue measure λ on Rm.

We impose some regularity conditions. Call a subset of Rn gentle if it is contained

in some finite union of C1 hypersurfaces inside Rn. (Intuitively, a gentle set is small and

unimportant.) We assume that µ0(·) has density r (with respect to λ), and that π(·) has

density h, such that h > 0 on X , and such that r2/h is a bounded function. We further

assume that for each x ∈ X , P (x, ·) is of the form P (x, dy) = axδx(dy) + fx(y)λ(dy). We

assume that a = inf
x

ax > 0, that each of r(·), h(·), a·, and
∫
A

f·dλ are uniformly continuous

functions off of some specific gentle subset of Rm, and that fx(y) is a uniformly continuous

function of (x, y) ∈ X × X off of some specific gentle subset of R2m. Reversibility then

implies that h(x)fx(y) = h(y)fy(x) except when (x, y) is in some specific gentle set in

R2m.

Remark. Allowing discontinuities on certain gentle sets is only a very minor and

unimportant weakening of our basic regularity conditions, and it is not really the main

thrust of our result. We include it simply to allow for such probability distributions P (x, ·)

as, say, uniform distributions on nice subsets of X .

To describe our result, we again choose a collection of paths. Specifically, for each x 6=
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y, we let γxy =
(
(v0, v1), . . . , (vL−1, vL)

)
be a sequence of edges, for some L = |γxy| < ∞,

where each vi ∈ X , with v0 = x, vL = y, with {v`}0≤`≤L distinct, and with fvi(vi+1) > 0

for 0 ≤ i ≤ L− 1. We set γxy(`) = v` for ` ≤ |γxy|. We assume that, for each `, the subset

of X ×X on which γxy(`) is defined has C1 boundaries, and that on that subset γxy(`) is a

C1 function of (x, y) except on some gentle subset of R2m. We further assume that {γxy}

is unfolding in the sense that there are bounded sets S1 ⊆ S2 ⊆ . . . with C1 boundaries

and with X = ∪nSn, such that if x, y ∈ Sj , then γxy(`) ∈ Sj for all 0 ≤ ` ≤ |γxy|. (If X is

itself bounded then this condition is satisfied automatically.)

To deal with the possible discontinuities on gentle sets, we use the following notation.

Given a function f which may have discontinuities or even be undefined at some points,

we let dfe(x) [resp. bfc(x)] be the limsup [resp. liminf] of f , i.e. the limit as ε ↘ 0 of the

supremum [resp. infemum] of the values of f (where defined) in an ε-ball around x. Thus

bfcz(w) = lim
ε→0+

inf
‖z′−z‖<ε

‖w′−w‖<ε

fz′(w′) ,

etc. Where f is continuous, we of course have dfe = bfc = f .

Finally, for ` ≤ |γxy|, we define

Jxy(`) = det

 ∂
∂xi

(γxy(`))j
∂

∂xi
(γxy(` + 1))j

∂
∂yi

(γxy(`))j
∂

∂yi
(γxy(` + 1))j


to be the Jacobian of the mapping (x, y) 7→ (γxy(`), γxy(` + 1)). (If we are at an exceptional

point where γxy(`) or γxy(`+1) is not C1, then Jxy(`) may not be defined, but bJcxy(`) and

dJexy(`) still will be.) We assume that bJcxy(`) > 0 for all x, y ∈ X and all 0 ≤ ` ≤ |γxy|.

We can now state

Theorem 5. Let P (·, ·) be a Markov chain on an open subset X ⊆ Rm, reversible with

respect to π(·), with initial distribution µ0(·), and satisfying the regularity conditions as

above. Let {γxy} be a collection of paths for each x 6= y, unfolding and satisfying the

regularity conditions as above. Then

‖µk − π‖var ≤ 1
2
‖µ0 − π‖L2(1/π) βk
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where

‖µ0 − π‖2L2(1/π) =
∫
X

(r(x)− h(x))2

h(x)
λ(dx) ,

and where β = max(1− 2a,min(1− 1
8η2 , 1− 1

K
, 1− 1

κ )), with

η = sup
z,w∈X

(
hc(z)bfcz(w)

)−1 ∑
x,y,`

γxy(`)=z

γxy(`+1)=w

dhe(x)dhe(y)
bJcxy(`)

;

K = sup
z,w∈X

(
bhc(z)bfcz(w)

)−1 ∑
x,y,`

γxy(`)=z

γxy(`+1)=w

|γxy|
dhe(x)dhe(y)
bJcxy(`)

;

κ = sup
z,w∈X

∑
x,y,`

γxy(`)=z

γxy(`+1)=w

|γxy|Q
dhe(x)dhe(y)
bJcxy(`)

,

where

|γxy|Q =
|γxy|−1∑

j=0

(bhc (γxy(j)) bfcγxy(j) (γxy(j + 1))
dJexy(j)

)−1

.

Remark. We emphasize that this theorem says nothing about the existence or properties

of paths {γxy} satisfying the stated regularity conditions; it merely provides a bound on

‖µk−π‖var, assuming that such paths have been constructed. Furthermore, our regularity

conditions can likely be improved upon; we have not made a serious effort to find the

weakest conditions possible.

Proof. For each d = 1, 2, 3, . . ., partition X into connected measurable subsets {Bdi}i∈Id
,

where Id is finite or countable, where Bdi has diameter and Lebesgue-measure both less

than 1/d, and where furthermore there is a nested sequence of subsets {Sj} as above, with

respect to which {γxy} is unfolding, such that for each j and d there are only a finite

number of i with Bdi ∩ Sj non-empty, and for each such i we have Bdi ⊆ Sj .

In terms of such a partition, we define a new Markov chain by Xd = Id, µ0,d(i) =

µ0(Bdi) =
∫

Bdi

r dλ, πd(i) = π(Bdi) =
∫

Bdi

h dλ, and

Pd(i, j) = Eπ (P (x, Bdj) |x ∈ Bdi) =

∫
Bdi

∫
Bdj

fx(y)h(x)λ(dy)λ(dx)

πd(i)
.

11



Then it is easily verified that Pd(·, ·) is a Markov chain on Xd which is reversible with

respect to πd(·). We let µk,d = µ0,dP
k
d be the distribution of this Markov chain after k

iterations.

We define paths {γdij} on Xd randomly (see Remark 4 at the end of Section 2) as

follows. First choose points xdi ∈ Bdi for each i ∈ Id, chosen randomly according to

normalized Lebesgue measure on Bdi. Then, in notation as above, set γdij(`) = c if

γxdixdj
(`) ∈ Bdc. Our assumptions imply that the random paths {γdij} are unfolding, with

probability 1, in the countable-X sense of the previous section.

Our previous theorem (for countable chains) thus implies bounds on the Markov chain

Pd(·, ·) on Xd, in terms of its corresponding quantities ηd, Kd, and κd. The current theorem

will thus follow from the following lemma:

Lemma 6. Under the above conditions, and assuming ‖µ0 − π‖L2(1/π) < ∞, we have

lim
d→∞

‖µ0,d − πd‖L2(1/πd) = ‖µ0 − π‖L2(1/π) ;

lim sup
d→∞

‖µk,d − πd‖var = ‖µk − π‖var ;

and furthermore

lim sup
d→∞

ηd ≤ η ; lim sup
d→∞

Kd ≤ K ; lim sup
d→∞

κd ≤ κ .

Proof. For the statement about L2(1/π), we have

1 + ‖µ0,d − πd‖L2(1/πd) =
∑
i∈Id

µ0,d(i)2

πd(i)
=
∑
i∈Id

( ∫
Bdi

r dλ

)2

∫
Bdi

h dλ
.

By continuity, off of gentle sets, we can find x∗di, y
∗
di ∈ Bdi with

∫
Bdi

r dλ = r(x∗di)λ(Bdi)

and
∫

Bdi

h dλ = h(y∗di)λ(Bdi). Hence,

1 + ‖µ0,d − πd‖L2(1/πd) =
∑
i∈Id

r(x∗di)
2

h(y∗di)
λ(Bdi) .

12



This is essentially a Riemann sum for r2/h, except that we may have x∗di 6= y∗di. But since

r2/h is bounded and uniformly continuous and integrable (since ‖µ0 − π‖L2(1/π) < ∞), it

still follows (cf. Spivak, 1980, p. 263) that as d →∞, the sum will converge to

∫
h2

r
dλ = 1 + ‖µ0 − π‖L2(1/π) ,

as required.

For the statement about variation distance, fix ε > 0, and choose a bounded subset

S ⊆ X with π(SC) < ε, and with probability less than ε that the continuous chain escapes

from S in the first k steps. (Note that if X is bounded there is no need to consider S

at all.) Assume for notational ease that λ(S) ≥ 1. Then choose d1 sufficiently large that

for d ≥ d1, there is probability less than 2ε that the chain on Xd will escape from S, and

furthermore probability less than ε that the chain on Xd will in the first k steps move

from point i to point j where Bdj intersects SC or a point of discontinuity of fxi(·). These

conditions ensure that for d ≥ d1, the limitations of the set S and the discontinuities of

the fx(·) will only affect probabilities by O(ε) and hence can (and shall) be ignored.

Furthermore since the values ax are uniformly continuous, it follows that as d → ∞

the chains on Xd will hold with probabilities approaching the correct values for the original

chain on X . Thus, holding probabilities also can (and shall) be ignored in the calculation

which follows.

Now, by uniform continuity, choose d2 such that for d ≥ d2, the values of each of fx(·),

r(·), and rk(·)−h(·) vary by less than ε/λ(S)k+1 on each subset Bdj . Set d0 = max(d1, d2).

Then for d ≥ d0, it follows that for any choices of j0, j1, . . . , jk−1, we will have

µ0,d(j0)Pd(j0, j1) . . . P (jk−2, jk−1)P (jk−1, i) within ε λ(Bdj2) . . . λ(Bdjk−1)λ(Bdi)/λ(S)k+1

of the probability that the continuous chain goes from Bdj0 to Bdj1 to . . . to Bdjk−1 to Bdi

in its first k steps. Thus, summing over those j0, . . . , jk−1 for which Bdji
⊂ S, we see that

µk,d(i) will be within ε/λ(S) of µk(Bdi).

We conclude that |µk,d(i) − πd(i)| will be within O(ε/λ(S)) of |µk(Bdi) − π(Bdi)| =∣∣ ∫
Bdi

(rk − h)dλ
∣∣ (where rk is the density of µk with respect to λ). Summing over i and

13



dividing by 2, we see that ‖µk,d − πd‖var will be within O(ε) of

1
2

∑
i∈Id

∣∣ ∫
Bdi

(rk − h)dλ
∣∣ .

Now, if rk −h does not change sign on Bdi, then
∣∣ ∫
Bdi

(rk −h)dλ
∣∣ = ∫

Bdi

|rk −h|dλ. Further-

more, since d ≥ d2, the contribution to the above sum made by those i for which rk − h

does change sign on Bdi (and hence satisfies |rk − h| < ε/λ(S)k+1 there), will be less than

ε/λ(S)k ≤ ε. Hence, ‖µk,d − πd‖var will be within O(ε) of

1
2

∑
i∈Id

∫
Bdi

|rk − h|dλ =
1
2

∫
X

|rk − h|dλ = ‖µk − π‖var .

The statement about variation distance follows.

For the statement about ηd, recall that our paths are now random, so we must bound

the expected values of quantities like
∑

γxy3e
π(x)π(y). To proceed, consider first the case

where there are no gentle sets of discontinuity or non-differentiability. Consider an edge

e = (i, j) of Xd. If a path γdab has γdab(`) = i and γdab(` + 1) = j, then the corresponding

points xda and xdb must satisfy γxda,xdb
(`) ∈ Bdi and γxda,xdb

(` + 1) ∈ Bdj . That is, we

must have (xda, xdb) ∈ g−1(Bdi × Bdj), where g` is the function on X × X taking (x, y)

to (γxy(`), γxy(` + 1)) (with g`(x, y) undefined if |γxy| < ` + 1). Hence taking expected

values (with respect to the random choice of paths), and recalling that π(·) has density h,

we obtain (writing I(·) for the indicator function of an event) that

E
( ∑

a,b
γdab(`)=i

γdab(`+1)=j

πd(a)πd(b)
)

= E
(∑

a,b

πd(a)πd(b) I
(
γdab(`) = i, γdab(` + 1) = j

))

=
∑
a,b

πd(a)πd(b)P
(
γdab(`) = i, γdab(` + 1) = j

)

=
∑
a,b

πd(a)πd(b)
λ
(
g−1(Bdi ×Bdj) ∩ (Bda ×Bdb)

)
λ(Bda ×Bdb)

=
∫

g−1(Bdi×Bdj)

Θ(x, y)λ(dx)λ(dy) ,

14



where Θ is the piecewise-constant function defined by

Θ(x, y) =
πd(a)πd(b)

λ(Bda ×Bdb)
=

∫
Bda×Bdb

h(x′)h(y′)λ(dx′)λ(dy′)

λ(Bda ×Bdb)
, for (x, y) ∈ Bda ×Bdb .

Now, as d →∞, the diameters of the sets {Bdk} approach 0. Thus, uniform continuity

implies (writing ≈ to mean that the ratio of the two quantities uniformly approaches 1

as d → ∞) that Θ(x, y) ≈ h(x)h(y). The sum then becomes a Riemann sum, whence we

obtain that

E
( ∑

a,b
γdab(`)=i

γdab(`+1)=j

πd(a)πd(b)
)

≈
∫

g−1
`

(Bdi×Bdj)

h(x)h(y)λ(dx)λ(dy) .

We also have that

πd(i)Pd(i, j) =
∫

Bdi×Bdj

h(x)Eπ(fw(y) |w ∈ Bdi)λ(dx)λ(dy) .

Now, as d → ∞, continuity implies that Eπ(fw(y) |w ∈ Bdi) ≈ fx(y) for any choice of

x = x(d) ∈ Bdi, whence

πd(i)Pd(i, j) ≈
∫

Bdi×Bdj

h(x)fx(y)λ(dx)λ(dy) .

Finally, standard multi-variable calculus says that if Ud ↘ {z} and Vd ↘ {w}, then∫
g−1

`
(Ud×Vd)

h(x)h(y)λ(dx)λ(dy)∫
Ud×Vd

h(x)fx(y)λ(dx)λ(dy)
→

(
h(z)fz(w)

)−1 ∑
x,y

g(x,y)=(z,w)

h(x)h(y)
Jxy(`)

.

We thus conclude that, as d →∞, quantities of the form

E
((

πd(i)Pd(i, j)
)−1 ∑

a,b
γdab(`)=i

γdab(`+1)=j

πd(a)πd(b)
)

will be uniformly arbitrarily close to an expression of the form(
h(z)fz(w)

)−1 ∑
x,y

γxy(`)=z

γxy(`+1)=w

h(x)h(y)
Jxy(`)

,
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for an appropriate choice of (z, w) ∈ X × X .

It follows that for fixed `,

lim sup
d→∞

sup
i,j∈Id

E
((

πd(i)Pd(i, j)
)−1 ∑

a,b
γdab(`)=i

γdab(`+1)=j

πd(a)πd(b)
)

≤ sup
z,w∈X

(
h(z)fz(w)

)−1 ∑
x,y

γxy(`)=z

γxy(`+1)=w

h(x)h(y)
Jxy(`)

.

Summing over `, the statement about ηd follows for this case.

To take account of possible discontinuities on gentle sets, we simply replace each com-

puted quantity by its “worst case” values (thus preserving the inequality). This amounts

to using the d·e operation in the numerators, and the b·c operation in the denominators,

as done in the statement of the theorem.

The statements about κd and Kd are entirely similar. This completes the proof of the

lemma, and hence also the proof of the theorem.

Remarks.

1. The regularity conditions and proof above may seem rather technical. The essence,

however, is that for well-behaved Markov chains P (·, ·) on uncountable sets X ⊆ Rm,

bounds involving choices of paths can be used analogously to their use for finite chains.

2. Again, in continuous time the situation is even simpler, and we obtain

‖P t − π‖var ≤ 1
2
‖µ0 − π‖L2(1/π) e

−t max( 1
8η2 , 1

K
, 1

κ
)
,

with no requirement that P (x, x) ≥ a > 0.
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5. Examples.

In this section we apply Theorems 4 and 5 to several examples. We note that all of

the examples are versions of the Metropolis-Hastings algorithm (Metropolis et al, 1953;

Hastings, 1970) with appropriate proposal distributions.

5.1. A geometric birth-death chain.

We suppose that X = {0, 1, 2, . . .}, and that for some numbers a, b, c > 0 with a + b +

c = 1 and b > c, we have for all x ≥ 1, P (x, x) = a, P (x, x− 1) = b, P (x, x + 1) = c, while

for x = 0 we have P (0, 0) = a + b and P (0, 1) = c. Such a chain is reversible with respect

to the stationary distribution given by π(x) = C(c/b)x with C = 1− (c/b).

These and much more general birth-death chains have been studied in great detail by

Belsley (1993, Chapter VI), using sophisticated ideas related to orthogonal polynomials.

We here apply the ideas of this paper, by choosing paths and bounding the quantity η. (It

appears that the quantity κ is always infinite for this example.)

We define unfolding paths γxy in the obvious way, namely that for x < y, γxy =

((x, x + 1), (x + 1, x + 2), . . . , (y − 1, y)), with γyx defined symmetrically. Such paths are

obviously unfolding, with respect to Xd = {0, 1, 2, . . . , d}. Then if e = (z, z + 1), then

Q(e)−1
∑

γxy3e

π(x)π(y) =
1

C
(

c
b

)z
c

z∑
x=0

∞∑
y=z+1

π(x)π(y)

=
1

Ccz+1/bz

(
1− (c/b)z+1

)
(c/b)z+1 =

1
b− c

(
1− (c/b)z+1

)
<

1
b− c

.

It follows that η ≤ 1
b−c , so that by Theorem 4,

‖µk − π‖var ≤ 1
2
‖µ0 − π‖L2(1/π)

(
1−min(2a,

1
8(b− c)2

)
)k

.

In particular, if µ0 = δx0 is a point mass, then

‖µk − π‖var ≤ 1
2

(
1− π(x0)

π(x0)

)(
1−min(2a,

1
8(b− c)2

)
)k

.
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5.2. An infinite star.

Choose positive weights {wi}∞i=1 with
∑
i

wi = 1
2 . Then define a Markov chain on

X = {0, 1, 2, . . .} by P (x, x) = 1
2 for all x, and for i ≥ 1, P (0, i) = wi and P (i, 0) = 1

2 . This

Markov chain is reversible with respect to the stationarity distribution given by π(0) = 1
2

and π(i) = wi for i ≥ 1. It may be pictured as an infinite “star”, with 0 in the center and

all the positive integers connected to 0 around the sides. (A finite version of this example,

with equal weights, is discussed in Diaconis and Stroock, 1991, p. 49.)

We define paths in the obvious way, namely for i, j ≥ 1 with i 6= j, set γij =

((i, 0), (0, j)), while γ0i = (0, i) and γi0 = (i, 0). Hence |γxy| ≤ 2 for all x 6= y. Then

if e = (i, 0), then

Q(e)−1
∑

γxy3e

|γxy|π(x)π(y) ≤ 4(wi)−1π(i)
∑
y 6=i

π(y) = 4(1− wi) ≤ 4 .

It follows that K ≤ 4. Furthermore, we may take a = 1
2 to get P (x, x) ≥ a for all x. Hence

max(1− 2a, 1− 1
K ) ≤ 3/4, so that by Theorem 4,

‖µk − π‖var ≤ 1
2
‖µ0 − π‖L2(1/π)

(
3
4

)k

.

5.3. A two-dimensional Metropolis walk.

We here let X = {0, 1, 2, . . .} × {0, 1, 2, . . .}. For some fixed 0 < ρ < 1, for all

i, j ≥ 1, we set P ((i, j), (i + 1, j)) = P ((i, j), (i, j + 1)) = ρ/4, and P ((i, j), (i − 1, j)) =

P ((i, j), (i, j − 1)) = 1/4 with P ((i, j), (i, j)) = (1− ρ)/2. We set the boundary conditions

in the obvious way by adding holding probability, so that P ((0, j), (0, j+1)) = P ((i, 0), (i+

1, 0)) = ρ/4, P ((0, j), (1, j)) = P ((i, 0), (i, 1)) = ρ/4, P ((0, j), (0, j − 1)) = P ((i, 0), (i −

1, 0)) = 1/4, P ((0, j), (0, j)) = P ((i, 0), (i, 0)) = (3 − 2ρ)/4, and finally P ((0, 0), (1, 0)) =

P ((0, 0), (0, 1)) = ρ/4, P ((0, 0), (0, 0)) = (1− ρ)/2.

This Markov chain is simply the Metropolized version of two-dimensional simple sym-

metric random walk, reversible with respect to π((i, j)) = C ρi+j where C = (1− ρ)2. We

again proceed by choosing paths and bounding η.

We choose paths as follows. If i1 ≤ i2 and j1 ≤ j2, with (i1, j1) 6= (i2, j2), then we set

γ(i1,j1),(i2,j2) =
(
((i1, j1), (i1 + 1, j1)), ((i1 + 1, j1), (i1 + 2, j1)), . . . , ((i2 − 1, j1), (i2, j1)),
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((i2, j1), (i2, j1 + 1)), . . . , ((i2, j2 − 1), (i2, j2))
)
,

while if i1 ≤ i2 but j1 > j2, we set

γ(i1,j1),(i2,j2) =
(
((i1, j1), (i1 + 1, j1)), ((i1 + 1, j1), (i1 + 2, j1)), . . . , ((i2 − 1, j1), (i2, j1)),

((i2, j1), (i2, j1 − 1)), . . . , ((i2, j2 + 1), (i2, j2))
)
.

For i1 > i2, we define γ(i1,j1),(i2,j2) to be the reversal of γ(i2,j2),(i1,j1). To summarize, then,

γ(i1,j1),(i2,j2) is simply the path which adjusts each coordinate, one step at a time, adjusting

the first coordinate first for i1 ≤ i2 and second for i1 > i2.

Now, if e = ((i, j), (i + 1, j)), then

Q(e)−1
∑

γxy3e

π(x)π(y) =
1

Cρi+j+1/4

∑
0≤i1≤i

π((i1, j))
∑

i+1≤i2<∞
0≤j2<∞

π((i1, j))π((i2, j2))

=
4

Cρi+j+1

∑
0≤i1≤i

Cρi1+j
∑

i+1≤i2<∞

Cρi2
∑

0≤j2<∞

ρj2

=
4C

ρi+j+1

(
ρj − ρi+1+j

1− ρ

)(
ρi+1

1− ρ

)(
1

1− ρ

)

<
4C

(1− ρ)3
=

4
1− ρ

.

Similarly, if e = ((i, j), (i, j + 1)), then

Q(e)−1
∑

γxy3e

π(x)π(y) =
1

Cρi+j+1/4

∑
0≤i1≤i

i+1≤i2<∞
0≤j0≤j

(π((i1, j0))π((i2, j)) + π((i1, j))π((i2, j0)))

=
4

Cρi+j+1

∑
0≤i1≤i

i+1≤i2<∞
0≤j0≤j

C2
(
ρi1+j0ρi2+j + ρi1+jρi2+j0

)

=
8C

ρi+1

(
1− ρi+1

1− ρ

)(
ρi+1

1− ρ

)(
1− ρi+1

1− ρ

)

<
8C

(1− ρ)3
=

8
1− ρ

.
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It follows that η ≤ 8
1−ρ , so that 1− 1

8η2 ≤ 1− (1−ρ)2

83 . Furthermore we have P (x, x) ≥ a

for all x ∈ X , where a = 1−ρ
2 , so that 1 − 2a = ρ < 1 − (1−ρ)2

83 . Theorem 4 thus implies

that

‖µk − π‖var ≤ 1
2
‖µ0 − π‖L2(1/π)

(
1− (1− ρ)2

83

)k

.

5.4. A Metropolis chain for a truncated normal distribution.

We let X = R be the one-dimensional real line, and consider a Metropolis algorithm

with stationary distribution π(·) given by the standard normal distribution N(0, 1) trun-

cated to [−M,M ], having density h(y) = K e−y2/2 for |y| ≤ M (with respect to Lebesgue

measure λ), where K−1 =
M∫
−M

e−y2/2dy. We consider proposal distributions Q(x, ·) given

by the normal distributions N(x, 1) having densities gx(y) = 1√
2π

e−(y−x)2/2. Assume that

M ≥ 1 so that K ≤
(

3
2

)
1√
2π

< 1.

In the language of the Metropolis algorithm, the “acceptance probabilities” are thus

given by αxy = min(1, e−y2/2

e−x2/2 ) for |y| ≤ M , and by αxy = 0 for y > |M |, and the Markov

chain transitions are then given by

P (x, dy) = ax δx(dy) + αxygx(y)λ(dy) = ax δx(dy) + fx(y)λ(dy) ,

where fx(y) = 1√
2π

e−max((y−x)2, 2y2−2yx)/2 for |y| ≤ M and 0 otherwise, and ax = 1 −
M∫
−M

fx(y)λ(dy).

We choose paths “linearly” as follows. Given x, y ∈ X with x 6= y, set Lxy =

max(1, b|y − x|c) (i.e. the greatest integer not exceeding max(1, |y − x|)), set Axy = y−x
Lxy

,

and set γxy(`) = x + `Axy for 0 ≤ ` ≤ Lxy = |γxy|. (Note that 0 < Axy < 2 for all

x, y ∈ X .)

It is easily verified that all of the regularity and unfolding assumptions of Theorem 5

are then satisfied. It is further computed that

Jxy(`) = det

 1− `
Lxy

`
Lxy

1− `+1
Lxy

`+1
Lxy

 = 1/Lxy .

We now proceed to compute η.
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Given an edge e = (z, w), assume without loss of generality (by symmetry around 0)

that z > |w|. If z−w < 1, then the only path using the edge e is the length-one path γzw.

Furthermore Jzw(0) = 1, and we obtain∑
x,y,`

γxy(`)=z

γxy(`+1)=w

h(x)h(y)
Jxy(`)

= h(w)/fz(w) = K e−w2/2/
1√
2π

e−max((w−z)2, 2w2−2wz)/2

=
√

2π K e(max(z2,w2)−2wz)/2 ≤ 3
2
√

e .

If 1 ≤ z − w < 2, then the only way the edge e = (z, w) can be in the path γxy is if

for some non-negative integers m and n, we have x = z + m(z−w) and y = w−n(z−w).

Hence∑
x,y,`

γxy(`)=z

γxy(`+1)=w

h(x)h(y)
Jxy(`)

≤
∞∑

m=0

∞∑
n=0

K2 (z − w)(m + n + 1) e−(z+m(z−w))2/2e−(w−n(z−w))2/2

≤ (z − w)

( ∞∑
m=0

(m + 1) e−(z+m(z−w))2/2

)( ∞∑
n=0

(n + 1) e−(w−n(z−w))2/2

)
.

Since z ≥ 0, the first of these two sums is easily bounded by

∞∑
m=0

(m + 1) e−(z2+m(z−w)2)/2 =
e−z2/2

(1− e−(z−w)2/2)2
.

The second sum is more difficult, since if w is large and positive then it is possible that

(w− n(z −w)) will be very small (or even 0) for a large value of n, in which case the sum

could still be very large. However, by making the change of variables j = n− b w
z−w c and

allowing j to range over all integers, the sum can be bounded by

w

z − w
+ 1 + 2

w
z−w + 2(

1− e−(z−w)2/2
)2 .

We conclude that

(h(z)fz(w))−1
∑
x,y,`

γxy(`)=z

γxy(`+1)=w

h(x)h(y)
Jxy(`)

≤
(

1√
2π

Ke−z2/2e−(w−z)2/2

)−1 1
2π

(z − w)e−z2/2
3 w

z−w + 5
(1− e−1/2)4

≤ 6e2M

(1− e−1/2)4
,
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where we have used that K
√

2π ≥ 2/3, that z − w < 2, and that w ≤ M .

We conclude that η ≤ 6e2M
(1−e−1/2)4

. Furthermore, it is easily verified that the holding

probabilities satisfy

ax ≥
1
2
− 1

2π

∞∫
x

e−(2y2−2yx)/2dy =
1
2
− 1

2π

∞∫
0

e−z2−zxdz ≥ 1
2
− 1

2
√

2
.

Hence, Theorem 5 implies that

‖µk − π‖var ≤ 1
2
‖µ0 − π‖L2(1/π)

(
1− (1− e−1/2)8

8(6e2M)2

)k

.

Remark. This example successfully bounds η for an uncountable chain. However,

it is easily seen that as M → ∞, we have η → ∞. (Indeed, consider the single term

m = 0, n = bMc − 1 in the above sum for η, with z = M and w = L(1− 1
bMc ).) Thus, in

this example at least, Theorem 5 does not help to bound convergence as the state space

becomes unbounded.
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