UNDERSTANDING MCMC

Gareth O. Roberts and Jeffrey S. Rosenthal

Lancaster

July 2003

Contents

1. INTRODUCTION & MOTIVATION
COMMON MCMC ALGORITHMS
COMPUTER LABORATORY

ASYMPTOTIC CONVERGENCE OF
MARKOV CHAINS

Ll

5. QUALITATIVE RATES OF
CONVERGENCE

6. COMPUTABLE QUANTITATIVE
CONVERGENCE BOUNDS

7. OPTIMAL SCALING OF

METROPOLIS-HASTINGS ALGORITHMS

8. SOME CONVERGENCE RESULTS FOR
THE GIBBS SAMPLER

9. ROUNDOFF-ERROR FOR MCMC

1 INTRODUCTION &
MOTIVATION

About this course

A course on the theoretical underpinnings of
Markov chain Monte Carlo designed for
statisticians wishing to develop a deeper
understanding of methods which they use (or
expect to use in future).

What is this course not:

e a course in hands-on MCMC implementation;

e a course on statistical modelling with MCMC.




The problem

We're given a (possibly un-normalised) density
function 7. So there exists a probability density
function 7 such that

7(z) =k my ()

for a constant k = [, my(x)dz which is unknown
to us.

We're interested in the probability density .
Why?

Perhaps we want to

e estimate expectations with respect to 7:
") = E-lf(X)) = | fl@n(a)das

e simulate a sample of points from distribution

.

Where does this problem arise?

Example 1: Bayesian Statistics

L(y;0) is the likelihood of a statistical experiment
with data y and unknown parameters, § € ©. Let
the prior on 6 be p(0).

From Bayes’s Theorem, the posterior distribution
of 0 given y is

m(0ly) < L(y; 0)p(0) = mu(0]y).

Example 2

Distributions defined in terms of their conditional
distributions.

For example for 1 <4,5 < n, let X; ; take the
value 0 or 1, with

L

P[X;; = 1|all other X's] = o7

where
¢ = exp{B(#neighbouring 1's—#neighbouring 0's)} .

All these conditional distributions characterise
the distribution (Clifford-Hammersley) and we

can write
7w = exp{B(#neighbouring similar values

—#neighbouring differing values)} .

Example 3: Approximate counting

Let AC B C Zi. We wish to compute |A|/|B].
B is sufficiently complex that ‘counting’ its
elements is impossible, but | 4| is known.

For x € Zi, take

Ty (X) = ]lxeB-

Then
|A] erzi T (%) Uxea
Bl T Seze mul®)
So 4
A
|B| = @ )

so that by estimating m(A) in some way, we can
approximate |B|.




Characteristics of problem

e ‘Large’ state spaces, often very
high-dimensional

e Too complex for ‘direct simulation’ from 7 to
be feasible.

e Identifying k is generally as hard as the whole

simulation problem

Other solutions to the problem

Apart from MCMC, there are many ‘solutions’ to
this simulation/integration/estimation problem.
We'll look at a couple of the most versatile which
have some connections to MCMC.

Rejection sampling

Suppose g is easy to sample from, and Jc such
that my(x) < cg(z) for all z € X. Then

1. 1. Draw Z ~ g(-).
2. Accept Z if U < h(Z)/cg(Z).
3. Otherwise, repeat 1.

This algorithm outputs an observation from 7
under mild conditions on ¢ and m,,. However

e Need to find g such that 7/g is bounded.

e Even when we can find g, it needs to be a
“good” enveloping function for the method to
be reasonably efficient.
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Importance sampling

Suppose that 7/g is not bounded. Can we do
anything now? Given a sample X7, Xs,... X,
from g, we can estimate E.[f(X)] by

Yo f(X)w(Xs)
Z?:l w(X;)

7y (T)
g(z) -

This gets around the boundedness problem but

where w(z) =

e still need a “good”approximating function g
for this method to be efficient;

e this method doesn’t actually produce a

sample from 7.

The problem of getting good approximating
functions gets rapidly harder as dimension

increases.
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MCMC

Markov chain Monte Carlo is a method for
drawing samples from 7 using Markov chains
which have stationary distribution 7.

They only need 7, for their implementation, that
is the normalisation constant is not needed.

Metropolis Rosenbluth Rosenbluth Teller and
Teller (J. Chemical Physics 1953).

Hastings (Biometrika, 1970)
Besag (JRSSB, 1974)
Suomela (PhD University of Helsinki, 1976)

Geman and Geman (IEEE Trans. Pattn. Anal.
Mach. Intel., 1984)

Ripley (Stochastic Simulation, 1987)
Tanner and Wong (JASA, 1987)
Gelfand and Smith (JASA, 1990)
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2 COMMON MCMC
ALGORITHMS
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The Challenge

Let 7(-) be a target denstity, on some state space
X (e.g. X = RY), that we wish to sample from.

We wish to construct a Markov chain on X which
has 7(-) as its stationary distribution.

That is, we want to define Markov chain
transition probabilities P(z,dy) for z,y € X, with

/ex m(dz) P(z,dy) = n(dy).

[In words, if you begin in the distribution =(-),
then one step later, you will still be in the
distribution 7 (-).]

Then hopefully, if we run the Markov chain for a
long time (started from anywhere), then for large

n the distribution of X,, will be approximately
7(-). [Good!]

But how can we construct P(z, dy)?
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A Very Simple Example

Suppose X = {1, 2,3}, with:
{1} =1/6, ={2}=1/3, ={3}=1/2.

Let P(1,{2}) =1, P(2,{1}) = P(2,{3}) = 1/2,
and P(3,{2}) = 1/3, P(3,{3}) = 2/3.

Then
/W{x} P(z,{2}) = m{1} P(1,{2}) + {3} P(3,{2})
= (1/6)(1) + (1/2)(1/3) = 1/3 = n{2}.

Similarly [ 7{z} P(z,{1}) = n{1} and
[ m{z} P(z,{3}) = 7{3}. Success!

So, for large n, probably have £(X,,) ~ = (-).
[Good!]

But how did we know? And, how would we
proceed for a more complicated example?
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Reversibility

In above example, we have

m{z} P(z,{y}) = {y} P(y,{z})
for every z,y € X.

DEFN: A Markov chain is reversible with respect
to m(-) if

w(dz) P(z,dy) = n(dy) P(y,dz), =z,y€ X.

FACT: If Markov chain is reversible with respect
to m(+), then =(+) is stationary.

PROOQF: If reversible, then
| wtan) Plosdy) = [ wd) Ply,do)
X

reX

— n(dy) / _Ply.dz) = n(dy).

So, suffices to make chain reversible.

16




The Metropolis-Hastings Algorithm

Suppose 7(-) has a density:

w(dz) = n(z) dz .

Suppose Q(z,-) is some other (simple) Markov
chain, also having a density:

Q(z,dy) = q(z,y)dy .

The Metropolis-Hastings algorithm proceeds as
follows. Given X,,, generate Y, 1 from Q(X,,-).
Then, randomly either “accept” and set

Xpnt1 =Y,41, or “reject” and set X,,41 = X,,.

Accept with probability a(X,,, Y,+1), or reject
with probability 1 — a(X,,, Y,+1), where

ﬂ(y)Q(y,w)} _

a(z,y) = min [1’ m(z)q(z,y)
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FACT: The formula for a(z,y) was chosen “just
right”, so that the resulting Markov chain {X,,} is
reversible with respect to 7 (-).

PROOF: Need to show
m(dz) P(z,dy) = n(dy) P(y,dz) .

Suffices to assume z # y (otherwise trivial).

But for = # y,

n(dz) P(z,dy) = [n(z) dz] [q(z,y) a(z,y) dy]

7(y)q(y, )
" w(z)q(x,y)
= min(n(z) ¢(z,y), 7(y)q(y,z)] dzdy

= m(z) ¢(x,y) min [1 ] dz dy

and similarly

7(dy) P(y,dz) = min[r(z) ¢(z,y), 7(y)q(y, )] dz dy .
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Summary So Far

e The Metropolis-Hastings algorithm proposes a
new state according to the proposal kernel Q(z, ),
and then either accepts or rejects it, with just the
right probabilities to make 7 () be reversible (and
hence stationary).

e To run this algorithm on a computer, we just
need to be able to run the proposal chain Q(z,-)
[easy, for appropriate choice of @], and then do
the accept/reject step [easy as long as we can
compute the densities at individual points]. Good!

e Furthermore we need to compute only ratios of
densities [e.g. 7(y) / w(z)], so we don’t require the
normalising constants. Good!

e But, how to choose the proposal Q(z,-)?

e And, will we really have £(X,,) = «(-) for large
enough n? (How large??)
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A Metropolis-Hastings Example

Suppose X = R4, with 7 : X — (0,00) a
complicated density function.

Let the proposal be Q(z,-) = N(z, 1), so that
a(z,y) = e VT2 = q(y,2).
Then

a(z,y) = min [1,

Take Xy = 0 (say).
Then, given X,,, we choose Y11 ~ N(X,,1), and
then set

Yot1, probability (X, Y541)

Xn+1 = .y
X, probability 1 — a(X,,, Ynt1)

This creates a sequence Xg, X1, Xo,...

Hopefully, for large n, the density of X, is
approximately equal to 7.

20




Metropolis-Hastings Variations

There are many different ways of choosing the
proposal density, such as:

e Symmetric Metropolis Algorithm. Here
q(z,y) = q(y,z)
The acceptance probability simplifies to

a(z,y) = min [1, %}

e Symmetric random walk Metropolis.

q(z,y) = qly — )

[e'g' Q(Ia ) = N(.’E,O’2), or
Q(z,-) = Uniform(z — 1, z + 1), etc.]

21

e Independence sampler. Here

q(z,y) = q(v),

i.e. Q(z,-) does not depend on z.
(Similar to rejection sampler ... but not
identical.)

e Langevin algorithm.

Here the proposal is generated by
Ynp1 ~ N(Xn + (6/2) Viegn(Xy), 4),

for some (small) § > 0.

(This is motivated by a discrete
approximation to a “Langevin diffusion”
processes.)

22

e Multiplicative RWM
This is just a symmetric random walk
Metropolis algorithm ‘on a log scale’ and is
sometimes useful for components which are
strictly positive. For example

Q,) = zeV )

- 28]

Exercise check this!
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The Gibbs Sampler

Suppose that 7(+) is d-dimensional, i.e. that
X C R

Write x = (x1,...,24), and
X(_z) = (wla sy Ti—1, Li41,y - - - amd)-

Let m;(y | x(=9) be the conditional density of m(-),
conditional on knowing that y; = x; for j #

) (—=i)y _— 9ia(y)
U (y | X ) fzex i (Z) dz’

where gi,z(Y) = ﬂ-(y)l{yj:a:j for j#i}-
The i*" component Gibbs sampler is defined by

P;(x,dy) = m;(y | x(_i)) dy .

That is, P; leaves all components besides 7
unchanged, and replaces the i*® component by a
draw from the full conditional distribution of 7(-)
given all the other components.

24




FACT: The i*" component Gibbs sampler, P;, is
reversible with respect to 7 (-).

(This follows from the definition of conditional
density. In fact, P; may be regarded as a special
case of a Metropolis-Hastings algorithm.)

So, P; leaves 7(-) invariant. We then construct
the Gibbs sampler out of P;, as follows:

e The deterministic-scan Gibbs sampler is

P = PP.. . P

That is, it does the d different Gibbs sampler
components, in order.

e The random-scan Gibbs sampler is

1 d
P = 3;3.

That is, it does one of the d different Gibbs

sampler components, chosen uniformly at random.

Either version produces a “zig-zag pattern”.

25

Example: Variance Components Model

MODEL:
7
v 4N\
91 91{ GzNN(MaUZ)
' '

Yii,..., Y, Yi1,..., Yk Yij ~ N(6;,02)

e

PRIORS: 02 ~ IG(a1,b1); 02~ IG(az,b);
p ~ N(po, o5).-

OBSERVED DATA:Y;; (1<i<K,1<j<J)

TARGET DISTRIBUTION:
ﬂ-() = ‘C(O-g’o-ga ,u’aela R aeK | {Yzj})

Want to run a Gibbs sampler on 7(-), i.e. on the
K + 3 variables 02,02, u,61,...,0k.

What are the conditional distributions?

26

Example (continued)

L(o2 | p,02,04,...,0k,Yi) =

1 1 9
IG <(11+§Ka b1+52(0i_ﬂ) > ;

7

E(O’g | M’a-g’ol""ael(ayrij) =

1 1
IG (s + 5KJ, by + 5 > (Wi — 07

2

L(ll’ | O-gaagaela"'aeKaY;:j) =

gipo +032 0 ojog |
os+Kog ' op+Koi)’

2 2 —
[’(ei |H,O’9,O’e,91,...,9,',1,9,,;_}_1,...,01(,)/;‘]‘) -
N <Jo’§?i+agp, azag )

2 2 b) 2 2
Jogto2 Jog+o?
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The Gibbs sampler proceeds by updating the
K + 3 variables, in turn (either deterministic or
random scan), according to the conditional
distributions.

This is feasible since the conditional distributions

are all easily simulated (IG and N).

In fact, it works well! [Gelfand and Smith, JASA,
1990]

All the algorithms constructed above can be
combined in various different ways to produce
more complex procedures tailored to different
problems.

So, now we know how to construct (and run) lots
of different MCMC algorithms. Good!

But do they converge to the distribution 7(-)?
How quickly?

Stay tuned!
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3 COMPUTER
LABORATORY
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4 ASYMPTOTIC
CONVERGENCE OF
MARKOV CHAINS

30

SUMMARY SO FAR:

We know how to construct Markov chain
transition probabilities P(z,-) which have m(-) as
a stationary distribution.

We then hope that, for large n, the distribution of
X, is close to m(-). But is it? Not necessarily!

EXAMPLE #1:

Suppose X = {1,2,3}, with

m{1} = 7{2} = {3} = 1/3. Let

P(1,{2}) = P(2,{1}) = 1/2, and P(3,{3}) = 1.
Let Xy = 1.

Then 7(-) is stationary. However, X,, € {1,2} for
all n, so P(X,, =3) =0 for all n, so

P(X, =3) /A m{3}. No convergence!
(“Reducible”)

To avoid this problem, it suffices to have a single
state x,, which is “accessible” from all states zx.

More generally, it suffices that the chain be
“¢-irreducible” ...

31

¢-Irreducibility

Write P™(z, A) for the n-step transition law of
the Markov chain:

P'(z,A)=P(X,cA|Xo=12).

DEFN: A chain is ¢-irreducible if there exists a
non-zero measure ¢ on X such that for all A C X
with ¢(A) > 0, and for all x € X, there exists a
positive integer n = n(z) such that

P*(z,A) > 0.

For example, if ¢(A) = d;, (A), then this requires
that z., is accessible from any state x.

For a continuous Markov chain, ¢(-) might
instead be e.g. Lebesgue measure.

32




Is ¢-irreducibility the only property we require?
No!

EXAMPLE #2:

Suppose again X = {1, 2,3}, with

m{1} = {2} = n{3} = 1/3. Let

P(1,{2}) = P(2,{3}) = P(3,{1}) = 1. Let
Xp=1.

Then 7(-) is stationary, and the chain is
¢-irreducible [e.g. take ¢(-) = d1(-)]. However,
X, = 1 whenever n is a multiple of 3, so
P(X,, =1) oscillates between 0 and 1, so
P(X, =1) /A n{3}. Again no convergence!
(“Periodic”)

DEFN: The chain is aperiodic if there do not
exist d > 2 and disjoint subsets

X1, X, ..., X C X with 7(X;) > 0, such that
Pz, X;y1)=1forallz € &; (1<i<d—1), and
P(z, X)) =1 for all z € Ay,

[In Example #2, have d = 3, so not aperiodic.]
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Now we can state the main theorem!
DEFN: The total variation distance between two
probability measures v4(-) and vo(+) is:

[v1() = v2()ll = sup |v1(A) — v2(A)]-
A

Theorem 4.1 If a Markov chain is ¢-irreducible
and aperiodic, and has a stationary distribution
w(-), then for m-a.e. x = Xy € X,

T [Pz, )~ ()] = 0.

In particular,
lim P"(z,A) = ©n(4), ACX.
n—oo

Furthermore, for any h: X - R,
Jim (1/n) ;h(Xi) = Eq[h(X)] wp.1

Also, “usually” have a central limit theorem:

ni/2 (L—l AE) _ w(h(X))) = N(0, %)

n

for some 02 > 0. (More later.)
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In summary, the theorem says that if a chain is
¢-irreducible and aperiodic, and has a stationary
distribution 7 (+), then it will converge in
distribution to 7 (-) from 7-a.e. starting value.

Good!

Now, in MCMC, always start with m(-) stationary
— good.

Furthermore, usually easy to verify that chain is
¢-irreducible, where e.g. ¢ is Lebesgue measure
on appropriate region — good.

Also, aperiodicity almost always holds, e.g. for
virtually any Metropolis algorithm or Gibbs
sampler — good.

But why just “from m-a.e. starting value”?

35

EXAMPLE:

Let P be any ¢-irreducible, aperiodic Markov
chain on X = R, with continuous stationary
distribution (-).

Let P’ be defined as follows. Let P'(z,-) = P(z,-)
whenever x is not a positive integer. For = a
positive integer, let

P'(z,) = (1/a*)m() + (1 = 1/2%) 6z41(") -

Then 7(-) is stationary for P’, and P’ is still
¢-irreducible and aperiodic.

But if X = 3 (say), then could have X,, =n + 3
for all n, so that ||£(X,) — #(-)|| 4 0.

[Not “Harris recurrent”.]
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Harris Recurrence

DEFN: Say a chain is Harris recurrent if for all
B C X with n(B) >0, and all z € X,

PEn; X, € B|Xo=1z|=1.
(Stronger than w-irreducibility.)
Theorem 4.2 If chain Harris recurrent, then

convergence theorem holds from every starting
point (not just w-a.e. starting point).

For example, this always holds if

P(z,dy) = p(z,y) 7(dy), or for any Metropolis
algorithm with a m-irreducible proposal.
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Summary

For an MCMC algorithm to be valid to sample
from 7(-), we need that:

e 7(-) is a stationary distribution (of course);
e chain is ¢-irreducible;
e chain is aperiodic.

If these conditions all hold, then:

e chain will converge to 7(-) in total variation
distance;

e P[X, € Al —» n(A) for all A C X

e E[h(X,)] — m(h) for all functionals h having
finite expectation;

e usually, normalised errors of Y .-, h(X;) will
be approximately normal (CLT).

If chain Harris recurrent, then this is true from all
starting values Xg; otherwise just from 7-a.a.
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5 QUALITATIVE RATES
OF CONVERGENCE
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SO FAR we have looked at questions of whether
an algorithm has converged or not. In practice we
may wish to know alot more about how quickly
our algorithm converges and how efficient our
resulting algorithm is.

It is usually very difficult to give precise
statements of this form in any level of generality,
but it is often possible to make useful qualitiative
statements as we shall see. This section gives a
brief overview of the theory of geometric
ergodicity applied to MCMC.

In discrete state spaces, we can characterise
geometric ergodicity in terms of the chain’s return
times to any given state. For general state spaces,
we don’t necessarily return to any one state, so
we need to define a collection of states which have
similar properties as defined below.

Standard reference for the Markov chain theory in
this chapter is Meyn and Tweedie, (MCs and
Stochastic Stability, 1993, Springer).
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Small sets

A set C € B is small if there exists a positive
integer n, § > 0, and a probability v such that the
following minorisation condition holds.

P"(z,A) > dv(A)
for all x € C, A € B. From now on, we assume
that B is countably generated.

Theorem 5.1 (Deep!) If X is ¢-irreducible, then
every set A € B with m(A) > 0 contains a small
set C with w(C) > 0.

Theorem 5.2 (Shallow!) If X is ¢-irreducible
and  1s invariant, then X s m-irreducible.

41

e C is small if C = {z}.

e (' is small if C is finite and X is w-irreducible
and aperiodic.

e (' is small if C' is compact under suitable
topological conditions. For example: X is
open-set irreducible (Py(Ta < 00) > 0, Vz,V
open non-empty A) AND X satisfies the
weak Feller property.

The weak Feller propertly of a Markov chain just
says that for any continuous bounded function f,
E.(f(X1)) is a continuous function of z.

Continuity stops the transition probability
measure from ‘changing much’ in a bounded

region.
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Stability of Markov chains

Stability can be formulated in terms of
Tc=min{n >1: X, € X}.

Another way of definining Harris recurrence
requires that

P(re <oo|Xg=2z)=1 Vz
for SOME small set C.

Theorem 5.3 If X is Harris recurrent, then
there exists a (necessarily unique) invariant

measure m:

(A) = /X (dz)P(z, A), VA.
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Theorem 5.4 (ergodicity theorem) Suppose X is
¢-irreducible and aperiodic. The following are
equivalent.

e There exists an invariant probability

measure .

e (Local convergence) There erists a small set

C with ¢(C) > 0 and
P*(z,C) — P>*(C)>0 VzeC.
o There exists a small set C such that

sup Ey[rc] < o0 .
zeC

o (Foster’s drift condition) There exists a small
set C and a function V(z) > 0 with
V(zo) < 0o for some xo € X such that

/P(a:,dy)V(y) <V(z)—1+blg(z) Vo e X

44




When any of the above holds,

o Vo ={x:V(x) < oo} is absorbing, and
7(V§) = 0.

3C, 1 Vo with each C),, small, such that

sup E;[rc,] <00 Vn.
zeCy,

Vx € Vp,

1P (2, ) =7l = 0. (1)

If X is Harris recurrent then (1) holds for all
z.

If V < oo everywhere, then (1) holds for all z.

Convergence of moments

For MCMC applications, we're typically
interested in estimating E.[f(X)] for a collection
of functions f. Let

Salf) =3 F(X)) -

Theorem 5.5 If w is an invariant probability
measure, the following are equivalent

b \V,f € Ll(ﬂ-);

lim 1Sn(f) :/f(y)ﬂ(dy) a.s.[Py], VY

n—o0o N

e X 1is Harris recurrent.
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A simple Cauchy example =
7(z) oc (1 4+ 22) ! on the positive real axis. We
use a random walk Metropolis algorithm with a _ i _ _ _ _
0T 80 90 7’0 20 00

Gaussian proposal distribution tuned to have
around 30% of its moves accepted.

You may have looked at exactly this problem
during the computer lab. Completely trivial
problem, right?

47
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Figure 1: Does this look 4léke reasonable output for
a Cauchy distribution?
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Figure 3: Three RWM algorithms on Cauchy ex-
ample: (a) Gaussian proposal, (b) Cauchy pro-
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A minimal requirement for any sensible algorithm
with transition probabilities P is that of
ergodicity: that is for all x € X,

1P (x,-) =7 ()l = r(x,n) L0 . (2)

In fact it is easy to demonstrate that all three of
the examples considered in the Cauchy example
satisfy this requirement.

Why? Just show it is Lebesgue irreducible,
aperiodic, and Harris recurrent in each of these
three cases.

We need to consider more refined conditions on
r(-,-) in order to compare these methods.
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Example: Independence sampler

n(z) = e, q(z) = ke**. We consider 2 possible
algorithms:

1. k=0.01

2. k=5

Which will perform better?

Both algorithms were run for 1 million iterations
started at the mean value of 7, ie 1 in this case.
The experiment was repeated 55 times for each
case producing the following results.
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k=0.01

0 5 1015202530

0.98 1.00 1.02 1.04

k=5

0123 45

2.0 25

Figure 4: Sample means of each of the 110 runs.
Monte carlo error in the case k& = 0.01 is fairly
small and symmetric about zero. However in the
k = 5 case, the error is massively skewed, and most
runs give very biased resuts.
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Trace a, mean = 1.961 Trace b, mean = 0.812
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Figure 5: Two sample paths from the k = 5 simu-
lation study.
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Converging geometrically quickly

Recall, for Harris chains.
|P"(x,-) — || — 0, Vz

Natural questions are the following

e When is the chain geometrically ergodic?

[1P™(x,-) — x| < M(z)p",
M(z) < o0, p< 1.
e When is the chain uniformly ergodic?
|P*(z,:) —7|| <r(n) >0, n—>00 (3)

Remark: In fact, that if (1) holds, then we
can always take constants p < 1 and M such
that r(n) < Mp".

Therefore uniform ergodicity = geometric
ergodicity.
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Uniform ergodicity equivalences

Theorem 5.6 For a ¢-irreducible aperiodic
chain, the following are all equivalent.

L4 ||Pn(.1',)*ﬂ'|| SMPnaM<OOa p<1a
Vee X

o There exists a small set C with

sup E,[rc] < o0
TEX

e There exists a small set C and B > 1 with

sup E,[87°] < o0
TeX

o X is small
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Theorem 5.7 When X is small, there exists
m>1,90 >0, and a probability measure v such
that

P™(z,A) > év(A), Vz,VA, (4)

then for n such that m|n

1P (x,-) — x| <2(1- &)™ . (5)

PRrOOF Use coupling of two ‘copies’ of the
chain, one started from z, the other from the
stationary measure .

Xo==z, Xi,... :s0X,~P"(z,-)
Xy~mXy,... :soX] ~m.
Take m =1 in (4). Then
P(y,A) > dv(A) Vy.

Toss a ‘d-coin’. If ‘heads’, move from y with
distribution v; if ‘tails’, move from y with
distribution

1

1-s [P(y,") —dv(-)] -

o7

This preserves the marginal distribution of the
chains. However now we use the same coin for
both chains X and X', so that as soon as a head
is achieved the two chains remain equal forever
more.

Now we use the coupling inequality:
T =inf(n >1: ¢ — coin is head).
|P™(z,) — || = 2 sup |P"(z, A) — w(A)]
AeB

<2P(Xn = Xy,)
=2P(T > n)
=2(1 - §)"
[ |

This proof idea extends in a number of ways
including

e geometrically (but not uniformly) ergodic

chains;

e coupling from the past.
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MCMC examples

Independence sampler with proposal density

q(z,y) = q(y)-

Theorem 5.8 (Mengersen-Tweedie) Suppose
M2,6’>0, Yye X (6)
™(y)

then

|1P™(z,) — 7l| <2(1—B)" .

Conversely, if essinfq(y)/m(y) = 0, then P is not

even geometrically ergodic.

PrOOF Exercise! Just show that the

minorisation condition holds.

So for the independence sampler to be uniformly
ergodic, the proposal distribution needs to have
tails that ar ‘at least as heavy’ as the target
density. Note, if (6) holds, then (recall from
Lecture 1) rejection sampling is possible.
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If X is compact, and the chain is ‘suitably
continuous’ (weak Feller plus a bit more), then X
is small and so X is uniformly ergodic.

Example RWM on truncated normal.
1

—z2/2
(271')1/26 / L—z0,0] (%)

m(x) ~

Q(xay) = N(J), 1)1[—z0,z0] (l‘)
_ 1
= @n2

ely—2) /21[_9:0,%](3;)

> €01 y00) (%) 1-s0,20 () (@ € [0, 70])

a(r,y) =1A % > e~ %

So we have directly verified the minorisation
condition:

P(z,dy) > e 2% x e*””gl[_zo,mo] (y)dy .
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Clearly these bounds can be improved on. In
practice, even when chains are uniformly ergodic,
d can be extremely small, and better bounds on
convergence time can sometimes be obtained by
just using the weaker geometric ergodicity
assumption.
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Geometric ergodicity

Theorem 5.9 Suppose C is ¢-irreducible and
aperiodic with invariant measure . The following
are equivalent

o There erists a small set C with ¢(C) > 0 such
that for all x € C':

|P" (2, C) — =(C)| < Mcpf

Me < 00, pe <1, (local geometric
convergence).

e There exists a small set C, a constant k > 1
and a finite constant Mg such that

sup E; (k] < Mc
zeC

(geometric return times).
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e There exists a small set C, and constants
0<A<1,b<ooand a function V > 1 which
is finite at least for some x( say, then

/X P(z,dy)V(y) < AV(@) +ble(s)  (7)

(geometric Foster-Lyapunov condition)

When these conditions hold,
Vi:={z: V(z) < oo} is absorbing and 7(Vy) =0
and for all z € V),

sup | [ P"(z,dy)g(y)- / r(dy)g(y)| < MV (2)p"
lgI<V

for some M < o0, p < 1.
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So

e We get geometric convergence from all points
in V). So if V is finite everywhere, we get

geometric convergence from everywhere.

e We can pick p in the above independently of
.

e This also identifies the dependence of
convergence on the initial state x via the
function V'
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Strategy for proving or disproving geometric
ergodicity:

e To prove geometric ergodicity, find a drift
function. For MCMC a generic choice turns
out tobe 7% 0<d<1.

e To disprove geometric ergodicity, show that
the return times to a small set of positive
mass (according to ) is slower than
exponential. Two strategies for doing this:

— show that the Markov chain behaves ‘like
a random walk’ out in the tails;
— show that P(z,{z}) is NOT bounded

away from zero.
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MCMC and drift conditions

Why are drift function techniques appropriate for
many statistical MCMC problems?

1. Because target densities frequently have a
modal region towards which algorithms drift.

2. Drift conditions can often be calculated or
approximated using only pocal properties of
the target density.

3. m(x)~4, for 0 < d proves to be a natural drift
condition in many cases.
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Example: Random walk Metropolis

Suppose 7 is a density on the real line with
positive continuous density. Now if 7 has tails
heavier that exponential (say (log(m(x))" — 0,
for example the tails of 7 ‘look like’ =" for some
r > 1). Fix M > 0. Then for |y — z| < M say,

log w(y) — logm(z) = /y(log(ﬂ'(x))'(z)dz

x

which will be small for large positive or negative
z. So |y —z| < M,

) .4

1/\@,\,

and the algorithm behaves like a driftless random
walk in the tails. Therefore geometric ergodicity
fails.
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Now suppose that there exists a > 0 and z; such
that for all y > x > x4,

logm(z) —logm(y) > aly — =),

that is

m(z) _ e "

m(y) ey’
Theorem 5.10 (Mengersen-Tweedie) Under
these conditions, then for any mean zero proposal

with continuous density q(-), the algorithm is
geometrically ergodic, but NOT uniformly ergodic.

PRrOOF Use the Lyapunov drift function
V(z) = e*l®l for some 0 < 5 < a.

These results generalise to higher dimensions
(Roberts-Tweedie, 1996, Biometrika) though
many more things can (and do) go wrong so that
the ‘exponential tails’ condition is no longer
sufficient for geometric ergodicity.
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Behaviour of random walk Metropolis

(a) For target densities with tails uniformly
bounded by exponentials in all directions are
geometrically ergodic so long as their tails are
sufficiently regular. One condition which is
sufficient for this requires the contours of the
target density to have curvature which
converges to 0 as they move further away
from the target density mode.

(b) If 7 has tails which are strictly heavier than
exponential, then no random walk Metropolis
algorithm can be geometrically ergodic.

(c) If the tails of  resemble |x|~(4+7) in the tails,
then light tailed Metropolis proposals lead to
algorithms which converge at polynomial rate
/2 (that is | P"(z,-) — 7| < ¢/n"/?). Heavy
tailed versions of the algorithms can increase
the polynomial rate arbitrarily.
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What can go wrong?

Geometric ergodicity is related to exponential
moments of return times to a small set C.

There are two obvious ways in which exponential
moments can fail to exist for a random walk
Metropolis algorithm.
(1) The algorithm might have ‘sticky’ patches:
P(xi, {xi}) = 1, (8)

along a suitable sequence of points {x;}.
Then return times to small sets cannot have

geometric moments.
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Unfortunately, this phenomenon is very
commmon. As an simple example consider the
normal-Gamma, density prevalent in Bayesian
analysis of linear models:

m(n,7) o 72 exp{~7(S +n(u —2)%)/2} .

for suitable constants n, S, Z.

P((,7),{(1s,7)}) — 1 along the ridges of high
probability for large ||, and so the algorithm fails

to be geometrically ergodic.
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Figure 6: A contour plot of the contours of the pos-

terior distribution in the normal-Gamma example.
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Figure 7: A g-q plot illustrating that the random
walk Metropolis algorithm fails to adequately ex-
plore the tails of the normal-Gamma, distribution.
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What can go wrong?

(2) Another way in which random walk
algorithms can fail to be geometrically
ergodic is where the effect of the accept reject
mechanism becomes negligible in the tails, so
that the algorithm approximates a
null-recurrent random walk. This is
essentially what fails for heavy tailed target
densities such as the Cauchy example.

Emphasis here on random walk Metropolis
algorithm. However, this work easily extends
to other algorithms such as Langevin, hybrid
Metropolis methods, Gibbs, Independence
sampler, etc.
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Theorem 5.11 Suppose that 7 is a
k—dimensional density, and for each i, P; is a
Markov chain which updates just the ith
coordinate. Consider running a random scan of
the P;’s, that is a chain P with

Pi+P+ ... P
k

Suppose that for some component i say, P; is a

P =

random walk Metropolis algorithm with fized
increment proposal density q, and that

. logn(X; € (K,x))
H p—
K350 K 0, )

then P fails to be geometrically ergodic.

The peculiar condition above can just be
interpreted as the condition that the marginal
distribution of the ith component has heavy tail.
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Return to Cauchy example

w(z) ~ 272 .

approximately in the tail.

Gaussian proposal random walk Metropolis
The simple random walk Metropolis algorithm
with light tailed proposal satisfies the drift
condition for values of a less than ag = 1/3.
Don’t get CLTs even for bounded functions from
the CLT theorem.

Cauchy proposal random walk Metropolis
illustrated in earlier figure satisfies the drift
condition for all & < ap = 1/2. Nnot quite
enough to ensure that CLT's hold for all bounded
functions. (Any slightly heavier tailed proposal
would achieve this.) However it is considerably
more stable than the light tailed proposal case.
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Multiplicative random walk Metropolis
algorithm is geometrically ergodic, since the
tails of the log of a Cauchy random variable are
bounded by an exponential. Thus the algorithm
is considerably more stable than either of the first
two algorithms. It satisfies the drift condition for
a =1 and therefore it is geometrically ergodic.
CLTs hold for all square integrable functions.

7

Central limit theorems

The algorithm’s convergence properties are
closely linked to those of its excursions away from
small sets and with the existence of CLT for the
Markov chain, which are important for Monte

Carlo implementation.

We say that a /n-CLT exists for a function f, if

wie (B e o) s o

N(0, 75 Vary(f(X))) (11)

where 7¢ denotes the integrated auto-correlation
time for estimating the function f using the
Markov chain P.
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Theorem 5.12 CLT for Markov chains.

If P is geometrically ergodic and reversible, then
for all functions f for which Var,(f(X)) is finite,
a /n-CLT ezists.

For polynomially ergodic MCs, CLTs can be
shown to exist only for functions which do not
grow too rapidly. For non-reversible chains, less

clean but similar results are known.

79

6 COMPUTABLE
QUANTITATIVE
CONVERGENCE
BOUNDS
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The Set-Up

Have Markov chain P(z,-), with stationary
distribution ().

Know that if ¢-irreducible and aperiodic,

lm [|P"(z,) ()] = 0.

Good. But how large does n need to be to make
[P (2, ) — ()| small?

That is, how long do we need to run the

algorithm to get approximate convergence to 7(-)?

Ideally, we would like to find explicit n for which

we can prove that, say,

| P™(z,-) — ()| < 0.01.

Can we do this?
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Recall minorisation condition:

P(z,-) > ev(") zeC.

Also need “bivariate drift condition”:
Ph(z,y) < h(z,y)/a, (2,y) ¢CxC

for some h: X x X — [1,00), and a > 1, where
Ph(z,y) = / / h(z,w) P(z,dz) P(y, dw) .
xJx

Finally, define

B = max][l, a(l — €) sup Rh],
CcxC

where for (z,y) € C x C,

Rh(z,y) = (1 —¢€)2h(z,w)

zeX JweXx

X(P(z,dz) — ev(dz)) (P(y, dw) — ev(dw)) .
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Main Result

Theorem 6.1 Then for any integers 1 < j < mn,

I1£(Xn) — LX) |lrv <
(1 — 6)] + Ol_nBj_1 Ep,)(r[h(XOaX(l))] )

where p = L(Xp).

[Rosenthal, 1995; Roberts and Tweedie, 1999;
Rosenthal, 2002; other variations available.]

Thus, if we can very explicit minorisation and
drift conditions, then we can get explicit bounds

on how large n has to be to make, say,

| P™(z,-) —=(-)|| < 0.01.

But can we apply this to real examples?
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SOME FURTHER SIMPLIFICATIONS:

Have that
B < max[1, a(Bg — ¢€)],
where
Bo= sup Ph(z,y);
(z,y)eCxC
here

A —

P=e¢vxv)+(1-¢R.

Also, if PV (z) < AV (z) + ble(z) for all z € X,
where V : X — [1,00), and

C={zecX; V(z) <d}, and

PV(z) = E[V(X,+41) | Xn = ], then can take

Wz, y) = (V(z) +V(y)/2,

b
-1
— A
“ N
By =MAd*+b.
Very explicit!
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EXAMPLE: Hierarchical Poisson Model (“pump
failures”). [Gelfand-Smith, 1990; Tierney, 1994]

B B~ G(v,0)
v LN
01 0, 0; ~ G(ao, B)
3 3
i ... ... Y, Y; ~ Pois(6,T;)
Gibbs Sampler run on 3,6,...,6,, conditional

on observed Y, T;. (Updating distributions:
Gamma)

Theorem 6.2 (Rosenthal, JASA, 1995) :

For data and priors as in Gelfand and Smith
(1990), (n = 10), initial distribution po, we have
LX) —7(|lvar < (0.976)% + (0.951)%(6.2+E),

where E = E,,(X; 9](-0) - 6.5)2.

(e.g. E =2, k=200, bound is 0.008. Numerical
work suggests convergence actually occurs earlier,
perhaps around k£ = 10 or k = 20.)
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EXAMPLE: related to James-Stein estimators
[suggested by Jun Liu]

1
VRN
1o )
Yi ... ... Yk Y; ~ N(6;,V)

Gibbs sampler run on u, A,64,...,0k.
(Conditionals: IG and N.)

Theorem 6.3 [Rosenthal, Stat. and Comp., to
appear]:
For priors p ~ flat, A ~ IG(a,b), for any
0<r<1, we have
ILXP®) —a()] < (1o
k
+ (709" (14 25+ E (F(X©))),
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where

fl) = Y0~

—2
A = E<1+¥) with W ~ IG <a+ %b)

A=A+(K+5V, A=¥(¥-Y),
e = 2[7°dA min lIG(aJr%,b;A),

IG (a+ 5520+ 4 4)

< Jan N (\# fin)

1+2A+Xd
-1 = - M =
a = 1 d <1; v =1+2Ad+A).

Gives general formula bounding distance to

X

stationarity in terms of prior values, data, initial
distribution.

[e.g. baseball data of Efron-Morris, with
appropriate priors, bound equals 0.009 for
k = 140 iterations.]
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Diagnosing Convergence

Theoretical computable bounds sometimes work
well.

However, for complicated models, difficult to

verify drift and minorisation conditions.

Can sometimes “approximately” verify drift and
minorisation conditions using auxiliary simulation
[Cowles and R., Stat and Comp 1998].

Otherwise, need to use “convergence diagnostics”:
do statistical analysis (or just informal
observation) on Markov chain’s output to
hopefully conclude that convergence has occurred.

e.g. Gelman and Rubin (1987, Stat Sci): Run the
Markov chain from many different starting values
Xo (“overdispersed starting distribution”).

Hopefully converged when “inter-chain variances”

comparable to “intra-chain variances”.
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No guarantees, though!

Example: “Witch’s Hat”
X =10,1]¢ (d large)

mu(x) = 1+ 679411 5(x), where § > 0 very small,
and

S={xeX: z <dVi}.

Then 7(S) =~ 1.

However, unless Xy € S, or “get lucky” and find
X, € S, then Gibbs Sampler or Metropolis
algorithm may well miss S entirely.

Convergence diagnostics would suggest
7(-) &~ Uniform(X). Wrong!!

Chain converges extremely slowly, but is still
geometrically ergodic. Misleading!!

Overall, the “convergence time problem” remains

largely unresolved ...but usually okay in practice.
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7 OPTIMAL SCALING OF
METROPOLIS-
HASTINGS
ALGORITHMS
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Let 7 : R? — [0,00) be a d-dimensional density (d
large).

Consider running a Metropolis-Hastings algorithm
for w. How should we choose the proposal?

e RWM: Consider proposal N (X,,,0%I).

e Langevin: Consider proposal
N(X, + % Viogn(X,), 02I4).

In either case, how to choose 027?
If 02 too small, the chain never goes anywhere.

If 02 too large, the chain usually rejects.

The Goldilocks Principle: Need the proposal
scaling to be “just right”.
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The Goldilocks Principle illustrated:

Too large Too small Just right

wo 10

n .
. .

[Trace plots (top) and auto-correlation plots]

2
o
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How do we make a theory out of this?
For simplicity, assume (for now) that

d

r(x) = [[ £,

=1
i.e. that the density 7 factors into i.i.d.
components, each with (smooth) density f.

Also, assume that chain is in stationarity, i.e. that
XO ~ 71'()

Also assume that either
Q(x,-) ~ N(x, aﬁId)

for RWM, or
o2
Q(x,) ~ N(Xn + 5 Viogm(X,), a?1,)

for Langevin.
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For RWM, let I = E[((log f(Z))")?] where

Z ~ f(z)dz. Then as d — oo, it is optimal to
choose 02 = 2.38/I'/2d, leading to an asymptotic
acceptance rate = 0.234.

More formally, set 03 = ¢?/d, and let

d _ (1)
Z} = X[dt].

Thus, {Z;} follows the first component of {X,,},
with time speeded up by a factor of d.

Then as d — oo,

Zqg=> 4
where Z satisfies the SDE,
dZ, = h(£)'/2dB, + wdt’

where

h(f) = £? x 2® (—@) =02 x A(Y),

where A({) is the asymptotic acceptance rate of
the algorithm. Above choice of £ maximises h(¥).
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For Langevin, again take Z ~ f(z) dz, and let let
J = E[(5((log f(£))"))? — 3((log f(£))")?)/48]-
Then as d — oo, it is optimal to choose

o= 0.825/]1/2d1/3, leading to an asymptotic
acceptance rate = 0.574.

More formally, set 02 = £2/d'/3, and let

zj = X[(dll)/3t]
Then as d — oo,
Zyg=7Z
where Z satisfies the SDE,
9(£)V log n(Z)

dZ, = g(0)"/%dB, + dt,

2

where
g(l) = 20°® (—JE*) = £* x A(L),

where A({) is the asymptotic acceptance rate of
the algorithm. Above choice of ¢ maximises g(£).
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Hence, for either RWM or Langevin algorithm,
can determine optimal scaling just in terms of
asymptotic acceptance rate! (0.234 for RWM,
0.574 for Langevin) Good! (Compare with “trial

and error”.)

Also, in high dimensions, efficiency of RWM
scales like d~1, while efficiency of Langevin scales
like d=1/3 (better). [Note: scaling of

02 = O(1/d"/®) was suggested in some contexts
by physicists Kennedy and Pendleton (1991).]

Result still holds if instead
d
w(x) =[] filws)
=1
provided that (say) f; = foo-

Similar results for random walk on discrete
hypercube (Roberts), and finite-range
homogeneous Markov random fields (Breyer and
Roberts).
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Note that we don’t need the acceptance rate to be Also, note that dimension doesn’t have to be too
exactly 0.234 (or 0.574), just close: large before asymptotics kick in:

Efficiency as a function of scaling and acceptance rate Optimal acceptance rate with dimension

w
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Also, Langevin algorithms are significantly more
efficient than RWM algorithms:

What is “efficiency”?

Let {X,,} be a Markov chain.
] 0
=) S}
Then for a 7m-integrable function f, “efficiency” is
L ) . . . .« .
S gc § Se achieved by minimising
1l g 1 ]
o s © =4
—~ g ~ : g
S P32 P1ed 1 "
H 5 O H =) .
- HE L A b Vary = lim —Var E f(X5)
: i nvoo n ,
1 o §l1y =1
y H o
o
In general relative efficiency between two possible
8 9 ¥ ¢ 0 ST ot S 0 . . . .
fouaious 19pI0 151y fousiolys 19pi0 151 Markov chains varies depending on what function
- of interest f is being considered.
o
@ . .
o © The above results say that in various cases, as
. 52, o f d — 00, the dependence on f disappears.
Il o i 5
he] g © e . .
= ; RS : g Hence, the optimal proposal scaling also leads to
— i g i < 8 o e . . .
i o 8 5 R mimising Vary, for any function f : X —+ R with
i < { m(f?) < oo.
. S { ]
.. S
- @
o
ST 0T S0 00 9 § v € 271TO
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Targets with heterogenous scaling

Above results only proved if

d
~(x) = [ e,

where f; = foo. What if not?
Suppose
d
m(x) = [[ Ci £(Cizi),

i=1
where C7 =1, and {C;}2, are i.i.d. positive r.v.
with E(C?)/E(C;)* =b < c0.
Let Wi = X

What does {W;} converge to as d — co?

Theorem 7.1 Let {X,} be RWM, and let
W = N_wwv_. Then as d — oo, W& converges
weakly to a limiting diffusion process Wy satisfying
1
dW; = mis\“x@&m& + (C18)dB;,

where By is standard Brownian motion, and where

=200 ( VI )2) = Lx2APBB( (28) 217 2),

with I = Ey|((log £(2))")?].

Hence, the efficiency of the algorithm (when
considering functionals of the first coordinate
only), as a function of acceptance rate, is identical
to that for i.i.d. traget densities, except multiplied
by the global factor of 1/b.

In particular, the optimal acceptance rate is still
equal to 0.234.
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Effect of Starting Value

) 5 g 9 Above results are only valid if X ~ 7(-), i.e. once

H//uuuz |8 8 the chain is stationary. What about in the
: f.,wxmwﬂﬂ m ] {./.a/a ‘Mm transient phase?
- £: [(R | B Here are simulations of || X,||? for RWM (left)

3 | g & 1.3 . ) .
s m \Awtm&;mn m and Langevin (right), with 7(-) = N(0, Iz), with
o
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Figure 8: The convergence time of RWM in a hereo-
geneous environment, in dimensions 5, 30, 50 and 200.
Here the plotting number indicates a particular random

collection of C;’s.
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“optimally” scaled proposals, with d = 1000,
when started far from stationarity:

800 1000
Il 1
1000 1200
Il

800
Il

600
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600
Il

400
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400
Il

200
Il
200
Il

T T T T T T T T T T T T T
0 5000 15000 25000 0 5000 15000 25000
Index Index
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What happened??

RWM moves in deterministically, towards the
“center” of 7(-):

THM (Christensen + R + R): For RWM with
scaling 02 = £2/d, let W& = (1/d)|| X |1q)||?, with
Wg = wo # 1. Then W4 converges weakly to the
function f satisfying f(0) = wo and

f'@t) = [ +exp((2/2)(f(t) — 1)) x
x(1=2f(®)?] ®(—Lf()'/?/2).

Meanwhile, Langevin gets really stuck:

THM: For Langevin, acceptance probability for
first move is O (exp(—C d*/?)); very small.
[Reason: ¢(y,x) is usually small.]

On the other hand, with scaling 02 = O(d~1/?)
instead of 02 = O(d~'/3), Langevin also moves to

center deterministically. Good! [So, perhaps best
to alternate O(d—'/2) and O(d~'/3) moves.]
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8 SOME CONVERGENCE
RESULTS FOR THE
GIBBS SAMPLER
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e Irreducibility, aperiodicity
e Informal discussion of efficiency
e The Gaussian case

e Gibbs sampler variants
— random scan
— random permutation
— reversible Gibbs sampler
e Blocking
e Positive association class
e Parameterisation issues for linear models
e Non-Gaussian case?
Much of this is in Roberts and Sahu (JRSSB,
1997, pp. 291-317). See also Roberts and Sahu,
‘Rate of convergence of Gibbs sampler by

Gaussian approximation’ (see MCMC preprint

server).
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Irreducibility, aperiodicity

The Gibbs sampler is not necessarily
m-irreducible. However, given suitable conditions
on 7, usually easily checked, m-irreducibility can
be assured.

Theorem 8.1 If

1. Xt ={z € X;m(x) > 0} is connected

2. T s continuous

3. [n(z)dz™ is a locally bounded function.
Then the Gibbs sampler is m-irreducible.
Proved in Roberts and Smith (1994).
N.B. Extensions possible
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The Gibbs sampler is also (essentially) aperiodic
and (as long as it’s carefully defined) Harris
recurrent.

How much can we say about its speed of
convergence?

1P*(@,) —m()I L0 asn— oo

But how quickly?
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For a two-dimensional Gibbs sampler (Yali Amit)
there exists a constant p and a function A(z) such
that

1P (z,-) = ()|l < Az)p"
and p can be characterised as

/% = sup Corr(f(XM), g(X®))
functions f,g

where here (X, X?)) is distributed as .

But in itself this is of little use. Look at
important special case. ..
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The Gaussian case

™~ N(0,Q7"),

Qnu Q1k
Q=

Qr1 - Qkk

Given & = (X ... xM)

I P
! Qll ’ Qll

Linear and Gaussian.

So by iterating
& =(xM...x®)

is linear and Gaussian in ®g.

More precisely. . .
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Theorem 8.2 Let m ~ N(0,Q~1), with

Qll Q12 s Qlk

Qr1 - - Qg

The Gibbs sampler on 7 produces a multivariate
AR(1) process with ®,41 ~ N(B®,,,X — BLB’)
where ¥ = Q1. Let

A=1—diag(Qr/ - Q)@

and set A = L + U where L is the lower block
triangular matrix of A

0o ... 0
I = A21
A11 Akk:—l 0

Then
B=(1I-L)'U
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In fact. ..

The rate of convergence of the Gibbs sampler on
Gaussian densities can be written as

p = p(B)

i.e. the radius of convergence of B (maximum
modulus eigenvalue).
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The Random Scan Gibbs sampler

With probability %, replace ith component by a
random draw from m;(- | X,(z_i)). For fair
comparison, we carry out k iterations of the
random scan sampler in order to compare with
the usual (deterministic scan) sampler.

Theorem 8.3 The rate of convergence of the
RSGS is given by

L k

prsas = [k} (k— 1+ A(4)) |

where A(A) is the mazimum eigenvalue of A.

Note Unlike B, A is similar to a symmetric
matrix, so has real (though not necessarily
positive) eigenvalues.
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Other forms of Gibbs sampler

Random permutation Gibbs sampler

Choose a permutation of {1...k}, o(-) say.
Update component o (1)according to m,(1)(- | -)
Update component o (2)according to my(2)(- | -)

Update component o(k)according to m,x)(- | -).
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Reversible Gibbs sampler

(Recall the Gibbs sampler is NOT reversible.)

Updatecomponent 1

Updatecomponent k — 1
Updatecomponent k
Updatecomponent k — 1

Updatecomponent 1

Similar results for the rate of convergence of
RPGS and REGS exist.
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Theorem 8.2 still holds in a slightly modified
form:
p = p(B)
Blocking schemes B = (I-L)y'U
L = lower triangular matrix of A
Suppose we update components 1...7; together. A = T — blockdiag(Q1)Q
This the blocked Gibbs sampler.
where
Update xV . .X,(L“)according to blockdiag(Q ") =
a(XW LX) | x ) x () -1
(r14+1) Qll s erl
Update Xp ™"  ...... T 41(- | %)
: : : 0
Update X7 ... (- |-) Qri1 - Qnn
Q;ll‘f‘l,’f‘1+1
0 0
0 0 Qur
117 118
Positive association
] . Theorem 8.4 If w exhibits positive
Off diagonal elements of Q are non-positive association (all partial correlations are
o non-negative) then blocking schemes improve the
rate of convergence.
Partial correlations for 7 are non-negative, ie
(COI‘I‘(X(i), X(]) | X(l)p 7é ’L,]) > 0) Remark
A ither of th iti implies that
nd either of these conditions implies tha This is NOT true in general!! i.e. there are
= ¥ is non-negative (elementwise) examples where blocking SLOWS DOWN
convergence.
Many nice clean results can be proved for
distributions within this class.
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Example

x® ~ N(0,1)
X® ~ NupXxCD1-p?

Q =
1 -7 0
-n 1+7° —-n 0
0 -

1
1—1n2 0
0

0 0 —-n 1
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If n > 0, 7 exhibits positive association. So
blocking schemes will only aid convergence.

What happens for n < 07 Set

z® = X9 jeven
= —X® jodd

Then Z is AR(1) with parameter —7. So blocking
aids convergence here also.
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Example: Gaussian image analysis

m(z) exp{ ﬂz

i~j

20 }Xexp{_7 Z(x(i))z}

where ~ denotes a neighbourhood relationship.
Gaussian with positive association. So
e Blocking schemes improve things

e If 7 is the prior and the likelihood is
proportional to
[Iexe 2 (i — v (12)
; 202

Then
Bprior Z Bpost

for ANY data set y, and p(Bprior) > p(Bpost)-
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Comparing GS updating schemes

Which is bigger, ppuas or prsas?

Theorem 8.5 For Gaussian m with positive
association,

PDUGS < PRSGS

Corollary 8.6 For Gaussian m with Q;; =0 for
i—jl>1

PDUGS < PRSGS
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Hierarchical models Gibbs sampling

fly]61) likelihood
hi(61 | 62) 1st stage prior
ha(62 | 03)

hi(0k | Ox+1) Ora1 known kth stage prior

Conditional independence graph has a linear
structure fitting into the conditional
independence structure needed for the application
of Corollary 8.6.
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Positive association equivalence class

positive association

In positive association
+ equivalence class (PAEC)
Q= 1+ X0 = zM
1 x@ = z@2
xB) = _z0@)

Q= 1+ NOT in PAEC
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There are ‘two types’ of 3-dimensional
distribution:

1. Rugby ball PAEC

2. Flying saucer

In higher dimensions, there are more equivalence
classes:

2(k—1)(k=2)/2  in k_dimensions.

However, by conditional independence, many
encountered distributions fall into the PAEC.
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Parameterisation of linear models

Model:

Y, = p+ a; +¢; non-centered parameterisation

where
g; IID N(0,02)
a; 1ID N(0,02)
u has ‘flat prior’
Model:

Yi="i+ei
where g; IID N(0,0?) hierarchically centred

parameterisation
Vi =M+ oy

Vi |~ N(p,03)
1 has flat prior.
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2

o

non-centered) = —2%—

p( ) p
o2

centered) = —&%—

p( ) o

So the best choice of parameterisation depends on
the relative sizes of 02, 0%.

In practice, this might well be performed as part
of a larger Gibbs sampler in which 02,02 are also
unknown. However, in this case we can always
alternate between the two parameterisations

depending on the relative sizes of 02, 2.

However even better choices exist.... see for
example Papaspiliopoulos + R (Valencia VII,
OUP, 2003).
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The non-Gaussian case?

An analysis of correlation structure is clearly
NOT sufficient here!

Consider Gibbs sampling on the shaded region.
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Use the sampling directions y, z + py. Call the
components X (1?) and X 2/) Then

Cov(X(17p)’X(2’p)) p— 0 <:> p p— 0
However. . .

Gibbs sampler is reducible < p = 0!!
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Bayesian posteriors

Yi...Y ~1IID  f(-|6)

Prior on 6: p(6)
Let

Tom o< [ £ | 0)p(0)
i=1
For large m, we commonly have

some sense A I_l j
T  —> N (0, (6)>

m

where I(0) is Fisher Information,

B[ 08 1(x |0)]

What can we say about the Gibbs sampler on 7,
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Theorem 8.6 (Roberts and Sahu, J. Comp.
Graph. Stats., 2001) Under the ‘usual’ conditions
that ensure asymptotic normality for the posterior
distribution,

Convergence time (m,) — Convergence time ()

However. ..

Nothing rigorously known about how quickly this
convergence is achieved.
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9 ROUND-OFF ERROR
FOR MCMC

134

MCMC motivation

Throughout this course, we have been assuming
that the Markov chains under consideration move
around in a continuous state space. On a
computer, an approximation to the ‘true’
algorithm is carried out, perhaps by means of a

‘round-off’ error.

Whilst it seems reasonable to assume that such
discrete approximations should have a negligible
impact on individual iterations of the sampler, it’s
not so clear that convergence properties of the
algorithms will be as well-approximated.

In this last part of the course, we’ll examine
robustness properties of algorithms under
perturbations of the Markov chain transition
kernel. We’ll focus here on geometric ergodicity
and on the stationary measure of the Markov

chain.
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General setup

We’re given a Markov chain transition kernel
P(z,-) on state space X, with stationary
distribution 7 (-).

Generate X from some initial distribution.

Then for £k =1,2,3,..., generate
X~ P(Xp_1,")

on a computer.

As we’ve seen, under mild assumptions (e.g.
¢-irreducibility and aperiodicity), as k — oo,
distribution of X}, converges to 7(-).

Hence, for “large enough” k, can take X as an
approximate sample from 7 (-).
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PROBLEM:
Computers don’t run the Markov chain exactly!

e.g. pseudo-randomness, roundoff errors, finite
range, approximate algorithms, etc.

Thus, instead have

Xy, ~ P(Xp_1,")
where P(z, ) is similar to P(z,-), but not
identical.

HOW is convergence of £(Xy) to 7(-) affected??

For example, perhaps Xy = h(Y}), where
Y ~ P(Xg—1,")

and where h: X — X with h(z) “near” z.

GEOMETRIC ERGODICITY

Recall a Markov chain is geometrically ergodic if
[1P™(z,-) = 7()| < M(z)p"
for some p < 1, where

[P(e.) =70l = sup [P (z,4) ~ m(4)].

We’d like to be able to say that Markov chains
actually implemented on the computer bear some
resemblance to the ‘true’ Markov chain.

Is geometric ergodicity preserved under small

- perturbation??
Then P(z,A) = P(x,h 1(A)) = Py(x, A).
[e.g. X =R, h(z) = 0|1 + 6 'z where § = 273%;
“roundoff function”.]
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NOT ALWAYS!
e.g. X =1[0,00), with (for z > 2) Bad!

4 1
P(z, ) = Unif[x -t E]

This chain is geometrically ergodic with the
choice V(z) = ze® + 1, since we compute that

242 —8+16x 2

PV(z) = (e = )(V(z) —1)+1

<0.95V(x), x> 2.

However, with roundoff function h(z) = z + 4,
. 4 1
Pp(z,-) :Unlf[a: -+, x+ —+(5]
z x

which is transient (the chain drifts off to +oo,
with no convergence at all), for any § > 0.
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Problem for running MCMC on a computer!!
Are any positive results possible??

NOTE THAT in the example, we had
V(z) = ze® +1
which grows very quickly for large x.

In fact, log V(z) ~ 2, so that log V is not
uniformly continuous on X = [0, ).

(Since V' > 1, log V is uniformly continuous
whenever V is uniformly continuous.)
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On the positive side, we have:

Theorem 9.1 (R,R + Schwartz, JAP 1998):
Suppose P is geometrically ergodic, with logV (or
V') uniformly continuous on X. Then there is

6 > 0 such that the modified chain Py is
geometrically ergodic whenever

sup dist(h(z), z) < 4.

X

Idea of proof:

Show that C' is small for P, too. Then show that
P, satisfies similar drift condition to P, for same
V and C, and only slightly worse £ and b.

Note that since log V' uniformly continuous,

V(h(y))
V(y)

This is the computational key.

~ 1, uniformly over y € X .
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REMARK: Can similarly obtain “e-versions” of
quantitative convergence rate bounds, assuming
log V' is uniformly continuous on X.

REMARK: Can give similar results for floating
point type error functions which satisfy
dist(h(z), z) < d|z|

See Breyer, R + R (Stats. Prob. Letters, 2001)
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WHAT ABOUT 7(-)?

Even if P is also geometrically ergodic, it will
have a different stationary distribution, say 7.

Will 7 be close to 7?7

We will certainly need a condition to say that
P(z,-) is ‘close’ to P(h(z),-). Such a property is
catured by the notion of Feller continuity. We say

that a Markov chain P is weakly Feller continuous
if for all continuous bounded functions, g,

Pg(z) = Bz (9(X1))
is a continuous function of z.

It turns out that all Metropolis chains with
proposal kernel density ¢(z,y) continuous in z are
weak Feller, so this is a very natural condition for
MCMC application.

In fact the weak Feller condition turns out to be
ALL we need in addition to the conditions we
required for the preservation of geometric
ergodicity.
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Theorem 9.2 Let P be geometrically ergodic for
some V with log V' uniformly continuous on X,
and with stationary distribution w(-). Consider a
sequence of modified chains Py, (z,-), where

lim sup dist(hx(z), z) = 0.

k— o0 TEX

Assume each P, is ¢-irreducible, and that P is
“weak Feller continuous”. Then each Py, is

geometrically ergodic with stationary distribution
7k (+), and furthermore {m} converges weakly to

().

If furthermore

im [Py, (z,-) — P(z,-)|| =0,
k—o0
for all z € X, then we also have

T [lme() — 7)) = 0.

(Don’t even need Feller continuity for this.)
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We conclude that, for sufficiently small
perturbations of geometrically ergodic chains,
new stationary distributions are close to original,
assuming that log V' is uniformly continuous on
X.

Of course this can be really tough to test in
practise...
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SUMMARY:
e Computers used to run Markov chains P(z,-).

e Due to various computer limitations (e.g.
roundoff error), they instead run modified chain
P(z,-).

e In general, arbitrarily small modifications can
create arbitrarily large problems, e.g. turn
geometrically ergodic Markov chains into
transient Markov chains.

e If the drift function V has log V' uniformly
continuous on X, then we have positive results
that for sufficiently small perturbations:

e Geometric ergodicity is preserved;

e Modification of stationary distributions is
arbitrarily small.

e Related resuts for floating point round-off.

e These results suggest that running Markov
chains on computers can be done safely, but extra
care must be taken to protect from arbitrarily
large effects of arbitrarily small perturbations.
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