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In this paper we study various aspects of general state space Markov chains and MCMC

algorithms. We will start by an introduction to MCMC in chapter 1 followed by topics in

optimal scalings and adaptive MCMC in chapter 2 and 3. Then we study extensively on an

application of adaptive MCMC algorithm in chapter 4. In the last part of the paper, chapter

5, we give a proof of law of large numbers for Markov chains.

1 Introduction

Markov Chain Monte Carlo (MCMC) Algorithm is a way to approximately sample from

certain distributions with high dimensionality. The idea is the following: If we run a Markov

chain with certain conditions satisfied (e.g. ergodicity) for long enough period of time, the

random variable is going to approximately have the stationary distribution. We can study

the parameter of interest of some distributions by direct sampling, but sometimes this may

be impossible notably due to high dimensionality. So we can construct a Markov chain

with this particular distribution as precisely the invariant distribution and sample by simply

running the chain for a long time.

1.1 Motivations

Bayesian inference is based on posterior distributions. It is often the case that posterior

quantities of interests can only be approximated by simulations. Sampling from the posterior

distribution is one of the major challenges of Bayesian statisticians. MCMC is a way and

sometimes the only way to sample from due to the high dimensionality of the posterior

distributions. Hence MCMC is widely applied in Bayesian statistics to help to calculate

various quantity of interests.

1.2 Preliminaries

In this paper we study the following type of Markov chains: Let E ⊂ Rk where Rk is

the Euclidean space and E is called the state space. Let X0, X1, ... be a series of E-valued

random variables satisfying the Markov condition. That is, conditionally on X0 = x0, X1 =

x1, ...Xn = xn, for states x0, x1, ...xn ∈ E, Xn+1 could either stay as the same state as

Xn = xn with probability 0 ≤ r(xn) < 1 only depending on xn or move to a new state y

according to a probability density function p(xn, y) which depends only on state xn. In this

case, we say a jump has occurred. By law of total probability, at time n + 1 a jump either
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occurs or not. We have ∫
p(xn, y)dy = 1− r(xn)

Transition kernel does not change with respect to time, so we call this Markov chain

{Xn} a time-homogeneous Markov chain. We denote the probability of the chain being in

set A after one step from state x as P (x,A) = P (Xn+1 ∈ A|Xn = x) for any n. Let δx(A)

be 1 if x ∈ A and 0 if x 6∈ A. Using the notations that we have already established,

P(x,A) =

∫
A

p(x, y)dy + δx(A)r(x)

Suppose now Xn has a probability distribution function fn(x), we can derive the proba-

bility density function for Xn+1,

P(Xn+1 ∈ A) =

∫
E

fn(x)P (x,A)dx

=

∫
E

fn(x)
[ ∫

A

p(x, y)dy + δx(A)r(x)
]
dx

=

∫
E

∫
A

fn(x)p(x, y)dydx+

∫
E

δx(A)r(x)fn(x)dx

=

∫
A

∫
E

fn(x)p(x, y)dxdy +

∫
A

r(y)fn(y)dy

=

∫
A

[ ∫
E

fn(x)p(x, y)dx+ r(y)fn(y)
]
dy

Hence we can see the p.d.f of Xn+1 is

fn+1(y) =

∫
E

fn(x)p(x, y)dx+ fn(y)r(y) (1)

The transition density functions p(x, y) and the staying probabilities r(x) acts like an

operator on the space of all distributions on the state space. We call the operator a Markov

operator denoted as P. In the new notation, (1) could be expressed as:

fn(x)P = fn+1(x)
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1.3 Invariant Distribution and Reversibility

A distribution π on the state space of a Markov chain is called invariant if

πP = π

or ∫
E

π(x)p(x, y)dx+ π(y)r(y) = π(y) ∀y ∈ E

A distribution λ on the state space of a Markov chain is called reversible if

λ(x)p(x, y) = λ(y)p(y, x) ∀x, y ∈ E

Theorem 1. If a distribution π of a Markov chain is reversible, it is invariant.

Proof.∫
E

π(x)p(x, y)dx+π(y)r(y) =

∫
E

π(y)p(y, x)dx+π(y)r(y) = π(y)(1−r(y))+π(y)r(y) = π(y)

1.4 The Metropolis-Hastings Algorithm

The idea of MCMC is simple, i.e. to construct a Markov chain with the desired distribution

being invariant and run the chain for long enough period of time waiting for convergence and

hence we get a sample for the distribution. Such a construction might not seem to be easy

at first thought. Metropolis-Hastings algorithm is one of the most classical and important

MCMC algorithms.

Suppose our target distribution has p.d.f π. We define a proposed Markov chain on

the state space with transition density function q(x, y) at current state x. We call q(x, y)

the proposal distribution at x. The Metropolis algorithm is the following: When at state

Xn = xn, first a proposed value yn of Yn+1 is generated according to the proposal distribution

p(xn, y). Then yn is accepted with probability α(x, y) where

α(x, y) =

{
min{π(y)

π(x)
q(y,x)
q(x,y)

, 1} if π(x)q(x, y) 6= 0,

1 if π(x)q(x, y) = 0.

If the proposal is accepted, Xn+1 = Yn+1, otherwise Xn+1 = Xn. The number of accepted
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steps divided by the total number of steps is called the mean acceptance rate. In the case

of rejection, the chain will stay put. The probability density function for a jump from state

x is p(x, y) = q(x, y)α(x, y), and the probability for staying at state x is

r(x) = 1−
∫
E

p(x, y)dy = 1−
∫
E

q(x, y)α(x, y)dy

Note that if the proposal distributions are symmetric, i.e. q(x, y) = q(y, x) for all x, y ∈ E,

the acceptance probability reduces to

α(x, y) =

{
min{π(y)

π(x)
, 1} if π(x)q(x, y) 6= 0,

1 if π(x)q(x, y) = 0.

Symmetric Metropolis chains are easy to deal with because the acceptance probability is

relatively easy. We will focus on symmetric random walk Metropolis Algorithm in this paper

which is an example of a symmetric Metropolis algorithm.

Theorem 2. The Metropolis Algorithm defined as above produces a Markov chain (Xn) that

has exactly the target distribution π being invariant.

Proof. If (Xn) is reversible to distribution π, so that π is invariant for (Xn). Need to show

that π(x)p(x, y) = π(y)p(y, x). The reversibility equation is trivially true when x = y, so we

consider the case when x 6= y,

π(x)p(x, y) = π(x)q(x, y)α(x, y) = π(x)q(x, y) min{π(y)

π(x)

q(y, x)

q(x, y)
, 1}

π(y)p(y, x) = π(y)q(y, x)α(y, x) = π(y)q(y, x) min{π(x)

π(y)

q(x, y)

q(y, x)
, 1}

When π(y)
π(x)

q(y,x)
q(x,y)

≤ 1,

π(x)p(x, y) = π(x)q(x, y)
π(y)

π(x)

q(y, x)

q(x, y)
= π(y)q(y, x) ∗ 1 = π(y)p(y, x)

When π(y)
π(x)

q(y,x)
q(x,y)

> 1,

π(x)p(x, y) = π(x)q(x, y) ∗ 1 = π(y)q(y, x)
π(x)

π(y)

q(x, y)

q(y, x)
= π(y)p(y, x)

Therefore, (Xn) is reversible to distribution π and π is invariant.
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1.5 The Symmetric Random Walk Metropolis Algorithm(RWM)

and Optimal Scalings

The choice of proposal distribution is crucial to rapid convergence for a Markov chain.

Intuitively the best choice of the proposal distribution is the target distribution. However

the reason that we are doing MCMC is that it is extremely difficult to sample for the

target distribution so that we come across such an intricate way i.e. MCMC to sample

from it. Therefore we start with an easy proposal distribution which is usually symmetric

n-dimensional normal distribution with mean 0 and covariance matrix σ2Id. In other words,

our proposed value Yn+1 = Xn + Zn+1 where Zn are i.i.d samples from N(0, σ2Id).

Now the question is that what σ value should we choose so that we can optimize this

MCMC algorithm.(i.e.Optimal Scaling) If σ is too small then although most of the moves

will be accepted, we are moving with very small step size so it takes longer to possible reach

all the states in the state space. And the Xn’s that are close in time would very likely to

take similar states which increases the correlations between the samples. This is not what

we want because we want a Markov chain that gives approximately independent samples

from the distribution in one run instead of running the Markov chain over and over again.

Also if σ is too large then most of the proposed moves will be rejected then again it will take

longer for the Markov chain to converge to stationarity and the correlation between samples

increases because of rejections.

1.6 Two Fundamental Theorems of MCMC Algorithms

Under certain conditions one can prove two important fundamental theorems of Markov

chains: law of large number and central limit theorem (see Nummelin 2002, Geyer 1992.)

They are stated as follows: Let X0, X1, ... be a Markov chain with stationary distribution π.

Suppose random variable X has distribution π, and g is some functional of X. Let

µ = E(g(X)) and µn =
1

n

n∑
i=0

g(Xi)

Law of large number tells us:

µn a.s.−→ µ as n →∞

This gives us the theoretic support that the idea to use time-averages of a Markov chain
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with certain distribution of interest as invariant distribution to approximate the parameter

of interest of this particular distribution works as long as we run the Markov chain for long

enough period of time.

Central limit theorem tells us:

√
n(µn − µ) D−→ N(0, σ2) as n →∞

The central limit theorem gives us some idea of how much error there is between the time-

averages and the true parameter of interest. (i.e. the size of the Monte Carlo error) It is very

difficult to calculate the value of the variance σ2 theoretically, but its value could still be

approximated from the Markov chain itself. To do this we need some time-series methods.

1.7 Definitions of Better MCMC Algorithms

In this section we make clear what we mean by one MCMC algorithm is better than the

other. As we all understand, for the same target distribution, we can construct different

Metropolis Algorithms to sample from it just by changing the proposal distributions. As

long as Ergodicity is satisfied and we are willing to wait for long enough period of time we

will always get a sample for the target distribution. However we want the quickest way to get

an approximately i.i.d. sample from the target distribution by one run of the Markov chain

instead of millions of long runs of Markov chains in practice. So there are several criteria to

examine whether an MCMC algorithm is good or not:

(1)Faster convergence to stationarity. Suppose P1 and P2 are the transition kernels of

two Markov chains, P1 converges to stationarity faster if the n-step total variation distance

of P1 is always smaller than that of P2 no matter what the initial state is for any number of

steps. This condition could be expressed as:

sup
A⊂E
|P n

1 (x,A)− π(A)| ≤ sup
B⊂E
|P n

2 (x,B)− π(B)| for all x ∈ E and n = 1,2,...

Where P n
1(2)(x,A) is if we start at state x the probability that we in set A after n-steps,

i.e. P (Xn ∈ A|X0 = x). π(A) = P (X ∈ A) is the probability that X ∈ A where the random

variable X has the target distribution π.

(2)Smaller variance of functionals of chains. By law of large number, we understand that

time averages of a functional of a Markov chain is going to converge to the functional of a

random variable with the invariant distribution. Moreover, we want to have a Markov chain

such that the time-averages of the functional has a smaller variance. So our approximation
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to the real parameter of interest would be more precise. Let X0, X1, ... and Y0, Y1, ... be two

Markov chains with the same invariant distributions. We say X0, X1, ... is a better Markov

chain if

V ar(
1

n

n∑
i=1

g(Xi)) ≤ V ar(
1

n

n∑
i=1

g(Yi))

This definition might depend on functional g chosen, n and initial state. The way to

estimate this variance directly involves running the chain for multiple times. An alternative

way to estimate this quantity is called the integrated autocorrelation time τg. If the Markov

chain Xn is in stationarity with stationary distribution π, then for large n,

V ar(
1

n

n∑
i=1

g(Xi)) ≈
1

n
V ar(g(X))τg where X has stationary distribution π

and τg =
+∞∑

k=−∞

Corr(g(X0), g(Xk)) = 1 + 2
+∞∑
k=1

Corr(g(X0), g(Xk))

The Markov chain {Xn} is said to have smaller asymptotic variance than {Yn} if τg

for {Xn} than that for {Yn}. The integrated autocorrelation time could be estimated by

the following method: to estimate Corr(g(X0), g(X3)) we can use the sample correlation of

(g(x0), g(x3)), (g(x1), g(x4)), (g(x2), g(x5)), etc. This calculation is still difficult because it

involves many many steps when the chain has been run for a fairly long enough period of

time.

(3)Larger mean square difference between Xn and Xn−1. In order to get approximately

i.i.d. samples we want the states to change drastically as the chain runs rather than getting

stuck at some point or moving slowly and getting a lot of similar states from the state space.

We say Markov chain {Xn} mixes faster than {Yn} if E[(Xn −Xn−1)2] is larger. This mean

square error is estimated by 1
n−B+1

∑n
i=B(Xi −Xi−1)2 to allow a burn-in B for the chain to

approximately reach stationarity. Whether Markov chain mixes well could be also observed

from the trace plot. When the step sizes are small or when there are a lot of rejections,

E[(Xn −Xn−1)2] will tend to be smaller.

2 Optimal Scalings of RWM

We restrict ourselves to the RWM(random walk Metropolis) algorithms in this section and a

few theorems are proven for optimal scalings for RWM under certain conditions. We assume

the chain that we consider here are ergodic (i.e. no matter where we start we will end up
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Figure 1: σ too large, too many rejections, bad mixing as states always stay put.

with a sample from the target distribution if we run the chain long enough of time). Our

goal is to construct a Markov chain(i.e. to find the optimal scaling σ) that converges to

stationarity as quickly as possible. Also we want the correlation between Xi’s decreases to

0 in as few iterations as possible.

2.1 Trace Plots

Trace plots are plots of values of Xn versus values of n. It describes the process of Markov

chain pictorially. The trace plot for a good MCMC algorithm should be vibrating quickly

so that for the next state we have chances to get to anywhere in the state space, and this

reduces the correlation of the chain. Also the trace plot should not have too many horizontal

lines which stands for rejections. If our proposed values are always rejected it will take much

longer for the Markov chain to reach stationarity and the correlation of the chain will be

greater because close states are more likely to be the same. We can see from the trace plot

whether close samples takes similar states and the number of rejections. See Figure 1, 2 and

3 for examples of trace plots.

2.2 Theorems about Optimal Scalings

Theorem 3 (Roberts, Gelman, and Gilks (1997)).

For special target densities on Rn of the form

π(x1, x2, ..., xd) = f(x1)f(x2)...f(xd)

11



Figure 2: σ too small, step size too small, bad mixing as states always stay close.

Figure 3: σ medium, decent step size, reasonable amount of rejections, good mixing.
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for some one dimensional smooth density f . Assuming proposal increment distribution is

N(0, σ2Id), the optimal acceptance rate is precisely 0.234 as d→∞.

This assumption is highly unreasonable in the MCMC context because the target density

in this case would be of a random vector consists of i.i.d. components. Sampling from this

kind of distributions is relatively easy by sampling independently from the one-dimensional

density f . The proof is rather complicated we omit it here.

For finite dimension situation, as long as the dimension is greater or equal to 5 the

limiting results for optimal scaling still seems to be a good approximation but in 1 dimension

case, numerical studies on normal distributions show that the optimal acceptance rate is

approximately 0.44.

Theorem 4 (Roberts, Rosenthal (2001)).

For the inhomogeneous target densities on Rn of the form

π(x1, x2, ..., xd) =
d∏
i=1

Cif(Cixi)

where Ci are i.i.d. from some fixed distribution. Assuming proposal increment distribution

is N(0, σ2Id), the optimal acceptance rate is precisely 0.234 as d→∞.

Theorem 3 corresponds to the case when Ci are constants. In this case the speed of the

algorithm is slowed down by an inhomogeneity factor of b = E(C2
i )/(E(Ci))

2.

Corollary 5.

If the target distribution is N(0,Σ) for some d-dimensional covariance matrix Σ, and the

increment distribution is N(0,Σp), it is the best if Σp is proportional to Σ. i.e. Σ = kΣp for

some k > 0. The optimal value of k is (2.38)2/d.

2.3 A Numerical Example

In this section, let us consider a simple MCMC algorithm to sample from the d = 10

dimensional normal distribution with covariance Σ. Let M be the 10 × 10 matrix having

diagonal entries 1, and off-diagonal elements given by the product of the number of row and

number of column divided by 100. i.e. if mij is the ij − th entry of M, then mij = ij
100

when

i 6= j and mii = 1 for i = 1, 2, ...10. Let Σ−1 = M2, and let the target density π be that of

N(0,Σ). We compute numerically the top-left entry of Σ is approximately equal to 1.0305.

We know that once the Markov chain reaches stationarity the first component of the random

vector is going to have mean 0 and variance 1.0305. We would expect the second moment
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of this random variable to be 1.0305, and hence the mean value of the square of the first

component should be close to 1.0305 when the chain reaches stationarity. The probability

density function of this target multivariate normal distribution is

f(x) =
1

(2π)5|Σ|1/2
e−

1
2
xT Σ−1x

We use RWM to sample from this target distribution with initial state X0 = (1, 0, ...0), and

with increment distribution given by N(0, σ2Id) for various choices of σ. For each choice of

σ we run the algorithm for 100,000 iterations and average all the values of the square of the

first coordinate to estimate its stationary mean. We repeat this 10 times(10 independent

runs) for each σ, to compute a 95% confidence interval for the stationary mean and a root

mean squared error(RMSE) for each choice of σ. The results are the following (different

from Rosenthal, 2008):

σ mean accurate rate 95% confidence interval RMSE

0.1 0.984012 0.997846 ± 0.375312 0.605530

0.6 0.484989 1.043671 ± 0.015606 0.025179

0.7 0.363837 1.024226 ± 0.015426 0.024890

0.8 0.262166 1.031090 ± 0.011843 0.019109

3 0 1 0

When σ takes value of 3, all the proposal values are rejected. Notice that there is a weakness

in this simulation that the first component of the initial state is too close to stationarity

which makes RWM algorithms with small scaling look good. Actually if we start at initial

state X0 = (5, 0, ...0), the consequence of optimal scaling is more obvious. The results are

the following:

σ mean accurate rate 95% confidence interval RMSE

0.1 0.982364 3.235990 ± 0.560614 0.904500

0.6 0.484908 1.042814 ± 0.016851 0.027188

0.7 0.364171 1.033113 ± 0.013935 0.022483

0.8 0.262154 1.032918 ± 0.016444 0.026532

3 1.599 ∗ 10−5 14.2527 ±4.709836 7.598883

We can see when σ is small although the acceptance rate is high, it is very hard for the chain

to explore the whole state space and for the chain to sample from the right distribution
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because the step size is too small. If we start at state (5, 0, ..., 0) we end up with a sample

mean of the second moment of 3.235990 which is far away from the true mean 1.0305. We

can see if σ is too large most of the moves are rejected, the chain does not converge to

stationarity quickly and the sampling distribution is still pretty far away from the target

distribution.

3 Adaptive MCMC Algorithms

The idea of adaptive MCMC algorithms is to have a collection of Markov chain transitional

kernels, denoted as {Pγ}, each having the same stationary distribution π. Let Γn be the

transitional kernel chosen at step n for n = 1, 2, ... Such an MCMC algorithm is called an

adaptive MCMC algorithm.

3.1 Examples of Adaptive MCMC Algorithms

Example 1. As we know that under some conditions, the optimal scaling for RWM algo-

rithm gives acceptance rate 0.234. It is possible to find optimal scaling by trial and error, i.e.

manually add if the acceptance rate is too high and subtract the scaling factor if the accep-

tance rate is too low until the acceptance rate is about 0.234. We can find optimal scaling

by running a adaptive MCMC algorithm which will find the scaling to result in acceptance

rate of 0.234 automatically.

Example 2. Adaptive MCMC algorithm is generally more useful in finding optimal co-

variance matrix for the increment distribution. We stated in the previous chapter that it is

optimal at least in the normal target distribution case that the covariance matrix of the pro-

posal distribution is proportional to the covariance matrix of the target distribution. We can

run an adaptive MCMC algorithm to constantly calculate the empirical covariance matrix

so that we can have the covariance matrix of the increment distribution closer and closer to

a multiple of the covariance matrix of the target distribution.

3.2 Ergodicity of Adaptive MCMC Algorithms

It seems nice that we can sort of combine different MCMC algorithms that have the same

target distribution and run a computer program to make decision of which algorithm is the

best with some pre-imposed criteria (acceptance rate or covariance matrix of the proposal

distribution). A big question is that whether this mixture of algorithms is still going to be
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a valid MCMC algorithm that converges to the desired target distribution. The answer to

this question is No as illustrated by Rosenthal in 2004.

A simple counter example is the following set of discrete state space MCMC algorithms:

Let the state space χ = {1, 2, 3, 4} and the target distribution be π(1) = π(3) = π(4) =

0.333 and π(2) = 0.001. We consider the following two RWMs. For the first one, the

proposal distribution Y 1
n+1 ∼ Uniform{Xn−1, Xn+1} and for the second one, the proposal

distribution Y 2
n+1 ∼ Unifrom{Xn − 2, Xn + 2}. They are both valid MCMC algorithms

converging to the same target distribution. However, if our adaptation is the following: if

our nth proposal is rejected the next proposal comes from Y 1
n+1 otherwise the proposal comes

from Y 2
n+1. Once we run this adaptive algorithm we will see the chain is always trapped at

state 1 and limiting distribution is weighted heavily towards 1 compared to 3 and 4. The

reason for this to happen is when the chain is at state 3 or 4, it does not get trapped. For

state 3, the chain could either move to 1 with probability 1/4 with second algorithm or move

to 4 with probability 1/2. For state 4 it could move to state 3 with probability 1/2 once a

proposal is rejected. However for state 1, once the first proposal does not move to state 3

the chain gets trapped at state 1 with only escape probability 0.5*0.01/0.333.

Hence we understand that adaptive MCMC algorithms do not necessarily guarantee

ergodicity. We need to find out some sufficient conditions to ensure ergodicity.

Theorem 6 (Roberts and Rosenthal 2005).

Let χ ⊂ Rn be the state space with target distribution π(x). Let Γn be the transitional kernel

used at step n with stationary distribution π for all n.

If the adaptive algorithm also satisfies the Diminishing Adaptation condition,

lim
n→∞

sup
x∈χ
‖PΓn+1(x, ·)− PΓn(x, ·)‖ = 0 in probability

and the Containment condition,

∀ε > 0, {Mε(Xn,Γn)}∞n=0 is bounded in probability

where Mε(x, γ) = inf{n ≥ 1 : ‖P n
γ (x, ·)− π(·)‖ ≤ ε}

Then the Markov chain with this adaptive algorithm is ergodic with stationary distribution

π. We have,

lim
n→∞

sup
A⊂χ
‖P (Xn ∈ A)− π(A)‖ = 0 asymptotic convergence
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and law of large number, i.e. for any bounded real-valued function g we have,

lim
n→∞

1

n

n∑
i=1

g(Xi) = π(g)

4 An N-Point Process

In this section, let us consider an N-point process on R2. We would like to restrict ourself to

the 3-point process and the higher dimensional cases are not much more complicated than

that.

4.1 Introduction

Suppose we have N points in R2 denoted as (x1, y1), (x2, y2), ..., (xN , yN) and we are given

the joint density function of these N points on R2. It is defined as following: A,B and C are

constants,

H(x1, y1, ..., xN , yN) = A
∑
i<j

√
(xi − xj)2 + (yi − yj)2+B

∑
i<j

1√
(xi − xj)2 + (yi − yj)2

+C
∑
i

xi

and the target distribution of these N points is defined as

π(x1, y1, ..., xN , yN) = e−H(x1,y1,...,xN ,yN )

Instead of sampling directly from such a high dimensional distribution which is kind of

difficult, the only option left to us is to run an MCMC algorithm to sample from the target

distribution and we hope we could get an approximately i.i.d. sample.

4.2 A Three-Point Process in a Restricted Region in R2

We want to do numerical simulation to study this process hence we restrict ourselves to the

region of [0, 1.5]× [0, 1] and also we create a scaling factor of 0.4 before B to avoid truncation

errors. Now the target density becomes:

H(x) = A
∑
i<j

√
(xi − xj)2 + (yi − yj)2 + 0.4B

∑
i<j

1√
(xi − xj)2 + (yi − yj)2

+ C
∑
i

xi

π(x1, y1, ..., x3, y3) =

{
e−H(x1,y1,...,x3,y3) if (xi, yi) ∈ [0, 1.5]× [0, 1] for i = 1, 2, 3

0 otherwise
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Figure 4: Scatter plot, A = B = C = 0, Metropolis within Gibbs algorithm, uniform
[−0.1, 0.1]× [−0.1, 0.1] proposals

First let us understand what these parameters A, B, C are for. If A is large that means

points cannot be too far away from each other because when points are far away from each

other,
∑

i<j

√
(xi − xj)2 + (yi − yj)2 will be large and the corresponding value of the target

density is small. If B is large that means points cannot be too close to each other because in

that case
∑

i<j
1√

(xi−xj)2+(yi−yj)2
will be large resulting in small value of the target density.

So here comes the problem when both A and B are large, say both are 200, the points can

neither get too close to each other nor too far away from each other. Simulation results tell

us that the triangle is not moving too much despite the fact that all the congruent triangles

in the restricted region have the same probability to be sampled. So the Markov chain is not

mixing very well in this case. In the following sections we study this 3-point process case by

case.

4.2.1 Case 1. A=B=C=0, Metropolis within Gibbs Algorithm with Uniform

Proposal

We run a Metropolis within Gibbs algorithm to see what happens when A = B =

C = 0. In this case there is no restriction on any of these three points so they should

be uniformly distributed in the restricted region. We obtain the scatter plot of y1 versus

x1 to see the coverage of the state space and the trace plot of x1 and y1 to see mixing.

(See figure 4 and figure 5) We choose our increment distribution to be uniform over region

[−0.1, 0.1] × [−0.1, 0.1] so that the Markov chain is irreducible and proposal distribution is

symmetric.
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Figure 5: Trace plot, A = B = C = 0, Metropolis within Gibbs algorithm, uniform
[−0.1, 0.1]× [−0.1, 0.1] proposals, Blue for x1, Green for y1

Figure 6: Autocorrelation function with respect to lag in case 1.
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As we can see the first point pretty much covers the whole space. We can also observe

in the trace plot the Markov chain is mixing pretty well. We can also approximate the

variance of g where g is taking the first coordinate x1, V ar( 1
n

∑n
i=1 g(Xi)) by running the

Markov chain multiple times. In this case V ar( 1
n

∑n
i=1 g(Xi)) is approximately 0.000467019,

calculated by running the Markov chain for 100 times each with 300,000 steps. Take g as

the first coordinate of the vector x1, we can approximate the integrated autocorrelation time

τg = 733.48, calculated by running the Markov chain for 300,000 steps since we can see

the autocorrelation approximately reaches 0 when the lag is as large as about 1795. By

convention, the integrated autocorrelation time is approximated only using the terms before

the second negative term to avoid random noise error in the calculation.

4.2.2 Case 2. A = B = 50 C = 0, Metropolis within Gibbs Algorithm with Uniform

Proposal

We run a Metropolis within Gibbs algorithm to see what happens when A = B = 50

C = 0. In this case there is some restrictions on the distances between the three points,

so we would expect that the first particle would not be able to freely cover the whole state

space. We obtain the scatter plot of y1 versus x1 to see the coverage of the state space

and the trace plot of x1 and y1 to see mixing. We choose our increment distribution to

be uniform over region [−0.1, 0.1] × [−0.1, 0.1] so that the Markov chain is irreducible and

proposal distribution is symmetric.

We compute the integrated autocorrelation time in this case. Take g as the first coordi-

nate of the vector x1, we can approximate the integrated autocorrelation time τg = 8417.96,

calculated by running the Markov chain for 300,000 steps since we can see the autocorrelation

approximately reaches 0 after a lag of length 15, 053. Larger integrated autocorrelation time

tells us that correspondingly V ar( 1
n

∑n
i=1 g(Xi)) is larger and the Markov chain is mixing

more poorly than case 1. V ar( 1
n

∑n
i=1 g(Xi)) = 0.0037538 in this case.

We can look at the scatter plot for the first particle to analyze state space coverage and

also we can look at the trace plot of x1 and y1 to compare the mixing with case 1. (See

figure 7 and figure 8)

4.2.3 Case 3. A=B=200 C=0, Metropolis within Gibbs Algorithm with Uniform

Proposal

The problem arises when A and B are large say A=B=200. Since the particles cannot
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Figure 7: Scatter plot, A = B = 50 C = 0, Metropolis within Gibbs algorithm, uniform
[−0.1, 0.1]× [−0.1, 0.1] proposals

Figure 8: Trace plot, A = B = 50 C = 0, Metropolis within Gibbs algorithm, uniform
[−0.1, 0.1]× [−0.1, 0.1] proposals, Blue for x1, Green for y1
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Figure 9: Autocorrelation function with respect to lag in case 2.

Figure 10: Scatter plot, A = B = 200 C = 0, Metropolis within Gibbs algorithm, uniform
[−0.1, 0.1]× [−0.1, 0.1] proposals

be too far away from each other and they cannot be too close to each other what happens

is that any move that changes the distances between particles will very likely be rejected.

Hence the particles are not moving by much resulting in highly similar samples.

In figure 10 we can see the coverage of the state space. The first vertex of the triangle

only covers about a half of the state space in the 10,000 runs where but we understand that

all congruent triangles have the same probability to be sampled from the target distribution.

So the first vertex should not have any preference over some region. Also we can take a look

at the trace plot of x1 and y1 figure 11. Obviously we can see a lot more rejections than

before and it is not mixing so well as the case when A=B=0. The acceptance rate in this

case is 0.1788 and V ar( 1
n

∑n
i=1 g(Xi)) is approximately 0.0041553, calculated by running the

Markov chain for 300,000 steps for 100 times.
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Figure 11: Trace plot, A = B = 200 C = 0, Metropolis within Gibbs algorithm, uniform
[−0.1, 0.1]× [−0.1, 0.1] proposals, Blue for x1, Green for y1

Figure 12: Autocorrelation function with respect to lag in case 3.
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We compute the integrated autocorrelation time in this case. Take g as the first coordi-

nate of the vector x1, we can approximate the integrated autocorrelation time τg = 12192.66,

calculated by running the Markov chain for 300,000 steps. The number of lags for the au-

tocorrelation time to be approximately 0 is 19263. Large integrated autocorrelation time

indicates poor mixing of the Markov chain. Hence in the following sections, we explore

various adaptive MCMC algorithms to improve the mixing in the case when A=B=200.

4.2.4 Case 4. A=B=200 C=0, Metropolis within Gibbs Adaptive Algorithm for

Arbitrary Target Acceptance Rate with Uniform Proposal

We notice that the acceptance rate is 0.1788 which is not the optimal value 0.234 or

0.44. So we run an Adaptive MCMC algorithm to expand the proposal when acceptance

rate is too high and shrink the proposal when the acceptance rate is too low. We will break

the entire run into 50 steps per batch and shrink/expand the size the possible proposal

region by min{0.01, 1/n} after each batch to satisfy the diminishing adaptation condition

(Containment condition is satisfied because we are working with this bounded region)and

try to obtain the optimal acceptance rate 0.234 or 0.44.

Figure 15 and 16 are the scatter plot and trace plot for target acceptance rate 0.234

and figure 17 and 18 are for target acceptance rate 0.44. We compute the autocorrelation

time for the adaptive chain with target acceptance rate 0.234, τg,0.234 = 12808.084 with the

required lag of autocorrelation time to be 34798 and autocorrelation time for the adaptive

chain with target acceptance rate 0.44, τg,0.44 = 12488.05 with the required lag of autocorre-

lation time to be 15877, calculated by running the chain for 300,000 steps respectively. Also,

V ar0.44( 1
n

∑n
i=1 g(Xi)) is approximately 0.00713251 and V ar0.234( 1

n

∑n
i=1 g(Xi)) is approxi-

mately 0.007095017.

4.2.5 Case 5. A=B=200 C=0, Full Metropolis Adaptive Algorithm for Arbitrary

Target Acceptance Rate with Uniform Proposals and Normal Proposals

One question is if the problem of the constraints on three particles is caused by the

Metropolis within Gibbs algorithm. Since the other two particles do not move, this restricts

the movement of the 3rd particle. So to answer this question we run the full Metropolis

algorithm (propose 3 points together each time) using uniform proposal and normal distri-

bution proposal. It turns out that with about the same scaling factor the acceptance rate of

the full Metropolis algorithm is even lower than the Metropolis within Gibbs algorithm.(It
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Figure 13: Autocorrelation function with respect to lag in case 4(0.234).

Figure 14: Autocorrelation function with respect to lag in case 4(0.44).

Figure 15: Scatter plot, A = B = 200 C = 0, Metropolis within Gibbs algorithm, adaptive
proposals with target acceptance rate 0.234
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Figure 16: Trace plot, A = B = 200 C = 0, Metropolis within Gibbs algorithm, adaptive
proposals with target acceptance rate 0.234, Blue for x1, Green for y1

Figure 17: Scatter plot, A = B = 200 C = 0, Metropolis within Gibbs algorithm, adaptive
proposals with target acceptance rate 0.44
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Figure 18: Trace plot, A = B = 200 C = 0, Metropolis within Gibbs algorithm, adaptive
proposals with target acceptance rate 0.44, Blue for x1, Green for y1

is even harder for proposals to be accepted when 3 particles are moving at the same time.)

See figure 19 and 20 for the trace plots.

We can also compute the integrated autocorrelation time for these two adaptive algo-

rithms. We have τg,uniform = 18193.93169. The number of lags for the autocorrelation time

to be approximately 0 is 20016 in the uniform case. τg,normal = 26878.986499, both with

target acceptance rate of 0.234. The number of lags for the autocorrelation time to be

approximately 0 is 48018 in the normal case. Hence integrated autocorrelation time gives

us some evidence that the full metropolis algorithm is not working more efficiently as the

Metropolis within Gibbs algorithm.

4.2.6 Case 6. A=B=200 C=0, Metropolis within Gibbs Algorithm with Trans-

lation for Arbitrary Target Acceptance Rate with Uniform Proposals

We understand that for the target distribution, all congruent triangles have equal proba-

bility to appear because the density only depends on the length of the sides of the triangle.

However because of the constraint on distances between particles either rejection rate is high

or step size becomes small for adaptive algorithms. We wish we can combine this algorithm

with some translation proposal so that samples will not always come from the same region

of the state space. We combine algorithm used in case 4 with a probability implementing a

translation algorithm. i.e. 3 points move in the same direction so the proposal is always ac-

cepted in this case. This movement in this case is chosen to be uniform[-0.4, 0.4] distribution

in both x and y direction.
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Figure 19: Trace plot, A = B = 200 C = 0, Full Metropolis algorithm with adaptive normal
proposals with target acceptance rate 0.234, Blue for x1, Green for y1

Figure 20: Trace plot, A = B = 200 C = 0, Full Metropolis algorithm with adaptive uniform
proposals with target acceptance rate 0.234, Blue for x1, Green for y1
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Figure 21: Scatter plot, A = B = 200 C = 0, Metropolis within Gibbs algorithm, adaptive
proposals with target acceptance rate 0.234 combined with translation

The result for this modification is pretty stunning. See figure 21 and 22 for scatter plot

and trace plot. We can see from the figure that it is almost very close to case 1.

Of course we compute the integrated autocorrelation time for this algorithm, taking g

as the first coordinate of the vector x1, we can approximate the integrated autocorrelation

time τg = 889.6057958, calculated by running the Markov chain for 300,000 steps. We also

calculate the V ar0.234( 1
n

∑n
i=1 g(Xi)) = 0.0003924 by running the chain for 300,000 steps

for 100 times. The required lag for autocorrelation to be approximately 0 is 1668. The

integrated autocorrelation time implies this algorithm mixes very well.

4.3 Summary

Now we have studies 6 cases of the 3-point process and we summarize the results in the

following table:
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Figure 22: Trace plot, A = B = 200 C = 0, Metropolis within Gibbs algorithm, adaptive
proposals with target acceptance rate 0.234 combined with translation, Blue for x1, Green
for y1

Case V ar(
∑n

i=1 g(Xi)

n
) Required Lag τg Estimated V ar(g(X))

nV ar(
∑n

i=1 g(Xi)

n
)

τg

1 0.0004670 1795 733.48 0.1881343 0.19100725

2 0.0037538 15053 8417.96 0.1563531 0.13377825

3 0.0041553 19263 12192.66 0.1354317 0.10224102

4(0.234) 0.0070950 34798 12808.08 0.1324289 0.16618450

4(0.44) 0.0071325 15877 12488.05 0.1582583 0.17134404

5(uniform) 0.0068531 20016 18193.93 0.1316732 0.11300219

5(normal) 0.0110523 48018 26878.98 0.1541377 0.12335636

6 0.0003924 1668 889.60 0.1349172 0.11096076

The cases that we have studied here are:

Case 1 - A = B = C = 0, Metropolis within Gibbs Algorithm with Uniform Proposal

Case 2 - A = B = 50 C = 0, Metropolis within Gibbs Algorithm with Uniform Proposal

Case 3 - A = B = 200 C = 0, Metropolis within Gibbs Algorithm with Uniform Proposal

Case 4(0.234) - A = B = 200 C = 0, Metropolis within Gibbs Adaptive Algorithm for

Target Acceptance Rate 0.234 with Uniform Proposal

Case 4(0.44) - A = B = 200 C = 0, Metropolis within Gibbs Adaptive Algorithm for

Target Acceptance Rate 0.44 with Uniform Proposal

Case 5(uniform) - A = B = 200 C = 0, Full Metropolis Adaptive Algorithm for Target

Acceptance Rate 0.234 with Uniform Proposals
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Case 5(normal) - A = B = 200 C = 0, Full Metropolis Adaptive Algorithm for Target

Acceptance Rate 0.234 with Normal Proposals

Case 6 - A = B = 200 C = 0, Metropolis within Gibbs Algorithm with Translation for

Target Acceptance Rate 0.234 with Uniform Proposals

5 A Proof of Law of Large Numbers for MCMC

In section 1.6, we introduced the two most important theorems in MCMC theory - Law of

Large Numbers and Central Limit Theorem. In this section we will give a formal mathemat-

ically rigorous proof of the theorem LLN. We follow the methods discussed in [1](Nummelin,

2002).

5.1 Definition of a Small Set

To formulate the irreducibility assumption we need the definition of a small set:

Definition 7. A subset I ⊂ E with positive Lebesgue measure is called small if there exists

a subset J ⊂ E with positive Lebesgue measure such that p(x, y) ≥ β for some constant

β > 0, for all x ∈ I and y ∈ J .

5.2 Two Hypotheses to Prove LLN

To prove LLN for Markov Chain we need to assume the following two hypotheses:

Hypothesis 1 There exists a small set I such that for each initial state x ∈ E,

P n(x)(x, I) = P (Xn(x) ∈ I|X0 = x) > 0

for some integer n(x) which depends on x. That means no matter where we start the chain

from there is always some positive probability to be in the small set in some steps.

Hypothesis 2 The Markov chain has an invariant distribution π and π(x) > 0 for all

x ∈ E.

5.3 Formal Formulation of LLN

Suppose random variable X has distribution π, and f is some functional of X. Let π(f) =
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∫
E
π(x)f(x)dx be finite. We call f to be π−integrable. Now we formulate LLN as follows:

Theorem 8 (Law of Large Numbers for MCMC). Under the hypothesis 1 and 2, let X0, X1, ...

be a Markov chain with invariant distribution π. We have

lim
n→∞

f(X0) + f(X1) + . . .+ f(Xn−1)

n
= π(f)

with probability 1 for all initial states X0 = x and all π−integrable functions f.

5.4 The Proof of LLN for Markov Chains

We are going to give a rigorous mathematical proof of LLN under the two hypotheses posed

in 5.2. The approach we use is called regeneration - breaking the Markov chain into a sum of

two Markov chains. One of the Markov chain in the sum regenerates itself so we can break

the chain into random tours which are i.i.d. and finally we appeal to the usual LLN to prove

the theorem. We break the proof into several sections.

5.4.1 Regeneration and Various Definitions

In this section we talk about regeneration of a Markov Chain to accomplish the goal of de-

composing the path of a Markov chain into i.i.d. blocks. We denote the uniform distribution

on J to be ν(y) = 1
|J | for y ∈ J and 0 otherwise. |J | denotes the Lebesgue measure of J.

Also we define the function s(x) = β|J | for x ∈ I and 0 otherwise.

Now we rewrite the small set condition as:

p(x, y) ≥ s(x)ν(y) for all x,y ∈ E

We now break the Markov chain into two Markov chains:

P (x,A) = s(x)

∫
A

ν(y)dy + (1− s(x))R(x,A) for all x ∈ E and A ⊂ E

Also we denote the sub-Markov operator (1− s(x))R(x,A) as Q(x,A) which is equal to

P (x,A)− s(x)
∫
A
ν(y)dy. It turns out to be useful notation later on.

We can verify that R(x,A) is a Markov chain: When x 6∈ I, s(x) = 0 we have R(x,A) =

P (x,A) hence R(x,E) = P (x,E) = 1. When x ∈ I, s(x) = β|J |.

1 = P (x,E) = β|J | 1

|J |
|J ∩ E|+ (1− β|J |)R(x,E)

Hence we have (1− β|J |)R(x,E) = (1− β|J |) and R(x,E) = 1.
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We define a bivariate Markov Chain (Xn, Yn) as follows. Let X0, X1, ... be a sequence of

E− valued random variables and let Y0, Y1, ... be a sequence of binary {0, 1}-valued random

variables. Transition probabilities of the bivariate MC is defined by:

P (Xn ∈ A;Yn = 1|Xn−1 = x;Yn−1) = s(x)

∫
A

ν(y)dy

P (Xn ∈ A;Yn = 0|Xn−1 = x;Yn−1) = (1− s(x))R(x,A)

for all n ≥ 1, A ⊂ E, independently of the random variable Yn−1.

Remark. The marginal probability law of Xn is still that of the original MC since we

have

P (Xn ∈ A;Yn = 1|Xn−1 = x;Yn−1) + P (Xn ∈ A;Yn = 0|Xn−1 = x;Yn−1)

= s(x)
∫
A
ν(y)dy + (1− s(x))R(x,A) = P (x,A)

Now we define the following probability rules for Yn:

P (Yn = 1|Xn−1 = x) = s(x)

P (Yn = 0|Xn−1 = x) = 1− s(x)

Such definition for Yn is crucial(it is the key for regeneration method) since under such

construction, the bivariate MC regenerates itself when Yn = 1 :

P (Xn ∈ A|Xn−1 = x;Yn = 1) =
P (Xn ∈ A;Yn = 1|Xn−1 = x)

P (Yn = 1|Xn−1 = x)
=
s(x)

∫
A
ν(y)dy

s(x)
=

∫
A

ν(y)dy

(2)

More generally, by the Markov property once Yn = 1 the Chain probabilistically regen-

erates itself, we have,

P (Xn ∈ A0, Xn+1 ∈ A1..., Yn+1 = y1, Yn+2 = y2...|X0, X1, ...Xn−1, Y1, ...Yn−1, Yn = 1)

= Pν(X0 ∈ A0, X1 ∈ A1, ...Y1 = y1, Y2 = y2...) where subscript ν is the distribution of X0.

for all A0, A1, ... ⊂ E and y1, y2... ∈ {0, 1}.

Also, when Yn = 0, we have the following inequality:

P (Xn ∈ A0|X0, X1, ...Xn−1 = x, Y1, ...Yn−1, Yn = 0) =
(1− s(x))R(x,A0)

1− s(x)
≤ P (x,A0)

1− β|J |

for all n ≥ 0, x ∈ E.
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Definition 9. We define the first regeneration epoch as T1 = min{n ≥ 1 : Yn = 1}. More

generally, We denote the successive regeneration epoches as T1, T2, ... where 1 ≤ T1 ≤ T2 ≤
T3.... And Ti = min{n > Ti−1 : Yn = 1} for i = 2, 3, ...

By the Markov property,

P (XTi ∈ A0, XTi+1 ∈ A1..XTi+m−1 ∈ Am−1;Ti+1 − Ti = m|X0, X1, ...XTi−1, Y1, ...YTi−1, Ti =

n) = Pν(X0 ∈ A0, X1 ∈ A1, ...Xm−1 ∈ Am−1, T1 = m) where subscript ν is the distribution

of X0, for all m,n ≥ 1 and A0, A1, ...Am−1 ⊂ E.

Definition 10. We define the random blocks(tours) of the Markov chain with respect to

regeneration times:

ξ0 = (X0, X1, ...XT1−1)

ξ1 = (XT1 , XT1+1, ...XT2−1)

ξ2 = (XT2 , XT2+1, ...XT3−1)

...

Or in general, ξi = (XTi , XTi+1, ...XTi+1−1) for i = 1,2,3,...

Definition 11. We define the random sum of the Markov chain with respect to random

blocks:

ζ0(f) =
∑T1−1

m=0 f(Xm)

ζ1(f) =
∑T2−1

m=T1
f(Xm)

ζ2(f) =
∑T3−1

m=T2
f(Xm)

...

Or in general, ζi(f) =
∑Ti+1−1

m=Ti
f(Xm) for i = 1,2,3,...

5.4.2 Independence of Regeneration Times and Random Blocks

Having defined all the important concepts, we show the independence of regeneration times

and random blocks.

Lemma 12. The differences between regeneration epochs are i.i.d. distributed. In mathe-

matical language, Ti+1 − Ti are i.i.d. for all i = 1, 2, 3...

Proof. The proof is really is just one line. We show that the probability of Ti+1 − Ti equal

to m does not depend on previous regeneration times and has the same probability for all i.

We have,

P (Ti+1 − Ti = m|X0, X1, ...Xn2−1, T1, ...Ti−1 = n1, Ti = n2) = Pν(T1 = m) (3)
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Hence the conditional probability P (Ti+1−Ti = m|Ti−1, Ti) does not depend on Ti−1, Ti hence

these Ti+1−Ti are independent for all i = 1, 2, 3.... And P (Ti+1−Ti = m|Ti−1, Ti) = Pν(T1 =

m) which is the same for all i. Hence we know these difference are identically distributed as

well. Equation (3) is true because when we look at XTi for any i, it always has distribution

ν which does not depend on the past by our construction and Markov property. The next

regeneration epoch just come as if the chain starts fresh off X0 where X0 has distribution

ν.

Lemma 12 turns out to be crucial in the proof of LLN. The following corollary describes

the structure of the Markov chain in terms of regeneration times.

Corollary 13. The random blocks are i.i.d and so that the random sums are i.i.d. Math-

ematically, ξi’s are i.i.d random vectors. Hence ζi(f)’s are i.i.d. random variables because

they are functions of i.i.d. random vectors.

Proof. Consider ξi+1 = (XTi+1
, XTi+1+1, ...XTi+2−1), because of the Markov property the only

component that might depend on ξi is XTi+1
. However we showed in equation (2) that XTi+1

just has distribution ν which does not dependent on XTi+1−1 and hence is independent of

ξi because of the Markov property. ζi(f)’s are functions of independent random vectors

ξi’s so they are independent random variables. Since each block starts off from distribution

ν, follows the same Markov transition kernel with the same terminating rule (stop when

next regeneration happens), each block are also identically distributed. And it follows that

each random sum are identically distributed as well since they are functions of the random

blocks.

5.4.3 Properties of the First Regeneration Time Starting from Initial Distribution

ν

Now we have understood that once the regeneration happens, the chain probabilistically

regenerates from distribution ν. So first we study the properties of regeneration times when

we start from distribution ν and later we will consider the case when we start from arbitrary

initial state in the state space.

Definition 14. We define here potential function with respect to a p.d.f. on the state space

E and a sub-Markov operator Q. The potential function µ(x) is the following:

µ(x) =
∞∑
n=0

νQn(x)
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where νQn(x) is the distribution of the random variable under the transformation of sub-

Markov operator Q for n steps starting from initial distribution ν.

Lemma 15. If the chain starts with invariant distribution π as initial distribution we have

1 = Pπ(T1 =∞) +

∫
E

µ(x)dx

∫
E

π(x)s(x)dx

Proof. Let n ≥ 1 be a fixed integer. We may decompose the event {T1 ≤ n} according to

lag between n and the last regeneration time.

{T1 ≤ n} = ∪n−1
k=0{Ln = k}

where Ln = min{0 ≤ k ≤ n− 1 : Yn−k = 1}
Now for any n ≥ 1 and any A ⊂ E, suppose we start the chain with stationary distribution

π.

Pπ(Xn ∈ A) = Pπ(Xn ∈ A, T1 > n) + Pπ(Xn ∈ A, T1 ≤ n)

= Pπ(Xn ∈ A, T1 > n) +
n−1∑
k=0

Pπ(Xn ∈ A,Ln = k) [1]

= Pπ(Xn ∈ A, T1 > n) +
n−1∑
k=0

Pπ(Yn−k = 1, Yn−k+1 = 0, ..., Yn = 0, Xn ∈ A) [2]

= Pπ(Xn ∈ A, T1 > n) +
n−1∑
k=0

Pπ(Yn−k = 1)Pν(Y1 = 0, ..., Yk = 0, Xk ∈ A) [3]

= Pπ(Xn ∈ A, T1 > n) +
n−1∑
k=0

∫
E

π(x)s(x)dx

∫
A

νQk(x)dx [4]

= Pπ(Xn ∈ A, T1 > n) +

∫
E

π(x)s(x)dx

∫
A

n−1∑
k=0

νQk(x)dx [5]

Some Remarks:

[1] As we decompose the event {T1 ≤ n} into disjoint events.

[2] As regeneration happened k steps ago and never happened anymore afterwards.

[3] By Markov property and time homogeneity as we know the chain regenerates at time

n-k.

[4] Since π is invariant and also because Pν(Y1 = 0, ..., Yk = 0, Xk ∈ A) is the probability

starting from ν, not regenerating for k steps, and Xk is in A.

[5] Switch the order of summation and integration.
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Let n→∞, we have∫
A

π(x)dx = Pπ(Xn ∈ A, T1 =∞) +

∫
E

π(x)s(x)dx

∫
A

µ(x)dx

Now we take A as E so we get the following result:

1 = Pπ(T1 =∞) +

∫
E

π(x)s(x)dx

∫
E

µ(x)dx

Corollary 16. ∫
E

µ(x)dx <∞

Proof. The proof is easily followed from the previous lemma.∫
E

π(x)s(x)dx = β|J |
∫
I

π(x)dx

Since β > 0 and J has positive Lebesgue measure, we have β|J | > 0. Also since we have

π(x) > 0 everywhere on E and I has positive Lebesgue measure, we have
∫
I
π(x)dx > 0.

Hence we proved that
∫
E
π(x)s(x)dx > 0. Since Pπ(T1 = ∞) ∈ [0, 1], if

∫
E
µ(x)dx = ∞ we

will not have 1 = Pπ(T1 = ∞) +
∫
E
π(x)s(x)dx

∫
E
µ(x)dx as

∫
E
π(x)s(x)dx > 0. Hence we

proved that
∫
E
µ(x)dx <∞.

Theorem 17. Let Eν(ζ0(f)) be the expectation of the first random sum, with initial dis-

tribution ν. We have Eν(ζ0(f)) =
∫
E
µ(x)f(x)dx. Let Eν(T1) denote the expected value

of the first regeneration time starting from distribution ν. As a consequence, we have

Eν(T1) =
∫
E
µ(x)dx <∞.

Proof. If we start from initial distribution ν, we want to understand the expectation of the

first random sum,

Eν(ζ0(f)) = Eν(

T1−1∑
n=0

f(Xn)) = Eν(
∞∑
n=0

f(Xn)I(T1 > n)) =
∞∑
n=0

Eν(f(Xn)I(T1 > n))

where I is the indicator function.

∞∑
n=0

Eν(f(Xn)I(T1 > n)) =
∞∑
n=0

∫
E

νQn(x)f(x)dx =

∫
E

∞∑
n=0

νQn(x)f(x)dx =

∫
E

µ(x)f(x)dx
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If we take function f as the constant function 1, we have

Eν(

T1−1∑
n=0

1) = Eν(T1) =

∫
E

µ(x)dx

And from the previous corollary we have Eν(T1) =
∫
E
µ(x)dx <∞

Lemma 18.

Pν(T1 <∞) =

∫
E

µ(x)s(x)dx = 1

Proof. It is quite obvious why Pν(T1 < ∞) = 1 since we have Eν(T1) =
∫
E
µ(x)dx < ∞. If

Pν(T1 = ∞) > 0, we have Eν(T1) = ∞ which is a contradiction. Hence Pν(T1 < ∞) = 1.

We are left with the proof that Pν(T1 <∞) =
∫
E
µ(x)s(x)dx. Since we have

Pν(T1 = n) =

∫
E

νQn−1(x)P (Yn = 1|Xn−1 = x, Yn−1 = 0)dx =

∫
E

νQn−1(x)s(x)dx

Now,

Pν(T1 <∞) =
∞∑
n=1

Pν(T1 = n)

=
∞∑
n=1

∫
E

νQn−1(x)s(x)dx

=

∫
E

∞∑
n=1

νQn−1(x)s(x)dx

=

∫
E

µ(x)s(x)dx

Hence we have Pν(T1 <∞) =
∫
E
µ(x)s(x)dx = 1.

5.4.4 The Unique Invariant Distribution

Under the hypotheses 1 and 2. It turns out that there exists only one unique invariant

distribution for the Markov chain. And we will prove this claim in this section. First let us

start with two lemmas.

Lemma 19. If f(x) > 0 for all x ∈ E and λ(x) is a p.d.f. on E, we have
∫
E
f(x)λ(x)dx > 0.

Proof. Let Am = {x : f(x) ≥ 1
m
},

∪∞m=1Am = E
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Also Am is an increasing sequence of events so limm→∞Am = E. We have,

lim
m→∞

∫
Am

λ(x)dx =

∫
E

λ(x)dx = 1

Hence there exists m0 such that ∫
Am0

λ(x)dx > 0

Finally we have, ∫
E

f(x)λ(x)dx ≥
∫
Am0

f(x)λ(x)dx ≥
∫
Am0

1

m0

λ(x)dx > 0

Lemma 20. Let λ(x) be any invariant distribution of the Markov chain which satisfies the

two hypotheses. We have
∫
E
λ(x)s(x)dx > 0.

Proof. By hypothesis 1 we have the following,

∞∑
n=1

2−nP n(x, I) > 0 for all x ∈ E

Where P n(x, I) is the probability of going from state x to set I in n steps. By the previous

lemma, β > 0 and |J | > 0, we have

β|J |
∫
E

λ(x)
∞∑
n=1

2−nP n(x, I)dx > 0

Now since λ is invariant under P,

β|J |
∫
E

λ(x)
∞∑
n=1

2−nP n(x, I)dx = β|J |
∞∑
n=1

2−n
∫
E

λ(x)P n(x, I)dx

= β|J |
∞∑
n=1

2−n
∫
I

(λP n)(x)dx

= β|J |
∞∑
n=1

2−n
∫
I

λ(x)dx

= β|J |
∫
I

λ(x)dx

=

∫
E

λ(x)s(x)dx
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Hence we proved that
∫
E
λ(x)s(x)dx > 0.

Theorem 21. The p.d.f. µ(x)∫
E µ(x)dx

is the unique invariant distribution of the chain, π. We

denote constant
∫
E
µ(x)dx as M here. Hence we have M−1µ(x) being the unique invariant

distribution of the chain, where M−1 =
∫
E
π(x)s(x)dx.

Proof. Consider the potential function µ(x) which is defined on E. It is a non-negative

function on E because it is a sum of p.d.f.’s. So after the normalization it becomes a p.d.f

on E. However we shall prove that is it just π. (i.e. the unique invariant distribution on the

state space)

Step 1. M−1µ is invariant. Since Q is linear operator, we can interchange the order of

operations. Write M−1µ as

M−1µ(y) = M−1

∞∑
n=0

νQn(y)

= M−1[ν(y) +
∞∑
n=1

νQn(y)]

= M−1[ν(y) +
∞∑
n=0

(νQn)Q(y)]

= M−1[ν(y) + µQ(y)]

By the previous lemma since
∫
E
µ(x)s(x)dx = 1,

M−1µ(y) = M−1[ν(y) + µQ(y)] = M−1[(

∫
E

µ(x)s(x)dx)ν(y) + µQ(y)] = M−1µP (y)

by the definition of the transition kernel P . Thus M−1µ is invariant under P.

Step 2. The invariant distribution of this Markov chain is unique. In the proof of

lemma 15, we have the following result that holds for any subset A ⊂ E and any invariant

distribution π for the Markov chain,∫
A

π(x)dx = Pπ(Xn ∈ A, T1 =∞) +

∫
E

π(x)s(x)dx

∫
A

µ(x)dx

Thus, ∫
A

π(x)dx−
∫
E

π(x)s(x)dx

∫
A

µ(x)dx ≥ 0
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for all A ⊂ E. Hence,

λ(x) = π(x)−
[ ∫

E

π(x)s(x)dx
]
µ(x) ≥ 0

non-negative almost everywhere.

Now the claim is that
∫
E
λ(y)dy = 0. We prove this claim by contradiction. First

observe that λ(y) = π(y) − µ(y). Since P is a linear operator and we have both π and µ

being invariant, we have πP = π and µP = µ. This implies that (π−µ)P = π−µ by linearity.

So if
∫
E
λ(y)dy > 0, then λ(y)∫

E λ(y)dy
is an invariant distribution of the Markov chain. Hence we

have
∫
E
λ(x)s(x)dx > 0 by lemma 20. However, since λ(x) = π(x) −

[ ∫
E
π(x)s(x)dx

]
µ(x),

if we just compute this integral
∫
E
λ(x)s(x)dx directly:∫

E

λ(y)s(y)dy =

∫
E

π(y)s(y)dy −
[ ∫

E

π(x)s(x)dx
] ∫

E

µ(y)s(y)dy

=

∫
E

π(y)s(y)dy −
∫
E

π(x)s(x)dx

= 0

Since we have proved that
∫
E
µ(y)s(y)dy = 1 in lemma 18.

Hence we have a contradiction here that
∫
E
λ(x)s(x)dx = 0. So we have

∫
E
λ(y)dy = 0,

which means π(x) is equal to
[ ∫

E
π(x)s(x)dx

]
µ(x) almost everywhere. Hence the unique in-

variant distribution of the Markov chain is
[ ∫

E
π(x)s(x)dx

]
µ(x). We also have

∫
E
π(x)s(x)dx =

M−1 because it is the normalizing constant of the p.d.f. µ.

5.4.5 Recurrence

In this section we prove the last tool we use to prove LLN. i.e. The regeneration of the

Markov chain is recurrent, which means regeneration occurs infinitely often with probability

1. Let N(n) be the random number of regenerations up to time n.

Theorem 22.

P (Ti <∞|X0 = x) = 1

for all x ∈ E and i = 1, 2, 3, .... And hence we have N(n)→∞ as n→∞ wp 1.

Proof. Lemma 18 tells us if we start with initial distribution ν, we will have a finite regen-

eration time with probability 1. (i.e. Pν(T1 < ∞) = 1) Once we regenerate we understand

that we will start fresh off from initial distribution ν and hence the regeneration time is

finite with probability 1. So by induction the theorem follows naturally if we can prove the

following:
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Lemma 23.

P (T1 <∞|X0 = x) = 1

for all x ∈ E.

Step 1. We prove that the first regeneration time T1 is finite from almost every initial

state x ∈ E. Since we proved before that

1 = Pπ(T1 =∞) +

∫
E

π(x)s(x)dx

∫
E

µ(x)dx

and we also have
∫
E
π(x)s(x)dx = M−1 and

∫
E
µ(x)dx = M , we have that Pπ(T1 <∞) = 1.

By law of total probability, we have∫
E

P (T1 <∞|X0 = x)π(x)dx = 1

Hence we have T1 is finite starting from almost every state in E. i.e.

P (T1 <∞|X0 = x) = 1

for a.e. x ∈ E. Since we have π(x) as a p.d.f. on E and P (T1 <∞|X0 = x) ≤ 1.

Step 2. We prove the first regeneration time is finite with probability 1 starting from

every state x ∈ E. We define function h∞(x) = P (T1 =∞|X0 = x), for x ∈ E. We have

h∞(x) = P (T1 =∞|X0 = x) = lim
n→∞

P (T1 > n|X0 = x) = lim
n→∞

Qn(x,E)

By Monotone Convergence Theorem,∫
E

Q(x, y)h∞(y)dy =

∫
E

Q(x, y) lim
n→∞

Qn(y, E)dy

= lim
n→∞

∫
E

Q(x, y)Qn(y, E)dy

= lim
n→∞

Qn+1(x,E)

= h∞(x)

Since we have Pν(T1 < ∞) = 1 (i.e. if starting from ν we have a finite regeneration time

with probability 1), we have ∫
E

ν(y)h∞(y)dy = 0
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Then it follows from the definition of the transition kernel P that,∫
E

P (x, y)h∞(y)dy =

∫
E

(s(x)ν(y) +Q(x, y))h∞(y)dy =

∫
E

Q(x, y)h∞(y)dy = h∞(x)

Now we complete the proof by contradiction, Suppose there exists some x0 ∈ E such that

h∞(x0) > 0, it follows that

h∞(x0) =

∫
E

P (x0, y)h∞(y)dy > 0

However this implies that ∫
E

h∞(y)dy > 0

but we already showed in step 1 that starting from almost every state in E will have finite

regeneration time with probability 1. So the integral∫
E

h∞(y)dy = 0

which is a contradiction. Hence we proved P (T1 <∞|X0 = x) = 1 for all x ∈ E.

5.4.6 The Final Step

In this section we appeal to the usual Strong Law of Large Number in probability theory to

complete the proof. Recall in the last section we defined N(n) to be the random number of

regenerations up to time n and we proved that N(n)→∞ as n→∞ by proving regeneration

is recurrent starting from any initial state in the state space.

Let x be any state in the state space E and X0 = x. Since T1 is finite with probability 1

as we proved in the last section,

ζ0(f) =

T1−1∑
i=0

f(Xi)

is finite with probability 1.

Also since TN(n) ≤ n < TN(n)+1, we define the tail of the sum ζ ′N(n)(f) to be:

ζ ′N(n)(f) =

{ ∑n−1
i=TN(n)

f(Xi) if TN(n) ≤ n− 1,

0 if TN(n) = n.
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Hence we have,

∑n−1
i=0 f(Xi)

n
=

∑T1−1
i=0 f(Xi)

n
+

∑TN(n)−1

i=T1
f(Xi)

n
+
ζ ′N(n)(f)

n

=
ζ0(f)

n
+

∑N(n)−1
i=1 ζi(f)

n
+
ζ ′N(n)(f)

n

Part I.

Since

ζ0(f) =

T1−1∑
i=0

f(Xi)

is finite with probability 1.

lim
n→∞

ζ0(f)

n
= 0 with probability 1

Part II.

By triangle inequality,

|ζ ′N(n)(f)|
n

≤
∑TN(n)+1−1

i=TN(n)
|f(Xi)|

n
(4)

By regeneration theorem,
∑TN(n)+1−1

i=TN(n)
|f(Xi)| has the same probability distribution as

∑T1−1
i=0 |f(Xi)|

where X0 has p.d.f. ν and T1 is the first regeneration epoch. Since T1 is finite with probability

1,
∑T1−1

i=0 |f(Xi)| is finite with probability 1.

Hence
∑TN(n)+1−1

i=TN(n)
|f(Xi)| is finite with probability 1 and

lim
n→∞

∑TN(n)+1−1

i=TN(n)
|f(Xi)|

n
= 0 with probability 1

Now by inequality (4),

lim
n→∞

ζ ′N(n)(f)

n
= 0 with probability 1

Part III.

By lemma 12 and lemma 23, T1 is finite with probability 1 and Ti+1− Ti’s are i.i.d. with

i ≥ 1. Hence we have

lim
n→∞

Tn
n

= lim
n→∞

T1 + (T2 − T1) + (T3 − T2) + . . .+ (Tn − Tn−1)

n

= lim
n→∞

T1

n
+ lim

n→∞

(T2 − T1) + (T3 − T2) + . . .+ (Tn − Tn−1)

n− 1
lim
n→∞

n− 1

n
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= Eν(T1) =

∫
E

µ(x)dx = M with probability 1

Since we have TN(n) ≤ n < TN(n)+1,

lim
n→∞

TN(n)

N(n)
≤ lim

n→∞

n

N(n)
≤ lim

n→∞

TN(n)+1

N(n) + 1
lim
n→∞

N(n) + 1

N(n)

By theorem 22, N(n)→∞ as n→∞ with probability 1,

M ≤ lim
n→∞

n

N(n)
≤M with probability 1

Therefore we have the result that,

lim
n→∞

N(n)

n
= M−1 with probability 1

Finally we can prove the following,

lim
n→∞

∑N(n)−1
i=1 ζi(f)

n
= lim

n→∞

∑N(n)−1
i=1 ζi(f)

N(n)− 1
lim
n→∞

N(n)− 1

n

= E(ζ1(f))M−1

= M−1

∫
E

µ(x)f(x)dx = π(f) with probability 1

Since M−1µ is the unique invariant distribution π.

By part I, II, and III, we complete the proof of LLN:

lim
n→∞

∑n−1
i=0 f(Xi)

n
= lim

n→∞

∑T1−1
i=0 f(Xi)

n
+ lim

n→∞

∑TN(n)−1

i=T1
f(Xi)

n
+ lim

n→∞

ζ ′N(n)(f)

n

= lim
n→∞

ζ0(f)

n
+ lim

n→∞

∑N(n)−1
i=1 ζi(f)

n
+ lim

n→∞

ζ ′N(n)(f)

n

= 0 +M−1

∫
E

µ(x)f(x)dx+ 0

= π(f) with probability 1
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