
Optimising and Adapting the Metropolis Algorithm

by Jeffrey S. Rosenthal1

(February 2013; revised March 2013 and May 2013 and June 2013)

1 Introduction

Many modern scientific questions involve high dimensional data and com-
plicated statistical models. For example, data on weather consist of huge
numbers of measurements across spatial grids, over a period of time. Even in
simpler settings, data can be complex: for example, Bartolucci et al. (2007)
consider recurrence rates for melanoma (skin cancer) patients after surgery.
The probability of recurrence for an individual may depend on physical or
biological characteristics of their cancerous lesion, as well as other factors. A
statistical model in this context may involve a large number of variables and a
correspondingly large number of parameters, which are often represented by
a vector θ of some dimension d. To assess the relevance of specific variables
for disease recurrence, and to build models that give a risk of recurrence for
any given individual, researchers often use Bayesian analysis (see e.g. Box
and Tiao, 1973; Gelman et al., 2003; Carlin and Louis, 2008). In this frame-
work, the parameter vector is assumed to follow some probability distribution
(of dimension d), and the challenge is to combine a “prior” distribution for
θ (typically based on background information about the scientific area) with
data that are collected, so as to produce a “posterior” distribution for θ. This
probability distribution (call it π(θ)) can then be used to answer important
scientific questions (e.g., is the size of a cancerous lesion related to the risk
of recurrence after surgery?) and to calculate specific probabilities (e.g., this
person has a 20% probability of a recurrence within the next five years).

One challenge for Bayesian analysis in situations where the data and
parameter vectors are high dimensional is that it is difficult or impossible to
compute probabilities based on the posterior distribution. If there is some
outcome A of interest (e.g., the outcome that a specific individual’s cancer

1Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 3G3.
Email: jeff@math.toronto.edu. Web: http://probability.ca/jeff/ Supported in
part by NSERC of Canada.

1



will recur), then its probability is given by an integral (over A):

Π(A) :=
∫
A
π(x) dx . (1)

Also, the expected (average) value of any particular quantity h (e.g., the size
of the lesion if the cancer does recur) is also given by an integral (now over
the state space X of all possible vectors):

Eπ(h) :=
∫
X
h(x) π(x) dx . (2)

So, to draw conclusions from a Bayesian statistical model, “all” we have to
do is compute integrals like (1) and (2).

Unfortunately, integrals like (1) and (2) are sometimes very difficult to
compute. For example, one commonly-used posterior density (correspond-
ing to a “variance components model” in which individuals are divided into
groups) is given by the formula:

π(V,W, µ, θ1, . . . , θK) = C e−b1/V V −a1−1e−b2/WW−a2−1e−(µ−a3)
2/2b3V −K/2W− 1

2

∑K

i=1
Ji

× exp

[
−

K∑
i=1

(θi − µ)2/2V −
K∑
i=1

Ji∑
j=1

(Yij − θi)2/2W
]
.

Here K is the number of different groups (i.e., the number of different values
θi), V and W and µ are additional unknown parameters of the model, and
the ai and bi and Yij are known constants. A typical application might have,
say, K = 19, so that π is a 22-dimensional function. In such cases, direct
computation of integrals like (1) and (2), using calculus tricks or numerical
integration or anything else, appears to be impossible, and alternative meth-
ods must be sought (Evans and Swartz, 2000). What can be done to facili-
tate estimates of quantities like Eπ(h) in such complicated, high-dimensional
cases?

2 Monte Carlo Algorithms

One answer to this question is provided by Monte Carlo algorithms. These
algorithms, named after the famous casino in Monacco, use randomness to
estimate quantities like (1) and (2). Surprisingly, this turns out to be very
helpful!

2



The most basic (“classical”) form of Monte Carlo requires us to sample
from π, i.e. generate a sequence of independent d-dimensional random vectors
(variables) X1, X2, . . . , XM which each follow the density π, i.e. each have
probabilities given by P(Xi ∈ A) =

∫
A π(x) dx for all (measurable) A ⊆ X .

We can then use this random sample to estimate quantities like (2), by:

Eπ(h) ≈ 1

M

M∑
i=1

h(Xi) . (3)

If the Monte Carlo sample size M is sufficiently large, then by the Law of
Large Numbers, the estimate (3) will be close to the true expected value (2).

Classical Monte Carlo can be very effective, and is widely used for lots of
different applications. However, in many cases (such as the above variance
components example), it is infeasible to directly sample from π in this sense,
i.e. there is no known way to run a computer program which will produce the
required sequence of vectors {Xi}. This state of affairs presented a serious
limitation to the use of Monte Carlo algorithms in Bayesian statistical infer-
ence problems, until it was largely solved with the introduction of Markov
chain Monte Carlo algorithms, as we now discuss.

3 Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) algorithms were first developed in the
statistical physics community by Metropolis et al. (1953), and later expanded
by statisticians (e.g. Hastings, 1970) before being introduced into the wider
statistical community by Gelfand and Smith (1990). They do not use or
require a sequence of independent vectors {Xi} as above. Instead, they
define a dependent sequence, more precisely a Markov chain, with each new
vector Xi+1 constructed using the previously-constructed vector Xi.

Suppose we can define a sequence of vectors X0, X1, X2, . . ., where each
Xi+1 is constructed using the previous Xi, such that for large n, Xn is
approximately a sample (i.e., observation) from π. That is, for large n,
P(Xn ∈ A) ≈

∫
A π(x) dx for all A ⊆ X . This situation is worse than for

classical Monte Carlo as in (3), since it is just approximate, and furthermore
the random vectors {Xn} are no longer independent but rather are each con-
structed sequentially using the previous vector. Nevertheless, it is sometimes

3



true that if M is sufficiently large, then we can still approximate Eπ(h) by

Eπ(h) ≈ 1

M −B

M∑
i=B+1

h(Xi) . (4)

That is, we still average many values together, similar to (3), even though
they are no longer independent. Also, by convention we drop the first B
“burn-in” observations since they might be too heavily influenced by our
initial values X0 and hence bias our estimate.

So when is an approximation like (4) valid? It turns out that this ap-
proximation does hold as M →∞ provided that the Markov chain is ergodic
for π, i.e. that the chain’s probabilities converge to those of π in the sense
that limn→∞P(Xn ∈ A) =

∫
A π(x) dx for all A ⊆ X .

This raises the question of how to define a computationally simple Markov
chain {Xn} which guarantees that P(Xn ∈ A) →

∫
A π(x) dx. By standard

Markov chain theory, this will hold if the updating rules for {Xn} are irre-
ducible (i.e., the chain can eventually get to anywhere in X ), and aperiodic
(i.e., the chain doesn’t have any forced cyclical behaviour), and leave the
density π stationary (i.e. if it starts distributed according to π, then it will
remain distributed according to π at all future times too). How can we ensure
that those conditions hold?

4 The Metropolis Algorithm

An answer to this question was developed in the physics community over
fifty years ago (Metropolis et al., 1953). Specifically, given a (possibly im-
portant and complicated and high-dimensional) target density π on some
state space X ⊆ Rd (with π(x) = 0 for x ∈ Rd \ X ), the original Metropo-
lis algorithm proceeds as follows. First, choose a symmetric d-dimensional
increment distribution Q; the most common choice is Q = N(0,Σ) for some
fixed covariance matrix Σ like Σ = c Id. (Here N(0,Σ) is a d-dimensional
normal (Gaussian) distribution, and Id is the d × d identity matrix.) Also,
choose some initial vector X0. Then, iteratively for n = 1, 2, 3, . . ., compute
Xn from Xn−1 by:

1. Let Yn = Xn−1 + Zn, where {Zn} ∼ Q are i.i.d. (“proposal”)

2. Let α = min
(
1, π(Yn)

π(Xn−1)

)
. (“acceptance probability”)

3a. With probability α, let Xn := Yn. (“accept”)

4



3b. Otherwise, with probability 1− α, let Xn := Xn−1. (“reject”)
(Steps 2, 3a, and 3b can all be accomplished by letting Un ∼ Uniform[0, 1],
and setting Xn = Yn 1Un≤ π(Yn)

π(Xn−1)

+Xn−1 1Un> π(Yn)
π(Xn−1)

. That is, we first sample

Un ∼ Uniform[0, 1], and then if Un ≤ π(Yn)
π(Xn−1)

we accept the proposal and set

Xn = Yn, otherwise we reject it and set Xn = Xn−1.)

Intuitively, the above acceptance probabilities α are useful because they
encourage the algorithm to accept more moves towards larger values of π.
More precisely, the formula for α turns out to be exactly the right one to
ensure that the Markov chain {Xn} leaves the density π stationary, a key
property for convergence (as discussed at the end of the previous section).
Furthermore, the irreducibility property will almost always hold, e.g. it is
guaranteed if Q has an everywhere-positive density like N(0,Σ). And, the
aperiodicity property is essentially never a problem since the algorithm will
eventually reject and thus avoid cyclic behaviour. So, this simple algorithm
has all the right properties to guarantee that P(Xn ∈ A)→ π(A). It follows
that we can use this algorithm to estimate Eπ(h) as in (4). Good!

The only problem is that sometimes the Metropolis algorithm will be too
inefficient, i.e. it will take far too long (i.e., require too many iterations) to
provide a decent approximation to π, which is a very important considera-
tion (see e.g. Rosenthal, 1995). In some cases, even running the algorithm
for months on the world’s fastest computers would not provide a remotely
reasonable approximation to π. Overcoming such problems has often neces-
sitated new and more complicated MCMC algorithms (see e.g. Bélisle et al.,
1993; Neal, 2003; Jain and Neal, 2004; Hamze and de Freitas, 2010). In a
different direction, detecting convergence of MCMC to π is so challenging
that some authors have developed perfect sampling algorithms which guar-
antee complete convergence at the expense of a more complicated algorithm
(e.g. Propp and Wilson, 1996; Fill et al., 2000; Murdoch and Green, 1997);
however, such perfect sampling algorithms are often infeasible to run, so we
do not discuss them further here.

All of this raises the question of how to improve or optimise the speed
of convergence of the Metropolis algorithm, for example by modifying the
increment distribution Q, as we discuss next.

5



Figure 1: The trace plot (left) and histogram (right) and target density (red)
for a one-dimensional Metropolis algorithm with too small a proposal scaling
σ, showing slow mixing and poor convergence.

5 The Goldilocks Principle

To illustrate the Metropolis optimisation issues, consider the very simple
case where π = N(0, 1), i.e. where the target density is just the standard
normal distribution. (Of course we wouldn’t actually need to use MCMC
in such a simple case.) Assume that the proposal distribution is given by
Q = N(0, σ2). Our question of interest is, how should we choose σ?

As a first try, let’s choose a small value of σ, say σ = 0.1, and run the
Metropolis algorithm for 1000 iterations with that σ. The corresponding
trace plot, graphing the values of the Markov chain (horizontal axis) at each
iteration n (vertical axis), is shown in Figure 1 (left panel). Looking at this
trace plot, we can see that the chain moves very slowly. It starts at the value
zero, and takes many hundreds of iterations before it moves appreciably away
from zero. In particular, it does not do a very good job of exploring the target
density (shown in red). This is also illustrated by the histogram of those 1000
iterations, in Figure 1 (right panel), which does not match up very well with
the target density.

6



Figure 2: The trace plot (left) and histogram (right) and target density (red)
for a one-dimensional Metropolis algorithm with too large a proposal scaling
σ, again showing slow mixing and poor convergence.

As a second try, let’s choose a large value of σ, say σ = 25, and again
run the algorithm for 1000 iterations. The trace plot in this case is shown in
Figure 2 (left panel). In this case, when the chain finally accepts a move, it
jumps quite far which is good. However, since it proposes such large moves,
it hardly ever accepts them. (Indeed, it accepted just 5.4% of the proposed
moves, compared to 97.7% when σ = 0.1.) So, this chain doesn’t perform
very well either, as illustrated by the histogram in Figure 2 (right panel),
which again does not match up very well with the target density.

As a third try, let’s choose a compromise value of σ, say σ = 2.38, and
again run the algorithm for 1000 iterations. In this case, the chain per-
forms very well. It accepts a medium fraction of its proposals (44.5%), and
moves reasonably far when it does accept. It thus explores the target density
efficiently and well, as illustrated by the trace plot in Figure 3 (left panel).
Furthermore it now provides fairly good samples from the target distribution,
as illustrated by the histogram in Figure 3 (right panel).

We learn from this that it is best to choose values of the proposal in-
crement scaling σ which are between the two extremes, i.e. not too small

7



Figure 3: The trace plot (left) and histogram (right) and target density (red)
for a one-dimensional Metropolis algorithm with a good choice of proposal
scaling σ, showing much better mixing and convergence properties.

and not too big, but rather “just right” (as the little girl Goldilocks says in
the classic children’s fairy tale The Three Bears ; Rhetorist, 2013; Wikipedia,
2013). Correspondingly, the acceptance rate (i.e., the percentage of proposed
moves which are accepted) should be far from 0% but also far from 100%.

6 Optimal Scaling

The above intuition was made more precise in a pioneering paper by Roberts
et al. (1997). They decided to consider a Metropolis algorithm {Xn} in
dimension d, with increment distribution Q = N(0, `

2

d
Id) for some fixed

scaling constant ` > 0, and take the limit as d → ∞. The beauty of their
approach was that they could compute the speed of the algorithm in this
limit, as an explicit (but messy and uncomputable) function h(`) of the
scaling constant `. They then argued that the best choice of ` is the one
which maximises the limiting speed h(`). This provided a clear standard for
how to optimise the Metropolis algorithm.

8



The story gets even better. Roberts et al. also considered the asymptotic
acceptance rate, i.e. the fraction of Metropolis proposals that would be ac-
cepted in the limit as d→∞, and they computed an explicit function A(`)
for this as well. They then showed that the limiting speed h(`) has a simple
relation to the asymptotic acceptance rate A(`). This in turn allowed them
to compute that if `opt is the value of ` which maximises the speed h(`), then
A(`opt) ≈ 0.234 = 23.4%, a specific number that does not depend on any
unknown quantities about π or anything else. This means that, at least un-
der their (strong) assumptions, the optimal acceptance probability is 23.4%,
which leads to the fastest limiting speed regardless of the target density π.

This provides a clear, simple rule for tuning Metropolis algorithms: adjust
the proposal scaling ` so that the acceptance rate is approximately 23.4%.
This rule appears to be quite robust, i.e. 0.234 is often a nearly optimal
acceptance rate even if the theorem’s formal assumptions are not satisfied.
It has been implemented in numerous applied papers and software, including
the hugely popular WinBUGS computer package (Lunn et al., 2000). A
number of authors have attempted to weaken and generalise the original
strong assumptions, see e.g. Bédard (2007, 2008), Bédard and Rosenthal
(2008), Beskos et al. (2009), and Sherlock and Roberts (2009). Corresponding
results have been developed for Langevin MCMC algorithms (Roberts and
Rosenthal, 1998), and for simulated tempering algorithms (Atchadé et al.,
2011; Roberts and Rosenthal, 2012). It is also known (e.g. Roberts and
Rosenthal, 2001, Figure 3) that any acceptance rate between about 15%
and 50% is still reasonably efficient (though 23.4% is best). Overall this
school of research has been very influential in guiding both applied usage
and theoretical investigations for MCMC.

7 Proposal Shape

Despite the 0.234 rule’s great success, an algorithm’s acceptance rate is just
a single scalar quantity which does not completely control the algorithm’s
efficiency.

To illustrate this, consider the 20-dimensional target density π = N(0,Σ∗),
where Σ∗ is a 20-dimensional covariance matrix generated randomly as Σ∗ =
M>M where M is a 20× 20 matrix consisting of i.i.d. N(0, 1) entries, which
shall remain fixed throughout the remainder of this article, and M> is the
transpose of M . We shall try running Metropolis algorithms on this density.

9



Figure 4: The trace plot (left) and histogram (right) and target density (red)
of the first coordinate of a twenty-dimensional Metropolis algorithm with
proposal scaling proportional to the identity matrix, showing slow mixing
and poor convergence.

Based on the discussion in Section 6, we use a increment distribution of
the form Q = N(0, σ2 I20), where we try to adjust σ so that the resulting
acceptance rate is approximately 0.234. After some experimenting, we take
σ = 0.5, leading to an acceptance rate of 0.228 (close enough). Figure 4
shows the trace plot (left panel) and histogram (right panel) of the first
coordinate of this run. The mixing and convergence aren’t so bad, given
the relatively large dimension, but they aren’t great either. Indeed, the
performance appears to be similar to our earlier one-dimensional example’s
first attempt with σ = 0.1: it only slowly explores the support of π.

Next, we instead try the increment distribution Q = N(0, [(2.38)2/20] Σ∗)
(which we shall justify later). This leads to an acceptance rate of 0.252 (again,
close enough). Figure 5 shows the trace plot (left panel) and histogram
(right panel) of the first coordinate of this run. Direct inspection (as well
as more precise measurements like squared jumping distance and functional
variance, not discussed here) indicate that this choice of Q, despite leading to
a very similar acceptance rate (approximately 0.234), actually performs much

10



Figure 5: The trace plot (left) and histogram (right) and target density (red)
of the first coordinate of a twenty-dimensional Metropolis algorithm with
proposal scaling proportional to the target covariance matrix Σ∗, showing
much faster mixing and much better convergence properties.

better, exploring the support of π and converging to the correct probabilities
much more efficiently. This confirms that there is more to the story than
just acceptance rate, and indeed that the shape of the proposal distribution
(determined by the proposal covariance matrix, in this case [(2.38)2/20] Σ∗)
is also very important.

This concept was formalised by Roberts and Rosenthal (2001). They
proved that under strong assumptions (similar to before), the optimal Gaus-
sian proposal distribution is given (to three significant figures) by

Q = N
(
0, [(2.38)2/d] Σπ

)
(where Σπ is the d×d covariance matrix of the target density π), rather than
Q = N(0, σ2Id) for some σ2. Furthermore, with this choice, the asymptotic
acceptance rate will again be approximately 0.234. And, as before, this
result appears to be robust in the sense of being nearly optimal even when
the strong assumptions do not hold.

11



8 Adaptive MCMC

The optimisation result of the previous section requires us to know and use
the target covariance matrix Σπ. Now, in most realistic situations, Σπ would
not be known in advance, and indeed would be at least as difficult to esti-
mate as the quantity Eπ(h) of ultimate interest. How can we optimise the
Metropolis algorithm in such situations?

In a pioneering paper, Haario et al. (2001) proposed to optimise the al-
gorithm adaptively. That is, even if we don’t know the optimal algorithm
at the beginning, the computer can learn it during the run, and update the
algorithm “on the fly” as it proceeds.

In its simplest form, this algorithm finds an approximately optimal in-
crement distribution by replacing the unknown target d × d covariance ma-
trix Σπ by the sample d × d covariance Σn := Cov(X0, X1, . . . , Xn−1) of
the vectors visited so far during the run. If those Xi are indeed good ap-
proximate samples from π, then Σn will be a good approximation to Σπ,
and hence Q = N(0, ((2.38)2/d) Σn) can be used (after an initial phase,
e.g. for n ≥ 40 only) as a good approximation to the optimal proposal
Q = N(0, ((2.38)2/d) Σπ). If not, then the algorithm will not work well
initially, but it will hopefully improve as it goes.

Now, Σn is easily computed, so this algorithm is quite feasible to run
in practice. Running it on the above 20-dimensional target density π =
N(0,Σ∗), the resulting trace plot and histogram of the first coordinate are
shown in Figure 6. Direct inspection, and precise measurements, both indi-
cate that this algorithm performs poorly during the initial phase (bottom of
left plot), but then performs very well later on (top of left plot), exploring the
support of π nearly as efficiently as the optimal algorithm presented above,
even though it does not require any prior knowledge about Σπ.

Adaptive MCMC algorithms have recently been used in a number of dif-
ferent statistical applications, and often lead to significant speed-ups, even
in hundreds of dimensions (Roberts and Rosenthal, 2009; Craiu et al., 2009;
Giordani and Kohn, 2010; Richardson et al., 2011). On the other hand,
adaptive MCMC algorithms use previous iterations to determine their future
transitions, so they violate the Markov property which provides the justifica-
tion for conventional MCMC. This raises the question of whether adaptive
MCMC algorithms are valid, i.e. whether they converge (asymptotically, at
least) to the target density π.

The answer to this question is no in general (see e.g. Rosenthal, 2004),

12



Figure 6: The trace plot (left) and histogram (right) and target density (red)
of the first coordinate of a twenty-dimensional adaptive Metropolis algorithm
with proposal scaling computed from previous iterations, showing fairly rapid
mixing and good convergence properties, especially in later iterations (top of
left plot).

but it is yes under various conditions (Haario et al., 2001; Atchadé and
Rosenthal, 2005; Andrieu and Moulines, 2006; Roberts and Rosenthal, 2007;
Saksman and Vihola, 2010; Fort et al., 2012; Latuszynski et al., 2011). In
particular, Roberts and Rosenthal (2007) show that adaptive algorithms will
still converge to the target density π provided they satisfy two fairly mild
conditions: “Diminishing Adaptation” (the algorithm adapts by less and less
as time goes on), and “Containment” (the chain never gets too lost, in the
sense that it remains bounded in probability). Conditions such as these have
been used to formally justify adaptive algorithms in many examples (e.g.
Roberts and Rosenthal, 2009; Richardson et al., 2011). Adaptive MCMC
appears to hold great promise for improving statistical computation in many
application areas in the years ahead.

13



9 Summary

We summarise the points made in this article as follows.
• The Metropolis algorithm is very important in numerous applications.
• This algorithm sometimes runs so slowly and inefficiently that computa-

tions are infeasible; thus, optimisation of the algorithm can be crucial.
• The simplest optimisation result is the Goldilocks Principle that the ac-

ceptance rate should be far from 0, but also far from 1.
• A more detailed theorem says that the optimal acceptance rate is 0.234,

at least under certain strong assumptions (though the conclusion appears to
be fairly robust even when the assumptions are not satisfied).
• Another theorem says that the optimal increment distribution isN(0, (2.38)2Σπ / d),

again under certain strong assumptions (though again with a fairly robust
conclusion).
• When certain key optimisation information is unknown (e.g., Σπ), it may

still be possible to adapt towards the optimal algorithm. Such adaption is
not valid in general, but is valid under various conditions such as “Diminish-
ing Adaptation” and “Containment”. It can eventually lead to tremendous
speed-ups, even in very high dimensions.
• In short, to greatly improve statistical computation in important applied

areas, optimisation and adaption may well be worth the trouble!

Acknowledgements. I thank the editors and reviewers for many detailed
comments.

References

(Note: Canadian authors are indicated with [C].)

J. Albert (1992), A Bayesian analysis of a Poisson random effects model
for home run hitters. The American Statistician 46(4), 246–253.

C. Andrieu and E. Moulines (2006), On the ergodicity properties of some
adaptive Markov Chain Monte Carlo algorithms. Ann. Appl. Prob. 16, 1462–
1505.

Y. Atchadé[C] and G. Fort (2010), Limit Theorems for some adaptive
MCMC algorithms with sub-geometric kernels. Bernoulli 16, 116–154.

14



Y. Atchadé[C], G.O. Roberts, and J.S. Rosenthal[C] (2011), Towards
Optimal Scaling of Metropolis-Coupled Markov Chain Monte Carlo. Stat.
and Comput. 21(4), 555–568.

Y.F. Atchadé[C] and J.S. Rosenthal[C] (2005), On Adaptive Markov
Chain Monte Carlo Algorithms. Bernoulli 11(5), 815–828.

Y. Bai[C], G.O. Roberts, and J.S. Rosenthal[C] (2011), On the contain-
ment condition for adaptive Markov chain Monte Carlo algorithms. Adv.
Appl. Stat. 21, 1–54.

A. Bartolucci, K. Singh, and S.J. Bae (2007), Analyzing Clinical Trial
Data via the Bayesian Multiple Logistic Random Effects Model. In L. Oxley
and D. Kulasiri (eds), MODSIM 2007 conference proceedings, Modelling and
Simulation Society of Australia and New Zealand.

M. Bédard[C] (2007), Weak convergence of Metropolis algorithms for
non-iid target distributions. Ann. Appl. Prob. 17, 1222–1244.

M. Bédard[C] (2008). Optimal acceptance rates for Metropolis algorithms:
moving beyond 0.234. Stoch. Proc. Appl. 118, 2198–2222.

M. Bédard[C] and J.S. Rosenthal[C] (2008). Optimal scaling of Metropo-
lis algorithms: heading toward general target distributions. Can. J. Stat. 36,
483–503.

C. Bélisle[C], H.E. Romeijn, and R.L. Smith (1993), Hit-and-Run algo-
rithms for generating multivariate distributions. Math. Oper. Res. 18, 255–
266.

A. Beskos, G.O. Roberts, and A.M. Stuart (2009), Optimal scalings of
Metropolis-Hastings algorithms for non-product targets in high dimensions.
Ann. Appl. Prob. 19, 863–898.

C.E.P. Box and G.C. Tiao (1973), Bayesian Inference in Statistical Anal-
ysis. Addison-Wellesley, Reading, Massachusetts.

B.P. Carlin and T.A. Louis (2008), Bayesian Methods for Data Analysis,
3rd ed. Chapman & Hall, New York.

R.V. Craiu[C], J.S. Rosenthal[C], and C. Yang[C] (2009), Learn From
Thy Neighbor: Parallel-Chain Adaptive MCMC. J. Amer. Stat. Assoc. 488,
1454–1466.

M. Evans[C] and T. Swartz[C] (2000), Approximating Integrals via Monte
Carlo and Deterministic Methods. Oxford University Press.

J.A. Fill, M. Machida, D.J. Murdoch[C], and J.S. Rosenthal[C] (2000),
Extension of Fill’s perfect rejection sampling algorithm to general chains.
Random Struct. Alg. 17, 290–316.

15



G. Fort, E. Moulines, and P. Priouret (2012). Convergence of adaptive and
interacting Markov chain Monte Carlo algorithms. Ann. Stat. 39, 3262–3289.

A.E. Gelfand and A.F.M. Smith (1990), Sampling based approaches to
calculating marginal densities. J. Amer. Stat. Assoc. 85, 398–409.

A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin (2003), Bayesian
Data Analysis (2nd ed.). Chapman & Hall, New York.

P. Giordani and R. Kohn (2010), Adaptive independent Metropolis-Hastings
by fast estimation of mixtures of normals. J. Comp. Graph. Stat. 19(2), 243–
259.

H. Haario, E. Saksman, and J. Tamminen (2001), An adaptive Metropolis
algorithm. Bernoulli 7, 223–242.

F. Hamze[C] and N. de Freitas[C] (2010), Intracluster Moves for Con-
strained Discrete-Space MCMC. Proc. 26th Annual Conf. on Uncertainty in
Artificial Intel. (UAI-10), 236–243.

W.K. Hastings[C] (1970), Monte Carlo sampling methods using Markov
chains and their applications. Biometrika 57, 97–109.

S. Jain[C] and R.M. Neal[C] (2004), A Split-Merge Markov Chain Monte
Carlo Procedure for the Dirichlet Process Mixture Model. J. Comp. Graph.
Stat. 13, 158–182.

K. Latuszynski, G.O. Roberts, and J.S. Rosenthal[C] (2011), Adaptive
Gibbs samplers and related MCMC methods. Ann. Appl. Prob., to appear.

D.J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter (2000), WinBUGS –
a Bayesian modelling framework: concepts, structure, and extensibility. Stat.
and Comput. 10, 325–337.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller
(1953), Equations of state calculations by fast computing machines. J. Chem.
Phys. 21, 1087–1091.

D.J. Murdoch[C] and P.J. Green (1997), Exact sampling from a contin-
uous state space. Scand. J. Stat. 25, 483–502.

R.M. Neal[C] (2003), Slice sampling (with discussion). Ann. Stat. 31,
705–767.

J.G. Propp and D.B. Wilson (1996), Exact sampling with coupled Markov
chains and applications to statistical mechanics. Random Struct. Alg. 9, 223–
252.

T. Rhetorist (retrieved May 8, 2013), The Three Bears (illustrated ver-
sion). Available at: http://w8r.com/the-colorful-story-book/the-three-bears

S. Richardson, L. Bottolo, and J.S. Rosenthal[C] (2011), Bayesian models
for sparse regression analysis of high dimensional data. Bayesian Statistics 9

16



conference proceedings, Oxford University Press, 539–560.
G.O. Roberts, A. Gelman, and W.R. Gilks (1997), Weak convergence and

optimal scaling of random walk Metropolis algorithms. Ann. Appl. Prob. 7,
110–120.

G.O. Roberts and J.S. Rosenthal[C] (1998), Optimal scaling of discrete
approximations to Langevin diffusions. J. Roy. Stat. Soc. B 60, 255–268.

G.O. Roberts and J.S. Rosenthal[C] (2001), Optimal scaling for various
Metropolis-Hastings algorithms. Stat. Sci. 16, 351–367.

G.O. Roberts and J.S. Rosenthal[C] (2007), Coupling and Ergodicity of
Adaptive MCMC. J. Appl. Prob. 44, 458–475.

G.O. Roberts and J.S. Rosenthal[C] (2009), Examples of adaptive MCMC.
J. Comp. Graph. Stat. 18(2), 349–367.

G.O. Roberts and J.S. Rosenthal[C] (2012), Minimising MCMC variance
via diffusion limits, with an application to simulated tempering. Ann. Appl.
Prob., tentatively accepted.

J.S. Rosenthal[C] (1995), Minorization conditions and convergence rates
for Markov chain Monte Carlo. J. Amer. Stat. Assoc. 90, 558–566.

D.B. Rubin (1980), Using empirical Bayes techniques in law school valid-
ity studies (with discussion). J. Amer. Stat. Assoc. 75, 801–827.

E. Saksman and M. Vihola (2010), On the ergodicity of the adaptive
Metropolis algorithm on unbounded domains. Ann. Appl. Prob. 20, 2178-
2203.

C. Sherlock and G.O. Roberts (2009), Optimal scaling of the random walk
Metropolis on elliptically symmetric unimodal targets. Bernoulli 15(3), 774–
798.

Wikipedia (retrieved May 8, 2013), The Story of the Three Bears. Avail-
able at: http://en.wikipedia.org/wiki/The Story of the Three Bears

17


