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Review1 of Liber De Ludo Aleae (Book on Games of Chance) by Gerolamo Cardano

1. Biographical Notes Concerning Cardano

Gerolamo Cardano (also referred to in the literature as Jerome Cardan), was born in Pavia, in present
day Italy, in 1501 and died at Rome in 1576.  Educated at the universities of Pavia and Padua,
Cardano practised as a medical doctor from 1524 to 1550 in the village of Sacco and in Milan.
During this period he appears to have studied mathematics and other sciences.  He published several
works on medicine and in 1545 published a text on algebra, the Ars Magna.  Among his books is the
Liber de Ludo Aleae (Book on Games of Chance), written sometime in the mid 1500s, although
unpublished until 1663.

2. Review of De Ludo Aleae

Cardano’s text was originally published in Latin, in 1663.  An English translation by Sydney Henry
Gould is provided in Professor Oystein Ore’s book Cardano, The Gambling Scholar (Princeton
University Press, 1953).  Professor Ore’s book provides both biographical information relating to
Cardano, as well as commentary on Cardano’s presentation of a probability theory relating to dice
and card games.

In De Ludo Aleae  Cardano provides both advice and a theoretical consideration of outcomes in dice
and card games.  The text (as published) is composed of 32 short chapters.  The present review is
concerned principally with chapters 9 to 15, illustrating aspects of the theory concerning dice.

The first eight chapters provide a brief commentary on games and gambling, offering advice to
players, and suggesting both the dangers and benefits in playing.  It may be of interest to quote some
of Cardano’s comments regarding the playing of games of chance:

“...in times of great anxiety and grief, it is considered to be not only allowable, but even beneficial.”

                                                          
1 Submitted for STA 4000H under the direction of Professor Jeffrey Rosenthal.

“..in times of great fear or sorrow, when even the greatest minds are much disturbed, gambling is far
more efficacious in counteracting anxiety than a game like chess, since there is the continual
expectation of what fortune will bring.”

“In my own case, when it seemed to me after a long illness that death was close at hand, I found no little
solace in playing constantly at dice.”

“However, there must be moderation in the amount of money involved; otherwise, it is certain that no one
should ever play.”

“..the losses incurred include lessening of reputation, especially if one has formerly enjoyed any
considerable prestige; to this is added loss of time...neglect of one’s own business, the danger it may
become a settled habit, the time spent in planning after the game how one may recuperate, and in
remembering how badly one has played.”
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Cardano especially warns that lawyers, doctors and those in like professions avoid gambling, which could
be injurious to their reputations and business.  Interestingly, he adds:

“Men of these professions incur the same judgement if they wish to practice music.”

In Chapter 6 Cardano presents what he refers to as the Fundamental Principle of Gambling:

“The most fundamental principle of all in gambling is simply equal conditions...of money, of
situation...and of the dice itself.  To the extent to which you depart from that equality, if it is in your
opponent’s favour, you are a fool, and if in your own, you are unjust.”

What is most important for our purposes, is to recognise that Cardano’s fundamental principle states that
games of chance can only be fairly played when there are equiprobable outcomes.  This principle is the
basis for his theory relating to outcomes in games of dice.

Cardano begins to present (the results) of his theory on dice in Chapter 9: On the Cast of One Die. Given
that a die has six points, he states:

“...in six casts each point should turn up once; but since some will be repeated, it follows that others will
not turn up.”

We see here that his principle is at work (the symmetry of the die allows equiprobable outcomes), and
also that he recognises (confirmed by experience no doubt), that the principle is an ideal, and that in
practice we will not have each point turn up once in every six casts.  There would appear to be an implicit
understanding of a “long range relative frequency” interpretation of  “in six casts each point should turn
up once”.   Or, in the contemporary language of probability theory, we would say that we expect in six
casts each point should turn up once.

In this chapter, the concepts referred to as “circuit” and “equality” are introduced:

“One-half of the total number of faces always represents equality; thus the chances are equal that a given
point will turn up in three throws, for the total circuit is completed in six, or again that one of three given
points will turn up in one throw.  For example, I can as easily throw one, three, or five as two, four, or
six.”

The “circuit” refers to the number of possible (elementary) outcomes, what in contemporary probability
theory may be referred to as “the size of the sample space”.   “Equality” appears to be a concept related to
expectation.  Since a given point on a die is expected to turn up once in six throws (the circuit), it could
equally turn up in the first or second three casts.  Cardano also provides a variation on this interpretation,
indicating that in one throw, three given points (1,3,5) could turn up as easily as the three other points
(2,4,6).  Equality then can be understood as defined, that is, one-half of the circuit, or as (in contemporary
terms) an event, which is as likely as its complementary event (that is, an event with probability one-half).

Professor Ore suggests that the concept of equality is a consequence of Cardano having “the practical
game in mind”:

“...he seems to assume that usually there are only two [players]...each will stake the same amount A so
that the whole pot is P = 2A.  When a player considers how much he has won or lost it is natural to relate
it not to the whole pot 2A but to his own stake A.  In terms of such a measure his expectation becomes
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                        E = pP = 2pA = peA

[where p refers to the proportion of favourable outcomes for one player and pe is called the equality
proportion by Professor Ore]

so that the equality proportion or the double probability becomes the natural factor measuring loss or
gain. …In a fair game…the number of favourable and unfavourable cases must be the same and each
player has the same probability [1/2]. …This means that each player has equality in his favourable cases,
so that the corresponding equality proportions are [1]. And Cardano expresses this simply by saying that
“there is equality”.

In Chapter 11 Cardano discusses the case of two dice.  He enumerates the various possible throws:

“…there are six throws with like faces, and fifteen combinations with unlike faces, which when doubled
gives thirty, so that there are thirty-six throws in all, and half of these possible results is eighteen.”

It is somewhat interesting that Cardano does not at this stage provide an illustration, or table to aid his
explanation.  If the outcomes of the cast of two dice are represented by ordered pairs, the throws with like
faces are (1,1), (2,2)…(6,6), six in all, and those with unlike faces are: (1,2), (1,3), (1,4), (1,5), (1,6),
(2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6), fifteen in number, and finally: (2,1)…(6,5),
another fifteen.  In total there are, as Cardano states, 36 possible outcomes.  His use of the text only
description surely would have made the subject more difficult for the reader to appreciate his reasoning –
unless the reader was well versed in the subject matter.  A lay reader for example, would likely ask why
the unlike face combinations would have to be doubled.  As it turns out, this manner of explanation is
typical in Cardano’s text, although he does provide some illustrations.  For this reason it would seem a
reasonable conjecture that the work is intended for those persons familiar with gambling.

In this chapter, a result is given, comparing how likely, relative to equality, it is to get at least one die with
one point (an ace) in each of two casts of two dice:

“The number of throws containing at least one ace is eleven out of the circuit of thirty-six; or somewhat
more than half of equality; and in two casts of two dice the number of ways of getting at least one ace
twice is more than 1/6 but less than 1/4 of equality.”

Cardano does not describe how he derived this result, however the following reasoning seems quite
possible.  The number of ways of getting at least one ace is 11 – (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1),
(3,1), (4,1), (5,1) and (6,1).  As 11 is less than 12, there are fewer than 12 times 12 or 144 ways of getting
at least an ace in both casts of the dice. In two casts of two dice, there are 36 times 36 or 1,296 possible
outcomes (the circuit in this case).  Equality is defined as half of 1,296, which is 648.  144 divided by 648
is less than 1/4.  Also, since 10 is less than 11, there are more than 10 times 10 or 100 ways of getting at
least an ace in both casts.  As 100 divided by 648 is more than 1/6, Cardano’s  result is confirmed.   Note
that the statement “more than 1/6 but less than 1/4 of equality” in terms of modern probability would be
“more than 1/6 times 1/2 or 1/12 but less than 1/4 times 1/2 or 1/8”, that is the probability of the event is
between 1/8 and 1/12.  Why wasn’t Cardano more exact?  If the above reasoning was followed, he would
have known that there were 121 possible ways in which the aces could turn up.  Possibly, for his
purposes, the precise fraction is unnecessary. It may have been sufficient to explain that a game in which
a player wagers on the occurrence of at least one ace in two casts of two dice, was not a fair game.  The
player could expect only between 1/4 and 1/6 of their own stake.  Also, interestingly, the use of upper and
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lower bounds suggests some variation in practice – although we can not say for sure that this is what
Cardano wished to express. It may have been seen as a more aesthetic way of describing the proportion.
Clearly however, concepts and problems familiar to modern students of probability are being considered.

In Chapter 12, the casting of three dice is considered.  Again the possible outcomes are enumerated, the
total (circuit) being 216.   While the wording is somewhat vague, Cardano appears to make an error in
reporting the number of outcomes with at least one unspecified point (such as an ace):

“…out of the 216 possible results, each single face will be found in 108 and will not be found in as
many.”

According to Professor Ore his reasoning seems to be that for one cast of a die, 1/6 of a given point can
be expected to turn up. In 3 throws, 3 times 1/6 or 1/2 of the point will occur. Of 216 possible outcomes,
108 would be favourable. However, if Cardano realised (as appears to be the case) that there were 11
possible outcomes for a single point in two throws of the dice, would he make such an error? Was it an
approximation only? Cardano does indicate in subsequent chapters that there are 91 possible outcomes,
which is correct.

Chapters 13 and 14 concern outcomes of the sum of points. The theory is an extension of the earlier
results, and Cardano observes:

“In the case of two dice, the points 12 and 11 can be obtained respectively as (6,6) and (6,5). The point
10 consists of (5,5) and of  (6,4) but the latter can occur in two ways, so that the whole number of ways of
obtaining 10 will be 1/12 of the circuit and 1/6 of equality.”

Note that Cardano uses ordered pairs to illustrate the outcomes (presuming that the translated text does
not use this for simplification). Also note that the expression 1/12 of the circuit is what we would refer to
as a probability of 1/12.

In Chapter 14 the use of the term “odds” is found, as we would apply it today:

“If therefore, someone should say, ‘I want an ace, a deuce, or a trey, you know that there are 27
favourable throws, and since the circuit is 36, the rest of the throws in which these points will not turn up
will be 9; the odds will therefore be 3 to 1.’”

An incorrect computation of odds is found in the same chapter:

“If it is necessary for someone that he should throw at least twice, then you know that the throws
favourable for it are 91 in number, and the remainder is 125; so we multiplying each of these numbers by
itself and get to 8,281 and 15,625, and the odds are about 2 to 1.”

Cardano realises that an error has been made, and discusses this in chapter 15:

“This reasoning seems to be false... for example, the chance of getting one of any three chosen faces in
one cast of one dice is equal to the chance of getting one of the other three, but according to this
reasoning there would be an even chance of getting a chosen face each time in two casts, and thus in
three, and four, which is most absurd. For if a player with two dice can with equal chances throw an even
and an odd number, it does not follow that he can with equal fortune throw an even number in each of
three successive casts.”
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It is interesting that after having made this observation, the earlier text is not corrected.  Professor Ore
notes that this is typical of Cardano’s presentations. The passage is also interesting for its use of the words
“chance” and “fortune” relating to the possible outcomes of throws.  In the following paragraph the word
“probability” is used:

“In comparison where the probability is one half, as of even faces with odd, we shall multiply the number
of casts by itself and subtract one from the product, and the proportion which the remainder bears to
unity will be the proportion of the wagers to be staked. Thus, in 2 successive casts we shall multiply 2 by
itself, which will be 4; we shall subtract 1; the remainder is 3; therefore the player will rightly wager 3
against 1...”

Cardano continues to discuss the computation of odds in the chapter, however what is of principal interest
is the use of the word  “probability”. The above passage is quite possibly the first application of the word
in written form, with the meaning comparable to its use in the modern theory (based on symmetry or a
long-range relative frequency definition).

It is well known that the theory of probability has its origins in questions on gambling. Why is this the
case? Although people were aware of the variable and unpredictable character of every day phenomena
(such as the weather, commodity prices, etc.), games of chance lend themselves to a mathematical
discussion because the universe of possibilities is (relatively) easily known and computed, at least for
simple games.

Cardano’s text would appear to be the first known mathematical work on the theory of probability,
although published after the more famous correspondence between Pascal and Fermat.
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Review1  of Sopra Le Scoperte dei Dadi (Concerning an Investigation on Dice)

1. Biographical Notes

Galileo Galilei was born in Pisa in 1564.  His early education was at the Jesuit monastery of Vallombrosa,
and attended the University of Pisa (with the original intention of studying medicine).  He became a
professor of mathematics at Pisa in 1589, and at Padua in 1592.  He is famous for his interest in
astronomy and physics, including hydrostatics, and dynamics (through his study of properties relating to
gravitation).  Works published in 1632 include support for the Copernican system.  Although the
publication was approved by the papal censor, it did (to some degree) contradict an edict in 1616,
declaring the proposition that the sun was the centre of the solar system to be false.  After an inquiry,
Galileo was placed under house arrest, and died near Florence in 1642.

2. Review of Sopra Le Scoperte dei Dadi

Galileo’s brief research summary on dice is believed to have been written between 1613 and 16232. It is a
response to a request for an explanation about an observation concerning the playing of three dice.  While
the possible combinations of dice sides totalling 9, 10, 11, and 12 are the same, in Galileo’s words:

“…it is known that long observation has made dice-players consider 10 and 11 to be more advantageous
than 9 and 12.”

Galileo notes in the opening paragraph of his article:

“The fact that in a dice-game certain numbers are more advantageous than others has a very obvious
reason, i.e. that some are more easily and more frequently made than others…”

Galileo explains the phenomenon by enumerating the possible combinations of the three numbers
composing the sum, and presents a tabular summary.   The principles allowing the enumeration are
explained:

“…we have so far declared these three fundamental points; first, that the triples, that is the sum of three-dice
throws, which are made up of three equal numbers, can only be  produced in one way; second, that the triples which
are made up of two equal numbers and the third different, are produced in three ways; third, that those triples which
are made up of three different numbers are produced in six ways.  From these fundamental points we can easily
deduce in how many ways, or rather in how many different throws, all the numbers of the three dice may be formed,
which will easily be understood from the following table:”

                                                          
1 Submitted for STA 4000H under the direction of Professor Jeffrey Rosenthal.
2 Refer to F.N. David’s Games, Gods and Gambling – A History of Probability and Statistical Ideas, Dover

10 9 8 7 6 5 4 3

631 6 621 6 611 3 511 3 411 3 311 3 211 3 111 1
622 3 531 6 521 6 421 6 321 6 221 3
541 6 522 3 431 6 331 3 222 1
532 6 441 3 422 3 322 3
442 3 432 6 332 3
433 3 333 1

27 25 21 15 10 6 3 1
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The top row of the table presents the sum of the three dice.  Galileo does not provide the enumeration for
sums 11 to 18, indicating earlier in his article that an investigation from 3 to 10 is sufficient because:

“…what pertains to one of these numbers, will also pertain to that which is the one immediately greater.”

While the wording is awkward, he is referring to the symmetrical nature of the problem, however does
not provide any more explanation.

The possible triples are shown under the sums, and to the right of each is the number of combinations for
the triple.  The last row sums those combinations.

From Galileo’s table, it can be seen that 10 will show up in 27 ways out of all possible throws (which
Galileo does indicate as 216).  Since 9 can be found in 25 ways, this explains why it is at a
“disadvantage” to 10 (even though each sum can be made from 6 different triples).

The article is of interest for its antiquity in the development of ideas relating to the science of probability.
Although words like “chance” and “probability” are not directly used,  the idea is conveyed by the
application of terms such as “advantage” or “disadvantage”.  Combinatorial mathematics, and an
appreciation for the equipossibility of individual events (gained either by a recognition of the symmetry
of the die, or observation of results) form the building material for early probability science.

                                                                                                                                                                                          
Publications 1962, page 62.
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Review1  of Correspondence between Pierre de Fermat and Blaise Pascal

1. Biographical Notes

Pierre de Fermat was born in 1601 at Beaumont-de-Lomagne, studied law at the University of Toulouse,
and served there as a judge.  He appears to have corresponded a great deal with scientists in Paris, as well
as with others, including Pascal, about mathematical ideas. His interests included the theory of numbers,
and is well known for the proposition that the equaton xn + yn = zn has no solutions in the positive integers
(>2).  He died at Castres in 1665.

Blaise Pascal was born at Clermont in 1623, and died in Paris in 1662.  In addition to his contribution,
along with Fermat, to the science of probability, he is well known for his work in geometry and
hydrostatics.  Pascal wrote the Essai pour les Coniques, and invented (and sold) a mechanical calculating
machine. He may be most famous for his philosophical and religious writings, and is the author of the
Pensees.

2. Review of the correspondence

This summary is primarily concerned with ideas presented in the first two letters of a collection of
correspondence written over a period from 1654 to 1660. The first letter in this series is from Fermat to
Pascal, and is undated, although it was likely written in June or July of 1654 (based on the dates of
subsequent correspondence from Pascal). It would seem that Pascal had earlier written to Fermat,
discussing the problem relating to the division of stakes in a wager on a game of dice, when the game is
suspended before completion. The question appears to have been:  If a player needs to get 1 point (a
specific side of the die) in eight throws of the die, and after the first three throws has not obtained the
required point, how much of the wager should be distributed to each player if they agree to discontinue
play?

Fermat’s letter suggests that Pascal reasoned 125/1,296 of the wager should be given to the player. Fermat
disagrees with this, proposing that the player should receive 1/6 of the wager. Fermat’s argument is surely
based on the equal possibility of outcomes for points 1 to 6, due to the symmetry of the die.

Fermat distinguishes between an assessed value for a throw not taken, with subsequent continuation of
the game, and the agreed completion of play before eight throws. His reasoning is as follows:

“If I try to make a certain score with a single die in eight throws…[and] we agree that I will not make the
first throw; then, according to my theory, I must take in compensation 1/6th of the total sum…Whilst if we
agree further that I will not make the second throw, I must, for compensation, get a sixth of the remainder
which comes to 5/36th of the total sum…If, after this, we agree that I will not make the third throw, I must
have…a sixth of the remaining sum which is 25/216th of the total…And if after that we agree that I will
not make the fourth throw…I must again have a sixth of what is left, which is 125/1,296th of the total, and
I agree with you that this is the value of the fourth throw, assuming that one has already settled for the
previous throws.”

The argument can be summarised in the following table:

                                                          
1 Submitted for STA 4000H under the direction of Professor Jeffrey Rosenthal.
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In Fermat’s theory, the player always has a chance of obtaining the whole wager (a chance at least proportional to
the ratio of the one number needed and the six sides of the die – that is, a one in six chance). The table above shows
the sequence of probabilities associated with the occurrence of the needed point on the last throw (1/6, 5/6.1/6,
5/6.5/6.1/6 etc.).  These are the probabilities associated with the negative binomial distribution, having the required
point occur on the last of a sequence of 1,2,…,8 throws.

In his response letter, dated July 29, 1654, Pascal agrees with Fermat’s reasoning, and presents solutions to two
specific cases of the problem of points:

1) The case involving a player needing one more point.
2) The case in which a player has acquired the first point.

For the first case, Pascal uses a recursive process to illustrate the solution.  He provides the example of two players
wagering 32 pistoles (gold coins of various denominations) each, and begins by considering a dice game in which
three points are needed. The players’ numbers have equal chances of turning up.  The following table illustrates
Pascal’s argument:  (the ordered pair notation (a,b) refers to the “state” of the game at some stage, with player A
having thrown a points, and player B, b points; the pair {c,d} refers to the division of the wager).

State of Game Division if player A's 
number turns up next

Division if player B's 
number turns up next

Division if players 
agree to suspend the 

game

(2,1) {64,0} {32,32} {48,16}

(2,0) {64,0} {48,16}* {56,8}
*this corresponds to 
the state (2,1) shown 

above

(1,0) {56,8}** {32,32} {44,20}
**this corresponds to 
the state (2,0) shown 

above

Throw Proportion of Wager 
distributed

Remainder of original 
Wager

1 1/6 5/6
2 1/6 (5/6) 25/36
3 1/6 (25/36) 125/216
4 1/6 (125/216) 625/1,296
5 1/6 (625/1296) 3125/7,776
6 1/6 (3125/7776) 15,625/46,656
7 1/6 (15625/46656) 78,125/279,936
8 1/6 (78125/279936) 390,625/1,679,616

Accumulated 
Totals 1,288,991/1,679,616 390,625/1,679,616

(0.77) (0.23)
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The values distributed upon suspension of the game, conform to the expected values.

The argument is an (early) example of the application of a “minimax” principle. Both players wish to
maximize the amount they would receive, and minimize their losses.  The “motivation” is illustrated by
the following “payoff matrix”, with the expected proceeds for player A indicated under the relevant
circumstances.

Player A would like to maximize the row minimums, while player B wishes to minimize the column
maximums.  Both would settle on 48 (for player A).

After discussing his theory relating to the equitable distribution of the wager amount, Pascal presents the
following rule :

“…the value (by which I mean only the value of the opponent’s money) of the last game of two is double
that of the last game of three and four times the last game of four and eight times the last game of five,
etc.”

Using the recursive procedure applied by Pascal in the case of a game of three, with a game of four, we
would proceed as follows:

State of Game Division if player A's 
number turns up next

Division if player B's 
number turns up next

Division if players 
agree to suspend the 

game

(3,2) {64,0} {32,32} {48,16}

(3,1) {64,0} {48,16}* {56,8}
*this corresponds to 
the state (3,2) shown 

above

(3,0) {64,0} {56,8}** {60,4}
**this corresponds to 
the state (3,1) shown 

above

Player B

Agreement to 
settle the 

wager

No agreement 
to settle the 

wager

Row 
Minimum

Rolls a favourable 
number 48 64 48

Player A
Does not roll a 

favourable number 48 32 32

Column Maximum 48 64
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Using Pascal’s terminology, the value of the last game of four is four.

The rule for distributing a wager of 2W (each player providing W), when one of the players requires one
more point, is then 2W-W/2n, where n represents the number of points needed for the game (before play
commences).

Pascal suggests that the solution to the second class of problems is more complicated:

“…the proportion for the first game is not so easy to find…[it] can be shown, but with a great deal of
trouble, by combinatorial methods…and I have not been able to demonstrate it by this other method
which I have just explained to you but only by combinations.”

A rule is presented, without detailing a proof:

“Let the given number of games be, for example, 8.  Take the first eight even numbers and the first eight
odd numbers thus:

2,  4,  6,  8,  10,  12,  14,  16
and 1,  3,  5,  7,  9,   11,  13,  15.
Multiply the even numbers in the following way: the first by the second, the product by the third, the
product by the fourth etc.; multiply the odd numbers in the same way…
The last product of the even numbers is the denominator and the last product of the odd numbers is the
numerator of the fraction which expresses the value of the first one of eight games…”

If each player wagers W, then the distribution of the wager after the first throw would be

W + W(1/2.3/4.5/6.….(2n-1)/2n)

Where n is the number of points required (after getting the first point).

How can this formula be shown to be reasonable, using elementary principles of probability?  One
approach is to examine the possible ways for completing various games after one player acquires the first
point.  The tree diagrams in Exhibit 1 (last page) illustrate three cases.

Player A has one point and needs in case a) one more point; b) two more points and c) three more points.
Each connecting line between possible states of the game represents an event with probability 1/2, the
probability of going from one state to the next.  Using the diagrams, the probabilities for player A
obtaining the required points may be assessed.  For example, in a) there is a 1/2  probability of going from
(1,0) to (2,0), and a 1/2 . 1/2  =  1/4 probability of going from (1,0) to (1,1) to (2,1).  The probability for
player A getting two points (given one point) is then 1/2+1/4 = 3/4.  Similarly, for case b) the probability
is 11/16 and for case c) 21/32.

If these probabilities are used to obtain the expected values for player A, we have:

In case a) 3/4 . 2W = (2/4 + ¼)2W = W +W(1/2)

In case b) 11/16.2W = (8/16 + 3/16)2W = W + 3/8.W = W + W(1/2.3/4)

In case c) 21/32.2W = (16/32 + 5/32)2W = W + 5/16.W = W + W(1/2.3/4.5/6)
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The above sequence of expected values conforms to Pascal’s rule.

To illustrate, Pascal considers a game in which a player has obtained 1 point and needs 4 more.  He notes
that at most 8 plays would be required to complete the game (either player A throws 4 more points, or
player B will throw the required 5).  He observes that 1/2 of the number of combinations of 4 from 8,
divided by a sum consisting of this same value, plus the combinations of 5,6,7 and 8 from 8, gives the
same proportion as 1/2.3/4.5/6.7/8 = 35/128.

This is the case, since in general:

1/2.3/4.5/6.….(2n-1)/(2n)  =  (2n-1)!/n!(n-1)! . 1/22n-1 , with:

(2n-1)!/n!(n-1)! = 1/2. (2n!/n!n!), and

           22n-1 = 1/2. (1+1)2n , and

In the July 29th letter, Pascal also provides two tables indicating a division of wagers for games of dice
suspended at different stages.  The tables are not accompanied with detailed explanations.  Pascal also
relates the observations, and questions of Monsieur de Mere, relating to a game of dice requiring (at least)
one six to turn up in 4 throws.  The odds given in favour of this event are 671 to 625.  Again, the
computations are not provided, however, they correspond to the probability given by:

Also, it is noted that there is a “disadvantage” in throwing two sixes in 24 such plays.  Using the above
formula, summing the combinations of 1,2,…24 out of 24, with associated probabilities 1/36 and 35/36
(to the appropriate exponents) the probability for the event can be shown to be about 0.49.  That Monsieur
de Mere noticed in practice this “disadvantage” is remarkable (he must have observed, and / or played,
many such games).

The remaining correspondence includes an interesting dispute over the interpretation of combinations of
events, used as a means for computing equitable settlements for wagers (establishing the proportion of
funds to be distributed).

However, for our purposes, at this stage, it is sufficient to appreciate that combinatorial methods, and the
identification of equipossible events, are the cornerstones for the emerging theory of probability, with
early applications for binomial expansions. Instead of using the terms “chance” or “probability”, our
correspondents used words such as “favour” or “advantage” and  “disadvantage”, which convey the same
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meaning, in the context of a gambling environment.  We also noted the early decision theory motivation,
and its influence on what we will later call expected value.

A survey of the literature does give the impression that Fermat and Pascal, got the “die rolling” for the
mathematical development of the science of probability.



14

Exhibit1

Tree graphs of possible ways for completing two player games
of dice after one player has acquired the first point

a) Game requiring two points

b) Game requiring three points

c)   Game requiring four points
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Review1  of Christiaan Huygen’s De Ratiociniis in Ludo Aleae (On Reasoning or Computing in
Games of Chance)

1. Biographical Notes

Christiaan Huygens was born at The Hague, Netherlands, in 1629.  He studied mathematics and law at the
University of Leiden, and at the College of Orange in Breda.  His father was a diplomat, and it would
have been the normal practice for Huygens to follow in that vocation.  However, he was more interested
in the natural sciences, and with support from his father he was able to conduct studies and research in
mathematics and physics.  He is well known for his work relating to the manufacturing of lenses, which
improved the quality of telescopes and microscopes.  He discovered Titan, identified the rings of Saturn,
and invented the first pendulum clock.  He resided in Paris for some time, and made the acquaintance of
persons familiar with Fermat and Pascal, and with their correspondence relating to “the problem of
points” and similar concepts concerning games of chance. It is believed that Huygens died at The Hague,
in 1695.

2. Review of the De Ratiociniis in Ludo Aleae

On Reasoning in Games of Chance, is cited in the literature as the first published mathematical treatise on
the subject of probability2.  The work was first printed in 1657, before the earlier correspondence between
Fermat and Pascal was published, although clearly influenced by the content of those letters.  The present
review uses an English translation printed in 1714 by S. Keimer, at Fleetstreet, London.

The treatise is composed of a brief introduction, entitled The Value of Chances; the statement of a
fundamental postulate; 14 propositions, a corollary and a set of five problems for the reader to consider.

The development of the theory is very systematic.  Introducing the subject, Huygen’s writes:

“Although in games depending entirely upon Fortune, the Success is always uncertain; yet it may be
exactly determined at the same time how much more probability there is that [one] should lose than win”

Games of chance have outcomes that are (generally) unpredictable.  At the same time, Huygens claims
that it is possible to make meaningful statements, or measurements, relating to those systems. While the
concept of probability, perhaps even the word itself3, is observed within our earlier readings, Huygens’
association of the phenomena (games of chance) with a relative measure of chance, is comparable to a
modern treatment of the theory by first defining a random system or process, and the concept of
probability.  Having defined the system and the measure, Huygen’s states his fundamental principle:

“As a Foundation to the following Proposition, I shall take Leave to lay down this Self-evident Truth:
That any one Chance or Expectation to win any thing is worth just such a Sum, as would procure in the
same Chance and Expectation at a fair Lay [or wager]”.

The wording is somewhat difficult follow, however he gives an example, from which it is evident that the
                                                          
1 Submitted for STA 4000H under the direction of Professor Jeffrey Rosenthal.
2  See for example, Ian Hacking’s The Emergence of Probability (Cambridge University Press, 1975), page 92 or
William S. Peters’ Counting for Something – Statistical Principles and Personalities (Springer – Verlag, 1987),
page 39.
3 Refer to Gerolamo Cardano’s De Ludo Aleae.
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“Expectation” or value of a wager, is the mean of the possible proceeds:

“If any one should put 3 Shillings in one Hand, without telling me [which hand it is in], and 7 in the
other, and give me Choice of either of them; I say, it is the same thing as if he should give me 5
Shillings.”

Although the word “expectation” (the Latin “expectatio” was used in the original work)1 is used to refer
to the value of a wager, its meaning in this example does correspond to its use in modern probability
theory.

The first proposition states:

“If I expect a or b, and have an equal chance of gaining either of them, my Expectation is worth
(a+b)/2.”

The expectation is the fair value for a wager. How can this value be calculated in a game where the prizes
are received with equal chance? Huygens reasons as follows: Suppose there is a lottery with two players,
and each player buys a ticket for x, and that it is agreed that the proceeds are a and 2x-a, then each player
could just as easily receive a or 2x-a.  Setting 2x-a = b, it follows that the value of the lottery ticket is x
=(a+b)/2.

The second proposition extends the first to the case of three prizes, a,b and c, such that x = (a+b+c)/3 is
the value of the expectation; then in the same manner to four prizes, and so on.

Proposition III states:

“If the number of Chances I have to gain a, be p, and the number of Chances I have to gain b, be q.
Supposing the chances equal; my Expectation will then be worth ap+bq / p+q.”

This proposition generalizes the expectation to lotteries with prizes having different chances of being
distributed.  Huygens gives the following example:

“If I have 3 Expectations of 13 and 2 Expectations of 8, the value of my Expectation would by this rule be
11.”

Propositions IV to IX illustrate solutions to “the problem of points”, in a manner analogous to the
reasoning of Pascal, although Huygens is looking more generally at the problem, not using any specific
type of game as an example.  Beginning with simple cases, Huygens solves more complicated problems,
suggesting:

“The best way will be to begin with the most easy Cases of the Kind.”

To appreciate the form of Huygens’ arguments, consider Proposition VII:

“Suppose I want two Games, and my Adversary four.
Therefore it will either fall out, that by winning the next Game, I shall want but one more, and he four, or
by losing it I shall want two, and he shall want three.  So that by Schol Prop.5. and Prop.6., I shall have
an equal Chance for 15/16a or 11/16a, which, by Prop.1 is just worth 13/16a.”
                                                          
1 See Ian Hacking, page 95.
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Propositions 5 and 6 explain the expectations when one player needs 1 game, and the other 4 games, and
when one player needs 2 and the other 3 games. Then applying Proposition 1, the expectations are
effectively averaged to provide the relevant value.  A corollary is then given:

“From whence it appears, that he who is to get two Games, before another shall get four, has a better
Chance than he is to get one, before another gets two Games.  For in this last Case, namely of 1 to 2 his
Share by Prop. 4 is but 3/4a, which is less than 13/16a.”

This corollary compares the probabilities relevant to the two cases, using the expectations. This form of
comparison has been made by earlier writers, using the “odds” approach1.

In Poposition IX, Huygens provides a table showing the relative chances for three players in various game
states.

Propositions IX to XIV present solutions for problems relating to games of dice.  The solutions rely upon
the earlier propositions, especially Proposition 3.  As an example, Proposition X relates to the rolling of a
single die:

“To find how many Throws one may undertake to throw the Number 6 with a single Die.”

Huygens reasons that for the simplest case, one throw, there is 1 chance to get a six, receiving the wager
proceeds a, and 5 chances to receive nothing, so that by Proposition 3, the expectation is (1.a + 5.0) /
(1+5) = 1/6a.  To compute the expectation for 1 six in two throws, it is noted that if the six turns up on the
first die, the expectation will again be a.  If not, then referring to the simplest case, there is an expectation
of 1/6a.  Using Proposition 3, there is one way to receive a, and 5 ways to receive the 1/6a (the sides 1 to
5 on the die):

    (1.a + 5. (1/6a)) / (1+5) = 11/36a

This corresponds to the six appearing on the first throw with probability 1/6, or on the second throw with
probability (5/6) . (1/6).    In Huygens system, expectations for simpler cases are combined using
Proposition 3, to solve more complex problems.

Proposition XIV uses two linear equations to derive the ratio of expected values for two players in the
following case:

“If my self and another play by turns with a pair of Dice upon these Terms, That I shall win if I throw the
Number 7, or he if he throw 6 soonest, and he to have the Advantage of first Throw: To find the
Proportion of our Chances.”

With total proceeds set at a, Huygens uses a-x to represent the expectation of the player to throw first, and
x for the second player.  When it is the first  player’s turn, the second player’s expectation is x.  Huygens
reasons that when the second player is to throw, the expectation must be higher (it is conditioned on the
first player not throwing a 6).  He refers to this expectation as y. On the first player’s turn, the second
player’s expectation (using proposition 3) will be (5.0 + 31y)/36 = 31/36y (as there are 5 ways for the first
player to get 6).  It follows that 31/36y = x (or x=36/31y).  On the second player’s turn the expectation is
(6a + 30x) / 36 (there are 6 ways to roll 7) which equals y.  Then:
                                                          
1  Odds are given in the text by Cardano and in the correspondence between Fermat and Pascal.
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(6a +30x) / 36  = 36/31x ,

 with solution x = 31/61a.   The ratio of the expected values x to a-x is then 31:30.

The text concludes with a set of five problems for the reader to solve (also the practice in most
contemporary texts in mathematics).



19

Review1  of Dr. John Arbuthnott’s  An Argument for Divine Providence, taken from the constant
Regularity observed in the Births of both Sexes

1. Biographical Notes

John Arbuthnott was born in 1667 at Kincardineshire, Scotland.  The following passage from Annotated
Readings in the History of Statistics, by H.A. David and A.W.F Edwards, provides interesting
biographical information:

John Arbuthnott, physician to Queen Anne, friend of Jonathan Swift and Isaac
Newton…was no stranger to probability…In 1692 he had published (anonymously) a
translation of Huygens’ De ratiociniis in ludo aleae (1657) as Of the Laws of
Chance, adding “I believe the Calculation of the Quantity of Probability might be
improved to a very useful and pleasant Speculation, and applied to a great many
events which are accidental, besides those of Games.” There exists a 1694
manuscript of Arbuthnott’s which foreshadows his 1710 paper [An Argument for
Divine Providence].

Dr. Arbuthnott died at London in 1735.

2. Review of An Argument for Divine Providence

Dr. Arbuthnott’s paper is the first in our series of readings to apply the developing theory of probability to
phenomena other than games of chance.  Earlier, Pascal did use probabilistic reasoning in his article “The
Wager” to advocate a life of faith, in an “age of reason”.  Interestingly, Arbuthnott’s subject is related to
Pascal’s.

There are two principal arguments made in the article:

1) It is not by chance that the number of male births is about the same as the number of female births.
2) It is not by chance that there are more males born than females, and in a constant proportion.

To support the first proposition, application is made of the binomial expansion relating to a die with two
sides marked M (male) and F (female).  Essentially, (M+F)n is a model for the possible combinations of
male and female children born.  Arbuthnott observes that as n increases, the binomial coefficient
associated with the term having identical numbers of M and F, becomes small compared to the sum of
the other terms.

“It is visible from what has been said, that with a very great number of Dice…(supposing M to denote
Male and F Female) that in the vast number of Mortals, there would be but a small part of all the
possible Chances for its happening at any assignable time, an equal Number of Males and Females
should be born.”

Arbuthnott is aware that in reality there is variation between the number of males and females:

“It is indeed to be confessed that this Equality of Males and Females is not Mathematical but Physical,

                                                          
1 Submitted for STA 4000H under the direction of Professor Jeffrey Rosenthal.
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which alters much of the foregoing Calculation; for in this Case [the number of male and female terms]
…will lean to one side or the other.”

However, he writes:

“But it is very improbable (if mere Chance governed) that they would never reach as far as the
Extremities…”

While it would be possible to have large differences in the numbers of males and females (with
binomially distributed data having probability 1/2), the probability of this becomes very small when n is
large. Contrary to Arbuthnott’s argument, it could be reasoned that chance would account for the
approximate equality in numbers of males and females.

The second proposition discounts chance as the cause for the larger number of male births observed
annually.  The form of the argument is interesting, because it is similar to a test of significance.
Arbuthnott states the Problem:

“A lays against B, that every Year there shall be born more Males than Females: To find A’s Lot, or the
Value of his Expectation.”

A hypothesis is being made in the form of a wager. Arbuthnott notes that the probability that there are
more males than females born must be less than 1 /2 (assuming that there is an equal chance for a male or
female birth).  For this “test” however, he sets the chance at 1 /2 (which would result in a higher
probability), and notes that for the number of males to be larger than the number of females in 82
consecutive years (for which he has data on christenings), the lot would be 1/2 82.  The lot would be even
less if the numbers were to be in “constant proportion”.  Since the data do not support B (in every year
from 1629 to 1710, male christenings outnumber female christenings), Arbutnott reasons:

“From whence it follows, that it is Art, not Chance, that governs.”

The hypothesis of equal probability is rejected, and Arbuthnott attributes the observed proportions to
Divine Providence.

The second argument has been referred to as the first published test of significance1.

                                                          
1 Ian Hacking, The Emergence of Probability, page 168.
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Review1  of Pierre Remond de Montmort’s On the Game of Thirteen

1. Biographical Notes

With reference to Isaac Todhunter’s text, A History of the Mathematical Theory of Probability2, Pierre
Remond de Montmort devoted himself to religion, philosophy and mathematics.  He served in the
capacity of cathedral canon at Notre-Dame in Paris, from which he resigned, in order to marry.  In 1708
he published his treatise on “chances”, Essai d’Analyse sur les Jeux de Hazards.   L.E Maistrov, in his
text, Probability Theory – A Historical Sketch3, provides the following biographical information:

“Pierre Remond de Montmort (1678-1719) was a French mathematician
as well as a student of philosophy and religion. He was in
correspondence with a number of prominent mathematicians (N.
Bernoulli, J. Bernoulli, Leibniz, etc.) and was a well-established and
authoritative member of the scientific community. In particular, Leibniz
selected him as his representative at the commission set up by the Royal
Society to rule on the controversy between Newton and Leibniz
concerning priority in the discovery of differential and integral
calculus…His basic work on probability theory was the “Essai
d’Analyse sur les Jeux de Hazard”. It went through two editions, the first
of which was printed in Paris in 1708…the second…appeared in 1713,
although Todhunter claims [1714].  The first part contains the theory of
combinatorics; the second discusses certain games of chance with cards;
the third deals with games of chance with dice, the fourth part contains
the solution of various problems including the five problems proposed by
Huygens…”

2. Review of the article

The present review concerns an article in the second part of Montmort’s Essai d’Analyse, entitled “On the
Game of Thirteen”.  An English translation of that article is available in Annotated Readings in the
History of Statistics by H.A. Davids and A.W.F. Edwards.4

In the first section of the article, Montmort provides a description of the play of Thirteen:

“The players first draw a card to determine the banker. Let us suppose
that this is Peter and that the number of players is as desired. From a
complete pack of fifty-two cards, judged adequately shuffled, Peter
draws one after the other, calling one as he draws the first card, two as
he draws the second, three as he draws the third, and so on, until the

                                                          
1 Submitted for STA 4000H under the direction of Professor Jeffrey Rosenthal.
2 A History of the Mathematical Theory of Probability, page 78, by Isaac Todhunter, Chelsea Publishing Co., New
York (1965 unaltered reprint of the First Edition, Cambridge 1865).
3 Probability Theory – A Historical Sketch, page 76, by Leonid E. Maistrov, Academic Press Inc., New York 1974.
4 Annotated Readings in the History of Statistics , Springer-Verlag, New York 2001.
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thirteenth, calling king. Then, if in this entire sequence of cards he has
not drawn any with the rank he has called, he pays what each of the
players has staked and yields to the player on his right. But if in the
sequence of thirteen cards, he happens to draw the card he calls, for
example, drawing an ace as he calls one, or a two as he calls two, or a
three as he calls three, and so on, then he takes all the stakes and begins
again as before, calling one, then two, and so on…”

Provision is made in the rules for a new deck of cards should the dealer use all the cards in the first set.

The game of Thirteen provides an early example of a problem relating to coincidences or matches.
Montmort describes a method for computing the chance or expectation of drawing a card matching the
number called by the banker.  Since the time of Cardano, questions relating to expectation have been
solved by enumerating the favourable cases and the total possible events.  Montmort observes:

“Let the cards with which Peter plays be represented by  a,b,c, d, etc… it
must be noted that these letters do not always find their place in a
manner useful to the banker. For example, a, b, c produces only one to
the person with the cards although each of these three letters is in its
place. Likewise, b, a, c, d produces only one win for Peter, although of
the letters c and d is in its place. The difficulty of this problem is in
disentangling how many times each letter is in its place useful and how
many times it is useless.”

To solve the problem, Montmort first considers a game with only two cards, an ace and a two.  There is
only one way in which the banker can receive the proceeds of the wager, an ace has to be the first card.
Montmort then computes the expectation, essentially an application of Huygens' 3rd Proposition in De
Ratiociniis. If the proceeds total A, then the banker's expectation is (1.A + 1.0) / 2 = 1/2 A.

The next case considered is a game with three cards, represented by the letters a,b,c. Montmort observes
that of the six possible combinations for the letters (representing the possible orders for dealing the cards),
four are favourable to the banker (and two are not favourable):

"...there are two with a in first place; there is one with b in second place,
a not having been in first place; and one where c is in third place, a not
having been in first place and b not having been in second place."

 
It follows that the expectation is (4.A + 2.0) / 6 = 2/3 A.

Similarly four and five card games are considered, indicating the expectations as 5/8 A and 19/30 A,
respectively. The expectations for games with one to five cards allows Montmort to suggest a formula for
computing the banker's expectation generally, in a recursive manner:

[g(p-1)+d] / p

where:

p is the number of cards;
g is the espectation when there are p-1 cards, and
d is the expectation when there are p-2 cards.
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A table is given showing the expectations for games up to 13 cards.  The banker's expectation for the
game of Thirteen is presented as 109,339,663/172,972,800 A.

Montmort observes that the expectations can be expressed as series in the form:

1 - 1/(1.2) + 1/(1.2.3) - 1/(1.2.3.4) +...,

with alternating positive and negative terms, consisting of numerators 1 and denominators 1…(p-2)(p-1)p,
where p is the number of cards. The rapid convergence of the expectations to a value between 5/8 and
19/30, does not appear to have been noticed.  An examination of the recursive formula may have
indicated that as the number of cards (p) in the game increases, the value identified as g (expectation)
stabilizes, since (p-1)/p gets closer to 1, and d/p becomes small. Montmort is principally interested in
explaining how the expectation is computed in the game of Thirteen, and describing the mathematical
expressions from which the expectations can be computed.

In addition to explaining how the expectation is derived, Montmort provides a table showing the number
of possible favourable deals from specific cards in a game.  For example, in a game with five cards, there
are 24 ways for an ace to be dealt as the banker calls one, 18 ways for the two to be dealt as two is called
and so on.  The table can be used for games having up to eight cards.  Montmort completes the article
with some commentary relating to patterns in that table.

Montmort’s article adds to the variety of problems considered by probability science since the time of
Cardano. Montmort has clearly used Huygens approach, and the principle stated in Proposition IV of De
Ratiociniis:

“…the best way will be to begin with the most easy Cases of the kind.”
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Review1  of James Bernoulli’s Theorem…From Artis Conjectandi

1. Biographical Notes

According to W.W.R. Ball in A Short Account of the History of Mathematics2:

“Jacob or James Bernoulli was born at Bâle on December 27, 1654; in
1687 he was appointed chair of mathematics in the university there; and
occupied it until his death on August 16, 1705…In his Artis Conjectandi,
published in 1713, he established the fundamental principles of the
calculus of probabilities…His higher lectures were mostly on the theory
of series…”

2. Review of the article

In Chapter IV of Part IV of his text on probability, Artis Conjectandi (published in 1713), James
Bernoulli writes:

“Something further must be contemplated here which perhaps no one
has thought of about till now.  It certainly remains to be inquired
whether after the number of observations has been increased, the
probability is increased of attaining the true ratio between the numbers
of cases in which some event can happen and in which it cannot happen,
so that the probability finally exceeds any given degree of certainty…”3

This review summarizes Bernoulli’s proposed solution to this inquiry largely in his own words, as
presented in Chapter V of Part IV of Artis Conjectandi.

For the purpose of this summary, an abridged English translation of a copy available in German4 has been
prepared.  The Latin, German and abridged English versions are attached for reference.  It should be
noted that in the German and English copies, some mathematical notation differs from the original, using
instead a more contemporary system.

Bernoulli begins by presenting a set of increasingly complex lemmas which will be used to prove his
proposition:

Lemma 1

Given a set of natural numbers

                                                          
1 Submitted for STA 4000H under the direction of Professor Jeffrey Rosenthal.
2 Originally published by MacMillan & Co. Ltd., London 1912, pages 366 and 367.
3 Translation by Bing Sung (1966). Translations from James Bernoulli. Department of Statistics, Harvard
University, Cambridge, Massachusetts.
4 Electronic Research  Archive for Mathematics: (Ostwald's Klassiker d. exact. Wissensch. No. 107 u. 108.)
Published: (1899).
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0, 1, 2, ..., r-1, r, r+1, ..., r+s

…

continued such that the last member is a multiple of r+s, for example
nr+ns, the new set is:

0, 1, 2, ..., nr-n, ..., nr, ..., nr+n, ..., nr+ns.

With increasing n, the terms between nr and nr+n or nr-n, similarly the
terms between nr+n, nr-n or nr+ns and 0 increase.  No matter how large
n is, the terms greater than nr+n will not exceed s-1 times the number of
terms between nr and nr+n.  The number of terms below nr-n will not
exceed r-1 times the terms between nr-n and nr.

Lemma 2

If r+s is raised to an exponent, then the expansion will have one more
term than the exponent.

Lemma 3

In the expansion of the binomial r+s with exponent an integral multiple
of r+s=t, for example n(r+s)=nt, then first, there is a term M, the largest
value of the terms, if the number of terms before and after M are in the
proportion s to r ... the closer terms to M on the left or right are larger
than the more distant terms.  Secondly, the ratio of M to a term closer to
it is smaller than the ratio of that closer term to one more distant,
provided the number of intermediate terms is the same.

Lemma 4

In the expansion of a binomial with exponent nt, n can be made so large
that the ratio of the largest term M to other terms Ln and Rn which are n
terms to the left or right from M, can be made arbitrarily large.

The proofs for Lemmas 3 and 4 are detailed in L.E. Maistrov’s book Probability Theory – A Historical
Sketch1.  In both cases binomial expansions of the terms are divided, and algebraic simplification
presents the required limiting results.

Lemma 5

In the expansion of a binomial with exponent nt, n may be selected so
large that the ratio of the sum of all terms from the largest term M to the
terms Ln and Rn to the sum of the remaining terms, may be made
arbitrarily large.

                                                          
1 Probability Theory – A Historical Sketch, pages 72 and 73, by Leonid E. Maistrov, Academic Press Inc., New
York 1974.
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Proof of Lemma5

According to Lemma 4, as n becomes infinitely large, M / Ln becomes
infinite, then the ratios L1 / Ln+1 ,  L2 / Ln+2,  L3 / Ln+3 become all the more
infinite.  So it then follows that:

that is, the sum of the terms between M and Ln is infinitely greater than
the sum of the terms left of Ln.  Since by Lemma 1 the number of terms
left of Ln exceeds the terms between Ln and M by only (s-1) times (that is,
a finite number of times), and then from Lemma 3 the terms become
smaller more distant from Ln, then (the sum of) all the terms between Ln
and M (even if M is not included) will be infinitely larger than (the sum)
left of Ln.  In the same way ... [for the right side]

The Proposition is then stated as:

Let the number of favourable cases to the number of unfavourable cases be exactly or
nearly r/s, therefore to all the cases as r/r+s = r/t  - if r+s = t - this last ratio is between
r+1/t and r-1/t.  We can show, as many observations can be taken that it becomes more
probable arbitrarily often (for example, c - times) that the ratio of favourable to all
observations lies in the range with boundaries r+1/t and r-1/t.

Bernoulli observes that given a probability r/t for a favourable outcome, and a probability s/t for an
unfavourable outcome, in nt trials (with t = r+s), the number of (possible) events with all favourable
outcomes, all but one favourable outcomes, all but two favourable outcomes, etc. are

These correspond to the terms in the expansion of r+s, for which a number of useful properties were
established in the lemmas.  First, the number of trials with nr favourable outcomes and ns unfavourable
outcomes is M.  Next, the number of trials with at least  nr-n and at most nr+n favourable outcomes is the
sum of terms between the two limits Ln and Rn defined in Lemma 4.  Bernoulli can then write:

Since the binomial exponent can be selected so large that the sum of
terms which are between both bounds Ln and Rn  is more than c times the
sum of all the remaining terms outside of these bounds, (from Lemmas 4
and 5), it follows then that the number of observations can be taken so
large that the number of trials in which the ratio of the number of
favourable cases to all cases will not cross over the bounds (nr+n)/nt
and (nr-n)/nt or (r+1)/t and  (r-1)/t, is more than c times the remaining
cases, that is, that it is more than c times probable that the ratio of the
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number of favourable to all cases does not cross over the bounds (r+1)/t
and (r-1)/t.

James Bernoulli’s solution is apparently the first proof of the Law of Large Numbers, which informally is
stated as:

The law which states that the larger a sample, the nearer its mean is to
that of the parent population from which the sample is drawn.



28

Review1  of Abraham de Moivre’s A Method of approximating the Sum of Terms of the Binomial
(a+b)n…From The Doctrine of Chances

1. Biographical Notes

According to Isaac Todhunter in his text, A History of the Mathematical Theory of Probability2:

“Abraham de Moivre was born at Vitri, in Champagne, in 1667. On
account of the revocation of the edict of Nantes3, in 1685, he took shelter
in England, where he supported himself by giving instruction in
mathematics and answers to questions relating to chances and annuities.
He died at London in 1754…De Moivre was elected a Fellow of the
Royal Society in 1697…It is recorded that Newton himself, in the later
years of his life, used to reply to inquirers respecting mathematics in
these words: ‘Go to Mr. De Moivre, he knows these things better than I
do’…”

De Moivre is well known for the theorem:

2. Review of the article

This review relates to a supplementary article entitled A Method of approximating the Sum of the Terms of
the Binomial (a+b)n expanded into a Series, from whence are deduced some practical Rules to estimate
the Degree of Assent which is to be given to Experiments (referred to as the Approximatio), which appears
in later editions (after 1733) of Abraham De Moivre’s text on probabilities, The Doctrine of Chances, first
published in 1718.

De Moivre’s mathematical presentation in the Approximatio begins with a discussion relating to
approximating the ratio of the middle term of the binomial (1+1) raised to very large n, to the sum of all
terms (2n).  It is indicated that this approximation was developed several years earlier.  As a result of
contributions from James Stirling, it was found that the approximate ratio could be written as

where c is the circumference of a circle with radius equal to 1.  The value of c is then 2π.

De Moivre next states:

                                                          
1 Submitted for STA 4000H under the direction of Professor Jeffrey Rosenthal.
2 A History of the Mathematical Theory of Probability, page 78, by Isaac Todhunter, Chelsea Publishing Co., New
York (1965 unaltered reprint of the First Edition, Cambridge 1865).
3 The Edict of Nantes was a proclamation by King Henry IV of France and Navarre, guaranteeing civil and religious
rights to the Huguenots.
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“…the Logarithm of the Ratio which the middle term of a high Power
has to any Term distant from it by an Interval denoted l, would be
denoted by a very near approximation, (supposing m = 1 / 2n) by the
Quantities

                         (m+l-1/2) x log(m+l-1) + (m-l+1/2) x log(m-l+1)
- 2m x log m + log ((m+l)/m). ”

De Moivre does not provide details on the derivation of the above formulae. Anders Hald describes their
derivation in his book A History of Probability and Statistics and Their Applications before 17501.

He then presents Corollary 1:

“This being admitted, I conclude, that if m or 1/ 2n be a Quantity
infinitely great, then the Logarithm of the Ratio, which a Term distant
from the middle by the Interval l, has to the middle Term, is –2ll/n.”

Again, the derivation is not shown.  It follows noting that:

(m+l-1/2)log(m+l-1) +(m-l+1/2)log(m-l+1) –2mlogm + log((m+l)/m)

is equivalent to

(m+l-1/2)log(m+l-1) - (m+l-1/2)logm +(m-l+1/2)log(m-l+1) - (m-l+1/2)logm + log((m+l)/m).

Then approximating log(m+l-1) by log(m+l) and log(m-l+1) by log(m-l), for large m, and re-writing the
above terms using the properties of logarithms, we have

(m+l-1/2)log((m+l)/m) + (m-l+1/2)log((m-l)/m) + log((m+l)/m).

Recalling that log(1+x) = x – x2/2 + x3/3 - … when  -1 < x ≤ 1, then the above can be approximated, for l
less than the square root of n, by

(m+l-1/2)(l/m – l2/2m2) + (m-l+1/2)(-l/m – l2/2m2) + l/m - l2/2m2  =  2ll/n
Then the approximation to the inverse ratio’s logarithm is –2ll/n.

In Corollary 2, De Moivre notes that the number with “hyperbolic logarithm” (natural logarithm) -2ll/n is:

This is the series for e-2ll/n, which then approximates the ratio of a term l terms distant from the middle
term, to the middle term.  If we represent the middle term by T0, and terms 1, 2, …, l places distant by T1,
T2, … Tl, then to this point De Moivre has obtained:

                                                          
1 Published by John Wiley & Sons, 1990,  pages 473 to 476.
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and

Then    Tl = T0e-2ll/n, or as De Moivre would write:

Note that

for a binomial (1+1) to the exponent n very large.  If we consider the binomial (1/2+1/2)n, which is 1n = 1,
the middle term would be

Since in the binomial (1+1)n , the middle term is

Then this is equivalent to T0, and we can write

for the middle term of the binomial  (1/2+1/2)n.

Using the previously defined symbols T0, T1,…, Tl, then sums of terms between the middle term and one l
places distant can be obtained as

T0 + T1 + T2 + … + Tl  = T0 (1+exp(-2.12/n) + exp(-2.22/n)+…+exp(-2.l2/n))

n
ll
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This is essentially what De Moivre does in Corollary 2.  Using the “hyperbolic logarithm” series
expansions for each of the terms, he develops a sum of the binomial terms from the middle, to a term l
places distant for the case of a binomial (1/2 + 1 /2)n:

Which he observes converges very quickly, and after using a few terms obtains the estimate 0.341344 for
the sum of terms from the middle term to a term, which is about 1/2√n terms distant.  Having obtained
this result, De Moivre states in Corollary 3:

“And therefore, if it was possible to take an infinite number of
Experiments, the Probability that an Event which has an equal number of
Chances to happen or fail, shall neither appear more frequently than
1/2n + 1/2√n times, not more rarely than 1/2n – 1/2√n times, will be
expressed by the double Sum of the number exhibited in the second
Corollary, that is by 0.682688…”

We have here, in 1733, a result about what would later be called a “normal distribution”.  In his book, The
Life and Times of the Central Limit Theorem1, William Adams states:

“De Moivre did not name√n/2, which is what we would today call
standard deviation within the context considered, but in Corollary 6 he
referred to √n as the Modulus by which we are to regulate our
estimation.”

De Moivre generalizes the results for the binomial (a+b)n acquiring as William Adams indicates in
modern notation

using the symbols Tl and T0 defined earlier.

De Moivre’s intention was to develop a method for approximating binomial sums or probabilities when
the number of trials was very large.  He was able to do this with the aid of mathematics relating to series
                                                          
1 Kaedmon Publishing Company, New York 1974,  page 24.
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expansions for logarithms and exponentials, as well as approximation methods for factorials.  The
approximation itself is a normal distribution.  In addition to being an early occurrence of this distribution,
for practical application, the approximation is an early illustration of a central limit theorem.  For large n,
the middle term (average value) is associated with a normal distribution, and this value can be limited by
a measure related to √n.
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Review1  of Friedrich Robert Helmert’s  The Calculation of the Probable Error from the Squares of
the Adjusted Direct Observations of Equal Precision and Fechner’s Formula2

1. Biographical Notes

Friedrich Robert Helmert was born at Freiberg in 1841. He studied engineering sciences at the technical
university in Dresden.  He was as a lecturer and professor of geodesy at the technical university in
Aachen, where he wrote "The Mathematical and Physical Theories of Higher Geodesy" (2 volumes,
Leipzig 1884).  In 1886 Helmert became the director of the Prussian Geodetic Institute and the
International Earth Measurement Central Office, as well as professor at the university in Berlin.  He died
at Potsdam in 1917.

2. Review of The Calculation of Probable Error…

In this 1876 article by F.R. Helmert, there is apparently for the first time3 a demonstration that, given
X1,…,Xn independent N(µ,σ2) random variables, then

2

1
2

( )
n

i
i

X X

σ
=

−∑

is distributed as (what would be called) a chi-square distribution with n-1 degrees of freedom.  The
present review is concerned primarily with how Helmert effectively shows this, although his purpose was
to apply the result to the calculation of the mean squared error for σ) , in order to estimate “the probable
error”4.

To begin, Helmert considers e1,…,en, the “true errors” of a set of observations X1,…,Xn.  The true errors
are defined as  ei = Xi – µ, where µ is the (true) mean for the population from which the Xi are observed.
The joint probability “volume” (referred to as the “future probability”5) of the ei, given that Xi ~ N(µ,σ2)
is presented as:

2 [ee]
1e e

n
h

n
h e d d
π

− 
 
 

L

where h (referred to as “the precision”) is equal to 1/σ√2 and [ee] is the sum of squares of the ei:
e2

1+e2
2+…+e2

n.

                                                          
1 Submitted for STA 4000H under the direction of Professor Jeffrey Rosenthal.
2 An abridged version of the article is found in Annotated Readings in the History of Statistics pages 109 to 113, by
H.A. David and A.W.F. Edwards (Springer-Verlag, New York 2001).  The section relating to Fechner’s formula has
been deleted.
3 Refer to Annotated Readings in the History of Statistics page 103, by H.A. David and A.W.F. Edwards (Springer-
Verlag, New York 2001).
4 Defined as 1 (0.75), where is the standard normal distribution function.σ −Φ Φ  See Annotated Readings, page 103.
5 The likelihood function from the set of observations.
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Helmert notes that [ee] is not known, since the parameter µ is not known (assuming that only sampling of
the population is possible or feasible).

As the true mean can only be estimated by X , then the true errors are estimated by iX -X , written λi by
Helmert, and referred to as the “deviations” (from the arithmetic mean of the sample).  Noting that λ1 + λ2

+ … + λn = 0, then λn = -λ1 – λ2 - … - λn-1, and with ē = X - µ, the true errors are related to the deviations
as:

e1 = λ1 + ē,

e2 = λ2 + ē
en-1 = λn-1 + ē
en = -λ1-…- λn-1  + ē

Helmert identifies the following matrix with the above transformations:

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1

0 0 0 0 1 1
1 1 1 1 1

 
 
 
 
 
 
 
  − − − − 

L

L

L

O

L

L

which will be referred to as H.  In matrix equation form, the transformation may be written:

The determinant of the matrix H is n.  This can be shown using two properties relating to determinants:

1) If a matrix M is formed by adding a multiple of one column to another
column in H, then the determinant of M equals that of H.

2) The determinant of a triangular matrix is equal to the product of
diagonal elements.

New matrices can be formed by consecutively adding –1 times columns 1 to n-1, to the last column,
resulting in:

1 1

2 2

3 3

1 1

e 1 0 0 0 0 1
e 0 1 0 0 0 1
e 0 0 1 0 0 1

e 0 0 0 0 1 1
e 1 1 1 1 1 e

n n

n

λ
λ
λ

λ− −

    
    
    
    

=    
    
    
        − − − −   

L

L

L

M O M

L

L
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1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 0 1 0
1 1 1 1 n

 
 
 
 
 
 
 
  − − − − 

L

L

L

O

L

L

The determinant is then 1.1.… . n = n.

Observing that the Jacobian of the transformation of variables is equivalent to the determinant of H, the
joint probability for the change of variables becomes:

2 2 2[ ] e
1 1 e

n
h h n

n
hn e d d dλλ λ λ
π

− +
−

 
 
 

L

Helmert then notes that integrating the above expression over all possible values of ē results in the
probability of the set λ1,…,λn :
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Then
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1
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1 1

n
h
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hn e d dλλ λ λ
π

−
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  ∫ ∫L L

is the probability that [λλ] lies between values u and u+du.

Next, a transformation is devised for n-1 new variables t , i = 1,…,n-1, such that [tt] is equivalent to the
sum of n-1 true errors.  The transformation in matrix form, is given by:
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To illustrate this transformation, consider the two variable case, using:

2
1 1

2 2

2( 2 )
2

3
2

t

t

λλ

λ

= +

=

Then   2 2 2 2 2 2
1 2 1 2 1 1 2 22t t λ λ λ λ λ λ+ = + + + +  2 2 2

1 2 3λ λ λ= + +  , since 3 1 2λ λ λ= − − .

The determinant of the transformation is √n, noting that the associated matrix is upper triangular, with
product of the diagonal terms:

3 42
2 3 1
1 1 12 3 1
2 3 1

n
n

n n
n

n

⋅ ⋅ ⋅ ⋅
−

= ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅
−

=

L

L

Then the probability that [tt] is between u and u + du is given by

2
1
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1 1

n
h tt

n
h e dt dt
π

−
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  ∫ ∫L L

Helmert then refers to a result he obtained in 1875: The probability that the sum [tt] of n-1 true errors
equals u, is given by:
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where again, h is “the precision”.  Since [tt] = [λλ], the density applies to the sum of squares of n
deviations. The above density is n-1Gamma( ,h)2  for variable hu. This can seen, recalling that if a random
variable v ~ Gamma (α,β), then the probability density function can be written as:

( )
1 vv e

α
α β

α

β − −

Γ

Substituting hu for v,  1
2

n −  for α, and h for β:
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Then the probability associated with volume d(hu) is:
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Since hu ~ n-1Gamma( ,h)2 , then u ~ n-1Gamma( ,h)  h2 .  For h = 1 2σ , it can be shown that the
probability density function for u is:
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result:
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Helmert does not assign a name to the distribution of the sum of squares [λλ].  His objective is to use the
result to estimate the probable error.

Also of interest in the article is the estimation related to the precision h (and thereby σ) in a maximum
likelihood manner in section 2, such that:
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Review1  of R.A. Fisher’s Inverse Probability

1. Biographical Notes

Ronald Aylmer Fisher was born in London in 1890.  He received scholarships to study mathematics,
statistical mechanics and quantum theory at Cambridge University, where he also studied evolutionary
theory and biometrics.  After graduation, he worked for an investment company and taught mathematics
and physics at public schools from 1915 to 1919.  From 1919 to 1943, he was associated with the
Rothamsted (Agricultural) Experimental Station, contributing to experimental design theory and the
development of a Statistics Department.  In 1943 he became professor of genetics at Cambridge,
remaining there until his retirement in 1957.  He died at Adelaide in Australia, in 1962.

2. Review of Inverse Probability

In this article, published in 1930, R.A. Fisher cautions against the application of prior probability
densities for parameter estimation using inverse probability2, when a priori knowledge of the distribution
of the parameters is not available (e.g., from known frequency distributions). Fisher indicates in the first
paragraph, that the subject had been controversial for some time, suggesting that:

“Bayes, who seems to have first attempted to apply the notion of
probability, not only to effects in relation to their causes but also to
causes in relation to their effects, invented a theory3, and evidently
doubted its soundness, for he did not publish it during his life.”

Fisher describes the manner in which a (known) prior density can be used in the calculation of
probabilities:

“Suppose that we know that a population from which our
observations were drawn had itself been drawn at random from
a super-population…that the probability that 1 2 3, , ,...θ θ θ shall lie
in any defined infinitesimal range 1 2 3...d d dθ θ θ is given by

1 2 3 1 2 3( , , ,...) ...,dF d d dθ θ θ θ θ θ= Ψ

then the probability of successive events (a) drawing from the
super-population a population with parameters having the
particular values 1 2 3, , ,...θ θ θ  and (b) drawing from such a
population the sample values 1,..., nx x , will have a joint
probability

                                                          
1 Submitted for STA 4000H under the direction of Professor Jeffrey Rosenthal.
2 According to H.A. David and A.W.F. Edwards in  Annotated Readings in the History of Statistics, Springer-Verlag
2001, page 189:

“…“Inverse probability”…would not necessarily have been taken to
refer exclusively to the Bayesian method (which in the paper Fisher
calls “inverse probability strictly speaking”) but to the general
problem of arguing “inversely” from sample to parameter…”

3  In the mid-1700s.
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1 2 3 1 2 3 1 2 31
( , , ,...) ...  { ( , , , ,...) }.

n

p pp
d d d x dxθ θ θ θ θ θ φ θ θ θ

=
Ψ × Π

If we integrate this over all possible values of 1 2 3, , ,...θ θ θ and
divide the original expression by the integral we shall then have
a perfectly definite value for the probability…that

1 2 3, , ,...θ θ θ shall lie in any assigned limits.”

It is noted that this is a direct argument, which provides the frequency distribution of the population
parameters θ.  Fisher’s caution relates to cases in which the function Ψ is not known, and is then taken to
be constant.  He argues that this assumption is as arbitrary as any other, and will have inconsistent results.
While an example is not given in the Inverse Probability paper, it is helpful to consider an illustration
provided elsewhere by Fisher, related by Anders Hald in A History of Mathematical Statistics From 1750
to 19301.

Consider the posterior probability element:

aP( |a,n)d   (1 ) d ,   0 1n aθ θ θ θ θ θ−∝ − ≤ ≤

Then if the parameter ς is defined by
1 1sin  = 2 -1,   -
2 2

ς θ π ς π≤ ≤

such that
arcsin(2 1)ς θ= −

and ς is assumed to be uniformly distributed, the posterior probability element becomes:

 aP( |a,n)d   (1+sin ) (1 sin ) dn aς ς ς ς ς−∝ −

Since

2

1 1
2 2

1 1
2 2
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1 (2 1)
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it follows that:

                                                          
1  A History of Mathematical Statistics From 1750 to 1930, John Wiley and Sons Inc., 1998, page 277.
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1 1
2 2P( |a,n)d   (1 )

a n a
dς ς θ θ θ

− − −
∝ − .

However, since under the assumptions we can show that P( |a,n)dθ θ  ∝  P( |a,n)dς ς , then
1 1
2 2P( |a,n)d   (1 )

a n a
dς ς θ θ θ

− − −
∝ −  is inconsistent with aP( |a,n)d   (1 ) dn aθ θ θ θ θ−∝ − .

To Fisher, the use of prior densities (not based on known frequencies) implies that nothing can be known
about the parameters, regardless of the amount of information available in the observations. What is
needed, according to Fisher, is a “rational theory of learning by experience”.

It is noted that (for continuous distributions) the likelihood (function) is not a probability, however it is a
measure of “rational belief”.  He writes:

“Knowing the population we can express our incomplete
knowledge of, or expectation of, the sample in terms of
probability; knowing the sample we can express our
incomplete knowledge of the population in terms of
likelihood.”

Next the concept of fiducial distribution is introduced, which is an example of the confidence concept
described by H.A. David and A.W.F. Edwards as:

“…the idea that a probability statement may be made
about an unknown parameter (such as limits between
which it lies, or a value which it exceeds) will be
correct under repeated sampling from the same
population.”1

Fisher writes:

“In many cases the random sampling distribution of a statistic, T,
calculable directly from the observations, is expressible solely in terms
of a single parameter, of which T is the estimate found by the method of
maximum likelihood.  If T is a statistic of continuous variation, and P the
probability that T should be less than any specified value, we have then a
relation of the form

P =F(T,θ)
If we now give to P any particular value such as .95, we have a
relationship between the statistic T and the parameter θ, such that T is the
95 per cent. Value corresponding to a given θ…”

In Principles of Statistics, by M.G. Bulmer2, an illustration from a 1935 paper by Fisher is described, with
sampling from a normal distribution.  If a sample of size n is taken, the quantity

                                                          
1 Annotated Readings in the History of Statistics, page 187.
2 Principles of Statistics by M.G. Bulmer, Dover Publications, Inc., New York 1979, page 177.



42

/
x
s n

µ−

(with notation as usually defined in contemporary statistics) follows a t distribution with n-1 degrees of
freedom.  Then 100P per cent of those values would be expected to be less than tp, or the probability that

/ P
x t
s n

µ− ≤

is equal to P.  Fisher notes that the above inequality is equivalent to

 /Px st nµ ≥ −

and reasons that the probability that /Px st nµ ≥ −  is also P.  In this case, µ is a random variable and
x  and s are constants.  By varying tP, the probability that µ is greater than specific values may be
obtained, establishing a fiducial distribution for µ, from which fiducial intervals may be constructed.
Such intervals would correspond to the confidence intervals (as defined in contemporary statistics).
The interpretation however, is different1. In his paper, Fisher provides a table, associated with correlations
derived from four pairs of observations.

H.A. David and A.W.F. Edwards suggest that Inverse Probability is the first paper clearly identifying the
confidence concept (although similar approximate constructs such as “probable error” had been in use for
some time).  It is also suggested that Student (W.S. Gosset) first expressed the notion (in an exact way)
remarking in his 1908 paper:

“…if two observations have been made and we have no other
information, it is an even chance that the mean of the (normal)
population will lie between them.”2

                                                          
1 In a confidence interval, µ is a constant, with a certain probability of being contained in a random interval.
2 Annotated Readings…page 187.


