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Abstract

A fundamental problem in statistics and machine learning is to simulate real-

izations from a probability measure µ on a Euclidean space with only access to

its probability density function. The main technique for approximately solving

this problem is Markov chain Monte Carlo, but this has exhibited difficulties in

determining the iterations required to mix in many practical problems. In this ar-

ticle, we explore Monte Carlo sampling with approximate solutions to a discretized

Dacorogna–Moser ordinary differential equation over the unit time interval. This

approach is guaranteed to generate an approximate sample from µ within a fixed

number of iterations and readily allows independent simulations in parallel. This

method requires estimating one-dimensional integrals at each iteration and simulat-

ing a discretized solution to a randomly initialized ordinary differential equation.

We develop finite approximation bounds in Wasserstein distances for many dis-

cretization schemes with access to an approximation of the normalizing constant.

Numerical illustrations are demonstrated on a mixture distribution and Bayesian

generalized linear models where the approach shows promise but can suffer some

numerical instability.
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1 Introduction

Let µ be a Borel probability measure with support on a compact set K in Euclidean

space Rd of dimension d ∈ Z+. We will assume µ has a density function f with respect to

Lebesgue measure. An important problem in machine learning, statistics, and stochastic

optimization is to generate approximate samples from µ that can be used for Monte Carlo

estimation. We will assume we have access to sampling a Borel probability measure ν

also supported on K with density g. The goal is to construct a deterministic flow Tt(·)
that starts from a random initialization ξ ∼ ν and connects ν to µ so that T0(ξ) ∼ ν and

at time t = 1, T1(ξ) ∼ µ. When T1(·) is invertible and sufficiently smooth, an alternative

view of this is solving a deformation of the probability densities so that∫
K

φ(x)g(T−1
1 (x)) det(∇T−1

1 (x))dx =

∫
K

φ(x)f(x)dx

holds for all real-valued continuous bounded functions φ. Using a flow Tt(ξ) to find

solutions to deformation problems was pioneered by Dacorogna and Moser in the context

of partial differential equations [Dacorogna and Moser, 1990]. The main idea we adapt

here is to construct a random flow Tt(ξ) so its distribution is the linear interpolation

(1− t)ν + tµ. For a carefully constructed vector-valued function b,

Tt(ξ) = ξ +

∫ t

0

b(Tt(ξ))

(1− t)g(Tt(ξ)) + tf(Tt(ξ))
(1)

has (1− t)ν+ tµ as its distribution and therefore T1(ξ) ∼ µ. This idea to use the random

flow from Dacorogna–Moser was further investigated and shown to solve Monge’s optimal

transportation problem between two probability measures [Evans and Gangbo, 1999].

The Dacorogna-Moser flow has also been successfully applied to many applications in

traffic optimization by solving minimal flow models [Santambrogio, 2014, 2015].

The focus of this article investigates numerical integration approximations to estimate

the continuous Dacorogna–Moser flow (1) with the aim to simulate approximate samples

from µ. This has many practical applications in estimating integrals via Monte Carlo

in statistics. Our main contribution develops non-asymptotic approximation bounds in

Wasserstein distances for many discretization schemes with only access to an approxima-

tion of the density f . Optimal transport metrics such as Wasserstein distances are widely
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utilized for discrepancies between probability measures as they control the bias among

all Lipschitz continuous functions [Villani, 2009]. In particular, we focus on the accuracy

of first-order methods or Euler schemes but the techniques developed here can be readily

generalized to higher order discretization schemes such as Runge-Kutta. Numerical illus-

trations are demonstrated on a banana-shaped distribution for Bayesian generalized linear

models where the approach shows promise but can also suffer from numerical instability.

Transformation flows between probability measures have received a large amount of

attention recently in the generative modeling literature in the context of training a loss

function to learn the flow [Liu et al., 2022, Lipman et al., 2023, Chen et al., 2023]. The

context of this article is different in that we specifically use flows from Dacorogna–Moser

and assume we have access to a probability density f , possibly unnormalized. In com-

parison, generative modeling approaches use deep neural networks to estimate flows with

only access to samples from the target probability measure.

The sampling techniques developed here are only applicable to probability measures

on Rd and requires many regularity assumptions to ensure reliability. At the same time,

many benefits such as generating independent samples appear promising in comparison to

existing Markov chain Monte Carlo approaches. One apparent issue that can be observed

immediately with this method by inspection of (1) is that the initial error propagating

through the flow Tt(·) may need to be somewhat irregular if ν and µ are near singular.

Intuitively, if the initial sample ξ ∼ ν may need to traverse far regions of the state space

through Tt(·) to produce accurate approximate samples from µ. Some other drawbacks

to this approach is that we must simulate the path up to time t = 1 to generate a

single independent sample from the target distribution. In comparison, MCMC uses a

sequential simulation run to generate correlated realizations that eventually approximate

realizations from the target distribution.

This article is organized as follows. Section 2 develops existence results for the contin-

uous flow defined by (1). Section 3 studies first-order discretization schemes and analyzes

non-asymptotic convergence bounds in the Wasserstein distance using coupling techniques

adapted from the study of ordinary differential equations. The results are extended in

this section into a general framework for higher-order approximation schemes. Section 4.1

studies a numerical example sampling a normal mixture distribution and Section 4.2 for

Bayesian generalized linear models with priors supported near the maximum likelihood

estimate. Section 5 provides an overview of the results and provides some future research
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directions.

2 Monte Carlo with exact Dacorogna–Moser flows

Denote Lebesgue measure on Rd by λ and let ∥·∥ denote the Euclidean norm. We use

the notation X ∼ γ to denote a random variable X has distribution γ. Let µ = fλ

and ν = gλ be a Borel probability measures supported a compact set K ⊂ Rd with

continuous density functions f, g : Rd → [0,∞) and f, g > 0 on K. Here µ is the desired

target measure and ν will serve as an initial measure that we will assume to be able to

generate samples from. Let (wk)
d
k=1 be a set of weights with wk ≥ 0 and

∑
k wk = 1 and

define the function b : Rd → Rd through its coordinates k = 1, . . . , d

b(x1, . . . , xd)k = wk

∫ xk

−∞
[g(x1, . . . , s, . . . , xd)− f(x1, . . . , s, . . . , xd)] ds.

For example, wk = 1/d is often a reasonable choice in practice. We have the following

general existence result.

Theorem 1. Assume f, g : Rd → [0,∞) are positive and continuously differentiable on

a compact set K ⊂ Rd. Then for t ∈ [0, 1], there exists a transformation Tt : Rd → Rd

such that T0(ξ) ∼ ν and T1(ξ) ∼ µ and satisfying

Tt(ξ) = ξ +

∫ t

0

b(Ts(ξ))

(1− t)g(Ts(ξ)) + tf(Ts(ξ))
ds, ξ ∼ ν. (2)

Proof. The goal is to follow the flow of probability measures µt = (1 − t)ν + tµ defined

for t ∈ [0, 1] and show Tt(ξ) ∼ µt. Let φ ∈ C∞
c ([0, 1]× Rd) and then

∂t

∫
φdµt =

∫
φfdλ−

∫
φgdλ.

Now define the function v : [0, 1]× Rd → Rd by

v(t, x) = vt(x) =
b(x)

(1− t)g(x) + tf(x)
.
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By assumption then

sup
t∈[0,1],x∈K

∥vt(x)∥+ sup
t∈[0,1],x∈K

∥∇vt(x)∥ < ∞. (3)

Since then ∫ 1

0

∫
K

∥vt∥ dµtdt < ∞,

we can use integration by parts to get∫
φ∂tdµt(x) +

∫
φtr(Dx(vt(x)dµt(x))) =

∫
φ(f − g)dλ+

∫
φ(g − f)dλ = 0.

Therefore, µt solves the continuity equation in the sense of distributions. Then it follows

by existence of initial value problems that Tt : Rd → Rd solves the initial value problem

almost everywhere ν over the entire unit interval [0, 1] defined by

d

dt
γ(t) = vt(γ(t)), γ(0) = x

Now by [Ambrosio et al., 2008, Proposition 8.1.8],∫
φdµt =

∫
φ(Tt(x))dν(x).

So then Tt(ξ) ∼ µt and this implies that T1(ξ) ∼ µ.

If we can directly simulate T1(ξ), then it is possible to generate independently ξ1, . . . , ξm

each having distribution ν, and then T1(ξ1), . . . , T1(ξm) are independent samples from µ.

We directly have a law of large numbers for all Borel functions φ : Rd → Rd with∫
∥φ∥ dµ < ∞ so that

lim
m→∞

1

m

m∑
k=1

φ(T1(ξk)) =

∫
K

φdµ.

holds with probability 1.

Remark 2. To simplify the presentation and notation we used a linear interpolation

(1− t)g + tf , but generalizations to alternative interpolations is possible. In particular,

any interpolation if functions α, β : Z+to[0, 1] such that the pair satisfies α(t) + β(t) = 1
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would suffice to replace (1 − t) with α(t) and t with β(t). The solution in Theorem 1

would then be

Tt(ξ) = ξ +

∫ t

0

bt(Ts(ξ))

α(t)g(Ts(ξ)) + β(t)f(Ts(ξ))
ds, ξ ∼ ν

where for k = 1, . . . , d

bt(x1, . . . , xd)k = −wk

∫ xk

−∞

[
d

dt
α(t)g(x1, . . . , s, . . . , xd) +

d

dt
β(t)f(x1, . . . , s, . . . , xd)

]
ds.

3 Monte Carlo with first-order discretizations of the

inexact Dacorogna–Moser flow

In general, we cannot simulate the continuous time flow T1(ξ) directly, and will focus on

first-order or Euler discretizations in this section. Another potential issue is we may not

have access to the normalizing constant of f . To allow for estimation of the normalizing

constant, let f̂ be an approximation to f and b̂ be an approximation to b. Then define

the function v̂ : [0, 1]× Rd → Rd by

v̂t(x) =
b̂(x)

(1− t)g(x) + tf̂(x)
. (4)

For example, if the normalizing constant of f is not known, then we may estimate the

normalizing constant of Z =
∫
f(x)dx with Monte Carlo methods such as importance

sampling and use this to construct f .

We estimate the flow from ν to µ using a sequence of functions with a first-order

discretization starting from T̂0(·) = id and defined recursively for 1 ≤ k ≤ n by

T̂k(·) = T̂k−1(·) +
1

n
v̂k/n(T̂k−1(·)). (5)

Then if ξ ∼ ν, we can define the marginal distribution for T̂k(ξ) by µ̂k. At each iteration,

the one-dimensional integrals needed to compute b(T̂k(ξ)) will need to be solved. However,

adaptive quadrature can be used to accurately estimate b(T̂k(ξ)) up to arbitrary precision

and in computed in parallel to improve computational speed.
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Using this approximation, we will measure the accuracy in the Wasserstein distance

Wp of order p ≥ 1 defined so that

Wp(µ̂n, µ) =

(
inf

Γ∈C(µ̂n,µ)

∫
Rd×Rd

∥y − x∥p
)1/p

where C(µ̂n, µ) is the set of joint Borel measures satisfying Γ(·,Rd) = µ̂n and Γ(Rd, ·) = µ.

The Wasserstein distance is useful as it precisely controls the bias of Lipschitz functions

through its rich duality theory. The following result gives a first-order approximation

bound in any Wasserstein distance for any p ≥ 1.

Theorem 3. Assume f, g : Rd → [0,∞) are positive and continuously differentiable on

a compact set K ⊂ Rd. Assume for some δ ∈ (0, 1)

sup
0≤k≤n

∫
Rd

∥∥∥∥∥v̂k/n(T̂k(x))−
b(T̂k(x))

(1− t)g(T̂k(x)) + tf(T̂k(x))

∥∥∥∥∥ ≤ δ. (6)

Then there is a constant C > 0 such that for all n ∈ Z+

Wp(µ̂n, µ) ≤ C

(
δ +

1

n

)
.

Satisfying (6) appears reasonable in certain problems and can be accomplished in

many ways and one example is through uniform approximations such as

sup
x∈K,t∈[0,1]

∥∥∥∥v̂t(x)− b(x)

(1− t)g(x) + tf(x)

∥∥∥∥ ≤ δ.

The constant appearing in the result of Theorem 3 can be difficult to write in a nice

compact form. Moreover, this constant can be large and is exponentially dependent on

the regularity of f, g.

Proof of Theorem 3. Given fixed x ∈ Rd, we have a solution to the ordinary differential

equation ∂tγt = vt(γt) where γ0 = x with

Tt(x) = x+

∫ t

0

b(Ts(x))

(1− t)g(Ts(x)) + tf(Ts(x))
ds.
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The solution exists due to Theorem 1 and moreover, T1(ξ) ∼ µ. We have an upper bound

on the optimal coupling with

Wp(µ̂n, µ) ≤
(
E
[∥∥∥T̂n(ξ)− T1(ξ)

∥∥∥p])1/p

≤
(∫

K

∥∥∥T̂n(x)− T1(x)
∥∥∥p

dν(x)

)1/p

.

Thus the idea is a Lyapunov technique that comes from studying the stability of

discretizing ordinary differential equations. For x ∈ Rd, define

Ek(x) =
∥∥Tk/n(x)− T(k−1)/n(x)− (1/n)v(k−1)/n(T(k−1)/n(x))

∥∥
and also define

δk(x) =

∥∥∥∥∥ b̂(T̂k/n(x))

(1− t)g(T̂k/n(x)) + tf̂(T̂k/n(x))
− vtk(T̂k/n(x)))

∥∥∥∥∥ .
We then have by the triangle inequality∥∥∥T̂k+1(x)− T̂k(x)− T(k+1)/n(x) + Tk/n(x)

∥∥∥
≤ 1

n

∥∥∥v̂k/n(T̂k(x))− vk/n(Tk/n(x))
∥∥∥+

∥∥∥∥T(k+1)/n(x)− Tk/n(x)−
1

n
vk/n(Tk/n(x))

∥∥∥∥
≤ 1

n
δk(ξ) +

1

n

∥∥∥vtk(T̂k(x))− vtk(Ttk(x))
∥∥∥+ Ek+1(x).

Since f, g are positive and continuous with compact support, define inf f = f∗ and

inf g = g∗ and sup f = f ∗ and sup g = g∗. Since v is continuous on its support and that

there is an R > 0 such that supx∈Rd ∥b(x)∥ ≤ R. Since f, g are continuously differentiable,

define

L =
g∗ ∨ f ∗

g∗ ∧ f∗
+ sup

x
∥b(x)∥ sup

x
∥∇f(x)∥ ∨ sup

x
∥∇g(x)∥ < ∞.

Taking the derivative, we have that

sup
x,t

∥∥∥∥Dx

[
b(x)

(1− t)g(x) + tf(x)

]∥∥∥∥ ≤ L
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and then b(·)/[(1 − t)g(·) + tf(·)] is L Lipschitz for every fixed t. It follows then the

Lyapunov condition∥∥∥T̂k+1(x)− T(k+1)/n(x)
∥∥∥ ≤

(
1 +

L

n

)∥∥∥T̂k(x)− Tk/n(x))
∥∥∥+

1

n
δk(ξ) + Ek+1(ξ).

Applying this recursively

∥∥∥T̂n(x)− T1(x)
∥∥∥ ≤

n∑
k=1

[
Ek(x) +

1

n
δk−1(x)

]
(1 + L/n)n−k.

We have the bound

n∑
k=1

(1 + L/n)n−k ≤ n[(1 + L/n)n − 1]

L
≤ n

[exp(L)− 1]

L
.

Taking the derivative, we have with c = supx ∥b(x)∥
2 f∗∨g∗
(f∗∧g∗)3

∂z ∥vz(yz(y))∥ ≤ ∥∂zvz(yz(y))∥ ≤ c.

It follows that

sup
x

Ek(x) ≤
c

2n2
.

Taking the expectation and by assumption on the error (6), we have

Wp(µ̂n, µ) ≤ sup
0≤k≤n

[∫
Ek(x)dν(x) +

1

n

∫
δk(x)dν(x)

]
n
[exp(L)− 1]

L

≤ exp(L)− 1

L

{
n sup

0≤k≤n

∫
Ek(x)dν(x) + δ

}
≤ exp(L)− 1

L

{ c

2n
+ δ

}
.

3.1 Higher order approximations for Monte Carlo

In this section, we put the previous results of Section 3 into a general framework that

allows for further approximation accuracy. We first construct an abstract generalization
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of the discretized flow (5). Let ût : Rd → Rd be a Borel function defined for all t ∈ [0, 1]

and define for k ∈ Z+,

Ŵk(ξ) = Ŵk−1(ξ) +
1

n
ûk/n(Ŵk−1(ξ)). (7)

In the special case when ûk/n = v̂k/n, we return to the definition (5). Let µ̃k denote the

distribution of Ŵk(ξ). Let ut : Rd → Rd be a Borel function defined for all t ∈ [0, 1] and

define

Ek(x) =
∥∥Tk/n(x)− T(k−1)/n(x)− (1/n)u(k−1)/n(T(k−1)/n(x))

∥∥
where Tt(x) = x+

∫ t

0
vs(Ts(x))ds is defined previously by (2).

We are specifically interested in an improved Euler discretization to achieve a higher

rate of convergence than provided in Theorem 3. More specifically, consider the special

case when

uk/n(x) =
1

2

[
vk/n(x) + v(k+1)/n

(
x+

1

n
vk/n(x)

)]
(8)

and ûk/n is defined by replacing vk/n by an approximation v̂k/n. However, the definitions

of ut and ût are more general and we have the following abstract result.

Theorem 4. Assume f, g : Rd → [0,∞) are positive and continuously differentiable on

a compact set K ⊂ Rd and additionally assume for some δ ∈ (0, 1),

sup
0≤k≤n

∫
Rd

∥∥∥ûk/n(Ŵk/n(x))− uk/n(Ŵk/n(x)))
∥∥∥ dν(x) ≤ δ. (9)

Then there is a constant C1 > 0 such that for all n ∈ Z+

Wp(µ̃n, µ) ≤ C1

{
n sup

0≤k≤n

∫
K

Ek(x)dν(x) + δ

}
.

Proof. The proof is a direct generalization of the technique in Theorem 3.

Now we apply Theorem 4 in the case when ut is defined as in (8) and ût satisfies the

approximation (9).

Corollary 5. Assume the conditions of Theorem 4 hold with ut defined by (8). Then
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Figure 1: Plot (a) is the approximate samples from the discretized flow versus true
samples for the normal mixture distribution. Plot (b) is a quantile versus quantile plot
of the approximate flow samples to the true samples. Plot (c) is a histogram of the
approximate flow samples.

there is a constant C2 > 0 such that for all n ∈ Z+

Wp(µ̃n, µ) ≤ C2

{
1

n2
+ δ

}
.

Proof. The proof is a direct application of Taylor expansion on ut and applying the

conclusion of Theorem 4.

4 Empirical performance examples

4.1 Mixture distributions

We now shift to look at empirical Monte Carlo simulations using the discretized trans-

formation flow defined in (5). Here the goal is to simulate independent realizations by

interpolating starting from a normal distribution and ending at a normal mixture dis-

tribution with separated modes. This problem is generally difficult for many Markov

chain Monte Carlo algorithms even in low dimensions and we focus on dimension 2. Let

N(µ,Σ) denote a normal distribution on Euclidean space with mean vector µ and covari-

ance matrix Σ. In this case, the initial distribution is N(0, σ2
0I) with scaling σ2

0 > 0 and
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the target distribution is a normal mixture

π ≡ 1

2
N((−1, 0)T , σ2I) +

1

2
N((1, 0)T , σ2I). (10)

with scaling σ2 = 1/10.

We first simulate 5000 samples independently from this mixture distribution (10) and

compare these to samples generated from the discretized transformative flow approxima-

tions developed in Section 3. For the flow, we generate 5000 independent samples where

we start with initial distribution N(0, 4I) and uniform weights, and employ an adaptive

numerical ODE solver [Petzold, 1983] using max step size h = 10−4 to generate each

sample. We also experienced similar simulation results with alternative scalings of the

initial distribution. The implementation of the method suffers some numerical instability

and we filter samples that experienced any instability and were realized outside of the

ball of radius 2, which seems to appear due to division by small numbers. Figure 1 (a)

shows the results of the numerical simulation with realizations sampled from the approxi-

mate flow compared to true Monte Carlo realizations. We can see the transformative flow

can approximately sample the mixture distribution starting from a standard normal, but

can produce more outlier samples and slight skewness to the mode at coordinate (1, 0)T .

Figure 1 (b) compares the empirical quantiles of the second coordinate of both methods

against each other, and Figure 1 (c) plots the histogram of the approximate samples

generated by the flow. In these plots, we also see slight skewness to one of the modes.

4.2 Bayesian generalized linear models

Generalized linear models such as logistic regression are widely-utilized applied models

across statistics. For logistic regression, the data consists of binary responses yi ∈ {0, 1}
and vector-valued predictors xi ∈ Rd for i = 1, . . . , N so that the probability of a positive

response given certain predictors follows

P(yi = 1|xi, θ) =
exp(θTxi)

1 + exp(θTxi)
.
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Figure 2: Plot (a) is the approximate samples from the ODE flow versus random-walk
Metropolis MCMC samples and (b) plots the quantiles of the approximate flow versus
the quantiles of the random-walk MCMC samples.

The likelihood in this model is Ln(θ) = exp(−ℓn(θ)) defined by the loss function

ℓn(θ) =
n∑

i=1

[
log(1 + exp(θTxi)− yiθ

Txi

]
and we assume there exists a point θn that minimizes the loss. We consider a truncated

normal prior π0 from a normal distribution with mean θn and covariance σ2
0(X

TX)−1

with hyper-parameter σ2
0 > 0 and support Br(θn) = {θ : ∥θ − θn∥ ≤ r} for some hyper-

parameter r > 0. The posterior for this generalized linear model has density is

πn(θ) = exp (−ℓn(θ)) π0(θ)/Z

supported on Br(θn) where Z =
∫
exp (−ℓn(θ)) π0(θ)dθ.

We artificially generate a data set for this posterior with N = 50 and parameter

dimension d = 2 being the intercept and slope parameter. The most common method

for simulation from this posterior is Markov chain Monte Carlo with Metropolis-Hastings

and we simulate n = 104 realizations from a Random-walk Metropolis Markov chain

Monte Carlo algorithm tuned with normal proposal and identity covariance scaled by

1/(nd), and run for sufficiently long to satisfy burn-in. We will compare these Monte

Carlo samples to using the approximate transformative flow (5) developed here with
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uniform weights. In this model, we can estimate the normalizing constant with Ẑ using

Monte Carlo by sampling from π0. We simulate n = 104 realizations of the flow starting

with initial measure µ = π0 being the prior and step size h = 10−5. We filter any

realizations that experience numerical instability. Figure 2 (a) shows the independent

realizations from the approximate flow against the correlated realizations of the RWM

MCMC samples and Figure 2 (b) shows the quantiles of the first coordinates plotted

against each other. We see similar performance from both algorithms where one benefit

is that the flow produces independent samples and may be readily run in parallel. On the

other hand, some drawbacks are that some simulations experienced numerical instability

and these points need to be removed.

5 Conclusion

Discretizing solutions to initial value problems appears like a promising research direction

for some new alternative approaches to some classical sampling methods such as Markov

chain Monte Carlo. In this article, we studied discretizing the solution to the initial

value problem initally used by Dacorogna-Moser for solving partial differential equations

[Dacorogna and Moser, 1990]. One benefit is that this method readily allows parallel

computing and produces independent samples compared to Markov chain Monte Carlo

which generates correlated samples with a sequential algorithm that is impossible to fully

parallelize. Another large advantage of this approach is the discretized flow is run for a

fixed number of iterations known beforehand and therefore, no convergence diagnostics

are needed. In comparison to Markov chain Monte Carlo, the convergence is often unable

to be verified as the required simulation length is generally unknown.

While there are some interesting advantages, there are also many limitations to this

new Monte Carlo method. The first is that we required access to a ”good” estimate of

the normalizing constant of the target measure which can potentially be unreasonable for

many practical problems. This appears to be the largest drawback to the approach, but

can hopefully be remedied in future research. We also found numerical instability issues

likely due to the fraction in the flow defined in (1) that can arise from the division of

small numbers on a computer. It is not understood if this numerical instability is due to

the current implementation and may be fixed in the future or is inherent to the method.

Despite these drawbacks, Monte Carlo through approximating transformative flows (2)
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is an interesting future research direction.
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