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1 Introduction

One of the simplest and most powerful practical uses of the ergodic theory of Markov chains

is in Markov chain Monte Carlo (MCMC). Suppose we wish to simulate from a probability

density π (which will be called the target density) but that direct simulation is either im-

possible or practically infeasible (possibly due to the high dimensionality of π). This generic

problem occurs in diverse scientific applications, for instance Statistics, Computer Science,

and Statistical Physics.

Markov chain Monte Carlo offers an indirect solution based on the observation that it

is much easier to construct an ergodic Markov chain with π as a stationary probability

measure, than to simulate directly from π. This is because of the ingenious Metropolis-

Hastings algorithm which takes an arbitrary Markov chain and adjusts it using a simple

accept-reject mechanism to ensure the stationarity of π for the resulting process.

The algorithms was introduced by Metropolis et al. (1953) in a Statistical Physics con-

text, and was generalised by Hastings (1970). It was considered in the context of image

analysis (Geman and Geman, 1984) data augmentation (Tanner and Wong, 1987). However,

its routine use in Statistics (especially for Bayesian inference) did not take place until its

popularisation by Gelfand and Smith (1990). For modern discussions of MCMC, see e.g.

Tierney (1994), Smith and Roberts (1993), Gilks et al. (1996), and Roberts and Rosenthal

(1998b).

The number of financial applications of MCMC is rapidly growing (see for example the

reviews of Kim et al., 1996 and Johannes and Polson, 2003). In this area, important prob-

lems revolve around the need to impute latent (or imperfectly observed) time-series such as

stochastic volatility processes. Modern developments have often combined the use of MCMC

methods with filtering or particle filtering methodology. In Actuarial Sciences, MCMC ap-

pears to have huge potential in hitherto intractabile inference problems, much of this un-

tapped as yet (though see Scollnik, 2001, Ntzoufras and Dellaportas, 2002, and Bladt et al.,

2003).
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2 The Basic Algorithms

Suppose that π is a (possibly unnormalised) density function, with respect to some reference

measure (e.g. Lebesgue measure, or counting measure) on some state space X . Assume that

π is so complicated, and X is so large, that direct numerical integration is infeasible. We

now describe several MCMC algorithms, which allow us to approximately sample from π. In

each case, the idea is to construct a Markov chain update to generate Xt+1 given Xt, such

that π is a stationary distribution for the chain, i.e. if Xt has density π, then so will Xt+1.

2.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm proceeds in the following way. An initial value X0 is

chosen for the algorithm. Given Xt, a candidate transition Yt+1 is generated according to

some fixed density q(Xt, ·), and is then accepted with probability α(Xt, Yt+1), given by

α(x, y) =

{
min{π(y)

π(x)
q(y,x)
q(x,y)

, 1} π(x)q(x, y) > 0

1 π(x)q(x, y) = 0 ,

otherwise it is rejected. If Yt+1 is accepted, then we set Xt+1 = Yt+1. If Yt+1 is rejected,

we set Xt+1 = Xt. By iterating this procedure, we obtain a Markov chain realisation X =

{X0, X1, X2, . . .}.
The formula (2.1) was chosen precisely to ensure that, if Xt has density π, then so does

Xt+1. Thus, π is stationary for this Markov chain. It then follows from the ergodic theory

of Markov chains (see Section 3) that, under mild conditions, for large t, the distribution of

Xt will be approximately that having density π. Thus, for large t, we may regard Xt as a

sample observation from π.

Note that this algorithm requires only that we can simulate from the density q(x, ·)
(which can be chosen essentially arbitrarily), and that we can compute the probabilities

α(x, y). Further note that this algorithm only ever requires the use of ratios of π values,

which is convenient for application areas where densities are usually known only up to a

normalisation constant, including Bayesian Statistics and Statistical Physics.

2.2 Specific versions of the Metropolis-Hastings algorithm

The simplest and most widely applied version of the Metropolis-Hastings algorithm is the

so-called symmetric random walk Metropolis algorithm (RWM). To describe this method, as-

sume that X = Rd, and let q denote the transition density of a random walk with spherically

symmetric transition density: q(x, y) = g(‖y−x‖) for some g. In this case, q(x, y) = q(y, x),

so (2.1) reduces to

α(x, y) =

{
min{π(y)

π(x)
, 1} π(x)q(x, y) > 0

1 π(x)q(x, y) = 0 .
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Thus all moves to regions of larger π values are accepted, whereas all moves to lower values

of π are potentially rejected. Thus the accept/reject mechanism ‘biases’ the random walk in

favour of areas of larger π values.

Even for RWM, it is difficult to know how to choose the spherically symmetric function

g. However, it is proved by Roberts et al. (1997) that, if the dimension d is large, then

under appropriate conditions, g should be scaled so that the asymptotic acceptance rate of

the algorithm is about 0.234, and the required running time is O(d); see also Roberts and

Rosenthal (2001).

Another simplification of the general Metropolis-Hastings algorithm is the independence

sampler, which sets the proposal density q(x, y) = q(y) to be independent of the current

state. Thus the proposal choices just form an i.i.d. sequence from the density q, though

the derived Markov chain gives a dependent sequence as the accept/reject probability still

depends on the current state.

Both the Metropolis and independence samplers are generic in the sense that the pro-

posed moves are chosen with no apparent reference to the target density π. One Metropolis

algorithm which does depend on the target density is the Langevin algorithm, based on

discrete approximations to diffusions, first developed in the Physics literature (Rossky et

al., 1978). Here q(x, ·) is the density of a normal distribution with variance δ and mean

x + (δ/2)∇π(x) (for small fixed δ > 0), thus pushing the proposal in the direction of in-

creasing values of π, hopefully speeding up convergence. Indeed, it is proved by Roberts

and Rosenthal (1998a) that, in large dimensions, under appropriate conditions, δ should

be chosen so that the asymptotic acceptance rate of the algorithm is about 0.574, and the

required running time is only O(d1/3); see see also Roberts and Rosenthal (2001).

2.3 Combining different algorithms: hybrid chains

Suppose P1, . . . , Pk are k different Markov chain updating schemes, each of which leaves

π stationary. Then we may combine the chains in various ways, to produce a new chain

which still leaves π stationary. For example, we can run them in sequence to produce the

systematic-scan Markov chain given by P = P1P2 . . . Pk. Or, we can select one of them

uniformly at random at each iteration, to produce the random-scan Markov chain given by

P = (P1 + P2 + . . . + Pk)/k.

Such combining strategies can be used to build more complicated Markov chains (some-

times called hybrid chains), out of simpler ones. Under some circumstances, the hybrid

chain may have good convergence properties (see e.g. Roberts and Rosenthal, 1997, 1998c).

In addition, such combining are the essential idea behind the Gibbs sampler, discussed next.
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2.4 The Gibbs sampler

Assume that X = Rd, and that π is a density function with respect to d−dimensional

Lebesgue measure. We shall write x = (x(1), x(2), . . . , x(d)) for an element of Rd where

x(i) ∈ R, for 1 ≤ i ≤ d. We shall also write x(−i) for any vector produced by omitting the

ith component, x(−i) = (x(1), . . . , x(i−1), x(i+1), . . . x(d)), from the vector x.

The idea behind the Gibbs sampler is that even though direct simulation from π may

not be possible, the 1-dimensional conditional densities πi(· | x(−i)), for 1 ≤ i ≤ d, may be

much more amenable to simulation. This is a very common situation in many simulation

examples, such as those arising from the Bayesian analysis of hierarchical models (see e.g.

Gelfand and Smith, 1990).

The Gibbs sampler proceeds as follows. Let Pi be the Markov chain update that, given

Xt = x, samples Xt+1 ∼ πi(· | x(−i)), as above. Then the systematic-scan Gibbs sampler is

given by P = P1P2 . . . Pd, while the random-scan Gibbs sampler is given by P = (P1 + P2 +

. . . + Pd) / d.

The following example from Bayesian Statistics illustrates the ease with which a fairly

complex model can be fitted using the Gibbs sampler. It is a simple example of a hierarchical

model.

Example. Suppose that for 1 ≤ i ≤ n. we observe data Y which we assume is independent

from the model Yi ∼ Poisson(λi). The λis are termed individual level random effects. As

a hierarchical prior structure, we assume that conditional on a parameter θ, the λi are

independent with distribution λi|θ ∼Exponential(θ), and impose an exponential prior on θ,

say θ ∼Exponential(1).

The multivariate distribution of (θ, λ|Y) is complex, possibly high-dimensional, and

lacking in any useful symmetry to help simulation or calculation (essentially because data

will almost certainly vary). However the Gibbs sampler for this problem is easily constructed

by noticing that (θ|λ,Y) ∼ Gamma(n,
∑n

i=1 λi) and that (λi|θ, other λjs,Y) ∼ Gamma(Yi+

1, θ + 1).

Thus the algorithm iterates the following procedure. Given (λt, θt),

• for each 1 ≤ i ≤ n, we replace λi,t by λi,t+1 ∼ Gamma(Yi + 1, θt + 1);

• then we replace θt by θt+1 ∼ Gamma(n,
∑n

i=1 λi,t+1);

thus generating the vector (λt+1, θt+1).

The Gibbs sampler construction is highly dependent on the choice of coordinate system,

and indeed its efficiency as a simulation method can vary wildly for different parameterisa-

tions; this is explored in e.g. Roberts and Sahu (1997).

While many more complex algorithms have been proposed and have uses in hard simula-

tion problems, it is remarkable how much flexibility and power is provided by just the Gibbs

sampler, RWM, and various combinations of these algorithms.
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3 Convergence

3.1 Ergodicity

MCMC algorithms are all constructed to have π as a stationary distribution. However, we

require extra conditions to ensure that they converge in distribution to π. Consider for

instance the following examples.

1. Consider the Gibbs sampler for the density π on R2 corresponding to the uniform

density on the subset

S = ([−1, 0]× [−1, 0]) ∪ ([0, 1]× [0, 1]) .

For positive X values, the conditional distribution of Y |X is supported on [0, 1]. Sim-

ilarly, for positive Y values, the conditional distribution of X|Y is supported on

[0, 1]. Therefore, started in the positive quadrant, the algorithm will never reach

[−1, 0]×[−1, 0] and therefore must be reducible. In fact for this problem, although π is a

stationary distribution, there are infinitely many different stationary distributions cor-

responding to arbitrary convex mixtures of the uniform distributions on [−1, 0]×[−1, 0]

and on [0, 1]× [0, 1].

2. Let X = {0, 1}d and suppose that π is the uniform distribution on X . Consider the

Metropolis algorithm which takes at random one of the d dimensions and proposes to

switch its value, i.e.

P(x1, . . . xd; x1, . . . xi−1, 1− xi, xi+1, . . . xd) =
1

d

for each 1 ≤ i ≤ d. Now it is easy to check that in this example, all proposed moves

are accepted, and the algorithm is certainly irreducible on X . However

P

(
d∑

i=1

Xi,t is even | X0 = (0, . . . 0)

)
=
{

1, d even
0, d odd .

Therefore the Metropolis algorithm is periodic in this case.

On the other hand, call a Markov chain aperiodic if there do not exist disjoint non-empty

subsets X1, . . . ,Xr ⊆ X for some r ≥ 2, with P(Xt+1 ∈ Xi+1 |Xt) = 1 whenever Xt ∈ Xi for

1 ≤ i ≤ r − 1, and P(Xt+1 ∈ X1 |Xt) = 1 whenever Xt ∈ Xr. Furthermore, call a Markov

chain φ-irreducible if there exists a non-zero measure φ on X , such that for all x ∈ X and

all A ⊆ X with φ(A) > 0, there is positive probability that the chain will eventually hit A

if started at x. Call a chain ergodic if it is both φ-irreducible and aperiodic, with stationary

density function π. Then it is well known (see e.g. Nummelin, 1984; Meyn and Tweedie,

1993; Tierney, 1994; Smith and Roberts, 1993; Rosenthal, 2001) that, for an ergodic Markov
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chain on the state space X having stationary density function π, the following convergence

theorem holds. For any B ⊆ X and π-a.e. x ∈ X ,

lim
t→∞

P(Xt ∈ B |X0 = x) =
∫

B
π(y) dy ; (1)

and for any function f with
∫
X |f(x)|π(x) dx < ∞,

lim
T→∞

1

T

T∑
t=1

f(Xt) =
∫
X

f(x)π(x) dx , a.s. . (2)

In particular, π is the unique stationary probability density function for the chain.

3.2 Geometric ergodicity and CLT’s

Under slightly stronger conditions (e.g. geometric ergodicity, meaning the convergence in (1)

is exponentially fast, together with
∫
|g|2+ε π < ∞), a Central Limit Theorem (CLT) will

hold, wherein 1√
T

∑T
t=1 (f(Xt)−

∫
X f(x)π(x)dx) will converge in distribution to a normal

distribution with mean 0, and variance σ2
f ≡ V arπ(f(X0)) + 2

∑∞
i=1 Covπ(f(X0), f(Xi)),

where the subscript π means we start with X0 having density π (see e.g. Geyer, 1992;

Tierney, 1994; Chan and Geyer, 1994):

1√
T

T∑
t=1

f(Xt) ⇒ N(mf , σ2
f ) .

In the i.i.d. case, of course σ2
f = V arπ(f(X0)). For general Markov chains, σ2

f usually

cannot be computed directly, however its estimation can lead to useful error bounds on the

MCMC simulation results (see e.g. Roberts and Gilks, 1996). Furthermore, it is known

(see e.g. Geyer, 1992; Meyn and Tweedie, 1993; Roberts and Rosenthal, 1997; Jarner and

Roberts, 2002) that under suitable regularity conditions

lim
T→∞

V ar(
1√
T

T∑
i=1

f(Xi)) = σ2
f

regardless of the distribution of X0.

The quantity τf ≡ σ2
f/V arπ(f(X0)) is known as the integrated auto-correlation time for

estimating Eπ(f(X)) using this particular Markov chain. It has the interpretation that a

Markov chain sample of length Tτf gives asymptotically the same Monte Carlo variance as

an i.i.d. sample of size T ; that is, we require τf dependent samples for every one independent

sample. Here τf = 1 in the i.i.d. case, while for slowly-mixing Markov chains, τf may be

quite large.

There are numerous general results giving conditions for a Markov chain to be ergodic

or geometrically ergodic; see e.g. Tierney (1994), Smith and Roberts (1993), Schervish and
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Carlin (1992), and Baxter and Rosenthal (1995). For example, it is proved by Roberts and

Smith (1994) that if π is a continuous, bounded, and positive probability density with respect

to Lebesgue measure on Rd, then the Gibbs sampler on π using the standard coordinate

directions is ergodic. Furthermore, RWM with continuous and bounded proposal density q

is also ergodic provided that q satisfies the property q(x) > 0 for |x| ≤ ε, for some ε > 0.

4 Burn-in Issues

Classical Monte Carlo simulation produces i.i.d. simulations from the target distribution

π, X1, . . . XT , and attempts to estimate, say Eπ(f(X)), using the Monte Carlo estimator

e(f, T ) =
∑T

t=1 f(Xt)/T . The elementary variance result, Var(e(f, T )) = Varπ(f(X))/T ,

allows the Monte Carlo experiment to be constructed (i.e., T chosen) in order to satisfy any

prescribed accuracy requirements.

Despite the convergence results of Section 3, the situation is rather more complicated

for dependent data. For instance, for small values of t, Xt is unlikely to be distributed as

(or even similar to) π, so that it makes practical sense to omit the first few iterations of

the algorithm when computing appropriate estimates. Therefore we often use the estimator

eB(f, T ) = 1
T−B

∑T
t=B+1 f(Xt), where B ≥ 0 is called the burn-in period. If B is too small,

then the resulting estimator will be overly influenced by the starting value X0. On the other

hand, if B is too large, eB will average over too few iterations leading to lost accuracy.

The choice of B is a complex problem. Often B is estimated using convergence diagnos-

tics, where the Markov chain output (perhaps starting from multiple initial values X0) is

analysed to determine approximately at what point the resulting distributions become “sta-

ble”; see e.g. Gelman and Rubin (1992), Cowles and Carlin (1995), and Brooks and Roberts

(1996).

Another approach is to attempt to prove analytically that for appropriate choice of B,

the distribution of XB will be within ε of π; see e.g. Meyn and Tweedie (1994), Rosenthal

(1995), Roberts and Tweedie (1999), and Douc et al. (2001). This approach has had success

in various specific examples, but it remains too difficult for widespread routine use.

In practice, the burn-in B is often selected in an ad hoc manner. However, as long as B

is large enough for the application of interest, this is usually not a problem.

5 Perfect Simulation

Recently, algorithms have been developed which use Markov chains to produce an exact

sample from π, thus avoiding the burn-in issue entirely. The two main such algorithms

are the Coupling from the Past (CFTP) algorithm of Propp and Wilson (1996), and Fill’s

Markov chain rejection algorithm (Fill, 1998; see also Fill et al., 2000).

To define CFTP, let us assume that we have an ergodic Markov chain {Xn}n∈Z with
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transition kernel P (x, ·) on a state space X , and a probability measure π on X , such that π

is stationary for P (i.e. (πP )(dy) ≡
∫
X π(dx) P (x, dy) = π(dy)). Let us further assume that

we have defined the Markov chain as a stochastic recursive sequence, so there is a function

φ : X × R → X and an i.i.d. sequence of random variables {Un}n∈Z, such that we always

have Xn+1 = φ(Xn, Un).

CFTP involves considering negative times n, rather than positive times. Specifically, let

φ(n)(x; u−n, . . . , u−1) = φ(φ(φ(. . . φ(x, u−n), u−n+1), u−n+2), . . .), u−1) .

Then CFTP proceeds by considering various increasing choices of T > 0, in the search for a

value T > 0 such that

φ(T )(x; U−T , . . . , U−1) does not depend on x ∈ X ,

i.e. such that the chain has coalesced in the time interval from time −T to time 0. (Note

that the values {Un} should be thought of as being fixed in advance, even though of course

they are only computed as needed. In particular, crucially, all previously-used values of {Un}
must be used again, unchanged, as T is increased.)

Once such a T has been found, the resulting value

W ≡ φ(T )(x; U−T , . . . , U−1)

(which does not depend on x) is the output of the algorithm. Note in particular that, because

of the backward composition implicit in (5), W = φ(n)(y; U−n, . . . , U−1) for any n ≥ T and

any y ∈ X . In particular, letting n → ∞, it follows by ergodicity that W ∼ π(·). That is,

this remarkable algorithm uses the Markov chain to produce a sample W which has density

function exactly equal to π.

Despite the elegance of perfect simulation methods, and despite their success in certain

problems in Spatial Statistics (see e.g. Møller, 1999), it remains difficult to implement perfect

simulation in practice. Thus, most applications of MCMC continue to use conventional

Markov chain simulation, together with appropriate burn-in periods.

6 Other Recent Developments

MCMC continues to be an active research area in terms of applications methodology and

theory. It’s impossible to even attempt to describe the diversity of current applications of

the technique which extend throughout natural life social and mathematical sciences. In

some areas, problem-specific MCMC methodology needs to be developed, though (as stated

earlier) in many applications it is remarkable how effective generic techniques such as RWM

or the Gibbs sampler can be.

More generally, in Statistical Model Choice problems, it is often necessary to try and

construct samplers which can effectively jump between spaces of different dimensionalities
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(model spaces), and for this purpose Green (1995) devised trans-dimensional algorithms (also

called reversible jump algorithms). Though such algorithms can be thought of as specific ex-

amples of the general Metropolis-Hastings procedure described in Subsection 2.1, great care

is required in the construction of suitable ‘between-model’ jumps. The construction of reli-

able methods for implementing reversible jump algorithms remains an active and important

research area (see for example Brooks et al., 2003).
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