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Section 1: Introduction

A time-homogeneous Markov process with a stationary probability distribution π will converge to π
in an appropriate sense (i.e., will be “ergodic”), under suitable conditions (such as “irreducibility”).
This phenomenon is well understood for processes in discrete time and space (see e.g. [3, 5, 13]),
and for processes in continuous time and discrete space (see e.g. [5]), and for processes in discrete
time and continuous space (see e.g. [8, 11]). However, for processes in continuous time and space,
there are apparently no such clean results; the closest are apparently the results in [9, 10] using
awkward assumptions about skeleton chains (see Section 5 below).

Meanwhile, nonstandard analysis [12] is a useful tool for providing intuitive new proofs as well as
new results to all areas of mathematics, including probability and measure theory [2, 7, 1]. One of
the strength of nonstandard analysis is to provide a direct passage to link discrete mathematical
results to continuous mathematical results.

In the new paper [4], we apply nonstandard analysis to Markov Chain Theory. We give a non-
standard characterization of general Markov chain which allow us to view every Markov chain as a
“discrete” process. The idea is to “cut” the state space and time line into hyperfinitely many pieces
and we look at the transition probability between pieces at an infinitesimal time. For every standard
Markov chain {Xt}t∈R, we can construct a hyperfinite Markov chain (that is, a Markov chain with
hyperfinite state space and a hyperfinite time line) {X ′t}t∈T that inherits most of the key properties
of {Xt}t∈R. Moreover, under moderate assumptions on {Xt}t∈R, we can prove the Markov Chain
Ergodic theorem for all kinds of Markov processes using essentially the same argument by applying
nonstandard analysis.

Section 2: Assumptions and Main Result

Definition 1. A complete metric space X is said to satisfy the Heine-Borel condition if the closure
of every bounded open set is compact.

Consider a standard Markov process {Xt}t∈R living on a σ-compact complete metric space X
satisfying Heine-Borel condition. We make the following assumptions on Markov Chain {Xt}t∈R:
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Assumption 1: Stationary distribution: There is a probability distribution π on (X,B[X])

which is stationary, i.e. for every A ∈ B[X] and t ∈ R+ we have
∫
x∈X p

(t)
x (A)π(dx) = π(A).

We introduce the following definition before we introduce assumption 2.

Definition 2. A Markov chain {Xt}t∈R with state space X is said to be open set irreducible on X

if for every open ball B ⊆ X and any x ∈ X, there exists t ∈ R+ such that p
(t)
x (B) > 0.

Assumption 2: Productively open set irreducible: The Markov chain {Xt}t∈R is productively
open set irreducible, i.e. The joint Markov chain {Xt × Yt}t∈R is open set irreducible on X × X
where {Yt}t∈R is an independent identical copy of {Xt}t∈R.

The following lemma gives a sufficient condition for productively open set irreducible.

Lemma 1. Let {Xt}t∈R be an open set irreducible Markov process. If for any open set A and any

x ∈ A, we have P
(t)
x (A) > 0 for all t ∈ R. Then {Xt}t∈R is productively open set irreducible.

Assumption 3: Right continuous in time: For each fixed x ∈ X and basic open set A ⊂ X,

p
(t)
x (A) is right continuous with left limit as a function of t > 0.

Assumption 4: Strong Feller: (∀x ∈ X) (∀t > 0) (∀ε > 0) (∃δ ∈ R) (∀x′ ∈ X) (|x′−x| < δ =⇒
(∀A ∈ B[X], |p(t)x′ (A)− p(t)x (A)| < ε)).

The strong Feller condition essentially says that the transition probability is continuous in state
space with respect to total variation distance. For example, many diffusion processes will satisfy
this property.

Assumption 5: Vanishing in Distance:

(∀t ∈ R+)(∀ε > 0)(∃r > 0)((∀x ∈ X)(∀A ∈ B[X])d(x,A) > r =⇒ P
(t)
x (A) < ε).

Now we are at the place to state the main result of our paper.

Theorem 1 ([4]). (Markov Chain Convergence Theorem) Let {Xt}t∈R be a standard Markov chain
living on a σ-compact complete metric space with Heine-Borel conditon. Assume assumptions 1-5
hold. Then for π almost surely x we have limt→∞ supA∈B[X] |p(t)(x,A)− π(A)| = 0

Convergence to stationary distribution in total variation distance is an important property of a
Markov Process. Such convergence theorem is very well-understood for discrete time Markov
Chains, but in the continuous case all of the previous results seem to require certain drift conditions
or conditions on some skeleton chain. We give a proof of the continuous case with only regularity
assumptions on the original chain using Nonstandard Analysis.

Section 3: Sketch of the Proof
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Discrete state space discrete time Markov process is the most well-understood Markov process. We
can use the classic coupling technique when proving the Markov chain Ergodic theorem for discrete
Markov process. Using Nonstandard Analysis, we can essentially view every Markov process as a
“ discrete” Markov process.

Start with a Markov Chain {Xt}t∈R satisfying the five assumptions in Markov Chain Convergence
Theorem. There are 3 main steps in the proof of Markov Chain Convergence Theorem:

Step 1: Extract a Hyperfinite Markov Chain {X ′t}t∈T from {Xt}t∈R. A Hyperfinite Markov Chain
is a Markov process with Hyperfinite state space and Hyperfinite time line. So a Hyperfinite Markov
Chain behaves like a discrete time finite state space Markov Chain in many sense. The transition
probability of {X ′t} would be infinitesimally close to the transition probability of {Xt}. Moreover,
{X ′t} would inherit many key properties of {Xt} as you will see in Theorem 4 in Section 4.

Step 2: Prove {X ′t} converges. The proof is similar to the proof of Markov Chain Convergence
Theorem for finite state space discrete time Markov process. The proof relies on the following
“infinitesimal” coupling technique: For the Hyperfinite Markov Chain {X ′t} and any two near-
standard starting points i, j, they will eventually get infinitesimally close to some near-standard
point i0. {X ′t} would “almost couple” after that.

Step 3: The convergence of {X ′t} implies the total variation convergence of {Xt}. This is due to
correspondence between the transition probability of {X ′t} and the transition probability of {Xt}.

Thus to summarize: {Xt} pushup−−−−→
{X ′t} converges pushdown

−−−−−−−→
{Xt} converges. For details, see [4].

Note that this method would work universally for all kinds of Markov processes.

Section 4: Some other Results

We also established some other results in this paper. The first two results might only be interesting
to people working in nonstandard analysis.

Result 1:

Theorem 2 ([4]). Let X be a Cech-complete then NS(∗X) ∈ ∗B[X]L.

In the literature (see section 4 of [2]), people have shown this theorem for σ-compact spaces, locally
compact Hausdorff spaces and complete metric spaces. Our result is a slightly generalization of the
previous results.

Result 2:

Definition 3. For a complete metric space X and any ε, r ∈ ∗R+, a hyperfinite set S ⊂ ∗X is
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called a (ε, r)-hyperfinite approximation of ∗X if the following 3 conditions hold:

1: For each s ∈ S, there exists a B(s) ∈ ∗B[X] with diameter no greater than ε containing s such
that

⋃
s∈S B(s) ⊃ NS(∗X) and the the collection of B(s) for s ∈ S are mutually disjoint.

2: For any x ∈ NS(∗X), ∗d(x, ∗X \
⋃
s∈S B(s)) > r.

3:
⋃
s∈S B(s) is an internal ∗compact subset of ∗X.

Theorem 3 ([4]). Let (X,B[X], P ) be a Borel probability space such that X is a σ-compact complete
metric space satisfying the Heine-Borel condition. Then for every ε, r ∈ ∗R+ there exists a (ε, r)-
hyperfinite approximation Srε of ∗X. Moreover, for every (ε, r)-hyperfinite approximation Srε there
exists an internal probability measure P ′ on (Srε ,P(Srε )) such that P (E) = P ′(st−1(E) ∩ Srε ) where
P ′ denotes the Loeb extension of P ′

This theorem is another Hyperfinite Representation theorem. Most known Hyperfinite represen-
tation theorems ware introduced and proved in [1]. Unlike most of the existing hyperfinite rep-
resentation theorems, we restrict ourselves to σ-compact complete metric spaces in this theorem.
By doing this, we are able to control the radius of each “ infinitesimal piece” B(s) as well as the
distance between the near-standard points and those “ tail points”. This theorem plays an essential
role in our proof of the Markov Chain Convergence Theorem.

Result 3:

Definition 4. A Markov Chain is said to be weak Feller if: (∀x ∈ X) (∀A ∈ B[X]) (∀t > 0) (∀ε >
0) (∃δ ∈ R) (∀x′ ∈ X) (|x′ − x| < δ =⇒ (|p(t)x′ (A)− p(t)x (A)| < ε)).

It is desirable to replace the strong Feller condition by the weak Feller condition. In fact, we are
able to give a “hyperfinite representation” of a standard Markov Process if we replace strong Feller
by weak Feller.

Theorem 4 ([4]). Let {Xt}t∈R be a Markov chain living on a σ-compact complete metric space
X satisfying Heine-Borel condition. Assume {Xt} is weak Feller and also satisfies assumptions
1,2,3,5. Then there exists a Hyperfinite Markov chain {X ′t}t∈T such that:

1. The transition probability of {X ′t} is infinitesimally close to the transition probability of {Xt}.

2. Xt (productively) open set irreducible implies that X ′t is “(productively) open set
irreducible”.

3. If π is a stationary distribution of Xt then hyperfinite representation measure (π′) is “almost
stationary” for X ′t.

Section 5: Comparison with Literature
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There were some similar results of the main theorem from the literature. In the literature, the
following definition provides link between discrete time Markov chain and continuous time Markov
chian:

Definition 5. Given a continuous time Markov process {Xt}t∈R and any m ∈ R+, a m-skeleton
chain is a discrete Markov process living on the same state space as {Xt} with one-step transition

probability P
(m)
x (.).

As the total variation distance is non-increasing, we have that:

1: Convergence of any skeleton chain would imply the convergence of Xt.

2: Proper conditions on skeleton chain and drift conditions would reduce the problem to the discrete
time Markov chain Convergence theory.

Theorems along these lines can be found in [9, 10] or in Theorem 4.1 of [6].

Generally speaking, the smaller the m is, the better the m-skeleton chain approximates Xt. Intu-
itively, when m is infinitesimal then the m-skeleton chain would naturally inherit all the important
properties of Xt. In this way, the non-standard analysis approach in [4] reduces the general proof
to the discrete-time case without making any additional assumptions on any skeleton chain.

One of the purpose of our paper [4] is to illustrates the ideas and advantages of dealing such problem
with nonstandard analysis. We suspect that some of the conditions in our proof can be further
weakened and one can still get the same result.
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