
Understanding MCMC, Lancaster 2003

Exercises

1. Let X = {1, 2, 3}, and consider the Markov chain with transitions P (1, {2}) =
P (2, {3}) = P (3, {1}) = 3/4, and P (1, {3}) = P (2, {1}) = P (3, {2}) = 1/4.
(a) Prove that the uniform distribution on X is stationary for this chain.
(b) Prove that the chain is not reversible with respect to its stationary distribution.

2. Let X = R, and consider the Markov chain defined as follows. Given Xn, we choose
Xn+1 ∼ N(Xn/2, 3/4). Let π(·) = N(0, 1). Prove that π(·) is stationary for this
Markov chain, in two ways:
(a) Given that Xn has standard normal density, compute directly the density of Xn+1

and show it is the same.
(b) Use the fact that we can (why?) write Xn+1 = Xn/2 +

√
3/4Zn+1, where {Zn}

are i.i.d. standard normal.

3. For the multiplicative RWM algorithm with proposal

Q(x, ·) = xeN(0,σ2) ,

show that

α(x, y) = min

[
1,

xπ(y)

yπ(x)

]
.

4. Let X = R, and let π(·) = N(0, 1) be the standard normal distribution. Consider
the Random-Walk Metropolis algorithm which uses the proposal kernel Q(x, ·) =
Uniform[x− 1, x + 1].
(a) Describe in detail how this algorithm proceeds.
(b) Prove that the resulting algorithm is φ-irreducible.
(c) Prove that the resulting algorithm is aperiodic.
(d) What can we conclude from this?

5. Let X = [0, 1] × [0, 1], and let π(dx) = π(x) dx, where dx is two-dimensional
Lebesgue measure, and where π(x) = 4x2

1x2 + 2x5
2. Consider running the Gibbs

sampler on this distribution.
(a) Describe in detail how this algorithm proceeds.
(b) Prove that the resulting algorithm is φ-irreducible.
(c) Prove that the resulting algorithm is aperiodic.
(d) Prove that the resulting algorithm is Harris recurrent.
(d) What can we conclude from all of this?

6. Suppose Markov chain transitions P (x, ·) on a state space X have a density with
respect to some reference measure ν(·): P (x, dy) = p(x, y) ν(dy). Let C ⊆ X . Show
that P (x, ·) ≥ ερ(·) for all x ∈ C, for some probability measure ρ(·) on X , where
ε =

∫
y∈X

(
infx∈C p(x, y)

)
ν(dy).
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7. Let X = R, and consider again the Markov chain such that given Xn, we choose
Xn+1 ∼ N(Xn/2, 3/4). Recall that π(·) = N(0, 1) is stationary for this Markov
chain. Let C = [−

√
3,
√

3], and let V (x) = 1 + x2.
(a) Compute E[V (Xn+1) |Xn = x] explicitly.
(b) Use this to obtain a drift condition of the form PV (x) ≤ λV (x) + b1C(x) for
some λ < 1 and b < ∞.
(c) Establish a minorisation condition of the form P (x, ·) ≥ εν(·) for all x ∈ C. [Hint:
Use the previous exercise.]
(d) Put this all together, to obtain a quantitative bound on the time to stationarity
of this Markov chain.

8. Let X = [0,∞), and let π(dx) = e−xdx be the standard exponential distribution.
Consider the Random-Walk Metropolis algorithm which uses the proposal kernel
Q(x, ·) = Uniform[x− δ, x + δ] for some δ > 0.
(a) Compute the rejection probability P[Xn+1 = Xn |Xn = x] for x ∈ X .
(b) What value of δ do you think will lead to the most efficient algorithm? Why?

9. Let π denote the discrete uniform density on the following subset of S = {0, 1}6. Let

X (1) = {(a1, a2, . . . , a6);
5∑

i=1

|ai+1 − ai| = 0 or 1}

and let

X (2) = {(a1, a2, . . . , a6);
5∑

i=1

|ai+1 − ai| = 4 or 5},

so that π is the uniform distribution on X = X (1) ∪ X (2). We consider the Gibbs
sampling algorithm which updates in turn each of the 6 components. Write down
explicitly the elements of X .

By considering how the Gibbs sampler changes
∑5

i=1 |ai+1−ai|, show that the Gibbs
sampler is reducible in this example.

Suppose we decided to try and ‘diagnose’ convergence by monitoring a1 from inde-
pendent runs of the Gibbs sampler started at a collection of different starting points.
Would we be able to ‘detect’ non-convergence? Why?

Methods which empirically monitor Markov chain output until approximate station-
arity is observed are called convergence diagnostics. What conclusions can you draw
about the use of one-dimensional convergence diagnostics from this simple example?

10. Suppose we consider the independence sampler with q(x, y) = q(y) and suppose that

q(y)

π(y)
≥ β > 0, ∀y ∈ X (1)
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then show that the transition density of the sampler (for y not equal to x is given by

p(x, y) =

(
q(y) ∧ q(x)π(y)

π(x)

)
≥ βπ(y) .

Hence show that
‖P n(x, ·)− π‖ ≤ 2(1− β)n .

11. Consider the following random walk Metropolis sampler on the geometric distribu-
tion:

π(i) = (1− a)ai, i = 0, 1, 23, . . .

fo some constant 0 < a < 1. ¿From state x we propose a move to x + 1 or x− 1 with
equal probability, 1/2.

Verify that for x ≥ 1, the downward move (ie to x− 1) is always accepted, whereas
upward moves are accepted with probability a. Now consider the Lyapunov drift
function, V (x) = eβx. Show that for x ≥ 1,

PV (x) = E (V (X1)|X0 = x) =
1

2

(
aeβ(x+1) + (1− a)eβx + eβ(x−1)

)
.

Show that the right hand side can be written as λV (x) where

λ = 1− (1− eβ)(a− e−β)

2
.

Hence by a suitable choice of β, show that the algorithm is geometrically ergodic.

12. Consider the bivariate normal distribution, π, with unit variances and correlation ρ.
If (X, Y ) ∼ π show that the conditional densities are given by

(X|Y ) ∼ N(ρY, (1− ρ2))

and
(Y |X) ∼ N(ρX, (1− ρ2)) .

Hence show that if {Xn} is the X sequence of a Gibbs sampler under this parame-
terisation, then

Xn+1 ∼ N(ρ2Xn, 1− ρ4)

and that
Xn ∼ N(ρ2nX0, 1− ρ4n) .
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