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Abstract

We recently considered the optimal scaling problem of Metropolis algorithms for multidi-
mensional target distributions with non-IID components. The results that were proven have
wide applications and the aim of this paper is to show how practitioners can take advantage
of them. In particular, we illustrate with several examples the case where the asymptotically
optimal acceptance rate is the usual 0.234, and also the latest developments where smaller ac-
ceptance rates should be adopted for optimal sampling from the target distributions involved.
We study the impact of the proposal scaling on the performance of the algorithm, and finally
perform simulation studies exploring the efficiency of the algorithm when sampling from some
popular statistical models.

Keywords: Asymptotically optimal acceptance rate, diffusion, hierarchical model, nonidentically
distributed components, target distribution, speed measure

1 Introduction

Metropolis-Hastings algorithms are a popular class of MCMC methods that are used to generate
data from basically any given probability distribution (Metropolis et al. 1953, Hastings 1970). The
underlying principle is to build a Markov chain X (0), X (1), ... having the probability distribution
of interest as its unique stationary distribution. This distribution of interest is referred to as the
target distribution and its density is denoted by 7 (-), which we assume to be defined on a continuous
state space. Necessary to the construction of the Markov chain is the selection of a proposal density
q (-, -), which is used to generate potential moves for the chain. The algorithm is then performed
by applying the following steps. Given that the time-t position of the Markov chain is X (), we
generate a new state Y (¢t + 1) from the proposal distribution, which is accepted with probability
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a(X (t),Y (t+1)), where a(z,y) = LA (7 (y)q(y,z) /7 (z)q(x,y)). If the suggested move is
accepted, then the chain moves from X (¢) to Y (¢t + 1); otherwise, X (¢t + 1) = X ().

The acceptance probability « (z,y) is chosen such that the Markov chain is reversible with respect
to the target density 7 (), ensuring that 7 (-) is stationary for the chain. To compel the convergence
of the Markov chain to its stationary distribution, one might choose virtually any proposal density
engendering a Markov chain that is irreducible and aperiodic. A popular choice for the proposal
distribution is the normal family centered at the current state X (¢) and scaled according to o2.
For an algorithm with such a proposal distribution to be efficient, one must however carefully select
the variance term. Indeed, small values for o2 cause the chain to jump to nearby states, resulting
in a lengthy exploration of the state space. On the other hand, large scaling values often suggest
states located in low target density regions, encouraging the chain to refuse these moves and stand
still for long periods of time.

In this paper, we consider the optimal scaling problem of Metropolis algorithms (Roberts et al.
1997, Breyers & Roberts 2000, Roberts & Rosenthal 2001, Neal & Roberts 2004) for targets with
independent but not identically distributed components, and study how well existing asymptotic
results serve the practical side. In particular, we consider the target model introduced recently in
Bédard (2006a,b) and present various examples illustrating how the optimal value for the proposal
variance and acceptance rate can be determined using the theorems proved in these papers. This
demonstrates that, although of asymptotic nature, the results can be used to facilitate the tuning
of algorithms in finite-dimensional problems.

In Section 2 we shall introduce the target and proposal distributions considered, and briefly discuss
measures of efficiency for the algorithm. The optimal scaling results that shall be presented in
Section 3 are divided in three cases: the asymptotically optimal acceptance rate (AOAR) is the
usual 0.234; the AOAR is smaller than 0.234 and its exact value is solved on a case per case basis;
finally the AOAR is 0, in which case the efficiency of the algorithm cannot be optimized. In that
occurrence, we must then resort to inhomogeneous proposal distributions. In each of the three
parts, the theoretical results are first discussed and examples illustrating their application are then
presented. Section 4 aims to present simulation studies to investigate the efficiency of the algorithm
applied to more complicated and widely used statistical models; specifically, we consider the normal
hierarchical model, the variance components model and the gamma-gamma hierarchical model.

2 The Model

To illustrate the purpose of the following sections, suppose we wish to sample from
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For a relatively low-dimensional target density of this sort, say d = 10, the density of the last
8 components is spread out over (0,00) while that of the first two have their mass concentrated
within a much narrower interval of the state space. Choosing a proper variance for the proposal
distribution is thus not an easy task: the last 8 components require a large proposal variance for
appropriate exploration of their state space, but the selection of too large a value would result in



frequent rejection of the proposed moves by the variables X; and X5. A compromise between these
requirements then becomes necessary.

For this example, the optimal proposal variance is close to 02 = 61 for any dimension d, resulting in
an AOAR lying around 0.098, as shall be seen in Example 5. In fact, tuning the algorithm to accept
a proportion of 23.4% of the proposed moves would reduce the efficiency of the algorithm by about
20%, from where the importance of determining the right proposal variance. Before discussing the
optimal scaling results, we however start by introducing the general model for the target density.

2.1 The Target Distribution

Suppose we want to generate a sample from the d-dimensional target density

w (d.x D) = 1 6; () f (0 (D) zy), (2)

Jj=1

where f is a smooth density and 9;2 (d), 7 = 1,...,d are referred to as the scaling terms of the
target distribution, which can be any function of d for which the limit exists. This model constitutes
a natural extension of the d-dimensional density formed of independent and identically distributed
(IID) components considered in the literature and used to investigate optimal acceptance rates.

The optimal scaling results that shall be presented for sampling from this target are originally
valid for infinite-dimensional distributions. As d increases, some of the scaling terms will thus be
repeated an infinite number of times; we assume that there are 0 < m < oo such different terms.
Other terms will not be replicated as d — oo; we suppose that there are n < oo of them. We let the
first n +m components of the vector ® ~2 (d) consist in the n non-replicated scaling terms, followed
by the m different scaling terms that shall be replicated. We further assume that the first n and
next m components are respectively arranged according to an asymptotically increasing order.

Although the components 6,11 (d),- -, 0n+m (d) appear infinitely often as d — oo, they might
however not be replicated the same number of times. To determine the proportion of @2 (d)
occupied by the i-th group (i € {1,...,m}), we define the cardinality functions

cliyd) = #{j € {L....d}:6;(d) = b (D}, i=1,....m. (3)
The following example should help clarifying the notation just introduced.

Example 1. Consider a d-dimensional target density as in (2) with scaling terms 1/v/d, 4/v/d, 10
and the other ones equally divided among 2v/d and (d+1) /2. Asd — oo, the last two scaling terms
arereplicatedson = 3, m = 2and ® 2 (d) = (1/\/3, 4/V/d,10,2V/d, (d + 1) /2,2V/d, (d + 1) /2, .. )
The cardinality functions for the scaling terms appearing infinitely often in the limit are

cd) = # {5 € (Lo dyioy @) = (2vd) )= [937]

and c(2,d) = |(d — 3) /2], where [-] and |-] denote the ceiling and integer part functions respec-
tively. Note however that such rigorousness is superfluous for applying the results and it is enough
to affirm that both cardinality functions grow according to d/2.



For simplicity’s sake, the model just presented for the target is not the most general form under
which the conclusions of the theorems are satisfied. Indeed, it would be sufficient to assume that
scaling terms belonging to a common group i € {1,...,m} are of the same order. For more details,
we refer the reader to Bédard (2006a,b).

2.2 The Proposal Distribution and its Scaling

The proposal distribution we consider for sampling from the target density = (-) is such that
YD (t+1)~N (X(d) (t),0%(d) Id>, where I, is the d-dimensional identity matrix.

There exist two factors determining the form of the proposal variance as a function of d: the
asymptotically smallest scaling term and the fact that some scaling terms appear infinitely often in
the limit. If the first factor were ignored, the proposed moves would possibly be too large for the
corresponding component, resulting in high rejection rates and slow convergence of the algorithm.
The effect of the second factor is that as d — oo, the algorithm proposes more independent moves
in a single step, increasing the odds of proposing an improbable move. In this case, a drop in
the acceptance rate can be overturned by letting o2 (d) be a decreasing function of the dimension.
Combining these two constraints, the optimal form for the proposal variance as a function of d
can be shown to be o2 (d) = (?02 (d), with ¢ some positive constant and o2 (d) the largest order
function such that

lim 07 (d) o2 (d) < oo and lim c(i,d)02,;(d)o2(d) <oco fori=1,...,m. (4)

d—o0 d—o0
Our goal has thus evolved in optimizing the choice of the constant ¢ in o2 (d).

Example 2. We now determine the optimal form for the proposal variance of the Metropolis
algorithm in Example 1. According to (4), we have three limits to verify: the first one involves
0,2 (d), which is also the asymptotically smallest scaling term in the present case; the largest o2 (d)
satisfying the finite property for limy_.o v/do2 (d) is 1/+v/d. For the second and third limits, we
have limg_,oo (d — 3) 02 (d) /4V/d and limy_,o (d — 3) 02 (d) / (d + 1); the largest o2 (d) satisfying
the finite property is then 1/ Vd and 1 respectively. The function of largest order satisfying the
constraint that all three limits be finite is 02 (d) = 1//d.

2.3 Efficiency of the Algorithm

In order to optimize the mixing of our Metropolis algorithm, it would be convenient to determine
criteria for measuring efficiency. The natural way to estimate a function of interest g (-) is to com-
pute the expectation of ¢ () with respect to 7 (-). Minimizing the asymptotic variance of g (-) would
then be a good way to optimize efficiency; however, an important drawback of this measure consists
in its dependence on g (-). Since we do not want to lose generality by specifying such a quantity
of interest, we instead choose the first order efficiency criterion, as used by Roberts & Rosenthal
(1998) and Pasarica & Gelman (2003). This measures the average squared jumping distance of the
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(n + 1)-st component of the algorithm and is defined by FOE = E [(Xffgl (t+1)— X,Ef_?l (t)) ]



The fact that FOE is based on the path of the (n + 1)-st component of the Markov chain is an
important detail, given that the d components are not all identically distributed (although we could
have chosen any of the last d — n components). Indeed, as d — oo, it can be shown that the path
followed by any of the last d — n components of an appropriately rescaled version of the Metropolis
algorithm converges to a diffusion process with speed measure v (¢). For any function of interest
g (+), optimal efficiency is thus obtained by maximizing the speed measure, meaning that the effect
of choosing a particular efficiency criterion vanishes as d gets larger. Consequently, the optimization
problem is the same no matter which function g (-) is under investigation and any efficiency measure
considered in finite dimensions will be asymptotically equivalent (i.e. as d — o0), including the
first order efficiency introduced previously.

Even though the last d — n terms always converge to some diffusion limit, it might not be the case
for the first n components, whose limit could remain discrete as d — oco. Trying to optimize the
proposal variance by relying on these components would then result in conclusions that are specific
to our choice of efficiency measure.

3 Optimal Scaling Results

3.1 The Familiar Asymptotic Behavior

Consider a Metropolis algorithm with proposal distribution Y@ ~ N (x(d),ﬁgai (d) Id), where
02 (d) satisfies (4). Suppose this algorithm is used to sample from a target density as in (2) and

supporting the model described in Section 2.1.

It is now an established fact that 0.234 is the AOAR for target distributions with IID components

(Roberts et al. 1997). Roberts & Rosenthal (2001) also showed that the same conclusion applies for

7 (-) as in (2) but with 6; (d)’s independent of d. It is thus natural to wonder how big a discrepancy

between the scaling terms is tolerated in order not to violate this established asymptotic behavior.
It turns out that if )

dlim %

- Zj:l 9j (d)

then the optimal acceptance rate can be shown to converge towards 0.234. The optimal value v

maximizes the equation
I E

=0, (5)

v () = 20%0 ( (6)

where a (¢) = 2® (—¢\/ER/2) is the asymptotic acceptance rate of the algorithm and

m / 2
Br = g Sctaia@don|(550)] )

with ¢ (i,d) as in (3). We then obtain ¢ = 2.38//Ep, from where a() = 0.234. For a formal version
of the theorem, see Bédard (2006a).



This result provides valuable guidelines for practitioners. It reveals that when the target distribution
has no scaling term that is significantly smaller than the others, the asymptotic acceptance rate
optimizing the efficiency of the chain is 0.234. Alternatively, setting ¢ equal to 2.38/v/Eg leads
to greatest efficiency of the algorithm. In some situations, finding ¢ will be easier while in others,
tuning the algorithm according to the AOAR will reveal more convenient. In the present case,
since the AOAR does not depend on the target density, it is simpler in practice to monitor the
acceptance rate and to tune it to be about 0.234.

While the AOAR is independent of the target distribution, ¢ varies inversely proportionally to
ER. Two different factors influence this quantity: the function f () in (2) and the 9;2 (d)’s. The
latter can have an effect through their size or the proportion of the vector ® 2 (d) they occupy.
Specifically, suppose that ¢ (i,d) 62, (d) is O (o2 (d)) for some i € {1,...,m}, implying that the
i-th group contributes to augment the value of Er. The amount by which Fg increases is then
proportional to the size of the 6; (d)’s, but inversely proportional to the quantity of scaling terms
included in the group. The following examples shall clarify these concepts.

Example 3. Consider a d-dimensional target with independent, normally distributed components;
we suppose that half of them have a variance of 1 and the other half a variance of 2d. Applying
(4), the proposal variance takes the form o2 (d) = ¢2/d and Condition (5) is verified by computing
limg_.o0 (d/2 +1/4)"" = 0 (in fact this is trivial since n = 0). We can thus optimize the efficiency
of the algorithm by setting the acceptance rate to be close to 0.234; equlvalently, since Fp =
limg_.o0 (1/2 + 1/4d) = 1/2, we find ¢ = 3.366. What is causing an increase of / with respect to
the baseline 2.38 for the case where all components are IID standard normal is the fact that only
half of the components affect the accept/reject ratio in the limit.

The left graph in Figure 1 presents the relation between first order efficiency and ¢2. The dotted
curve has been obtained by performing 100,000 iterations of the Metropolis algorithm with d = 100,
and as expected the maximum is located very close to 2 = 11.33. The simulations also agree with
the theoretical curve (solid line) of v (£) in (6) versus £2. For the second graph, we run the algorithm
with various values of ¢ and plot FOE as a function of the proportion of accepted moves for the
different proposal variances. That is, each point in a given curve is the result of a simulation
with a particular value for £. We again performed 100,000 iterations, but this time we repeated
the simulations for different dimensions (d = 10,20, 50, 100), outlining the fact that the optimal
acceptance rate converges very rapidly to its asymptotic counterpart. The theoretical curve of v (¢)
versus a (¢) is represented by the solid line.

We note that efficiency is a relative measure in our case. Consequently, choosing an acceptance
rate around 0.05 or 0.5, would necessitate to run the chain 1.5 times as long to obtain the same
precision for a particular estimate.

Although MCMC methods are not necessarily required to sample from normal distributions, this
type of target is widely used in the literature to investigate the optimal scaling problem, and thus
allows us to see how our results compare to others. Note however that we could also have used any
smooth density f(-) with any ®~2 (d) satisfying Condition (5). While the convergence might get
slightly slower as f (-) gets further from normality, we generally observe curves similar to those of
Figure 1, as well as a rapid convergence to the asymptotic curve. The following example presents
a particular situation where the convergence of some components towards the AOAR is extremely
slow, a phenomenon due to the form of @2 (d).
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Figure 1: Left graph: efficiency of X; versus ¢2; the dotted line is the result of simulations with
d = 100. Right graph: efficiency of X; versus the acceptance rate; the dotted lines come from
simulations in dimensions 10, 20, 50 and 100. In both graphs, the solid line represents the theoretical
curve v (£).

Example 4. Consider a multivariate normal target with independent components and variances
©2(d) = (d7%™,1,1,1,...). We find 02(d) = ¢2/d and limg_o, d*™ (d*™ + (d — 1))‘1 =0,
implying that Condition (5) is verified. The quantity E'r being equal to 1, the optimal value for ¢
is then the baseline 2.38.

The particularity of this case resides in the size of 0] 2 (d), which is somewhat smaller than the
other terms but not enough to remain significant as d — oco. As a consequence, the dimension of
the target distribution must be quite large before the asymptotics kick in. In small dimensions,
the optimal acceptance rate is thus closer to the case where there exist significantly small scaling
terms, which shall be studied in Section 3.2.

Figure 2 demonstrates that even in small dimensions, the first order efficiency criterion based on
any of the last d—1 components is very close to 0.234 so as not to make much difference in practice.
When first order efficiency is based on X; however, setting d = 100 yields an optimal acceptance
rate around 0.3 and the dimensions must be raised as high as 100,000 to get an optimal acceptance
rate reasonably close to the asymptotic one. Relying on X; would then falsely suggest a higher
optimal acceptance rate, as explained in Section 2.3.

3.2 A Reduction of the Asymptotically Optimal Acceptance Rate

In the presence of a finite number of significantly small scaling terms, choosing a correct proposal
variance is a slightly more delicate task. We can think for instance of the density in (1), which
seems to promote contradictory characteristics when it comes to the selection of an efficient proposal
variance. In that example, the components X; and X, are said to rule the algorithm since they
ensure that the proposal variance is not too big as a function of d. When dealing with such target
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Figure 2: Left graph: efficiency of X; versus the acceptance rate; the dotted curves are the results
of simulations in dimensions 10, 100, 100,000 and 200,000. Right graph: efficiency of X5 versus the
acceptance rate; the dotted curves come from simulations in dimensions 100 and 200,000. In both
graphs, the solid line represents the theoretical curve v (¢).

densities, we realize that Condition (5) is violated, and thus

A )

S NI ©

The existence of scaling terms ruling the algorithm leads to one of two situations: if they are of
extremely small order compared to the other scaling terms, this results in the inefficiency of the
algorithm; on the other hand, a reasonable difference of size among them can be handled. In
particular, an AOAR exists if there is at least one i € {1,...,m} satisfying

Jim ¢ (i, d) 02, (d) o2 (d) > 0. (9)
— 00
In words this condition requires that if we were ignoring X7, ..., X,, the form selected for o2 (d)

based on the last d — n components only would remain intact. This therefore ensures that the first
n components are not solely affecting the selection of o2 (d).

In this occurrence, the optimal value for £ maximizes

b 1o Y. Y g2
v (£) = 2By xo [@ (ijll g(f (QJY})K/QJCE(JS]X])) 4 ER/Qﬂ — 2 (1),

where b = max (j €{l,...,n};0 < limg_oo 0 (d) 07" (d) < oo) is the number of non-replicated

(10)

components having a O (9;2 (d)) scaling term (Egr and ¢ (i,d) are as in (7) and (3) respectively).

The equation v (¢) is affected by the b components having a scaling term which is small enough
so as to affect the accept-reject ratio of the algorithm in the limit. The AOAR is unfortunately
not independent of the target distribution anymore, and varies according to the choice of f(-)
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Figure 3: Left graph: efficiency of X3 versus £2; the dotted curve represents the results of simulations
with d = 500. Right graph: efficiency of X3 versus the acceptance rate; the results of simulations
with d = 20 and 500 are pictured by the dotted curves. In both cases, the theoretical curve v (¢) is
depicted (solid line).

in (2) and ©®2(d). It is then simpler to optimize the efficiency of the algorithm by numerically
determining ¢ from (10) rather than monitoring the acceptance rate, since in any case finding the
AOAR implies solving for £. As before, /s inversely proportional to Er but now also depends
on Xi,...,Xp, causing the algorithm to reject a greater proportion of moves. This provokes a
reduction of a(@), resulting in AOARs that are smaller than 0.234 and vary inversely proportionally
to b. Correspondingly, the greater b is, the smaller ¢ will be. For more details on this case, see
Bédard (2006b).

The following example illustrates how to solve for the appropriate ¢ and AOAR using (10). It
presents a situation where tuning the acceptance rate to 0.234 results in an algorithm whose per-
formance is substantially less than when using the correct AOAR.

Example 5. Consider the d-dimensional target density introduced in (1). Consistent with the
notation of Sections 2.1 and 2.2, we find ®~2(d) = (1,1,25d,25d,25d,...) and so o?(d) = (2.
We remark that the first two scaling terms are significantly smaller than the balance since we
have limg_.o (24 (d —2) /25d)"* = 25/51. Even though 672 (d) and 652 (d) are significantly
small, they still share the responsibility of selecting o2 (d) with the other d — 2 components since
limg o0 ¢ (1,d) 03 (d) 02 (d) = limg_.o (d — 2) /25d = 1/25. Conditions (8) and (9) being satisfied,
we thus use (10) to optimize the efficiency of the algorithm. After having estimated the expectation

term in (10) for various values of £, a scan of the vector v (£) produces ¢2 = 61 and a (@) = 0.0981.

Note that the term Er = 1/75 causes an increase of ¢, but the components X7 and X (b=2) act
in the opposite direction. This is why #? < 424.83, which would be the optimal value for ¢ if X
and Xy were ignored.

Figure 3 illustrates the result of 500,000 iterations of a Metropolis algorithm in dimensions 500
for the left graph and in dimensions 20 and 500 for the right one. On both graphs, the maximum
occurs close to the theoretical values mentioned previously. We note that the AOAR is now quite
far from 0.234, and that tuning the proposal scaling so as to produce this acceptance rate would



contribute to considerably lessen the performance of the method. In particular, this would generate
a drop of at least 20% in the efficiency of the algorithm.

In Example 3, it did not matter which of the d components was selected to compute first order
efficiency, as all of them would have yielded similar efficiency curves. In Example 4, the choice
of the component became important since X; had a scaling term much smaller than the others,
resulting in a lengthy convergence to the right optimal acceptance rate. In Examples 5, it is now
crucial to choose this component judiciously since X; has an asymptotic distribution that remains
discrete. The AOAR generated by this sole component is thus specific to the chosen measure of
efficiency, which is not representative of the target distribution as a whole.

3.3 Inhomogeneous Proposal Distribution: An Alternative

We finally consider the remaining situation where there exist b components having scaling terms
that are of extremely small order (where b is as in Section 3.2), meaning that they are the only ones
to have an impact on the selection of the proposal variance. This is mathematically translated by
the satisfaction of Condition (8) along with

dlimc(i,d)03+i(d)a§(d)=o Vie{l,...,m}. (11)
— 00

This means that if we were basing our prognostic for o2 (d) on the last d —n components only, we
would opt for a larger order proposal variance. The b components thus become the only one to
have an impact on the accept/reject ratio as the dimension of the target increases.

In these circumstances, the value £ is maximizing the equation

v (€) = 20°Py ) xo) e(X;,Y;) >0 =a(0). (12)
j=1

Attempting to optimize v (¢) leads to an impasse, since this function is unbounded for basically any
smooth density f (). That is, v (¢) increases with ¢, resulting in a null AOAR. This phenomenon can
be explained by the fact that the scaling of the first b components are much smaller than the others,
determining the form of o2 (d) as a function of d. However, the moves generated by a proposal
distribution with such a variance will definitely be too small for the other components, forcing the
parameter ¢ to increase in order to generate reasonable moves for them. In practice, it is thus
impossible to find a proposal variance that is small enough for the first b components, but at the
same time large enough so as to generate moves that are not compromising the convergence speed
of the last d — b components. In Section 3.2, the situation encountered was similar, except that it
was possible to achieve an equilibrium between these two constraints. In the current circumstances,
the discrepancy between the scaling terms is too large and the disparities are irreconcilable.

In practice, we then face an important difficulty as no choice of £ will lead to an efficient algorithm.
Therefore, modifying the proposal distribution becomes essential and we turn to inhomogeneous
proposal variances. The approach chosen is to maintain the same parameter ¢ for each component
and also the same form for the proposal variance of the first n terms, while adjusting the form of

10
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Figure 4: Efficiency of X5 versus the acceptance rate for homogeneous and inhomogeneous proposal
variances respectively. The solid line represents the theoretical curve v (¢) and the dotted line has
been obtained by running a Metropolis algorithm in dimensions 101.

o2 (d) as a function of d for the last d — n components. In particular, we let o2 (d) = (202 (d) with
02 (d) asin (4) for j =1,...,n. For every component j € {n+ 1,...,d} and belonging to the i-th
of the m groups, o2 (d) is now defined to be the largest order function satisfying

0< dlim c(i,d) 02, (d) o2 (d) < c. (13)

Under the inhomogeneity assumption for the proposal variances, we can then use the results pre-
sented in Section 3.2 and determine ¢ by maximizing (10). To illustrate such a situation, consider
the following example.

Example 6. Suppose f () in (2) is the standard normal density and consider the vector of vari-
ances @2 (d) = (d_5,d_1/2,3,d_1/2,3 . ) The particularity of this setting resides in the fact

that 672 (d) is extremely small compared to the other scaling terms (so Condition (8) is satis-
fied). In the present case, o2 (d) = ¢?/d® and the proposal variance is totally governed by Xi;
indeed, limg_ .o (d — 1) /2d*5 = 0 and limg . (d — 1) /6d° = 0, implying that Condition (11) is
also verified. We must then use (12) to determine how to optimize the efficiency of the algorithm.

As explained previously and as illustrated by the left graph of Figure 4, the optimal value for ¢
diverges, resulting in an optimal acceptance rate which converges to 0. Obviously, it is impossible
to reach a satisfactory level of efficiency in the limit using the prescribed proposal distribution. To
overcome this problem, we shall make use of inhomogeneous proposal distributions. The idea is to
personalize the proposal variance of the last d—1 terms. The proposal variance for the first term just
stays £2/d® and using (13), the vector ® ~2 (d) becomes (£2/d, (2 /d*5, 02 /d, ..., ¢?/d' ¢*/d). From
the results of Section 3.2, we then deduce that Er = limg o ((d — 3) /2d + (d — 3) /6d) = 2/3.

Running the Metropolis algorithm for 100,000 iterations in dimensions 101 yields the curves in
Figure 4 (right graph), where the solid line again represents the theoretical curve v (¢) in (10).

The theoretical values obtained for 2 and a (@) are 6 and 0.1808251 respectively, which agree with

the simulations. The inhomogeneous proposal variances have then contributed to decrease 7 while

11



raising the AOAR. Indeed, large values for { are now inappropriate since components with larger
scaling terms now possess a proposal variance that is suited to their size, ensuring an reasonable
speed of convergence for these components.

4 Simulation Studies for some Hierarchical Models

A nice feature of the results presented in this paper is their capability to optimize the efficiency
of the Metropolis algorithm when sampling from any multivariate normal target distribution, no
matter the correlation structure existing between its components. The normal hierarchical target
model considered in Section 4.1 illustrates this property. The last two sections focus on empirically
studying the optimal scaling problem for more general hierarchical models, engendering distribu-
tions that are not jointly normal.

4.1 Normal Hierarchical Model

Consider a model with location parameters pu; ~ N (0,1) and pe ~ N (u1,1). Further suppose,
assuming conditional independence, that X; ~ N (u1,1), ¢ = 1,...,9 and X; ~ N (ue,1), i =
10,...,18. The joint distribution of pi, pe, Xi, ..., Xig is multivariate normal with null mean
and covariance matrix Ysg. Obtaining the covariances between each pair of components is easily
achieved by using conditioning: for the variances, we obtain 0 =1, 02 = 2 for i = 2,...,11 and
02 = 3 for i = 12,...,20; for the covariances, we get oy =2fori=2,j=12,...,20 (and vice
versa) and for ¢ = 12,...,20, j = 12,...,20, i # j; all the other covariance terms are equal to 1.

A useful property of multivariate normal distributions is their invariance under orthogonal trans-
formations. It is therefore possible to transform Yoy into a diagonal matrix where the diagonal
elements consist in the eigenvalues of Yoy. Since the target distribution is still normal but has now
independent components, optimizing the efficiency of the Metropolis algorithm can be achieved by
using the results presented previously.

In order to determine which one of (6), (10) or (12) should be used for determining /, we need
to know how the eigenvalues of ¥4 evolve as a function of d. Obtaining numerical values for the
eigenvalues of ¥4 in any dimension is easily achieved with the help of any statistical software; this
allows us to deduce that d—4 of the d eigenvalues are exactly equal to 1. Plots of the four remaining
eigenvalues, \; (d), i = 1,...,4, clearly show that the two smallest eigenvalues satisfy a;/d = X; (d);
they also reveal a relation of the form a;d = \; (d) for the two largest eigenvalues. Fitting these
linear equations using the eigenvalues of ¥ggo (say), we obtain fitted values for a;, i = 1,2, 3, 4.

Optimizing the efficiency of the algorithm for sampling from this hierarchical model then reduces
to optimize a 20-dimensional multivariate normal distribution with independent components, null
mean and variances equal to (1.983/20,1.997/20,0.193 (20),1.311(20),1,...,1). It is easily verified
that this vector satisfies Conditions (8) and (9), and leads to o2 (¢) = £2/d. We then turn to equation
(10) to optimize the efficiency of the algorithm; using Fr = 1 along with the method described in
Example 5, we estimate that {2 = 3.4, for which a(@) = 0.2214. The value ¢ = 1.84 thus differs
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Figure 5: Left graph: efficiency of X3 versus 2. Right graph: efficiency of X3 versus the acceptance
rate. The solid line represents the theoretical curve, while the dotted curve is the result of the
simulation study.

from the baseline 2.38 in Section 3.1, but still yields an AOAR that is close to 0.234.

Figure 5 presents graphs based on 100,000 iterations of the Metropolis algorithm, depicting how the
first order efficiency of X5 relates to £2 and the acceptance rate respectively. The curves obtained
emphasize the rapid convergence of the algorithm in finite dimensions to its asymptotic counterpart,
represented by the solid line.

4.2 Variance Components Model

The second simulation study focuses on the variance components model. Let u ~ N (0, 1), 03 ~
IG (3,1) and 02 ~ IG (2,1). The means 6; are conditionally IID given p, o2 and are distributed
according to 6; ~ N (u,03) for i = 1,...,30. The 30 groups of data values are conditionally
independent given the mean vector (61, .. 930) and the variance o2, while the values within each
group are IID. In particular, Y; j ~ N (91,0 Jfori=1,...,30 and j =1,...,10.

We are interested in the posterior distribution of u,oo,a 01,...,030 given the data Y;;, i =

.,30, 7 = 1,...,10. Since the algorithm does not work well when generating moves from a
normal proposal to mimic moves from an inverse gamma distribution, we use inverse transformations
and instead deal with gamma distributions. The target is such that

W(M,@0,¢e,01,~~-,030|Y)O(
17 151 M2 <P9 2 I & ' )2
e z ,
(00)"" (pe) ™" exp 502 — Qe — Z =Yy Es e Pe (b — Yig)" ) (14)

i=1j=1

where pg = 1/07 and @, = 1/02.
We run the Metropolis algorithm with a target as in (14), updating the variables u, g, @e, 61, ...,
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Figure 6: Left graph: efficiency of 61 versus /2. Right graph: efficiency of #; versus the acceptance
rate.

f30. For the sake of the example, the data was simulated from the target. We performed 100,000
iterations and plotted first order efficiency of X4 versus ¢2 and the acceptance rate. The maximum
is located around 0.17 for #2 and choosing an acceptance rate close to 0.2 optimizes the efficiency of
the algorithm. Although the AOAR seems to lie close to 0.234, it is hard to tell its exact value from
the graph. According to the previous results, we suspect that it might differ from 0.234, which
might become clearer when simulating from target distributions possessing a greater number of
non-normal components. Although the joint distribution is not normally distributed, it then seems
possible to optimize not only hierarchical models where the mean of normally distributed variables
is random, but also hierarchical models with more layers and random variances.

4.3 Gamma-Gamma Hierarchical Model

Let A ~ I'(4,1) and, assuming conditional independence, X; ~ I'(4,\) for i« = 1,...,20. The
unconditional 21-dimensional target density satisfies

20 20
7 (N1, ..., @0) xx A exp (—/\ (1 + ZasZ)) Ha:f’
i=1 i=1

This time, 10,000,000 iterations of the algorithm were required to reduce Monte Carlo errors and
obtain clear curves. Figure 7 shows the existence of a finite value 1 optimizing the efficiency of
the method (@2 = 1.6), resulting in an optimal acceptance rate lying around 0.16. This small
AOAR appears to corroborate the discussion at the end of last section. That is, it seems feasible
to optimize the efficiency of Metropolis algorithms for general hierarchical target models and this
will yield AOARs that are smaller than 0.234.
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Figure 7: Left graph: efficiency of X versus £2 . Right graph: efficiency of X versus the acceptance
rate.

5 Discussion

The results presented in this paper permit to optimize the efficiency for sampling from target
densities as described in Section 2.1 using Metropolis algorithms with proposal distributions as in
Section 2.2. This has been illustrated with numerous examples throughout the paper, which aimed
to outline the fact that applying these asymptotic results even to relatively low-dimensional target
distributions produced satisfactory conclusions. They also provided evidence that the acceptance
rate might considerably differ from 0.234, from where the importance of solving for the correct
AOAR. A drastic variation in the AOAR seems to be more common with target distributions that
are not normally distributed. In general, AOARs for multivariate normal targets appear to lie
close to 0.234, regardless of the correlation structure existing among the components. As discussed
in Section 3.3 however, even for the most regular target distributions, an extremely small scaling
term causes the algorithm to be inefficient and forces us to resort to inhomogeneous proposal
distributions. The AOAR obtained under this method is then not necessarily close to 0.234.

As mentioned previously, since our results can be used to optimize any multivariate normal target
distribution, this includes cases where the target is any level normal hierarchical model, meaning
that the variances of the distributions are fixed while the mean is random and normally distributed.
This raises the question as to whether Metropolis algorithms can be optimized when the variance of
the normal is also random, or more generally if similar results can be derived for broader hierarchical
models. The examples presented in Sections 4.2 and 4.3 seem to answer this question positively, but
AOARs appear to differ from 0.234 with increasing significance as the distribution gets further from
normality. The optimization problem for general hierarchical models is presently under investigation
(see Bédard, 2006c¢).
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