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Abstract

Markov chains are an essential tool in computational statistics because they form the ba-

sis for efficient exact and approximate inference methods, especially in Bayesian statistics.

This dissertation offers insight into the viability of approximate inference methods based on

both approximations to the transition kernels of a Markov chain for exact methods, and on

Markov chains derived from unadjusted stochastic gradient methods. This dissertation also

demonstrates how to tune computational methods based upon Markov chains in order to

optimize efficiency and accuracy for approximate and exact inference. Results are obtained

via two key theoretical methods: (1) an analysis of the perturbation sensitivity of Markov

chains using operator theory, and (2) through scaling limits of Markov chains that facilitate

a comparison to idealized continuous-time processes. The primary contributions of this dis-

sertation are: (i) a perturbation analysis of reversible geometrically ergodic Markov chains,

which characterizes the stability of the stationary distribution and rate of convergence un-

der changes in the transition dynamics; (ii) results on the geometry of probability densities,

generalized distributional integration-by-parts, and their consequences; (iii) a joint char-

acterization of the optimal proposal scaling and shaping for the random-walk Metropolis

algorithm; and (iv) a complete characterization of the statistical asymptotics of stochastic

gradient algorithms as methods for approximate inference, with recommendations on how

to tune them for accuracy and efficiency.

ii



To my partner, Snow Murdock; and to my parents, Yolanda Barna and Horia Negrea.

iii



Acknowledgements

My Ph.D. work was supported by an NSERC Vanier Canada Graduate Scholarship, an

Ontario Graduate Scholarship, an NSERC Michael Smith Foreign Study Supplement, and

by stipends from the University of Toronto and the Vector Institute. I thank Daniel Roy

and Jeffrey Rosenthal for their guidance and mentorship throughout my Ph.D. I thank

Daniel Rudolf for very helpful comments on the first version of the preprint that eventually

became chapter 1. I also thank Gareth O. Roberts, Peter Rosenthal, and Don Hadwin for

helpful discussions regarding that chapter. I thank Mufan (Bill) Li and Michaël Lalencette

for helpful discussions regarding chapters 2 and 3. I thank Jonathan Huggins and Jun Yang

for their input on chapter 4.

My time as a Ph.D. candidate was positively impacted by interactions I had with fac-

ulty members and peers. In no particular order, other faculty members at the University

of Toronto that contributed to my terrific experience here, and whom I would like to ac-

knowledge, include Jamie Stafford, Nancy Reid, Lei Sun, Radu Craiu, Stanislav Volgushev,

Patrick Brown, Zhou Zhou, Alison Gibbs, Qiang Sun, Dehan Kong, David Duvenaud, Murat

Erdogdu, Keith Knight, Sebastian Jaimungal, Ting-Kam Leonard Wong, Rohan Alexander,

and Daniel Simpson. Other peers and former peers I would like to acknowledge include, in

no particular order, Blair Bilodeau, Mahdi Haghifam, Yanbo Tang, Alex Stringer, Yuxiang

(Alex) Gao, Victor Veitch, Xuancheng (Bill) Huang, Robert Zimmerman, Ekansh Sharma,

Arvind Shrivats, Phillipe Casgraine, Zachary Naulet, Ali Al-Aradi, Alex Edmonds, and

Yasaman Mahdaviyeh.

I would also like to thank my partner, Snow Murdock; my parents, Yolanda Barna and

Horia Negrea; and my mother-in-law, Helena Wong, for their support during my graduate

studies.

iv



Contents

Attribution 1

Introduction 2

1 Perturbations of Geometrically Ergodic Reversible Markov Chains 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Geometric Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Perturbation Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Convergence Rates and Closeness of Stationary Distributions . . . . 15

1.3.4 Mean Squared Error Bounds for Monte Carlo Estimates . . . . . . . 21

1.4 Applications to Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . 23

1.4.1 Noisy and Approximate MCMC . . . . . . . . . . . . . . . . . . . . 24

1.4.2 Application to Fixed Deterministic Approximations . . . . . . . . . 26

1.4.3 Application to Monte Carlo Within Metropolis . . . . . . . . . . . . 29

1.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5.1 Proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5.2 Proofs of Theorem 1.2, Theorem 1.3 and Corollary 1.1 . . . . . . . . 36

1.5.3 Proofs of Theorem 1.4 and Theorem 1.5 . . . . . . . . . . . . . . . . 39

1.5.4 Proof of Theorem 1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



1.5.5 (L∞(π), ‖·‖L2(π))-GE is distinct from L2-GE for non-reversible chains 53

1.5.6 Proofs of Lemma 1.1 and Lemma 1.2 . . . . . . . . . . . . . . . . . . 56

2 Integration by Parts and the Geometry of Probability Density Functions 59

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2 The Univariate Gaussian Case . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3 The General Multivariate Case . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4 Geometry of Density Functions . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5 Properties of Grad-Log-Lipschitz Densities . . . . . . . . . . . . . . . . . . . 70

3 Optimal Shaping and Scaling of the Random Walk Metropolis Algorithm 76

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1.2 Outline of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1.3 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.1.4 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.1 Weak Convergence in the Skorohod Topology . . . . . . . . . . . . . 84

3.2.2 Optimal Scaling Under a Fixed Shaping . . . . . . . . . . . . . . . . 84

3.2.3 Optimal Shaping I: Variational Characterization via Spectral Gaps . 85

3.2.4 Optimal Shaping II: Optimal Spectral Gaps in Special Cases . . . . 87

3.2.5 Optimal Shaping III: Decay of Autocorrelations and Speed Limits . 90

3.2.6 High Dimensional Dependence Asymptotics . . . . . . . . . . . . . . 95

3.3 Consequences of Assumption 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4.2 A General Convergence Theorem . . . . . . . . . . . . . . . . . . . . 98

3.4.3 Verifying Premise (v) of Proposition 3.2 . . . . . . . . . . . . . . . . 100

3.5 Additional Lemmas for the Proof of Theorem 3.1 . . . . . . . . . . . . . . . 116

3.6 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.7 Proofs of Scaling and Shaping Results . . . . . . . . . . . . . . . . . . . . . 119

vi



4 Statistical Inference with Stochastic Gradient Methods 121

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.1.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.1.2 Scope of the present work . . . . . . . . . . . . . . . . . . . . . . . . 125

4.1.3 Asymptotic distributions and misspecification . . . . . . . . . . . . . 126

4.1.4 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.1.5 Additional notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2 Stochastic gradient algorithms and their scaling limits . . . . . . . . . . . . 130

4.2.1 A stochastic gradient meta-algorithm . . . . . . . . . . . . . . . . . 131

4.2.2 Scaling limit of the stochastic gradient meta-algorithm . . . . . . . . 131

4.2.3 Theoretical implications of the scaling limit . . . . . . . . . . . . . . 134

4.2.4 Iterate Averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3 Practical implications of the scaling limit . . . . . . . . . . . . . . . . . . . 135

4.3.1 Effect of mini-batch noise . . . . . . . . . . . . . . . . . . . . . . . . 136

4.3.2 Sampling from the posterior . . . . . . . . . . . . . . . . . . . . . . . 136

4.3.3 Alternative uncertainty quantification . . . . . . . . . . . . . . . . . 137

4.3.4 Mixing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.3.5 Iterate averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.4 Further applications and extensions . . . . . . . . . . . . . . . . . . . . . . . 141

4.4.1 Applications to momentum-based algorithms . . . . . . . . . . . . . 141

4.4.2 Extension to control variates . . . . . . . . . . . . . . . . . . . . . . 142

4.4.3 Extension to constrained parameter spaces . . . . . . . . . . . . . . 143

4.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.5.1 Experiment 1: Gaussian simulation study . . . . . . . . . . . . . . . 144

4.5.2 Experiment 2: Large-scale inference for airline delay data – logistic

regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.5.3 Experiment 3: Large-scale inference for airline delay data – Poisson

regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.6 Additional Definitions and Technical Results . . . . . . . . . . . . . . . . . 150

4.6.1 Bernstein-von Mises under misspecification . . . . . . . . . . . . . . 150

vii



4.6.2 Convergence modes of measures and operators . . . . . . . . . . . . 152

4.6.3 Operator Semigroups and Weak Convergence of Markov Processes . 153

4.6.4 Miscellaneous notation and definitions . . . . . . . . . . . . . . . . . 156

4.7 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.7.1 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.8 Proof of Corollary 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.9 Sufficient conditions for Assumptions 4.4 and 4.5 . . . . . . . . . . . . . . . 174

4.10 Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.11 Sketch Proof of Scaling Limit for SGLD with Control Variates . . . . . . . 179

4.12 Sketch Proof for constrained parameter spaces . . . . . . . . . . . . . . . . 180

viii



List of Tables

4.1 Settings for experiments 1, 2, & 3. When the true distribution is unknown

it is approximated by the empirical distribution on a larger version of the

dataset for these experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.2 Mixing times for experiment 1 as measured by integrated autocorrelation

times (IACT). The empirical value is computed numerically from the run.

The predicted value is computed based on the spectral gap of the limiting

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.3 Mixing times for experiment 2 as measured by integrated autocorrelation

times (IACT). The empirical value is computed numerically from the run.

The predicted value is computed based on the spectral gap of the limiting

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.4 Mixing times for experiment 3 as measured by integrated autocorrelation

times (IACT). The empirical value is computed numerically from the run.

The predicted value is computed based on the spectral gap of the limiting

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

ix



List of Figures

2.1 Visualization of Cr ∩ Cs = ∅ for r < s in the proof of Lemma 2.4 . . . . . . 69

4.1 Results of experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.2 Univariate results of experiment 2 . . . . . . . . . . . . . . . . . . . . . . . 147

4.3 Joint results of experiment 2: Parameters 1 and 4 . . . . . . . . . . . . . . . 148

4.4 Univariate results of experiment 3 . . . . . . . . . . . . . . . . . . . . . . . 149

x



1

Attribution

This dissertation incorporates three separate projects as individual chapters. For all

three included projects I was the main contributing author. In the case of collaborative

projects, I briefly discuss an assignment of credit. Chapter 1 corresponds to [83], which was

co-authored with Jeffrey S. Rosenthal. I was the primary contributor to both the proofs

and writing of that work. Rosenthal’s contributions were the original high level idea of

the project, which he had suggested I work on, and his supervisory role where he provided

advise for the direction of the project, discussions and refinements of proof techniques, and

advise on framing of the results. Chapters 2 and 3 correspond to [82], of which I am the sole

author. Chapter 4 corresponds to [84], a collaborative project between myself, Jonathan H.

Huggins, Jun Yang, Daniel M. Roy, and Haoyue Feng. Huggins is responsible for the original

empirical discovery that stochastic gradient methods can be used for misspecification-robust

inference that that work is based on. I proposed and developed the scaling limit analysis

and the overall direction of that work as a basis upon which to explain Huggins’ empirical

findings, and the scope of the project grew based upon my results. Huggins, Yang, and Roy

contributed to the framing, direction, and literature review of that work, and to planning

of experiments, though I am responsible for all final aspects. Feng, Huggins’ Ph.D. student,
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Introduction

Markov chains are an essential tool in computational statistics because they form the

basis for efficient exact and approximate inference methods, especially in Bayesian statistics.

This dissertation offers insight into the viability of approximate inference methods based on

both approximations to the transition kernels of a Markov chain for exact methods, and on

Markov chains derived from unadjusted stochastic gradient methods. This dissertation also

demonstrates how to tune computational methods based upon Markov chains in order to

optimize efficiency and accuracy for approximate and exact inference. Results are obtained

via two key theoretical methods: (1) an analysis of the perturbation sensitivity of Markov

chains using operator theory, and (2) through scaling limits of Markov chains that facilitate

a comparison to idealized continuous-time processes. The primary contributions of this dis-

sertation are: (i) a perturbation analysis of reversible geometrically ergodic Markov chains,

which characterizes the stability of the stationary distribution and rate of convergence un-

der changes in the transition dynamics; (ii) results on the geometry of probability densities,

generalized distributional integration-by-parts, and their consequences; (iii) a joint char-

acterization of the optimal proposal scaling and shaping for the random-walk Metropolis

algorithm; and (iv) a complete characterization of the statistical asymptotics of stochastic

gradient algorithms as methods for approximate inference, with recommendations on how

to tune them for accuracy and efficiency.

Chapter 1 establishes a number of results on the stability of reversible geometrically

ergodic Markov chains under perturbations of the transition kernel and applications of

these results to approximate Markov chain Monte Carlo methods. The tools used to prove

our results are based on the operator-theoretic properties of reversible Markov chains. The

2



3

results provide a theoretical justification to the intuition that small changes in the transition

kernel should not affect the performance of MCMC methods too dramatically. Furthermore,

we find that the Markov chains that mix faster are also more robust to perturbations.

The results also include quantitative bounds on the mean-squared error for Monte Carlo

estimates derived from perturbed or approximate Markov chains, and results that allow one

to measure the approximation error due to perturbation under several different important

metrics on the space of probability distributions. The results are applied to analyze several

common approximations used in Bayesian inference.

Chapter 3 establishes a scaling limit for the random-walk Metropolis (RWM) algorithm

that includes dependence between coordinates in order to characterize both the optimal

RWM proposal scaling and the optimal RWM proposal covariance structure. This is done

via a scaling limit for a block-independent target distribution, with in-block dependence,

and between-block independence. We provide a variational characterization of the optimal

proposal shaping matrix, and a formula for the optimal scaling. The optimal scaling, for

any fixed shaping matrix, leads to an acceptance rate of ≈ 0.234 as in the seminal work of

Roberts et al. [94]. We show that when the blocks are rotation-scalings of independent and

identical components, that the optimal shaping problem can be solved explicitly, yielding

the same recommendation as in Roberts and Rosenthal [97], to tune RWM so that the

covariance of the proposals is proportional to the covariance of the target distribution. More

generally, we show that their recommendation optimizes the instantaneous autocorrelation

of linear functions in the the scaling limit, while a simple formula for true optimal solution is

intractable. These results are informative to practitioners regarding how to tune the RWM

algorithm to optimize sampling efficiency.

As a mathematical requirement to derive the results in Chapter 3, we developed several

independently interesting results on the geometry of probability density functions and on

their corresponding integration-by-parts formulae. As these results are of independent in-

terest, they have been split off as their own chapter of this dissertation, Chapter 2. These

results characterize regularity in the geometry of probability density functions that have

bounded gradients on (almost) every level set, provide a general distributional integration

by parts formula: Ef(X)∇ log π(X) = −E∇f(X) for X ∼ π that applies to as broad of
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a collection of densities π and test functions f as is possible, and is proven using geomet-

ric measure theory. We use the formula to derive several properties of densities such that

∇ log π is Lipschitz continuous, including the remarkable fact that if ∇ log π is L-Lipschitz

and X ∼ π then ∇ log π(X) is sub-Gaussian with dimension-free sub-Gaussian constant, L.

These results are of broader interest because these integration by parts formulae are widely

useful, and the random variable ∇ log π(X) appears in the analysis of many algorithms used

in computational statistics.

Chapter 4 establishes a scaling limit for stochastic gradient algorithms, and applies the

scaling limit to understand how the tunings of these methods affect their utility for ap-

proximate Bayesian inference. We show how to tune these methods to match the statistical

asymptotics of the posterior distribution, of the MLE, or other targets that adjust the poste-

rior for model-misspecification such as the bagged posterior. Our scaling limit provides not

only a limiting stationary distribution, but a full characterization of the paths of the process,

making it stronger than existing results, and allowing us to provide a number of additional

insights to auxiliary quantities such as mixing times and iterate averages. The theoretical

results obtained via our scaling limit theory are supported by empirical results based on

both real and simulated data. The results are useful to practitioners as they demonstrate

how stochastic gradient methods can be implemented to achieve or interpreted in terms of

various sampling desiderata, including very rapid approximate inference with tunable levels

of adjustment for model misspecification.



Chapter 1

Perturbations of Geometrically

Ergodic Reversible Markov Chains

1.1 Introduction

The use of Markov Chain Monte Carlo (MCMC) arises from the need to sample from

probabilistic models when simple Monte Carlo is not possible. The procedure is to simulate

a positive recurrent Markov process where the stationary distribution is the measure one

intends to sample, so that the dynamics of the process converge to the distribution required.

Temporally correlated samples may then be used to approximate various expectations; see

e.g. Brooks et al. [18] and the many references therein. Examples of common applications

may be found in hierarchical models, spatio-temporal models, random networks, finance,

bioinformatics, etc.

Often, however, the transition dynamics of the Markov Chain required to run this process

exactly are too computationally expensive due to prohibitively large datasets, intractable

likelihoods, etc. In such cases it is tempting to instead approximate the transition dynam-

ics of the Markov process in question, either deterministically as in the low-rank Gaussian

approximation of Johndrow et al. [52], or stochastically as in the noisy Metropolis–Hastings

procedure of Alquier et al. [2]. It is important then to understand whether these approx-

imations will yield stable and reliable results. This chapter aims to provide quantitative

5



CHAPTER 1. 6

tools for the analysis of these algorithms. Since the use of approximation for the transition

dynamics may be interpreted as a perturbation of the transition kernel of the exact MCMC

algorithm, we focus on bounds on the convergence of perturbations of Markov chains.

The primary purpose of this chapter is to extend existing quantitative bounds on the

errors of approximate Markov chains from the uniformly ergodic case in [52] to the geomet-

rically ergodic case (a weaker condition, for which multiple equivalent definitions may be

found in Roberts and Rosenthal [96]). Our work will extend the theoretical results of [52]

in the case that the exact chain is reversible, replacing the total variation metric with L2

distances, and relaxing the uniform contraction condition to L2(π)-geometric ergodicity.

1.1.1 Geometric Ergodicity

When analyzing the performance of exact MCMC algorithms, it is natural to decompose

the error in approximation of expectations into a component for the transient phase error

of the process and one for the Monte-Carlo approximation error. The former may be

interpreted as the bias due to not having started the process in the stationary distribution.

A Markov chain is geometrically ergodic if, from a suitable initial distribution ν, the marginal

distribution of the nth iterate of the chain converges to the stationary distribution, with

an error that decays as C(ν)ρn for some ρ ∈ (0, 1) and some constant depending on the

initial distribution C(ν), in some suitable metric on the space of probability measures.

The geometric ergodicity condition essentially dictates that the transient phase error of

the nth sample decays exponentially quickly in n. The chain is uniformly (geometrically)

ergodic if C can be chosen independently of the initial distribution. Geometric ergodicity

is a desirable property as it ensures that cumulative transient phase error asymptotically

does not dominate the Monte-Carlo error, while still being less restrictive than the uniform

ergodicity condition, which often fails when the state space is not finite or compact (for

example, an AR(1) process is geometrically ergodic but not uniformly ergodic).

When using approximate MCMC methods, one desires that the approximation preserves

geometric ergodicity, so that convergence to stationarity is still fast and the transient phase

error goes to zero quickly. This is an important issue, especially since Medina–Aguayo et al.

[74] have shown that intuitive approximations such as Monte-Carlo within Metropolis may
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lead to transient approximating chains.

1.1.2 Outline of the Chapter

The outline of this chapter is as follows. Section 1.2 reviews related work. Then Sec-

tion 1.3 contains our main theoretical results and their proofs. Theorem 1.1 therein provides

bounds on the distance between stationary distributions, and gives a sufficient condition for

the perturbed chain to be geometrically ergodic in L2(π), where π is the stationary distribu-

tion of the unperturbed chain. Theorem 1.2 and Theorem 1.3 give sufficient conditions for

the perturbed chain to be geometrically ergodic according to several other variants of the

definition of geometric ergodicity (for different metrics and families of initial distributions),

and provide quantitative rates when possible. The remainder of Section 1.3 establishes

bounds on autocorrelations, and mean-squared-error for Monte Carlo estimates of expected

values computed with the perturbed chain.

Finally, Section 1.4 considers noisy and/or approximate Metropolis–Hastings algorithms.

It provides sufficient conditions that one can check in order for our results from Section 1.3

to be applied. We use this to study Metropolis–Hastings with deterministic approximations

to the target density, as well as the Monte Carlo within Metropolis algorithm, as in Medina–

Aguayo et al. [73], and provide some examples of how these types of approximations might

arise in practice.

1.2 Related Work

This section presents a brief review of related work, discussing convergence of perturbed

Markov chains in the uniformly ergodic and geometrically ergodic cases with varying metrics

and additional assumptions. The results in the literature have a wide range of assumptions

required and a wide range of scopes for their various results. The results for uniformly

ergodic chains have a simpler aesthetic, in line with what intuition for finite state space

chains might inspire, as they do not require drift and minorization conditions to state. Our

results cover the geometrically ergodic and reversible case, and use properties of reversibility

to match the simpler aesthetic found in the literature for the uniformly ergodic case.
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Close to the present work, Johndrow et al. [52] derive perturbation bounds to assess the

robustness of approximate MCMC algorithms. The assumptions upon which their results

rely are: the original chain is uniformly contractive in the total variation norm (this im-

plies uniform ergodicity); and the perturbation is sufficiently small (in the operator norm

induced by the total variation norm). The main results of their work are: the perturbed

kernel is uniformly contractive in the total variation norm; the perturbed stationary distri-

bution is close to the original stationary distribution in total variation; explicit bounds on

the total variation distance between finite time approximate sampling distributions and the

original stationary distribution; explicit bounds on total variation difference between the

original stationary distribution and the mixture of finite time approximate sampling dis-

tributions; and explicit bounds on the MSE for integral approximation using approximate

kernel and the true kernel. The results derived by [52] are applied within the same work to

a wide variety of approximate MCMC problems including low rank approximation to Gaus-

sian processes and sub-sampling approximations. In other work, Johndrow and Mattingly

[50], use intuitive coupling arguments to establish similar results under the same uniform

contractivity assumption.

Further results on perturbations for uniformly ergodic chains may be found in Mitro-

phanov [77]. This work is motivated in part by numerical rounding errors. Various appli-

cations of these results may be found in Alquier et al. [2]. The only assumption of [77] is

that the original chain is uniformly ergodic. The work is unique in that it makes no as-

sumption regarding the proximity of the original and perturbed kernel, though the level of

approximation error does still scale linearly with the total variation distance of the original

and perturbed kernels. The main results are: explicit bounds on the total variation dis-

tance between finite time sampling distributions; and explicit bounds on the total variation

distance between stationary distributions.

The work of Roberts et al. [99] (see also Breyer et al. [17]) is also motivated by numerical

rounding errors. The perturbed kernel is assumed to be derived from the original kernel by a

round-off function, which e.g. maps the input to nearest multiple of 2−31. In such cases, the

new state space is at most countable while the old state space may have been uncountable

and so the resulting chains have mutually singular marginal distributions at all finite times
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and mutually singular stationary distributions (if they have stationary distributions at all).

The results of [99] require the analysis of Lyapunov drift conditions and drift functions

(which we will avoid by working in an appropriate L2 space). The key assumptions in [99]

are: the original kernel is geometrically ergodic, and V is a Lyapunov drift function for

the original kernel; the original and perturbed transition kernels are close in the V -norm;

the perturbed kernel is defined via a round-off function with round-off error uniformly

sufficiently small; and log V is uniformly continuous. The main results of the work include

that: if the perturbed kernel is sufficiently close in the V -norm then geometric ergodicity

is preserved; if the drift function, V , can be chosen so that log V is uniformly continuous

and if the round-off errors can be made arbitrarily small then the kernels can be made

arbitrarily close in the V -norm; explicit bounds on the total variation distance between

the approximate finite-time sampling distribution and the true stationary distribution; and

sufficient conditions for the approximating stationary distribution to be arbitrarily close

in total variation to the true stationary distribution. They also prove results that do not

require closeness in the V -norm, or even absolute continuity of the perturbed transitions;

in such cases they show that a suitable drift condition on the original chain together with a

uniformly small round-off error yields perturbed chains which are geometrically ergodic, and

that the stationary measure varies continuously under such perturbations in the topology

of weak convergence.

Pillai and Smith [89] provide bounds in terms of the Wasserstein topology (cf. Gibbs

[36]). Their main focus is on approximate MCMC algorithms, especially approximation

due to sub-sampling from a large dataset (e.g., when computing the posterior density).

Their underlying assumptions are: the original and perturbed kernels satisfy a series of

drift-like conditions with shared parameters; the original kernel has finite eccentricity for

all states (where eccentricity of a state is defined as the expected distance between the

state and a sample from the stationary distribution); the Ricci curvature of the original

kernel has a non-trivial uniform lower bound on a positive measure subset of the state

space; and the transition kernels are close in the Wasserstein metric, uniformly on the

mentioned subset. Their main results under these assumptions are: explicit bounds on

the Wasserstein distance between the approximate sampling distribution and the original
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stationary distribution; explicit bounds on the total variation distance of the original and

perturbed stationary distributions and bounds on the mixing times of each chain; explicit

bounds on the bias and L1 error of Monte Carlo approximations; decomposition of the error

from approximate MCMC estimation into components from burn-in, asymptotic bias, and

variance; and rigorous discussion of the trade-off between the above error components.

Rudolf and Schweizer [104] also use the Wasserstein topology. They focus on approx-

imate MCMC algorithms, with applications to auto-regressive processes and stochastic

Langevin algorithms for Gibbs random fields. Their results use the following assumptions:

the original kernel is Wasserstein ergodic; a Lyapunov drift condition for perturbed kernel is

given, with drift function Ṽ ; Ṽ has finite expectation under the initial distribution; and the

perturbation operator is uniformly bounded in a Ṽ -normalized Wasserstein norm. Their

main results are: explicit bounds on the Wasserstein distance and weighted total variation

distance between the original and perturbed finite time sampling distributions; and explicit

bounds on the Wasserstein distance between stationary distributions.

Ferré et al. [35] build upon Keller and Liverani [56] to provide perturbation results for

V -geometrically ergodic Markov chains using a simultaneous drift condition. They show

that any perturbation to the transition kernel which shares its drift condition has a sta-

tionary distribution, is also V -geometrically ergodic, and that the perturbed stationary

distributions is close to the original one. The assumption of a shared drift condition may

be difficult to verify or not hold in some cases of interest related to approximate or noisy

Markov chain Monte Carlo. Hervé and Ledoux [41] considers finite rank approximations

to a transition kernel. That work gives sufficient conditions for approximations to inherit

V -geometric ergodicity and provides a quantitative relationship between the rates of conver-

gence and bounds the total variation distance between stationary measures. It also provides

sufficient conditions for V -geometric ergodicity of a family of finite-rank approximations to

a transition kernel to guarantee geometric ergodicity of the kernel, and provides a quan-

titative rates of convergence. In both of these results, as in [35], the results depend on a

simultaneous drift condition for the approximations and the original kernel.

Each of the above works demonstrate bounds on various measures of error from using

approximate finite-time sampling distributions and approximate ergodic distributions to
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calculate expectations of functions. On the other hand, the assumptions underlying the

results vary dramatically. The results for uniformly ergodic chains are based on simpler

and more intuitive assumptions than those for geometrically ergodic chains. Our work

extends these results to geometrically ergodic chains and perturbations while preserving

essentially the same level of simplicity in the assumptions. In particular we avoid the need

to identify a Lyapunov drift condition, and our assumptions are expressed directly in terms

of transition kernels, rather than a relationship between drift conditions which they satisfy.

1.3 Perturbation Bounds

This section extends the main results from Johndrow et al. [52] to the L2(π)-geom-

etrically ergodic case for, assuming the perturbation P − Pε has bounded L2(π) operator

norm.

1.3.1 Definitions and Notation

Let π be a probability measure on a measurable space (X ,Σ). We make considerable

use of the following norms on signed measures and their corresponding Banach spaces.

‖λ‖TV = sup
A∈Σ
|λ(A)| M(Σ) = {bounded signed measures on (X ,Σ)}

‖λ‖L2(π) =
(∫ (dλ

dπ

)2
dπ
)1/2

L2(π) =
{
ν � π : ‖ν‖L2(π) <∞

}
‖·‖L2,0(π) = ‖·‖L2(π) |L2,0(π) L2,0(π) = {ν ∈ L2(π) : ν(X ) = 0}

‖λ‖L1(π) =
∫ ∣∣∣∣dλdπ

∣∣∣∣ dπ L1(π) =
{
ν � π : ‖ν‖L1(π) <∞

}
‖λ‖L∞(π) = ess sup

X∼π

dλ
dπ (X) L∞(π) =

{
ν � π : (∃b > 0)

(∣∣∣∣dνdπ

∣∣∣∣ < b π-a.e.
)}

Note that L2,0(π) is a complete subspace of L2(π). Let

M+,1 = {λ ∈M : [∀A ∈ Σ λ(A) ≥ 0] and [λ(X ) = 1]}

be the set of probability measures on (X ,Σ). Note that for any probability measure, π,

L∞(π) ⊂ L2(π) ⊂ L1(π) ⊂ M(Σ), though in general they are not complete subspaces of
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each other when their corresponding norms are not equivalent. For a norm, ‖·‖ on a vector

space, we also write ‖·‖ the corresponding operator norm on the space of bounded linear

operators from V to itself, B(V ).

Definition 1.1 (Geometric Ergodicity). Let P be the kernel of a positive recurrent Markov

chain with invariant measure π. Let λ be any measure with π � λ, and suppose that

ρTV, ρ1, ρ2 ∈ (0, 1). Then:

(i) P is π-a.e.-TV geometrically ergodic with factor ρTV if there exists CTV : X →

R+ such that for π-almost every x ∈ X and for all n ∈ N:

‖δxPn − π‖TV ≤ CTV(x)ρnTV .

The optimal rate for π-a.e.-TV geometric ergodicity is the infimum over factors for

which the above definition holds;

ρ?TV = inf {ρ > 0 s.t. ∃C : X → R+ with π({x : C(x) <∞}) = 1 and

∀n ∈ N, π-a.e. x ∈ X ‖δxPn − π‖TV ≤ C(x)ρn} .
(1.1)

(ii) P is L2(λ)-geometrically ergodic with factor ρ2 if P : L2(λ) → L2(λ) and there

exists C2 : L2(λ) ∩M+,1 → R+ such that for every ν ∈ L2(λ) ∩M+,1 and for all

n ∈ N:

‖νPn − π‖L2(λ) ≤ C2(ν)ρn2 .

The optimal rate for L2(λ)-geometric ergodicity is the infimum over factors for which

the above definition holds;

ρ?2 = inf
{
ρ > 0 s.t. ∃C : L2(λ) ∩M+,1 → R+ with

∀n ∈ N, ν ∈ L2(λ) ∩M+,1 ‖νPn − π‖L2(λ) ≤ C(ν)ρn
}
.

Remark 1.1. If P is π-reversible and aperiodic then P is L2(π)-geometrically ergodic if and

only if it is π-a.e. TV geometrically ergodic, as per Roberts and Rosenthal [96]. In this case

the optimal rate of L2(π)-geometric ergodicity, ρ?2, is equal to the spectral radius of P |L2,0(π),
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In this case, the spectrum of P is a subset of [−ρ?2, ρ?2] ∪ {1}, and P is L2(π)-geometrically

ergodic with factor ρ?2 and C(µ) = ‖µ− π‖L2(π). For more details see Proposition 1.2, and

[96]. /

We abbreviate geometric ergodicity and geometrically ergodic as “GE” for brevity going

forward.

1.3.2 Assumptions

We assume throughout that P is the transition kernel for a Markov chain on a countably

generated state space X with σ-algebra Σ, which is reversible with respect to a stationary

probability measure, π, and is π-irreducible and aperiodic. We call the Markov chain

induced by P the “original” chain. The π-reversibility of P makes it natural to work in

L2(π) since, in this case, P is a self-adjoint linear operator on a Hilbert space. This allows

us access to the rich, elegant, and mature spectral theory of such operators. See for example

[102, Chapter 12] and [28, Chapter 22]. We further assume that P is L2(π)-geometrically

ergodic with factor 0 < (1 − α) < 1. Equivalent definitions of L2(π)-geometrically ergodic

are given in Proposition 1.2. This assumption is weaker than the Doeblin condition used

by [52], which implies uniform ergodicity.

Next, we assume that Pε is a second, “perturbed” transition kernel, such that

‖P − Pε‖L2(π) ≤ ε

for some fixed ε > 0, and that Pε|L2(π) ∈ B(L2(π)), i.e. that the perturbed transition kernel

maps L2(π) measures to L2(π) measures. The norm condition quantifies the intuition

that the perturbation is “small”. We assume that Pε is π-irreducible and aperiodic. We

demonstrate (in Theorem 1.1) that under these assumptions Pε has a unique stationary

distribution, denoted by πε, with πε ∈ L2(π).

Note that when µ ∈ L1(π) we have ‖µ− π‖TV = 1
2 ‖µ− π‖L1(π). On the other hand,

‖·‖TV applies to all bounded measures, while ‖·‖L1(π) applies only to the subspace of L1(π)

measures. Note also that if π ∼ πε (the two measures are mutually absolutely continuous),

then L1(π) and L1(πε) are equal as spaces and their norms are always equal, so in this case
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we need not distinguish between them.

To summarize, we assume that

Assumption 1.1 (Assumptions of Section 1.3.2).
• P is a Markov kernel that is

– π-reversible for a prob. meas. π,

– irreducible and aperiodic

– L2(π)-GE with factor (1− α),

• Pε is a Markov kernel that is

– irreducible and aperiodic,

– Pε : L2(π)→ L2(π), and

– ‖P − Pε‖L2(π) < ε.

The assumption that Pε : L2(π)→ L2(π) and that ‖Pε‖L2(π) <∞ may seem difficult to

verify. However, the following proposition shows us that it is satisfied for Pε constructed

based on the Metropolis–Hastings algorithm with suitable jump kernels. As long as the

jump kernel, J , has ‖J‖L2(π) < ∞ then it will be satisfied. Therefore, this assumption

is not excessively restrictive for MCMC applications. The jump kernel, J , describes the

conditional distribution of a new point in the chain proposed from x given that the proposal

is accepted, and is related to the proposal kernel, Q, by α(x)J(x,A) =
∫
A a(x, y)Q(x, dy)

where a(x, y) is the Metropolis–Hastings acceptance ratio and α(x) =
∫
X a(x, y)Q(x, dy) is

the implied local jump-intensity.

Proposition 1.1. If Pε(x, ·) = (1 − α(x))δx + α(x)J(x, ·) with α : X → [0, 1] measurable,

and J : L2(π)→ L2(π) and ‖J‖L2(π) <∞, then

‖Pε‖L2(π) ≤ 1 + ‖J‖L2(π) . (1.2)

Proof of Proposition 1.1. Consider the operator A on L2(π) given by the formula [νA](C) =∫
C α(x)ν(dx) for all measurable sets C. Its adjoint, A′, is given by the formula [A′f ](x) =

α(x)f(x) for all x ∈ X and f ∈ L′2(π). Since α : X → [0, 1], then A′ : L′2(π)→ L′2(π) with

‖A′‖L′2(π) ≤ 1. Thus A : L2(π)→ L2(π) with ‖A‖L2(π) ≤ 1. The same also holds for I −A.

Now, Pε = A+ (I −A)J , so ‖Pε‖L2(π) ≤ 1 + ‖J‖L2(π) .

Verifying that ‖P − Pε‖L2(π) is finite, and sufficiently small will be the main analytic

burden faced when trying to apply our results to more general settings. The development
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of further tools to determine whether ‖P − Pε‖L2(π) is finite and to bound it quantitatively

would be an interesting line of future research.

1.3.3 Convergence Rates and Closeness of Stationary Distributions

Theorem 1.1 (Geometric ergodicity of the perturbed chain and closeness of the station-

ary distributions in original norm, L2(π)). Under the assumptions of Section 1.3.2, if in

addition ε < α, then πε ∈ L2(π),

0 ≤ ‖π − πε‖L2(π) ≤
ε√

α2 − ε2
,

Pε is L2(π)-geometrically ergodic with factor 1 − (α − ε), and for any initial probability

measure µ ∈ L2(π)

‖µPnε − π‖L2(π) ≤ (1− (α− ε))n ‖µ− πε‖L2(π) + ε√
α2 − ε2

,

The proof of this result is the content of Section 1.5.1. We follow the derivation in [52]

with minimal structural modification, though the technicalities must be handled differently

and additional theoretical machinery is required. We use the fact that the existence of a

spectral gap for the restriction of P to L2,0(π) yields an inequality of the same form as

uniform contractivity condition, but in the L2(π)-norm as opposed to the total variation

norm (cf. Theorem 2.1 of Roberts and Rosenthal [96]).

Remark 1.2. Bounds on the differences between measures in L2(π)-norm can be converted

into bounds on the total variation distance since, by Cauchy-Schwarz, for any measure λ

and any signed measure ν ∈ L2(λ) we have ‖ν‖TV = 1
2 ‖ν‖L1(λ) ≤

1
2 ‖ν‖L2(λ). Thus, for

example, under the assumptions of Theorem 1.1,

‖µPnε − π‖TV ≤
1
2

[
(1− (α− ε))n ‖µ− πε‖L2(π) + ε√

α2 − ε2

]
.

Similarly, under the assumptions of Theorem 1.1, we find that Pε is (L2(π), ‖·‖TV)-GE with

factor 1− (α− ε) (see Definition 1.2 below). /
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In some situations, such as the computation of mean-squared errors in Theorem 1.5,

it may be inconvenient or impossible to use to use the L2(π) norm when studying some

aspects of Pε. The next theorem will allow us to “switch” to other norms which may be

more natural for a given task. First, however, we need to introduce one more notion of

geometric ergodicity.

Definition 1.2 ((V, |||·|||)-Geometric Ergodicity). Let P be the kernel of a positive recurrent

Markov chain with invariant measure π. Let V be a vector space of signed measures on

(X ,Σ) containing π, and let |||·||| be a norm on V (for which V may not be complete).

P is (V, |||·|||)-geometrically ergodic with factor ρ if there exists C : V ∩M+,1 → R+

such that for every ν ∈ V ∩M+,1 and for all n ∈ N:

|||νPn − π||| ≤ C(ν)ρn .

The optimal rate for (V, |||·|||)-geometric ergodicity is the infimum over factors for which the

above definition holds;

ρ? = inf {ρ > 0 : ∃C : V ∩M+,1 → R+ s.t. ∀n ∈ N, ν ∈ V ∩M+,1 |||νPn − π||| ≤ C(ν)ρn} .

We will be interested in this definition for the cases that V = L∞(π) and |||·||| is either

‖·‖L2(π) or ‖·‖L1(π).

Remark 1.3 (Relationships between (L∞(λ), ‖·‖Lp(λ))-GE, a.e.-TV-GE, and L2(λ)-GE).

Clearly if P is L2(λ)-GE with factor ρ2 then it is also (L∞(λ), ‖·‖L2(λ))-GE with factor ρ2.

Conversely Roberts and Tweedie [100] show that if P is (L∞(π), ‖·‖L2(π))-GE with factor ρ2

then it is also a.e.-TV-GE with some factor ρTV ∈ (0, 1). However the factor for a.e.-TV-

GE may in fact be worse than the factor of (L∞(π), ‖·‖L2(π))-GE or (L∞(π), ‖·‖L1(π))-GE.

Baxendale [9] gives a detailed exposition on the barriers to the comparison of factors for

geometric ergodicity given by different equivalent definitions.

In Section 1.5.5 we give an example where the optimal rates for L2(π)-GE and for

(L∞(π), ‖·‖L2(π))-GE are distinct when P is not reversible. If P is π-reversible then the

factors for L2(π)-GE, (L∞(π), ‖·‖L2(π))-GE, and (L∞(π), ‖·‖L1(π))-GE must be the same.
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This result combines a comment and Theorem 3 of [100], both stated but not proved. The

formal statement of that result and its proof may be found in Section 1.5.6.

Finally, note that by definition L2(π)-GE is equivalent to (L2(π), ‖·‖L2(π)) with the same

coefficient functions and factors, and that a.e.-TV-GE is equivalent to (D, ‖·‖TV)-GE where

we can take D = span ({π} ∪ {δx : x ∈ X \N, r ∈ R}) for some π-null set N . The null set,

N , can be taken to be the same for all factors ρ by taking the union over the null sets for

factors ρ ∈ Q (since a countable union of null sets is still null). /

Lemma 1.1 (Characterization of optimal rates for (V, |||·|||)-GE chains). If P is (V, |||·|||)-GE

with stationary measure π then the optimal rate for (V, |||·|||)-GE is equal to

sup
µ∈V ∩M+,1

lim sup
n→∞

|||µPn − π|||1/n . (1.3)

The proof of this result is found in Section 1.5.6.

Remark 1.4. The quantity lim supn→∞ |||µPn − π|||1/n is the local spectral radius of P −Π

at µ with respect to |||·|||, where Π is the rank-1 kernel defined by Π(x,A) = π(A) for all

x ∈ X and A ∈ Σ. /

Lemma 1.2 (L2(π)-GE, (L∞(π), ‖·‖L2(π))-GE, and (L∞(π), ‖·‖L1(π))-GE are equivalent for

π-reversible chains, with equal optimal rates.). Let ρ ∈ [0, 1). The following are equivalent

for a π-reversible Markov Chain P :

(i) P is (L∞(π), ‖·‖L1(π))-geometrically ergodic with optimal rate ρ,

(ii) P is (L∞(π), ‖·‖L2(π))-geometrically ergodic with optimal rate ρ,

(iii) P is L2(π)-geometrically ergodic with optimal rate ρ,

(iv) The spectral radius of P |L2,0(π) is equal to ρ.

Remark 1.5. Since either of (iii) or (iv) are equivalent to all the conditions listed in Roberts

and Rosenthal [96, Theorem 2.1], indeed all of the items listed above are equivalent to all

the items listed in their result. We only included (iii) and (iv) here for brevity, and since

they are the ones most relevant to the present work. Moreover, all of these conditions are
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implied by any of the equivalent conditions for π-a.e.-TV-GE in Roberts and Rosenthal [96,

Proposition 2.1] (though with possibly different optimal rates for each condition therein). /

The proof of this result is found in Section 1.5.6.

Theorem 1.1 controls the convergence of the perturbed chain Pε in terms of the “original”

norm (from L2(π)). We also demonstrate that Pε is geometrically ergodic in the L2(πε)

norm, as this would also allow us to use the equivalences in [96]. The following two results

allow us to transfer the geometric ergodicity of Pε in L2(π) to other notions of geometric

ergodicity. Theorem 1.3 handles the case that the perturbed kernel is reversible, while

Theorem 1.2 handles both that the perturbed kernel is reversible or non-reversible.

Theorem 1.2 (Geometric ergodicity of the perturbed chain in the other norms; L1(πε),

L2(πε), total variation). Under the assumptions of Section 1.3.2, if ε < α, then:

(i) Pε is a.e.-TV-geometrically ergodic with some factor ρTV ∈ (0, 1), and

(ii) Pε is (L∞(πε), ‖·‖L1(πε))-GE with factor ρ1 = (1− (α− ε)) and C1(µ) = ‖µ− πε‖L2(π),

and

(iii) If π ∈ L∞(πε) then Pε is L2(πε)-GE with factor ρ2 = (1− (α− ε)) and with

C2(µ) = ‖π‖1/2L∞(πε) ‖µ− π‖L2(π) .

The proof of this result is found in Section 1.5.2.

Example 1.1. For example, consider perturbations of a Gaussian AR(1) process. Let

Zi
iid∼ N (0, σ2) and let Wi

iid∼ µ. Take

Xt+1|Xt = (1− α)Xt + Zt+1

Xε
t+1|Xε

t = (1− α)Xε
t +Wt+1.

(1.4)

Then the original chain, {Xt}t∈N is not uniformly ergodic, but it is geometrically ergodic.

Hence, the results of [2, 52] do not apply. The stationary measure of the exact chain is

π ≡ N (0, σ2

α(2−α)), it is reversible, and the rate of geometric ergodicity is (1 − α). Note
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that the perturbed chain, which we will call a µ-AR(1) process, may not be reversible and

whether it is geometrically ergodic generally depends on the distribution µ.

Now, letting φσ2 be the N (0, σ2) density, for any µ with dµ
dφσ2

∈ [1− ε, 1 + ε], ,

‖P − Pε‖2L2(π) =
∫ ∞
−∞

∫ ∞
−∞

(
µ(y − (1− α)x)

π(y) − φσ2(y − (1− α)x)
π(y)

)2
π(y)dy π(x)dx

≤
∫ ∞
−∞

∫ ∞
−∞

ε2
(
φσ2(y − (1− α)x)

π(y) dy

)2
π(y)dy π(x)dx

= ε2 ‖P‖L2(π)

= ε2

(1.5)

Therefore, when ε < α we can extend the geometric ergodicity of the Gaussian AR process

to the µ − AR(1) process using Theorem 1.2. We can also bound the discrepancy of the

stationary measure of the perturbed chain from that N (0, σ2

α(2−α)) using Theorem 1.1. The

subsequent results, Corollary 1.1 and Theorem 1.4 of this section may also be applied to this

example to bound the discrepancy between the marginal distributions of the µ-AR(1) from

a N (0, σ2

α(2−α)) at any time, as well as the approximation error of the time-averaged law of

the µ-AR(1) from N (0, σ2

α(2−α)) . /

Theorem 1.3 (L2(πε)-Geometric ergodicity of the perturbed chain, reversible case). Under

the assumptions of Section 1.3.2, if ε < α, and Pε is πε-reversible, then Pε is L2(πε)-GE

with factor ρ2 = (1− α+ ε) and coefficient function C(ν) = ‖ν‖L2(πε).

The proof of this result is found in Section 1.5.2.

Corollary 1.1 (Closeness of stationary distributions in L2(πε)). Suppose that ε < α, and

that ‖P − Pε‖L2(πε) ≤ ϕ. Then

(i) if Pε is πε reversible, and if ϕ < α− ε then

‖π − πε‖L2(πε) ≤
ϕ√

(α− ε)2 − ϕ2 ,

and for any µ ∈ L2(πε)

‖µPnε − π‖L2(πε) ≤ (1− (α− ε))n ‖µ− πε‖L2(πε) + ϕ√
(α− ε)2 − ϕ2 ,
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(ii) if π ∈ L∞(πε) and ϕ < 1, then

‖π − πε‖L2(πε) ≤
ϕ+ ‖π‖1/2L∞(πε)

ε√
α2−ε2 (1− (α− ε))

1− ϕ ,

and for any µ ∈ L∞(πε)

‖µPnε − π‖L2(πε) ≤ (1− (α− ε))n ‖π‖1/2L∞(πε) ‖µ− πε‖L2(πε)

+
ϕ+ ‖π‖1/2L∞(πε)

ε√
α2−ε2 (1− (α− ε))

1− ϕ ,

The proof of this result is found in Section 1.5.2. We turn our attention to bounds

on the error of estimation measures of the form 1
t

∑t−1
k=0 µP

k, and estimates of the form
1
t

∑t−1
k=0 f(Xk). Firstly, when computing Monte Carlo estimates, the bias is controlled by a

time-averaged marginal distribution of the form 1
t

∑t−1
k=0 µP

k
ε . This leads us to the following

result.

Theorem 1.4 (Convergence of Time-Averaged Marginal Distributions). Under the assump-

tions of Section 1.3.2, suppose ε < α and πε ∈ L2(π). Then for any probability distribution

µ ∈ L2(π),

∥∥∥∥∥π − 1
t

t−1∑
k=0

µP kε

∥∥∥∥∥
L2(π)

≤ 1− (1− (α− ε))t
t(α− ε) ‖πε − µ‖L2(π) + ε√

α2 − ε2

If additionally, ‖P − Pε‖L2(πε) ≤ ϕ then

(i) if Pε is πε-reversible, and ϕ < α− ε then

∥∥∥∥∥π − 1
t

t−1∑
k=0

µP kε

∥∥∥∥∥
L2(πε)

≤ 1− (1− (α− ε))t
t(α− ε) ‖πε − µ‖L2(πε) + ϕ√

(α− ε)2 − ϕ2

(ii) if π ∈ L∞(πε) and ϕ < 1, and if µ ∈ L∞(πε) then

∥∥∥∥∥π − 1
t

t−1∑
k=0

µP kε

∥∥∥∥∥
L2(πε)

≤ 1− (1− (α− ε))t
t(α− ε) ‖π‖1/2L∞(πε) ‖πε − µ‖L2(πε)

+
ϕ+ ‖π‖1/2L∞(πε)

ε√
α2−ε2 (1− (α− ε))

1− ϕ
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The proof of this result is found in Section 1.5.3.1. Relative to the uniform closeness of

kernels (in total variation) required [52], our assumption that the approximating kernel is

close in the operator norm induced by L2(π) is non-comparable. This is because our bound

is in terms of the L2 distance which always upper-bounds the total variation distance (up

to a constant factor of 1/2), but our assumption also does not require spatial uniformity

which [52]’s does. Thus, this chapter’s assumptions are not weaker nor stronger than those

in [52]. Comparing the above results to the corresponding L1 result of [52], we see that the

transient phase bias part of our L2 bounds differ from their L1 transient phase bias bound

only by a factor which is constant in time, but varies with the initial distribution (as is to

be expected when moving from uniform ergodicity to geometric ergodicity).

1.3.4 Mean Squared Error Bounds for Monte Carlo Estimates

Suppose that (Xε
k)k∈N∪{0} is a realization of the Markov chain with transition kernel Pε

and initial distribution µ. The mean squared error of a Monte Carlo estimate of πf made

using (Xε
k)k≤t is given by

MSEεt (µ, f) = E

(π(f)− 1
t

t−1∑
k=0

f(Xε
k)
)2 (1.6)

Theorem 1.5 (Mean Squared Error of Monte Carlo Estimates from the Perturbed Chain).

Under the assumptions of Section 1.3.2, if ε < α, Xε
0 ∼ µ, Pε is πε-reversible, and ρ2 =

(1− (α− ε)) then for f ∈ L′4(πε)

(i) if f ∈ L′2(π) as well, then

MSEεt (µ, f) ≤
2 ‖f − πεf‖2L′2(πε)

(1− ρ2)t +
27/2 ‖µ− πε‖L2(πε) ‖f − πεf‖

2
L′4(πε)

(1− ρ2)2t2

+ ‖f − πεf‖2L′2(π)

(
ε2

α2 − ε2
+ 2 ε√

α2 − ε2
1

t(α− ε) ‖πε − µ‖L2(π)

)
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and

MSEεt (µ, f) ≤
4 ‖f − πεf‖2L′2(πε)

(1− ρ2)t +
29/2 ‖µ− πε‖L2(πε) ‖f − πεf‖

2
L′4(πε)

(1− ρ2)2t2

+ 2 ‖f − πεf‖2L′2(π)
ε2

α2 − ε2
,

and

(ii) if ‖P − Pε‖L2(πε) ≤ ϕ < (1− ρ2), then

MSEεt (µ, f) ≤
27/2 ‖µ− πε‖L2(πε) ‖f − πεf‖

2
L′4(πε)

(1− ρ2)2t2

+ ‖f − πεf‖2L′2(πε)

 ϕ2

(1− ρ2)2 − ϕ2 + 2
1 + ϕ√

(1−ρ2)2−ϕ2

t(1− ρ2) ‖πε − µ‖L2(πε)

 ,
and

MSEεt (µ, f) ≤
29/2 ‖µ− πε‖L2(πε) ‖f − πεf‖

2
L′4(πε)

(1− ρ2)2t2

+ ‖f − πεf‖2L′2(πε)

(
2ϕ2

(1− ρ2)2 − ϕ2 + 4
t(1− ρ2) ‖πε − µ‖L2(πε)

)

The proof of this result is found in Section 1.5.3.3. Perturbation bounds based upon drift

and minorization conditions could provide similar MSE bounds for functions in L2(πε) with

supx∈X
|f |√
V
<∞ (where V is the function appearing in the drift condition), as in the work

of Johndrow and Mattingly [51]. While that may be a larger class of functions than L′4(πε)

(depending on what V happens to be), the class L′4(πε) is quite rich making this bound still

useful. Moreover, the class of functions to which our MSE bounds apply, and the value of

the bound itself, depend only on intrinsic features of the Markov chains under consideration.

In contrast bounds based on drift and minorization conditions include extrinsic features—

introduced by the user for analytic purposes (such as the drift function, V )—of which many

choices might exist; each leading to different function classes and different bounds.
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1.4 Applications to Markov Chain Monte Carlo

In this section we apply our theoretical results to some specific variants of Markov Chain

Monte Carlo (MCMC) algorithms to obtain guarantees for noisy and/or approximate vari-

ants of MCMC algorithms. MCMC is used to generate (correlated) samples approximately

from a target distribution for which the (unnormalized) density can be evaluated. The

key insight is to construct a (typically reversible) Markov chain for which the stationary

distribution is the target distribution. This is possible since the reversibility condition is

readily verified locally (without integration).

The most commonly used family of MCMC methods is the Metropolis–Hastings algo-

rithm (MH). The chain is initialized from some distribution X0 ∼ µ0. At each step a

proposal is drawn from some transition kernel, Yt ∼ Q(Xt−1, ·). Suppose that the ker-

nel Q(x, ·) has density q(·|x). The proposal is accepted with probability a(Yt|Xt−1) =

min
(
1, π(Yt)q(Xt−1|Yt)

π(Xt−1)q(Yt|Xt−1)

)
. If the proposal is accepted then Xt = Yt, and if it is rejected (not

accepted) then Xt = Xt−1. The combination of proposal and accept/reject steps yields a

π-reversible Markov kernel, and reversibility guarantees that the stationary distribution is

the target distribution. The user has freedom in selecting the proposal kernel, Q, and some

choice lead to better performance than others. The accept/reject step requires evaluating

the target density, π, twice on each step.

A large body of research exists guaranteeing that specific MCMC algorithms will be

geometrically ergodic (see for example [42, 67, 95], and many more.). These typically verify

geometric ergodicity for a collection of target distributions, π, and for a small family of

proposal kernels, Q.

If the target likelihood involves some integral which is computed numerically or by simple

Monte Carlo then the numerical and/or stochastic approximation introduces a perturbation

to the idealized MCMC scheme. This occurs even in standard and widely used statistical

models such as generalized linear mixed effect models (GLMMs), since the random effects

are nuisance variables which need to be integrated away, either using Laplace or Gaussian

quadrature schemes, or by simple Monte Carlo, in order to evaluate the likelihood. Since

the Metropolis–Hastings algorithm requires evaluation of the density, these each introduce
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a perturbation in the acceptance ratio, and hence in the actual transition kernel of the MH

scheme. We now consider the extent to which our results from Section 3 can be applied to

prove geometric ergodicity for certain approximate MCMC algorithms.

1.4.1 Noisy and Approximate MCMC

The noisy (or approximate) Metropolis–Hastings algorithm (nMH), as found in Alquier

et al. [2] (see also Medina–Aguayo et al. [74]) was briefly described above. The algorithm is

defined exactly the same way as the Metropolis–Hastings algorithm, except that the accep-

tance ratio, a(Yt|Xt−1), is replaced by a (possibly stochastic) approximation â(Yt|Xt−1, Zt).

Here Zt denotes some random element providing an additional source of randomness, so

that a(Yt|Xt−1, Zt) is not σ(Yt, Xt−1)-measurable when the approximation â(Yt|Xt−1, Zt) is

stochastic. In the case of a deterministic approximation, Zt can be ignored or treated as

a constant. The approximation can typically be though of as replacing the target density

in the acceptance ratio with some approximation. This includes most approximate MCMC

algorithms which preserve the state space and the Markov property, such as replacing π

with a deterministic approximation or and independent stochastic approximation at each

step (as in Monte Carlo within Metropolis). It does not include algorithms which retain the

Markov property only an augmented state space, such as the Pseudo-Marginal approach of

Andrieu and Roberts [4].

For our analysis of these algorithms, P will represent the transition kernel for the MH

algorithm while P̂ will represent the kernel for the corresponding nMH chain. The key step

in applying our results from Section 1.3 will be to show the L2(π) closeness of the nMH

transition kernel to the MH transition kernel. Again, ‖·‖L2(π) is the norm on L2(π) and the

corresponding operator norm. We will assume that π and {Q(x, ·)}x∈X are all absolutely

continuous with respect to the Lebesgue measure and have densities π and {q(·|x)}x∈X
respectively. All arguments used would still apply if there were an arbitrary dominating

measure in place of the Lebesgue measure. Let Fy|x be the regular conditional distribution

for Z given X = x and Y = y, and let fy|x be its Lebesgue density. Define the following
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perturbation function for the nMH algorithm as

r(y|x) = E
Z∼Fy|x

(a(y|x)− â(y|x, Z)) =
∫

(a(y|x)− â(y|x, z)) fy|x(z)dz

Theorem 1.6 (Geometric ergodicity and closeness of stationary distributions noisy or

approximate Metropolis–Hastings). Let P be the transition kernel for a Metropolis–Hastings

algorithm with proposal distribution Q, target distribution π, and acceptance ratio a(·|·).

Let P̂ be the transition kernel for a corresponding noisy Metropolis–Hastings algorithm with

approximate/noisy acceptance ratio â(·|·, ·). Let r(·|·) be the corresponding perturbation

function.

If ‖Q‖L2(π) <∞ and supx,y |r(y|x)| ≤ R then

∥∥∥P̂ − P∥∥∥
L2(π)

≤ R(1 + ‖Q‖L2(π)) . (1.7)

Furthermore, if P is reversible and L2(π)-geometrically ergodic with geometric contraction

factor (1 − α), and ε = R(1 + ‖Q‖L2(π)) < α, then P̂ has a stationary distribution, π̂ and

the assumptions outlined in Section 1.3.2 hold with Pε = P̂ and πε = π̂.

Therefore, Theorems 1.1 to 1.5 and Corollary 1.1 can all be applied. In particular, P̂ is

L2(π)-geometrically ergodic with factor 1−(α−R(1+‖Q‖L2(π))), it is a.e.-TV geometrically

ergodic, and

‖π̂ − π‖L2(π) ≤
R(1 + ‖Q‖L2(π))√

α2 −R2(1 + ‖Q‖L2(π))2
; (1.8)

and, if P̂ is reversible then it is L2(π̂) geometrically ergodic with factor (1 − (α − R(1 +

‖Q‖L2(π)))).

The above theorem provides an alternative to the analogous result of Corollary 2.3 from

[2], relaxing the uniform ergodicity assumption. In particular, it requires that Q ∈ B(L2(π))

and that R(1 + ‖Q‖L2(π)) < α. The first of these requirements is not dramatically limiting

since the user has control over the choice of Q. The second of these requirements is also

not dramatically limiting as control over R may be interpreted as limiting the amount of

noise in the nMH algorithm and such control is required regardless in order to ensure the
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accuracy of approximation in both the geometrically ergodic and uniformly ergodic cases.

1.4.2 Application to Fixed Deterministic Approximations

Suppose we run a fixed Metropolis–Hastings algorithm, but replace the target density

with one which is close everywhere. Perhaps this alternative density is easier to compute

(e.g. replacing an integral with a Laplace approximation as in Kass et al. [55], or replacing a

full sample with a coreset for sub-sampled Bayesian Inference as in Campbell and Broderick

[23]). By construction we would know that the approximate target distribution is close to

the ideal target distribution. The question still remains whether geometric ergodicity is

preserved. We resolve this question in the case that the approximation has constant relative

error.

Corollary 1.2. Suppose we can approximate the unnormalized target density, Cπ, by π̂,

with a θ-bounded relative error;

sup
x∈X

∣∣∣∣log Cπ(x)
π̂(x)

∣∣∣∣ ≤ θ . (1.9)

If the Metropolis–Hastings algorithm with proposal kernel Q is L2(π)-geometrically er-

godic with factor (1 − α), and if θ < α
2(1+‖Q‖L2(π))

, then the corresponding approximate

transition kernel, P̂ , is L2(π̂)-geometrically ergodic and

‖π̂ − π‖L2(π) ≤
2θ(1 + ‖Q‖L2(π))√

α2 − 4θ2(1 + ‖Q‖L2(π))2
; (1.10)

Proof. Since the function x 7→ 1 ∧ exp(x) is 1-Lipschitz, we have:

|r(y|x)| = |a(y|x)− â(y|x)|

≤
∣∣∣∣log π(y)q(x|y)

π(x)q(y|x) − log π̂(y)q(x|y)
π̂(x)q(y|x)

∣∣∣∣
=
∣∣∣∣log Cπ(y)

π̂(y) − log Cπ(x)
π̂(x)

∣∣∣∣
≤ 2θ

(1.11)

So, P̂ will be L2(π)-geometrically ergodic as long as P was geometrically ergodic with some



CHAPTER 1. 27

factor 0 ≤ (1− α) < 1 and

θ <
α

2(1 + ‖Q‖L2(π))
. (1.12)

Moreover, in this case, P̂ is reversible. Thus, we can use Theorem 1.3 to obtain L2(π̂)-

geometric ergodicity of P̂ , with factor 1− α+ 2θ(1 + ‖Q‖L2(π)).

In this scenario, we can also use Theorem 1.5 to get quantitative bounds for the mean-

squared error of any Monte Carlo estimates made using P̂ , or any of our other results in

Theorems 1.1 to 1.4 and Corollary 1.1 as needed.

Example 1.2 (Independence Sampler). The previous result also immediately gives that

if dπ̂
dπ is bounded above by C < exp(1/4) and below by c > exp(−1/4) then the indepen-

dence sampler for π̂ with proposals from π is geometrically ergodic with factor at most

4 max(logC,− log(c)). This is, however, sub-optimal when compared to Smith and Tierney

[110] which only requires a finite upper bound on dπ̂
dπ to establish uniform ergodicity. /

Example 1.3 (Laplace Approximation for GLMMs). Generalized linear mixed models

(GLMMs) (see Breslow and Clayton [16],McCulloch and Neuhaus [72], etc.) are widely

used in the modelling of non-normal response variables under repeated or correlated mea-

surements. They are the natural common extension of generalized linear models and linear

mixed effects models. They handle dependence between observations by introducing Gaussian

latent variables. These random effects are nuisance variables for the purpose of inference.

In order to perform Bayesian inference for GLMMs, one requires samples from the marginal

posterior distribution of the parameters given the data. The marginal posterior, here, is the

posterior for the parameters given the observations, in contrast to the joint posterior of the

random effects and the parameters given the data.

This can be approached in two ways. One option is to obtain samples for the random

effects and parameters jointly given the data, and discard the random effects to get marginal

posterior samples for the parameters. The second option is to approximate the likelihood

by integrating (numerically) over the random effects, and using the resulting approximate

likelihood in the calculations involving the unnormalized posterior for the parameters.

In the second case, when the prior for the parameters is compactly supported, if one had
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established a result saying that a particular MH procedure for the exact posterior distribution

of the parameters would be geometrically ergodic, then one could directly transfer this result

to the approximate posterior computed using a Laplace approximation, at least for large

enough samples. This is valid since the Laplace approximation has constant relative error

on compact sets, and the relative error decreases with sample size (see Tierney and Kadane

[116]). Hence, for a large enough sample size Eq. (1.12) will be satisfied regardless of what

the proposal kernel Q was (as long as ‖Q‖L2(π) was finite). /

Example 1.4 (Uniform Coresets). In Bayesian inference with large samples, an approach to

reducing the computational burden of evaluating the likelihood in the unnormalized posterior

for MCMC accept/reject steps is to select a representative subsample of the data and to

up-weight the contributions of each of the selected samples in a way to best approximate

the original likelihood. These up-weighted subsamples are called coresets. They naturally

give rise to approximate MCMC methods in which the true posterior is replaced by an

approximation based upon a coreset. Several methods for coreset construction exist, however

relatively little work has been done to assess their impact upon approximate MCMC methods.

We will consider the uniform coreset construction of Huggins et al. [44] (as so named in

[23]).

Campbell and Broderick [23, Theorem 3.2] provides the guarantee that, with probability

(1 − δ), the unnormalized approximate posterior Ĉπ̂ based on a uniform coreset of size M

will satisfy

sup
x∈X

1
|L(x)|

∣∣∣∣∣log Ĉπ̂(x)
Cπ(x)

∣∣∣∣∣ ≤ σ√
M

(3
2D + η

√
2 log (1/δ)

)
(1.13)

where σ = ∑N
n=1 σn, N is the number of observations, σn = supx∈X

∣∣∣Li(x)
L(x)

∣∣∣, Li(x) is the

log-likelihood of parameter x at the ith observation, L(x) = ∑N
i=1 Li(x) is the log-likelihood

of the dataset

η = max
i,j∈{1,...,N}

sup
x∈X

1
|L(x)|

∣∣∣∣∣Li(x)
σi
− Lj(x)

σj

∣∣∣∣∣ , (1.14)

and D is the approximate dimension of {Li}ni=1 ([23, Definition 3.1])

If in addition to assuming that {σi}Ni=1 are all finite as in [23, Section 3], one were

to assume that |L(x)| is bounded as a function of x, then the uniform coreset result would



CHAPTER 1. 29

imply the conditions of our Corollary 1.2, namely that

sup
x∈X

∣∣∣∣log Cπ(x)
π̂(x)

∣∣∣∣ ≤ σ ‖L‖∞√
M

(3
2D + η

√
2 log (1/δ)

)
, (1.15)

with high probability. Consequently, for any proposal kernel Q : L2(π) → L2(π) we should

be able to choose M sufficiently large so that with high probability

σ ‖L‖∞√
M

(3
2D + η

√
2 log (1/δ)

)
<

α

2(1 + ‖Q‖L2(π))
. (1.16)

Hence the approximating Markov chain will by geometrically ergodic with high probability.

/

1.4.3 Application to Monte Carlo Within Metropolis

Following Medina–Aguayo et al. [73], we can get bounds for the simple Monte Carlo

within Metropolis algorithm (MCwM). This is the special case of nMH where we approxi-

mate the likelihood ratio π(y)
π(x) = EΠ(y,Z)

EΠ(x,Z) by
(̂
π(y)
π(x)

)
=

∑N

i=1 Π(y,Zi)∑2N
i=N+1 Π(x,Zi)

using a new independent

sample taken each time the likelihood is evaluated. In the notation of the previous section,

â(y|x, z) = 1 ∧ q(x|y)∑N
i=1 Π(y, zi)

q(y|x∑2N
i=N+1 Π(x, zi)

(1.17)

Let

Wk(x) = 1
kπ(x)

k∑
i=1

Π(x, Zi)

ik(x)2 = E[Wk(x)−2]

s(x) = 1√
π(x)

StdDev(Π(x, Z1))

(1.18)

[73, Lemma 14] tells us that if there is a k ∈ N such that ik(x) <∞ for all x ∈ X then for

N ≥ k
|r(y|x)| ≤ a(y|x) 1√

N
ik(y) (s(x) + s(y))

≤ 1√
N
ik(y) (s(x) + s(y))

(1.19)

Corollary 1.3. Let P be the Metropolis–Hastings transition kernel for the target density π
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and proposal kernel Q. Let P̂N be the corresponding MCwM transition kernel when π(·) is

approximated by 1
N

∑N
i=1 Π(·, Zi).

Assume that s and ik as defined above are uniformly bounded for some k ∈ N. Suppose

further that N0 = max
(
k,

4‖ik‖2∞‖s‖
2
∞(1+‖Q‖L2(π))2

α2

)
, and N ≥ bN0c+ 1.

Then P̂N is reversible and L2(π)-geometrically ergodic with factor 1− α+ 1√
N/N0

, and

has a stationary distribution, π̂N (x) ∝ π(x)

N E
[(∑N

i=1 Π(x,Zi)
)−1
] with

‖π − π̂N‖L2(π) ≤
√

N0
Nα2 −N0

(1.20)

Proof. Suppose that N ≥ bN0c+ 1. From Theorem 1.1, we know that the perturbed chain,

P̂N is L2(π)-geometrically ergodic with factor 1−α+ 1√
N/N0

, has a stationary distribution,

π̂N with

‖π − π̂N‖L2(π) ≤
√

N0
Nα2 −N0

. (1.21)

Moreover, by inspection, P̂N is reversibility with respect to

π̂N (x) ∝ π(x)

N E
[(∑N

i=1 Π(x, Zi)
)−1

] .

Thus, we can use Theorem 1.3 to obtain L2(π̂N )-geometric ergodicity of P̂N , with factor

1− α+ 1√
N/N0

.

Remark 1.6. A simple scenario under which these ik and s are uniformly bounded is when

the joint density of x and Z is bounded above an below by a multiple of the marginal of x,

so that
Π(x, z)
π(x) ∈ [c, C] (1.22)

for all (x, z) ∈ X × Z. This condition is essentially tight if we wish to take k = 1 and the

base measure to be the Lebesgue measure restricted to U ⊂ Rd; in this case the condition

‖ik(x)‖L∞ <∞ implies that

∫
U

π(x)
Π(x, z)dz = E

Z∼Π(x,·)
π(x)

π(x)2

Π(x, ·)2 <∞ (1.23)
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for all x. That is, the reciprocal of the conditional density of Z given X = x has a finite

integral for each x. /

Remark 1.7. More generally, [73, Lemma 23] tells us that if E[Wk0(x)−p] < ∞ for some

k0 ∈ N and p > 0 then for k ≥ k0
⌈

2
p

⌉
, ik(x)2 < E[Wk0(x)−p]. Therefore, in order to

uniformly bound ik(x), it is sufficient to bound E[Wk0(x)−p] uniformly in x for some k0 ∈

N, p > 0. This is much less restrictive than trying to bound i1(x). In the case that

p < 1, k0 = 1 this is much less restrictive then p = 2, k0 = 1; it is equivalent to requiring that

tempered versions of conditional distribution Π(x,·)
π(x) can be normalized by uniformly bounded

normalizing constants. This would be true, if for example (Z|X = x) ∼ N (µ(x), σ2(x))

with σ2(x) uniformly bounded in x. More generally, using 0 < p < 1, instead of p = 2

whenever the conditional law of Z has uniform exp-poly tails, Π(x,z)
π(x) ≤ exp(−C |z − µ(x)|α),

with α > 0, the p-version of the condition would hold.

/

We could also use Theorem 1.5 to get quantitative bounds for the mean-squared error

of any Monte Carlo estimates made using P̂N , or any of our other results in Theorems 1.1

to 1.4 and Corollary 1.1 as needed.

In [73], they also consider a case where the the assumption that s and ik are uniformly

bounded is dropped, and instead, the perturbed kernel is restricted to a bounded region.

We do not address this case here.

1.5 Proofs

1.5.1 Proof of Theorem 1.1

The following lemma is contained in the remark after Theorem 2.1 of [96]; we prove it

here as well since the proof is so simple.

Lemma 1.3 (Remark in [96]). For any probability measure µ ∈ L2(π),

‖µ− π‖2L2(π) = ‖µ‖2L2(π) − 1
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Proof.

0 ≤ ‖µ− π‖2L2(π) =
∫ (dµ

dπ − 1
)2

dπ =
∫ ((dµ

dπ

)2
− 2dµ

dπ + 1
)

dπ

=
∫ (dµ

dπ

)2
dπ − 2

∫
dµ+

∫
dπ = ‖µ‖2L2(π) − 1

We will make use of the following simplified version of Theorem 2.1 from [96] as well:

Proposition 1.2 (Equivalent definitions of L2(π) geometric ergodicity from [96]). For a

reversible Markov chain with kernel P and stationary distribution π on state space X , the

following are equivalent (and ρ is equal in both cases):

(i) P is L2(π)-geometrically ergodic with optimal rate ρ and coefficient function C(µ) =

‖µ− π‖L2(π),

(ii) P has L2,0(π)-spectral radius and norm both equal to ρ;

sup
ν∈L2,0(π)\{0}

‖νP‖L2(π)
‖ν‖L2(π)

= ρ = r(P |L2,0(π)) ,

Where

r(P |L2,0(π)) := sup
{
|ρ| : ρ ∈ C and

(
P |L2,0(π) − ρIL2,0(π)

)
is not invertible

}
(1.24)

Note that while when the kernel is reversible we may take C(µ) = ‖µ− π‖L2(π) in

the bound corresponding L2(π)-GE with optimal rate ρ, this is not true for non-reversible

chains. By applying the above theorem in our context we have:

Lemma 1.4. Under the assumptions of Section 1.3.2,

‖ν1P
n − ν2P

n‖L2(π) ≤ (1− α)n ‖ν1 − ν2‖L2(π)

for any probability distributions ν1, ν2 ∈ L2(π). In particular, taking ν2 = π,

‖ν1P
n − π‖L2(π) ≤ (1− α)n ‖ν1 − π‖L2(π) = (1− α)n

√
‖ν1‖2L2(π) − 1
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and applying Cauchy-Schwarz yields

‖ν1P
n − π‖L1(π) ≤ ‖ν1P

n − π‖L2(π) ≤ (1− α)n ‖ν1 − π‖L2(π)

We begin with a first result giving sufficient conditions under which the stationary

distribution πε of the perturbed chain is in L2(π):

Lemma 1.5. Under the assumptions of Section 1.3.2, if in addition ε < α, then Pε has a

unique stationary distribution, πε ∈ L2(π), and ‖πε − π‖L2(π) ≤
ε

α−ε .

Proof. Since Pε is π-irreducible and aperiodic, it has at most one stationary distribution,

πε, with πε � π (see for example [28, Corollary 9.2.16]).

Suppose for now that πPnε has an L2(π) limit, πε; Then, using the triangle inequality,

and the contraction property (‖Pε‖TV = 1), and Cauchy-Schwarz

‖πεPε − πε‖TV ≤ ‖πεPε − πP
n
ε ‖TV + ‖πPnε − πε‖TV

≤
∥∥∥πε − πPn−1

ε

∥∥∥
TV

+ ‖πPnε − πε‖TV

≤
∥∥∥πε − πPn−1

ε

∥∥∥
L2(π)

+ ‖πPnε − πε‖L2(π)
n→∞→ 0

we find that πε must be stationary for Pε.

It remains to verify that {πPnε }n∈N is an L2(π)-Cauchy sequence, and thus from com-

pleteness it must have an L2(π)-limit. To this end, define Qε = (Pε − P ). Let 2k = {0, 1}k

for all k ∈ N. We will expand π(P +Qε)n and use the following facts:

(A) ∀R ∈ B(L2(π)) [πPnR = πR]

(B) Qε : L2(π)→ L2,0(π)

(C) P |L2,0(π) ∈ B(L2,0(π)) and
∥∥∥P |L2,0(π)

∥∥∥
L2,0(π)

≤ (1− α)

Since the operators P and Qε do not (necessarily) commute, when we expand (P +Q)n

we must have one distinct term per binary sequence of length n. We can then group terms

by the number of leading P s, and use (A) to cancel the leading terms.

Let m,n ∈ N be arbitrary with m ≤ n.
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‖πPnε − πPmε ‖L2(π)

= ‖π(P +Qε)n − π(P +Qε)m‖L2(π)

=

∥∥∥∥∥∥π
∑

b∈2n

n∏
j=1

P bjQ
1−bj
ε

−
 ∑

b∈2m

m∏
j=1

P bjQ
1−bj
ε

∥∥∥∥∥∥
L2(π)

=

∥∥∥∥∥∥π
Pn +

n−1∑
k=0

Pn−k−1Qε
∑

b∈2k

k∏
j=1

P bjQ
1−bj
ε


−

Pm +
m−1∑
k=0

Pm−k−1Qε
∑

b∈2k

k∏
j=1

P bjQ
1−bj
ε

∥∥∥∥∥∥
L2(π)

=

∥∥∥∥∥∥
π +

n−1∑
k=0

πQε
∑

b∈2k

k∏
j=1

P bjQ
1−bj
ε

−
π +

m−1∑
k=0

πQε
∑

b∈2k

k∏
j=1

P bjQ
1−bj
ε

∥∥∥∥∥∥
L2(π)

=

∥∥∥∥∥∥π
n−1∑
k=m

Qε
∑

b∈2k

k∏
j=1

P bjQ
1−bj
ε

∥∥∥∥∥∥
L2(π)

≤ ε
n−1∑
k=m

∑
b∈2k

k∏
j=1

(1− α)bj ε1−bj

= ε
n−1∑
k=m

(1− α+ ε)k

≤ ε

α− ε
(1− α+ ε)m

Since this upper bound on ‖πPnε − πPmε ‖L2(π) decreases to 0 monotonically with m =

min(m,n) then the sequence must be L2(π)-Cauchy.

Now, to bound the norm of πε we take m = 0 and we get that for all n ∈ N:

‖πPnε − π‖L2(π) ≤
ε

α− ε

From the continuity of norm, it must be the case that ‖πε − π‖L2(π) ≤
ε

α−ε

Lemma 1.6. Under the assumptions of Section 1.3.2, if in addition ε < α then

1 ≤ ‖πε‖L2(π) ≤
α√

α2 − ε2
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and

0 ≤ ‖π − πε‖L2(π) ≤
ε√

α2 − ε2
.

Proof. The two lower bounds are immediate from Lemma 1.3 and the positivity of norms:

0 ≤ ‖π − πε‖2L2(π) = ‖πε‖2L2(π) − 1

To derive the first upper bound, we apply Lemma 1.3, our assumptions about the operators

P and Pε, and triangle inequality, to ‖π − πε‖2:

√
‖πε‖2L2(π) − 1 = ‖π − πε‖L2(π) = ‖πP − πεP + πεP − πεPε‖L2(π)

≤ ‖πP − πεP‖L2(π) + ‖πεP − πεPε‖L2(π)

≤ (1− α) ‖π − πε‖L2(π) + ε ‖πε‖L2(π)

= (1− α)
√
‖πε‖2L2(π) − 1 + ε ‖πε‖L2(π)

Collecting the square roots and squaring both sides yields

α2
(
‖πε‖2L2(π) − 1

)
≤ ε2 ‖πε‖2L2(π)

which implies that

‖πε‖2L2(π) ≤
α2

α2 − ε2

Finally, the second upper bound is derived from the first one, again using Lemma 1.3:

‖π − πε‖2L2(π) = ‖πε‖2L2(π) − 1 ≤ α2

α2 − ε2
− 1 = ε2

α2 − ε2

We next observe that our assumptions imply that for small enough perturbations, the

perturbed chain Pε is geometrically ergodic in the L2(π) norm.

Lemma 1.7. Under the assumptions of Section 1.3.2, if ε < α, then we have that Pε is

L2(π)-geometrically ergodic, with factor ≤ 1− (α− ε).
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Proof. Suppose that ν ∈ L2,0(π). Then

‖νPε‖L2(π) ≤ ‖ν(Pε − P )‖L2(π) + ‖νP‖L2(π)

≤ ε ‖ν‖L2(π) + (1− α) ‖ν‖L2(π)

= (1− α+ ε) ‖ν‖L2(π) .

Thus, for any probability measure µ ∈ L2(π), since πε ∈ L2(π) we have

‖µPnε − πε‖L2(π) = ‖(µ− πε)Pnε ‖L2(π)

≤ (1− (α− ε))n ‖µ− πε‖L2(π) .

Combining Lemmas 1.5 to 1.7 together with the triangle inequality immediately yields

Theorem 1.1.

1.5.2 Proofs of Theorem 1.2, Theorem 1.3 and Corollary 1.1

Definition 1.3. Following [96], a subset S ⊂ X is called hyper-small for the π-irreducible

Markov kernel P with stationary measure π if π(S) > 0 and there exists δS > 0 and k ∈ N

such that dPk(x,·)
dπ (y) ≥ δS1S(x)1S(y) or equivalently P k(x,A) ≥ δSπ(A) for all x ∈ S and

A ⊂ S measurable.

Lemma 4 of Jain and Jamison [48] states that on a countably generated state space (as

we have assumed herein), every set of positive π-measure contains a hyper-small subset.

Lemma 1.8 (Existence of Hyper-Small Subsets from [48]). Suppose that (X ,Σ) is countably

generated. Suppose that X is a a φ-irreducible Markov chain on X with kernel P for some

σ-finite measure φ on X . Then any set K ⊂ X with φ(K) > 0 contains a set SK such that

(for some nK ∈ N)

inf
(x,y)∈SK×SK

dPnK (x, ·)
dπ (y) = δ > 0

In the case that a stationary distribution, π, for P exists, without loss of generality we

can take φ = π. In this case, it is immediate that any set (SK , nK) satisfying Lemma 1.8

also satisfies Definition 1.3.
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Also of importance to us is the following variant of Proposition 2.1 of [96], which provides

a characterization of geometric ergodicity in terms of convergence to a hyper-small set.

Proposition 1.3 (Equivalent characterizations of π-a.e.-TV geometric ergodicity from [96]

and Nummelin and Tweedie [86]). Suppose that (Ω,Σ) is countably generated, and that X

is a a φ-irreducible Markov chain on X with kernel P with stationary distribution π. Then

the following are equivalent:

(i) There exists ρTV ∈ (0, 1) such that P is π-a.e.-TV geometrically ergodic with factor

ρTV

(i′′) There exists a hyper-small set S ⊂ X , and constants ρS < 1, CS ∈ R+ such that:

∥∥∥∥∫ 1S(y)π(dy)
π(S) Pn(y, ·)− π

∥∥∥∥
TV
≤ CSρnS ∀n ∈ N

(ii) There exists a π-a.e. finite, measurable function V : X → [1,∞] with π(V 2) < ∞,

and ρV ∈ (0, 1), and C > 0 such that:

2 ‖δxPn − π‖TV ≤ ‖δxP
n − π‖V ≤ CV (x)ρnV

where ‖µ‖V = sup|f |≤V |µ(f)|.

Proof of Theorem 1.2. (i) Let S be a hyper-small set for Pε (which exists from Lemma 1.8,

since Pε is πε-irreducible). Then the measure µS defined by dµS
dπ = 1S

πε(S)
dπε
dπ has (by Hölder’s

inequality, and since πε ∈ L2(π)) that

‖µS‖2L2(π) ≤ ‖πε‖
2
L2(π) πε(S)−2 <∞,

and hence µS ∈ L2(π). Then (by Cauchy-Schwarz again):

∥∥∥∥∫ 1S(y)πε(dy)
πε(S) Pnε (y, ·)− πε

∥∥∥∥
TV
≤ 1

2 ‖µSP
n
ε − πε‖L2(π) ≤ ‖µS − πε‖L2(π) (1− α+ ε)n

which, along with Proposition 1.3, establishes that Pε is πε-a.e.-TV geometrically ergodic

with some factor ρTV ∈ (0, 1).
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(ii) Suppose that µ ∈ L∞(πε). Then µ ∈ L2(π) since dµ
dπ ≤ ‖µ‖L∞(πε)

dπε
dπ . Since

µPnε − πε ∈ L1(πε) ⊂ L1(π) then

‖µPnε − πε‖L1(πε) = ‖µPnε − πε‖L1(π) = 2 ‖µPnε − πε‖TV . (1.25)

Applying this equality as well as Cauchy-Schwarz we get

‖µPnε − πε‖L1(πε) = ‖µPnε − πε‖L1(π)

≤ ‖µPnε − πε‖L2(π)

≤ ‖µ− πε‖L2(π) (1− α− ε)n

(1.26)

(iii) If π ∈ L∞(πε) and µ ∈ L2(πε) then

‖µPnε − πε‖
2
L2(πε) =

∫ (dµPnε − πε
dπε

)2
dπε

=
∫ (dµPnε − πε

dπ

)2 dπ
dπε

dπ

≤ ‖π‖L∞(πε)

∫ (dµPnε − πε
dπ

)2
dπ

= ‖π‖L∞(πε) ‖µP
n
ε − πε‖

2
L2(π)

≤ ‖π‖L∞(πε) ‖µ− πε‖
2
L2(π) (1− (α− ε))2n

(1.27)

Proof of Theorem 1.3. From Baxter and Rosenthal [10, Lemma 1], since Pε has stationary

measure πε, then Pε : L2(πε) → L2(πε). Since Pε is (L∞(πε), ‖·‖L1(πε))-GE with factor

ρ1 ≤ (1 − (α − ε)) (as established by Theorem 1.2) and Pε is reversible, then it must also

be L2(πε)-geometrically ergodic with factor ρ = ρ1 by Lemma 1.2.

Proof of Corollary 1.1. Note that the assumption that ‖P − Pε‖L2(πε) < ϕ implies P −Pε :

L2(πε)→ L2(πε).

(i) Since Pε is L2(πε)-geometrically ergodic with factor (1 − (α − ε)) and πε-reversible,

we can reverse the roles of P and Pε, so the result follows by Theorem 1.1.
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(ii) Taking µ = π and n = 1 in Theorem 1.2 (iii),

‖πPε − πε‖2L2(πε) ≤ ‖π‖L∞(πε) ‖π − πε‖
2
L2(π) (1− (α− ε))2

≤ ‖π‖L∞(πε)
ε2

α2 − ε2
(1− (α− ε))2

(1.28)

Hence,

‖π − πε‖L2(πε) ≤ ‖πP − πPε‖L2(πε) + ‖πPε − πε‖L2(πε)

≤ ϕ ‖π‖L2(πε) + ‖π‖1/2L∞(πε)
ε√

α2 − ε2
(1− (α− ε))

= ϕ
√
‖π − πε‖2L2(πε) + 1 + ‖π‖1/2L∞(πε)

ε√
α2 − ε2

(1− (α− ε))

≤ ϕ(‖π − πε‖L2(πε) + 1) + ‖π‖1/2L∞(πε)
ε√

α2 − ε2
(1− (α− ε))

(1.29)

Hence,

‖π − πε‖L2(πε) ≤
ϕ+ ‖π‖1/2L∞(πε)

ε√
α2−ε2 (1− (α− ε))

1− ϕ
(1.30)

Finally,

‖µPnε − π‖L2(πε) ≤ ‖µP
n
ε − πε‖L2(πε) + ‖πε − π‖L2(πε) ,

The first term is bounded by Theorem 1.2 (iii), and the second term is bounded by Eq. (1.30)

1.5.3 Proofs of Theorem 1.4 and Theorem 1.5

1.5.3.1 Time-Averaging of Marginal Distributions

Proof of Theorem 1.4. The first result of Theorem 1.4 follows from the triangle inequality

and Theorem 1.1,

∥∥∥∥∥π − 1
t

t−1∑
k=0

µP kε

∥∥∥∥∥
L2(π)

≤ 1
t

t−1∑
k=0

∥∥∥π − µP kε ∥∥∥
L2(π)

≤ 1
t

t−1∑
k=0

[
(1− (α− ε))k ‖πε − µ‖L2(π) + ε√

α2 − ε2

]

≤ 1− (1− (α− ε))t
t(α− ε) ‖πε − µ‖L2(π) + ε√

α2 − ε2
.
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The subsequent results follows from similarly via Theorems 1.2 and 1.3 and Corollary 1.1.

1.5.3.2 Covariance Bounds

We turn our attention to the covariance structure of the original and perturbed chains.

There is an obvious isometric isomorphism between the space of measures L2(π) and the

function space

L′2(π) =
{
f : X → R s.t.

∫
f(x)2π(dx) <∞

}
equipped with the norm ‖f‖2L′2(π) =

∫
f(x)2π(dx) where a measure µ is mapped to its

Radon–Nikodym derivative µ 7→ dµ
dπ . For this reason, we need not distinguish between these

spaces, and when dealing with a function f ∈ L′2(π) we may occasionally abuse notation

and treat it as its associated measure. Let Xt and Xε
t denote the original and perturbed

chains run from some initial measure µ ∈ L2(π).

Corollary 1.4. Under the assumptions of Section 1.3.2,

(a) if X0 ∼ π (the initial distribution is the stationary distribution), then for f, g ∈ L′2(π)

Cov[f(Xt), g(Xs)] ≤ (1− α)|t−s| ‖f − πf‖L′2(π) ‖g − πg‖L′2(π) , (1.31)

(b) if ε < α, and Pε is πε-reversible, ρ2 = (1−(α−ε)), and Xε
0 ∼ πε , then for f, g ∈ L′2(πε)

Cov[f(Xε
t ), g(Xε

s)] ≤ ρ
|t−s|
2 ‖f − πεf‖L′2(πε) ‖g − πεg‖L′2(πε) , (1.32)

where for a function h : X → R, πh is the constant function equal to
∫
h(s)π(ds) everywhere.

Proof. The proof of this result follows that of Corollary B.5 in [52]. We only show the proof

for the original chain, however the proof for the perturbed chain is the same, since it is

reversible and L2(πε) geometrically ergodic with the appropriate factor, from Theorem 1.3.

Define the subspace

L′2,0(π) = {h ∈ L′2(π) :
∫
h(s)π(ds) = 0} ,
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and the operator F ∈ B(L′2,0(π)) by

[Ff ](x) =
∫
P (x, dy)f(y) = E[f(X1)|X0 = x]

From Lemma 12.6.4 of Liu [65],

sup
f,g∈L′2(π)

corr(f(X0), g(Xt)) = sup
‖f‖L′2(π)=1=‖g‖L′2(π)

f,g∈L′2,0(π)

〈f, F tg〉 =
∥∥∥F t∥∥∥

L′2,0(π)

Consider the canonical isomorphism between L2(π) and L′2(π). The restriction of this

isomorphism (on the right) to elements of L′2,0(π) yields L2,0(π) (on the left) – the signed

measures with total measure 0. The image of F under the restricted isomorphism is the

adjoint operator of P restricted to L2,0(π). Since P is π-reversible, it is self-adjoint, in

L2(π) so ‖F‖L′2,0(π) = ‖P‖L2,0(π).

∥∥∥F t∥∥∥
L′2,0(π)

≤ ‖F‖tL′2,0(π) =
∥∥∥P ∣∣

L2,0(π)

∥∥∥t ≤ (1− α)t

Therefore

Cov(f(X0), g(Xt)) ≤ ‖f − πf‖L′2(π) ‖g − πg‖L′2(π) (1− α)t

Since Cov is symmetric, the shifted and symmetrized result holds for any f, g ∈ L′2(π):

Cov[f(Xt), g(Xs)] ≤ (1− α)|t−s| ‖f − πf‖L′2(π) ‖g − πg‖L′2(π) (1.33)

We present further bounds for the case that the initial distribution is not the stationary

distribution in Corollary 1.5.

Remark 1.8. Note in Corollary 1.4 that

‖h− πh‖L′2(π) =
√
‖h‖2L′2(π) − (πh)2 ≤ ‖h‖L′2(π) .
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Also note that

‖h‖L′2(π) ≤ ‖h− π(h)‖L′2(π) + |π(h)| . (1.34)

/

Corollary 1.5. Under the assumptions of Section 1.3.2,

(a) if X0 ∼ µ, then for f, g ∈ L′4(π)

Cov(f(Xt), g(Xt+s))

≤ (1− α)s ‖f − πf‖L′2(π) ‖g − πg‖L′2(π)

+ 23/2(1− α)t+s/2 ‖µ− π‖L2(π) ‖f − πf‖L′4(π) ‖g − πg‖L′4(π)

− (µP tf − πf)
(
µP t+sg − πg

)

(b) if ε < α, and Pε is πε-reversible, ρ2 = (1−(α−ε)), and Xε
0 ∼ µ , then for f, g ∈ L′4(πε)

Cov(f(Xε
t ), g(Xε

t+s))

≤ ρs2 ‖f − πεf‖L′2(πε) ‖g − πεg‖L′2(πε)

+ 23/2ρ
t+s/2
2 ‖µ− π‖L2(πε) ‖f − πεf‖L′4(πε) ‖g − πεg‖L′4(πε)

− (µP tε f − πεf)
(
µP t+sε g − πεg

)

Proof. This will use the following shorthand notation. Let

f0 = f − πf

g0 = g − πg

‖h‖? =
(∫

(h(x)− πh)2π(dx)
)1/2

‖h‖?? =
(∫

(h(x)− πh)4π(dx)
)1/4

Cµ = ‖µ− π‖2

‖·‖?? can be interpreted as a centred 4-norm. It is certainly bounded above by ‖·‖4, the

norm on L′4(π). For some results regarding the properties of a Markov transition kernel as

an operator on L′p(π) for general p given an L2-spectral gap (as is implied by L2-geometric
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ergodicity) please refer to Rudolf [103].

We only show the proof for the original chain. The result for the perturbed chain has

essentially the same proof.

By definition we can express the covariance by the triple integral below. We re-express

this integral as a sum of two integrals involving the chain run from stationarity. This will

allow us to apply Corollary 1.4.

Cov(f(Xt), g(Xt+s))

=
y

(f(y)− µP tf)(g(z)− µP t+sg)µ(dx)P t(x, dy)P s(y, dz)

=
y

(f(y)− µP tf)(g(z)− µP t+sg)
[
dµ

dπ
(x)− 1

]
π(dx)P t(x, dy)P s(y, dz)

+
y

(f(y)− µP tf)(g(z)− µP t+sg)π(dx)P t(x, dy)P s(y, dz)

We will simplify each of these expressions separately, starting with the second term:

y
(f(y)− µP tf)(g(z)− µP t+sg)π(dx)P t(x, dy)P s(y, dz)

=
x

(f(y)− µP tf)(g(z)− µP t+sg)π(dy)P s(y, dz)

=
x

f(y)g(z)π(dy)P s(y, dz)

− (µP tf)(πg)− (πf)(µP t+sg) + (µP tf)(µP t+sg)

=
x

f0(y)g0(z)π(dy)P s(y, dz) + (πf)(πg)

− (µP tf)(πg)− (πf)(µP s+tg) + (µP tf)(µP t+sg)

= 〈f0, F
sg0〉+ (µP tf − πf)(µP s+tg − πg)
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For the first term we find that:

y
(f(y)− µP tf)(g(z)− µP t+sg)

(
dµ

dπ
(x)− 1

)
π(dx)P t(x, dy)P s(y, dz)

=
y

f(y)g(z)
(
dµ

dπ
(x)− 1

)
π(dx)P t(x, dy)P s(y, dz)

− (µP tf)
x

g(z)
(
dµ

dπ
(x)− 1

)
π(dx)P t+s(x, dz)

− (µP s+tg)
x

f(y)
(
dµ

dπ
(x)− 1

)
π(dx)P t(x, dy)

+ (µP tf)(µP s+tg)
∫ (

dµ

dπ
(x)− 1

)
π(dx)

=
y

f0(y)g0(z)
(
dµ

dπ
(x)− 1

)
π(dx)P t(x, dy)P s(y, dz)

− (µP tf − πf)
x

g(z)
(
dµ

dπ
(x)− 1

)
π(dx)P t+s(x, dz)

− (µP s+tg − πg)
x

f(y)
(
dµ

dπ
(x)− 1

)
π(dx)P t(x, dy)

− (πf)(πg)
∫ (

dµ

dπ
(x)− 1

)
π(dx)

=
〈
dµ

dπ
− 1, F t(f0 ⊗ (F sg0))

〉
− (µP tf − πf)

〈
dµ

dπ
− 1, F t+sg

〉
− (µP t+sg − πg)

〈
dµ

dπ
− 1, F tf

〉
=
〈
dµ

dπ
− 1, F t(f0 ⊗ (F sg0))

〉
− 2(µP tf − πf)

(
µP t+sg − πg

)

Where f0 ⊗ F sg0 is defined by

[f0 ⊗ F sg0](y) = f0(y)
∫
g0(z)P s(y, dz)
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Putting these together,

Cov(f(Xt), g(Xt+s))

= 〈f0, F
sg0〉+ (πf − µP tf)(πg − µP s+tg)

+
〈
dµ

dπ
− 1, F t(f0 ⊗ (F sg0))

〉
− 2(µP tf − πf)

(
µP t+sg − πg

)
= 〈f0, F

sg0〉+
〈
dµ

dπ
− 1, F t(f0 ⊗ (F sg0))

〉
− (µP tf − πf)

(
µP t+sg − πg

)
≤ (1− α)s‖f‖?‖g‖? + (1− α)t‖µ− π‖2‖f0 ⊗ F sg0‖2

− (µP tf − πf)
(
µP t+sg − πg

)
≤ (1− α)s‖f‖?‖g‖? + (1− α)t‖µ− π‖2‖f0‖4‖F sg0‖4

− (µP tf − πf)
(
µP t+sg − πg

)
≤ (1− α)s‖f‖?‖g‖? + (1− α)t‖µ− π‖2‖f0‖4‖g0‖4

∥∥∥∥F s∣∣L′4,0
∥∥∥∥

4

− (µP tf − πf)
(
µP t+sg − πg

)
≤ (1− α)s‖f‖?‖g‖? + 23/2(1− α)t+s/2‖µ− π‖2‖f‖??‖g‖??

− (µP tf − πf)
(
µP t+sg − πg

)
The 〈f0, F

sg0〉 term is bounded using Corollary 1.4 where we have taken the result in its

equivalent form using the 〈·, ·〉 notation and the forward operator F . Next, the

〈
dµ

dπ
− 1, F t(f0 ⊗ (F sg0))

〉

term is bounded following the methodology of the proof of [103], Lemma 3.39 (in order the

inequalities are: Cauchy-Schwarz, ‖F sg0‖ ≤ ‖F s‖‖g0‖ for any norm ‖ · ‖, and Proposition

3.17 of [103]).

The main motivation in establishing the covariance bounds in Corollaries 1.4 and 1.5

is that we will need to sum up covariances in order to establish bounds on the variance

component of mean-squared error for estimation of π(f) via the dependent sample means
1
t

∑t−1
j=0 f(Xj) and 1

t

∑t−1
j=0 f(Xε

j ) for an arbitrary starting measure. To this end we will be

interested in the following summation result.
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Corollary 1.6. Under the assumptions of Section 1.3.2,

(a) if X0 ∼ µ, then for f, g ∈ L′4(π)

1
t2

t−1∑
m=0

t−1∑
n=0

Cov(f(Xj), f(Xk))

≤
2 ‖f − πf‖2L′2(π)

αt
+

27/2 ‖µ− π‖L2(π) ‖f − πf‖
2
L′4(π)

α2t2
−
(

1
t

t−1∑
m=0

µPmf − πf
)2

(b) if ε < α, and Pε is πε-reversible, ρ2 = (1−(α−ε)), and Xε
0 ∼ µ , then for f, g ∈ L′4(πε)

1
t2

t−1∑
m=0

t−1∑
n=0

Cov(f(Xε
j ), f(Xε

k))

≤
2 ‖f − πf‖2L′2(πε)

(1− ρ2)t +
27/2 ‖µ− π‖L2(πε) ‖f − πf‖

2
L′4(πε)

(1− ρ2)2t2
−
(

1
t

t−1∑
m=0

µPmε f − πf
)2

Proof. We only show the proof for the original chain. The results for the perturbed chain

have essentially the same proof. The proof is largely an exercise in summation of geometric

series and meticulous bookkeeping. The first inequality is due to Corollary 1.5. The second

inequality makes use of the fact 0 < α < 1. To simplify notation, Cµ = ‖µ− π‖L2(π).
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1
t2

t−1∑
m=0

t−1∑
n=0

Cov(f(Xj), f(Xk))

= ‖f‖
2
?

t2

t−1∑
m=0

t−1∑
n=0

(1− α)|m−n| − 1
t2

t−1∑
m=0

t−1∑
n=0

(µPmf − πf) (µPnf − πf)

+
23/2Cµ‖f‖2??

t2

t−1∑
m=0

t−1∑
n=0

(1− α)(m+n)/2

= ‖f‖
2
?

t2

t−1∑
m=0

(
1 + 2

t−m−1∑
s=1

(1− α)s
)
−
(

1
t

t−1∑
m=0

(µPmf − πf)
)2

+
23/2Cµ‖f‖2??

t2

t−1∑
m=0

(1− α)m
(

1 + 2
t−m−1∑
s=1

(1− α)s/2
)

= ‖f‖
2
?

t2

t−1∑
m=0

(
1 + 2(1− α)− (1− α)t−m

α

)
−
(

1
t

t−1∑
m=0

(µPmf − πf)
)2

+
23/2Cµ‖f‖2??

t2

t−1∑
m=0

(1− α)m
(

1 + 2
√

1− α−
√

1− αt−m

1−
√

1− α

)

= ‖f‖
2
?

t2

t−1∑
m=0

(2− α
α
− 2
α

(1− α)t−m
)
−
(

1
t

t−1∑
m=0

(µPmf − πf)
)2

+
23/2Cµ‖f‖2??

t2

t−1∑
m=0

(
(1− α)m 1 +

√
1− α

1−
√

1− α
− 2
√

1− αt+m

1−
√

1− α

)

= ‖f‖
2
?

t2

(
2− α
α

t− 2
α

(1− α)− (1− α)t+1

α

)
−
(

1
t

t−1∑
m=0

(µPmf − πf)
)2

+
23/2Cµ‖f‖2??

t2

([
1 +
√

1− α
1−
√

1− α

] [
1− (1− α)t

α

]

−
[

2
√

1− αt

1−
√

1− α

] [
1−
√

1− αt

1−
√

1− α

])

= (2− α)‖f‖
2
?

αt
− 2(1− α)1− (1− α)t

α2t2
−
(

1
t

t−1∑
m=0

(µPmf − πf)
)2

+
23/2Cµ‖f‖2??

t2

(
1 +
√

1− α
α

)2

(1− (1− α)t/2)2

≤ 2‖f‖2?
αt

+
27/2Cµ‖f‖2??

α2t2
−
(

1
t

t−1∑
m=0

(µPmf − πf)
)2
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1.5.3.3 Mean Squared Error Bonds

Theorem 1.7. Under the assumptions of Section 1.3.2, if X0 ∼ µ ∈ L2(π), then

E

(π(f)− 1
t

t−1∑
k=0

f(Xk)
)2 ≤ 2‖f − πf‖22

αt
+ 27/2‖µ− π‖2‖f − πf‖24

α2t2

Proof. The proof proceeds by partitioning the MSE via the bias-variance decomposition

then bounding variance term and noting that our bond for the variance contains an expres-

sion which exactly cancels the bias term. We compute that

E

(π(f)− 1
t

t−1∑
k=0

f(Xk)
)2

= E

(π(f)− 1
t

t−1∑
k=0

[µP k](f)− 1
t

t−1∑
k=0

(f(Xk)− [µP k](f))
)2

=
(
π(f)− 1

t

t−1∑
k=0

[µP k](f)
)2

+ E

(1
t

t−1∑
k=0

(f(Xk)− [µP k](f))
)2

=
(
π(f)− 1

t

t−1∑
k=0

[µP k](f)
)2

+ 1
t2

t−1∑
j=0

t−1∑
k=0

Cov(f(Xj), f(Xk))

The variance term is bounded using Corollary 1.6:

1
t2

t−1∑
j=0

t−1∑
k=0

Cov(f(Xj), f(Xk))

2‖f − πf‖22
αt

+ 27/2‖µ− π‖2‖f − πf‖24
α2t2

−
(

1
t

t−1∑
m=0

µPmf − πf
)2

Putting these together yields the desired result.

Remark 1.9. We note that, as per Remark 1.8, ‖f − πf‖ ≤ ‖f‖2. Similarly ‖f − πf‖4 ≤

‖f‖4. Also in the case that f is is π-essentially bounded, ‖f‖2 ≤ ‖f‖∞ and ‖f‖4 ≤ ‖f‖∞.

These alternative norms may be substituted into the result as necessary in order to make

the bounds tractable for a given application. /

Remark 1.10. Comparing our above geometrically ergodic results to the L1 results of

[52] in the uniformly ergodic case, we see that the L2 and L1 bounds we establish above
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differ from the corresponding L1 bound of [52] only by a factor, which is constant in time,

but varies with the initial distribution (as is to be expected when moving from uniform

ergodicity to geometric ergodicity). For the Mean-Squared-Error results, the ‖ · ‖?-norm in

that work is based on the midrange-centred infinity norm, which as per Remark 1.9 is an

upper bound on what we have. /

Proof of Theorem 1.5. For the first result, we proceed via bias-variance decomposition, as

in the corresponding result for the exact chain. However, now the bias under consideration is

itself decomposed as the square of a sum of two components. The squared sum is expanded

simultaneously with the bias-variance expansion. We compute that

E

(π(f)− 1
t

t−1∑
k=0

f(Xε
k)
)2

= E

(π(f)− πε(f) + 1
t

t−1∑
k=0

[
πε − µP kε

]
(f)− 1

t

t−1∑
k=0

(f(Xε
k)− [µP kε ](f))

)2
= ([π − πε](f))2 + 2 ([π − πε](f))

(
πε(f)− 1

t

t−1∑
k=0

[µP kε ](f)
)

+
(
πε(f)− 1

t

t−1∑
k=0

[µP kε ](f)
)2

+ 1
t2

t−1∑
j=0

t−1∑
k=0

Cov(f(Xε
j ), f(Xε

k))

We bound the first component of the bias term using versions of Lemma 1.6

([π − πε](f))2 = ([π − πε](f − πεf))2

≤


‖π − πε‖2L2(π) ‖f − πεf‖

2
L′2(π)

‖π − πε‖2L2(πε) ‖f − πεf‖
2
L′2(πε)

≤


ε2

α2−ε2 ‖f − πεf‖
2
L′2(π)

ϕ2

(1−ρ2)2−ϕ2 ‖f − πεf‖2L′2(πε) : given (∗)
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We bound the variance term using Corollary 1.6:

1
t2

t−1∑
j=0

t−1∑
k=0

Cov(f(Xε
j ), f(Xε

k))

≤
2 ‖f − πεf‖2L′2(πε)

(1− ρ2)t +
27/2 ‖µ− πε‖L2(πε) ‖f − πεf‖L′4(πε)

(1− ρ2)2t2
−
(

1
t

t−1∑
m=0

µPmε f − πεf
)2

The negative term in this expression exactly cancels out the third bias term in the expansion.

Finally, we bound the second bias term using Lemma 1.6 and Theorem 1.4:

2 ([π − πε](f))
(
πε(f)− 1

t

t−1∑
k=0

[µP kε ](f)
)

= 2 ([π − πε](f − πεf))
([
πε −

1
t

t−1∑
k=0

µP kε

]
(f − πεf)

)

≤ 2


ϕ√

(1−ρ2)2−ϕ2 ‖f − πεf‖L′2(π)
1−(1−(α−ε))t

t(α−ε) ‖πε − µ‖L2(π) ‖f − πεf‖L′2(π)

ϕ2

(1−ρ2)2−ϕ2 ‖f − πεf‖2L′2(πε)
1−ρt2
t(1−ρ2) ‖πε − µ‖L2(πε) ‖f − πεf‖L′2(πε) : given (∗)

≤ 2


ε√

α2−ε2
1

t(α−ε) ‖πε − µ‖L2(π) ‖f − πεf‖
2
L′2(π)

ϕ√
(1−ρ2)2−ϕ2

1
t(1−ρ2) ‖πε − µ‖L2(πε) ‖f − πεf‖

2
L′2(πε) : given (∗)

Putting these together yields the first and third results.

For the second and fourth result we use the fact that for any random variable, Z, and

for any a, b ∈ R the following holds:

E[(Z − a)2] = 2E[(Z − b)2] + 2(a− b)2 − E[(Z + a− 2b)2]

≤ 2E[(Z − b)2] + 2(a− b)2
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E

(π(f)− 1
t

t−1∑
k=0

f(Xε
k)
)2

≤ 2([π − πε](f))2 + 2E

(πε(f)− 1
t

t−1∑
k=0

f(Xε
k)
)2

= 2([π − πε](f − πεf))2

+ 2E

(πε(f)− 1
t

t−1∑
k=0

[µP kε ](f)− 1
t

t−1∑
k=0

(f(Xε
k)− [µP kε ](f))

)2
= 2([π − πε](f − πεf))2 + 2

(
πε(f)− 1

t

t−1∑
k=0

[µP kε ](f)
)2

+ 2E

(1
t

t−1∑
k=0

(f(Xε
k)− [µP kε ](f))

)2
= 2([π − πε](f − πεf))2 + 2

(
πε(f)− 1

t

t−1∑
k=0

[µP kε ](f)
)2

+ 2
t2

t−1∑
j=0

t−1∑
k=0

Cov(f(Xε
j ), f(Xε

k))

Applying Corollary 1.5 to bound the sum of covariances, we find that we are able to exactly

cancel the second term in the final expression above. Using the same bound as before for

the first expression, we get the final result.

1.5.4 Proof of Theorem 1.6

Let
γ(x) = Ey∼q(y|x)r(y|x) =

∫
r(y|x)q(y|x)dy

[νΓ](dy) = ν(y)γ(y)dy

[νZ](dy) =
[∫

r(y|x)q(y|x)ν(x)dx
]
dy

Lemma 1.9. P − P̂ = Z − Γ

Proof. We first give expressions for the elements of measure for transitions of the original

chain. The first formula is the element of measure for transition from an arbitrary, fixed

initial point. It is defined for us by the mechanics of the Metropolis–Hastings algorithm.

The second expression is the element of measure for transition from a sample from an initial

distribution, ν. It is derived from the first expression by integrating over the sample from
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ν.
P (x, dx′) = δx(dx′)

[
1−

∫
(a(y|x)q(y|x)dy

]
+ a(x′|x)q(x′|x)dx′

[νP ] (dx′) =
∫ [

δx(dx′)
[
1−

∫
a(y|x)q(y|x)dy

]
+ a(x′|x)q(x′|x)dx′

]
ν(x)dx

=
[[

1−
∫
a(y|x′)q(y|x′)dy

]
ν(x′) +

∫
a(x′|x)q(x′|x)ν(x)dx

]
dx′

The second form of the second expression is an application of Fubini’s theorem. The ex-

change of the order of integration for the second term in the expression is immediate. For

the first term, for arbitrary non-negative functions f ,

∫
s

∫
t
f(s, t)δt(ds)dt =

∫
t

∫
s
f(s, t)δt(ds)dt =

∫
t
f(t, t)dt =

∫
s
f(s, s)ds

Where the first equality is Fubini’s theorem, the second comes from integrating with respect

to s, and the third comes from a change of dummy variable.

Similarly, the elements of measure for transitions from the approximating kernel are

expressed below. The first expression, as above, is the element of measure for transition

from an arbitrary, fixed initial point. It is defined for us by the mechanics of the noisy

Metropolis–Hastings algorithm. The second expression is again derived by integrating the

first against an initial measure, ν.

P̂ (x, dx′) = δx(dx′)
[
1−

x
â(y|x, z)q(y|x)fy(z)dzdy

]
+
∫
â(x′|x, z)q(x′|x)fx′(z)dzdx′[

νP̂
]

(dx′) =
∫ (

δx(dx′)
[
1−

x
â(y|x, z)q(y|x)fy(z)dzdy

]
+
∫
â(x′|x, z)q(x′|x)fx′(z)dzdx′

)
ν(x)dx

=
[
1−

x
â(y|x′, z)q(y|x′)fy(z)dzdy

]
ν(x′)dx′

+
[x

â(x′|x, z)q(x′|x)fx′(z)ν(x)dzdx
]
dx′

The same applications of Fubini’s theorem occur as above.

We may now leverage our notation defined above to simplify the difference of these
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elements of measure.

[
ν(P − P̂ )

]
(dx′)

=
[x (

â(y|x′, z)− a(y|x′)
)
q(y|x′)fy(z)dzdy

]
ν(x′)dx′

+
[x (

a(x′|x)− â(x′|x, z)
)
q(x′|x)fx′(z)ν(x)dzdx

]
dx′

=
[∫

r(x′|x)q(x′|x)ν(x)dx
]
dx′ −

[∫
r(y|x′)q(y|x′)dy

]
ν(x′)dx′

= [ν(Z − Γ)](dx′)

From this one may conclude that
(
P − P̂ = Z − Γ

)
as operators.

Proof of Theorem 1.6. It is obvious that if |r(y|x)| ≤ R uniformly in (x, y) ∈ X 2 then

(
‖Γ‖L2(π) ≤ R

)
, (1.35)

and (
‖Z‖L2(π) ≤ R ‖Q‖L2(π)

)
. (1.36)

By applying the previous lemma, given the assumptions stated,

∥∥∥P − P̂∥∥∥
L2(π)

≤ R(1 + ‖Q‖L2(π)) . (1.37)

1.5.5 (L∞(π), ‖·‖L2(π))-GE is distinct from L2-GE for non-reversible chains

Let X = N ∪ {0}, and let a be a probability mass function on X . Define transition

probabilities by

pij =



aj : i = 0

1 : i > 0, j = i− 1

0 : otherwise

(1.38)
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Let bj = ∑∞
i=j ai. It is easy to verify that if ∑∞j=1 bj < ∞ then πj = bj∑∞

j=1 bj
is the unique

stationary probability mass function for P = [pij ]ij∈X 2 .

In the special case where aj = 2−j−1, we have π = a. We continue this example working

exclusively with this choice of a. Now,

δjP
n =


π : n ≥ j + 1

δn−j : n ≤ j
(1.39)

Thus, for any initial probability mass function, µ,

[µPn]j =
n−1∑
i=0

µiπj + µj+n (1.40)

If dµ
dπ (j) = µj

πj
≤ ‖µ‖L∞(π) <∞ for all j ∈ X then

‖µPn − π‖2L2(π) =
∞∑
j=0

πj

(
n−1∑
i=0

µi + µj+n
πj
− 1

)2

=
∞∑
j=0

πj

(
−
∞∑
i=n

µi + µj+n
πj+n

πj+n
πj

)2

=
∞∑
j=0

πj

(
−
∞∑
i=n

µi
πi
πi + µj+n

πj+n

πj+n
πj

)2

≤
∞∑
j=0

πj

( ∞∑
i=n

µi
πi
πi + µj+n

πj+n

πj+n
πj

)2

≤
∞∑
j=0

2−j−1
( ∞∑
i=n
‖µ‖L∞(π) 2−i−1 + ‖µ‖L∞(π) 2−n

)2

= ‖µ‖2L∞(π)

∞∑
j=0

2−j−1(2−n+1)2

= 4 ‖µ‖2L∞(π) (2−n)2

(1.41)

Hence P is (L∞(π), ‖·‖L2(π))-GE with optimal rate no larger than 1/2.
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For any α <
√

0.5, let νj = (1− α)(α)j . Then ν ∈ L2(π), since

‖ν‖2L2(π) =
∞∑
i=0

0.5i+1
(

(1− α)(α)i
0.5i+1

)2

= 2(1− α)2
∞∑
i=0

(2α2)i = 2(1− α)2

1− 2α2

(1.42)

Moreover,

‖νPn − π‖2L2(π) =
∞∑
j=0

πj

(
n−1∑
i=0

νi + νj+n
πj
− 1

)2

=
∞∑
j=0

0.5j+1
(
−
∞∑
i=n

(1− α)αi + (1− α)αj+n(0.5)−j−1
)2

= α2n
∞∑
j=0

0.5j+1
(
−1 + 2(1− α)(2α)j

)2

= α2n

2

∞∑
j=0

(0.5j − 4(1− α)αj + 4(1− α)2(2α2)j)

= α2n

2

(
2− 4(1− α)

1− α + 4(1− α)2

1− 2α2

)

= (2α− 1)2

1− 2α2 α2n

(1.43)

Thus the convergence rate starting from this initial measure is α.

Since this is true for any α < 1/
√

2, this shows that the L2(π)-GE optimal rate is

no smaller than
√

0.5. Hence the (L∞(π), ‖·‖L2(π))-GE and L2(π)-GE optimal rates are

different.
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1.5.6 Proofs of Lemma 1.1 and Lemma 1.2

Proof of Lemma 1.1. Let

ρ? = inf {ρ > 0 : ∃C : V → R+ s.t. ∀n ∈ N, ν ∈ V ∩M+,1 |||νPn − π||| ≤ C(ν)ρn} ,

ρ̂ = sup
µ∈V ∩M+,1

lim sup
n→∞

|||µPn − π|||1/n

(1.44)

(ρ̂ ≤ ρ?): Let ε > 0

ρ̂ = sup
µ∈V ∩M+,1

lim sup
n→∞

|||µPn − π|||1/n

≤ sup
µ∈V ∩M+,1

lim sup
n→∞

|||µPn − π|||1/n

≤ sup
µ∈V ∩M+,1

lim sup
n→∞

(Cε(µ)(ρ? + ε)n)1/n

= ρ? + ε .

(1.45)

Since ε is arbitrary, ρ̂ ≤ ρ?.

(ρ̂ ≥ ρ?): For all ν ∈ V ∩ M+,1, lim supn→∞ |||µPn − π|||1/n ≤ ρ̂. Let ε > 0. Then

for all µ ∈ V ∩ M+,1, |||µPn − π|||1/n > ρ̂ + ε for at most finitely many n ∈ N. Let

Cε(µ) = maxn∈N
(
1 ∨ |||µP

n−π|||
(ρ+ε)n

)
. Then Cε(µ) <∞ since the maximum is over finitely many

distinct elements. Therefore |||µPn − π||| ≤ Cε(µ)(ρ̂ + ε)n for all n ∈ N. This implies that

ρ̂+ ε ≥ ρ?. Since ε is arbitrary, ρ̂ ≥ ρ?.

Proof of Lemma 1.2. [(iii) ⇐⇒ (iv)] is proven in [96, Theorem 2.1]. [(iii) =⇒ (ii)] follows

from the inclusion L∞(π) ⊂ L2(π). [(ii) =⇒ (i)] follows from Cauchy-Schwarz.

[(ii) =⇒ (iii)]:

Without loss of generality, assume that ρ is the optimal rate of (L∞(πε), ‖·‖L2(π))-

geometric ergodicity;

ρ = sup
ν∈L∞,0(π)

lim sup
t→∞

∥∥∥νP t∥∥∥1/t

L2(π)
. (1.46)

From the proof of Roberts and Tweedie [100, Theorem 1], P is π-almost-everywhere

geometrically ergodic with some unknown optimal rate. From [96, Theorem 2.1], P is

L2(π)-geometrically ergodic with some unknown optimal rate, ρ2, which is equivalent to
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the spectral radius of P |L2,0(π); ρ2 = r(P |L2,0(π)).

It remains to be shown that ρ2 ≤ ρ. We will use the spectral measure decomposition

of P , as in [96]. Suppose, for a contradiction, that ρ2 > ρ. Let ρ = ρ+ρ2
2 . Let E be the

spectral measure of P , so that µP t =
∫ 1
−1 λ

tµE(dλ). If ρ2 > ρ then either E([−ρ2,−ρ)) 6= 0

or E((ρ, ρ2])) 6= 0. Assume (replacing P by P 2, ρ by ρ2, and ρ2 by ρ2
2 if necessary) that

E((ρ, ρ2]) 6= 0 and E((−1, 0)) = 0. Then there is some non-zero signed measure, ν, in the

range of E((ρ, ρ2]). Since the spectral projections are orthogonal and {1}∩ (ρ, ρ2] = ∅, then

ν ⊥ π, and hence ν(X ) = 0. Since L∞,0(π) is dense in L2,0(π), there is a µ ∈ L∞,0(π) with

‖µ− ν‖L2(π) < ‖ν‖L2(π) /2. Then, from the polarization identity, 〈ν, µ〉L2(π) ≥
3
8 ‖ν‖

2
L2(π) >

0, and µ 6= 0.

Let R = range(
∫

(ρ,ρ2] E(dλ)). Then span(ν) ⊂ R, so

‖projR µ‖L2(π) ≥ ‖projν µ‖L2(π) ≥
3
8 ‖ν‖L2(π) (1.47)

Then ∥∥∥µP k∥∥∥2

L2(π)
=
〈
µP k, µP k

〉
L2(π)

=
〈
µ, µP 2k

〉
L2(π)

=
〈
µ, µ

∫
(0,ρ2]

λ2kE(dλ)
〉
L2(π)

≥
〈
µ, µ

∫
(ρ,ρ2]

λ2kE(dλ)
〉
L2(π)

≥
〈
µ, µ

∫
(ρ,ρ2]

ρ2kE(dλ)
〉
L2(π)

= ρ2k ‖projR µ‖2L2(π)

≥ ρ2k 9
64 ‖ν‖

2
L2(π) .

(1.48)

Hence ρ ≥ ρ. This contradicts ρ2 > ρ.

[(i) =⇒ (ii)]:

Let the optimal rates of (L∞(πε), ‖·‖L1(π))-GE and (L∞(πε), ‖·‖L2(π))-GE be (respec-
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tively)

ρ = sup
µ∈L∞,0(π)

lim sup
n→∞

‖µPn‖1/nL1(π) , ρ2 = sup
µ∈L∞,0(π)

lim sup
n→∞

‖µPn‖1/nL2(π) . (1.49)

We want to show that ρ2 ≤ ρ.

Let ε > 0 be arbitrary. Let νε ∈ L∞,0(π) with

lim sup
n→∞

‖νεPn‖1/nL2(π) ≥ ρ2 − ε . (1.50)

Then, for some c(νε) > 0, for infinitely many n ∈ N

‖νεPn‖L2(π) ≥ (ρ2 − 2ε)n . (1.51)

Using the fact that ‖µ‖L1(π) = supf∈L′∞(π)
‖f‖L′∞(π)

µf , and using the self-adjointness of P in

L2(π) (since P is reversible), and using the fact that (a version of) dνε
dπ is some bounded

function with
∥∥∥dνε

dπ

∥∥∥
L′∞(π)

= ‖νε‖L∞(π), then for infinitely many n ∈ N,

∥∥∥νεP 2n
∥∥∥
L1(π)

= sup
‖f‖∞≤1

νεP
2nf

≥ 1
‖νε‖L∞(π)

νεP
2ndνε

dπ

= 1
‖νε‖L∞(π)

〈
νεP

2n, νε
〉

= 1
‖νε‖L∞(π)

〈νεPn, νεPn〉

= 1
‖νε‖L∞(π)

‖νεPn‖2L2(π)

≥ 1
‖νε‖L∞(π)

(ρ2 − 2ε)2n

(1.52)

Thus ρ2 − 2ε ≤ ρ. Since ε was arbitrary, we find that ρ2 ≤ ρ.



Chapter 2

Integration by Parts and the

Geometry of Probability Density

Functions

2.1 Introduction

Integration by parts formulas are indispensable tools in analysis. They are commonly

used to evaluate otherwise unapproachable expressions, and so are one of the first things

students learn in elementary calculus courses. In more advanced analysis, integration by

parts formulas are also used to define weak derivatives (see, for example Maggi [69]) or the

infinitesimal generator associated with a Markov diffusion triple (as in Bakry et al. [7]).

Versions of integration by parts specialized to probability densities are commonly used in

theoretical and applied probability theory. They appear in the study of continuous time

Markov processes (as in [7]), convergence of probability measures (as in Chen et al. [25]),

spin glass (as in Panchenko [87]) and other applications.

The seminal work of Stein [112] characterizes a normal distribution as the unique prob-

ability measure satisfying an integration by parts formula, and uses this characterization to

establish a quantitative central limit theorem. From this seminal work, an entire subfield

of probability was born – commonly referred to as “Stein’s Method”. In its simplest form,

59
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Stein’s method for normal approximation relies on the following lemma, stated here as in

[25, Lemma 2.1].

Lemma 2.1 (Stein’s Lemma). Let F be the class of absolutely continuous functions with

E
Z∼N (0,1)

|f ′(Z)| <∞. Then

[W ∼ N (0, 1)] ⇐⇒ [Ef ′(W ) = EWf(W ) ∀f ∈ F ]

While in the literature of Stein’s method “Stein’s Lemma” often refers to this bidirec-

tional result, for our purposes it will refer to the one directional result

[W ∼ N (0, 1)] =⇒ [Ef ′(W ) = EWf(W ) ∀f ∈ F ].

It is this one directional result which we will generalize. In particular, in Theorem 2.1, we

show that for a large class of densities on (Rn,Rn) and for a large function class, F ,

[W ∼ π] =⇒ [E∇f(W ) = −E∇ log π(W )f(W ) ∀f ∈ F ].

Related Work

Other generalizations of Stein’s lemma exist in the literature. For example [25, Ch. 13]

and Stein et al. [113, Prop. 1.4] handle densities on R which may be discontinuous at the

boundary of the support, such as the exponential distribution. The present work is not

a direct generalization of that result, since we do not accommodate jump-discontinuities

at the boundary of the support. Another example, Landsman [61], provides a version for

multivariate elliptic distributions. Since not all elliptic distributions have densities, our

result is not a strict generalization of theirs. Our result is a strict generalization of their

result restricted to distributions with weakly differentiable densities π : Rn → R.

The result most similar to the present work is Gorham et al. [37, Prop. 3]. Their version

handles continuously differentiable densities on Rn; and integrands which are continuously

differentiable and absolutely integrable, with absolutely integrable gradients. Our result

is a strict generalization of theirs, over both the densities and the integrands to which it
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applies. The proof of Theorem 2.1 is more similar to that in [25, Lemma 2.1], while the

proof in [37] is similar to Proposition 2.1 since our proof uses an intrinsic foliation of the

density along its own level sets, while the proof of [37, Prop. 3] verifies that the boundary

integral in integration by parts vanishes given the assumptions.

As in [37], variants of the integration by parts formula for a distribution π arise from the

Fokker-Planck equation of a Langevin diffusion process. However, this only yields second-

order versions of the formula. Taking F to be the domain of the generator of a Langevin

diffusion with stationary measure π, the Fokker-Planck equation tell us that

[W ∼ π] =⇒ [E∆f(W ) + E∇ log π(W )′∇f(W ) = 0 ∀f ∈ F ].

This formula is follows from Corollary 2.1, applied to ∇f . Corollary 2.1 is not implied by

the Fokker-Planck equation since not all functions are the gradient of a scalar field.

Outline

The present chapter proceeds as follows. Section 2.2 reviews the existing results for

the univariate Gaussian case and their proofs. It serves as a blueprint for the proof of

our main result, and provides intuition for the key steps. Section 2.3 states and proves

our main result. That proof relies on some geometric properties of densities which satisfy

our key assumptions stated in Theorem 2.1. Those geometric properties are established

in Section 2.4. Finally, Section 2.5 applies our result to densities, π, such that ∇ log π is

L-Lipschitz to demonstrate that if X ∼ π then Cov(∇ log π(X)) = −E∇2 log π(X) and that

∇ log π(X) is sub-Gaussian with dimension-free sub-Gaussian constant L.

2.2 The Univariate Gaussian Case

Stein’s Lemma for the univariate Gaussian tells us that if X ∼ N (µ, σ2) then

σ2Ef ′(X) = E[(X − µ)f(X)]
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for “suitable” f . The result can be proved in (at least) two different ways, leading to

different conditions needed to verify that f is “suitable”. First, we use that the formula

resembles integration by parts without the boundary term.

Proposition 2.1. If π is a probability density on R with support S, which (as a function)

is absolutely continuous, f : R→ R is absolutely continuous, and limx→x′ f(x)π(x) = 0 for

all x′ ∈ ∂S ∪ {−∞,∞}

E
Z∼π

(
[log π]′(Z) f(Z)

)
= − E

Z∼π
[f ′(Z)]

The result is just integration by parts, with the recognition that π′ = π[log π]′ and that

the assumptions directly imply the boundary terms of integration by parts vanish. These

results are unsatisfactory in some cases because of the condition that the product f · π

must vanish at the boundary of the support of π. In one dimension this could amount

to evaluating a countable set of limits. The problem is made worse in higher dimensions

where the integration by parts formula gives a limits of surface integrals instead of limits

of function evaluations. The second, and more widely used, variant Stein’s Lemma for the

univariate Gaussian (Proposition 2.2) gives a measure-theoretic constraint which essentially

says that when E[f ′(Z)] and E[Zf(Z)] are well-defined the result holds. The proof of this

version will guide us in the multivariate setting.

Proposition 2.2 (Chen et al. [25], Lemma 2.1). If f : R → R is abs. continuous with

f ′(Z), Zf(Z) extended integrable, and Z ∼ N (0, 1), then

E
Z∼π

[Zf(Z)] = E
Z∼π

[f ′(Z)]

The proof presented here proof is a slight modification of versions seen elsewhere, and

so is not original. For example, a variant of this proof appears in [25].
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Proof. Let φ(x) = e−x
2/2

√
2π . Then

∫ ∞
−∞

f ′(x)φ(x) dx =
∫ ∞
−∞

f ′(x)
∫ φ(x)

0
1 dr dx

=
∫ 1√

2π

0

∫ √−2 log(
√

2π r)

−
√
−2 log(

√
2π r)

f ′(x)dx dr (Key step 1)

=
∫ 1√

2π

0

(
f(
√
−2 log(

√
2π r))− f(−

√
−2 log(

√
2π r))

)
dr (Key step 2)

=
∫ 1√

2π

0

[ ∑
x∈φ−1({r})

− sign(φ′(x))f(x)
]
dr (Key step 3)

=
∫ ∞
−∞
− sign(φ′(x))f(x) |φ′(x)| dx (Key step 4)

=
∫ ∞

0
f(x)xexp(−x2/2)√

2π
du

Key step 1 is the Fubini-Tonelli theorem. Key step 2 is is the fundamental theorem of

(Lebesgue integral) calculus. Key step 3 uses the fact that boundary of the super level sets

of φ were exactly the level sets of φ. Key step 4 is the co-area formula, [34, Theorem 3.2.12],

which requires only that the function whose level sets define the foliation be Lipschitz – an

assumption which is satisfied by the normal density function.1

In order to extend this to more general densities, both univariate and multivariate, we

need to understand what properties of the normal density allowed us to use the four key

steps in the proof. Fubini-Tonelli (key step 1) required that f ′(Z) is extended integrable.

The fundamental theorem of calculus (key step 2) required only that the super-level sets to

be a countable union of intervals. In the multivariate setting the variant of the fundamental

theorem of calculus which will be relevant is the Gauss-Green theorem, so we will require

that (almost all) of the superlevel sets of φ admit a Gauss-Green measure. Key step 3

required one to relate the boundaries of superlevel sets of φ to the corresponding level sets.

In the case of the normal distribution this was trivial. In the case of more general densities,

which may have extensive flat regions, we establish some geometric results in Section 2.4

which show that level sets are the boundaries of superlevel sets at almost every level for

the class of distributions we consider. Finally, key step 4 (the co-area formula) required the
1Key step 4 above could have been replaced by a pair of u-substitutions, with u = ±φ−1(r), which is the

case in most versions of this proof in the literature (e.g. in [25]). In the multivariate version of the result, a
substitution will not be adequate.
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level sets of π to be level sets of Lipschitz function.

2.3 The General Multivariate Case

For this section we adopt the notation of geometric measure theory, where Ln denotes

the n-dimensional Lebesgue measure, andHn denotes the n-dimensional Hausdorff measure.

The extended real numbers are denoted by R and endowed with the order topology.

Definition 2.1 (Compositionally Lipschitz function). f : Rn → R is compositionally Lips-

chitz if there exists a strictly increasing and absolutely continuous function ρ : R→ R with

ρ′ positive L1-almost everywhere and ρ ◦ f Lipschitz,.

If we wish to emphasize the ρ used we may say ρ-compositionally Lipschitz or ρ-CL,

and when we wish to emphasize the ρ used and the Lipschitz constant of ρ ◦ f we may

use the term (ρ, L)-compositionally Lipschitz or (ρ, L)-CL. Of course, if ρ is the identity

function then the function is just Lipschitz. More generally, if ρ−1 is L1-Lipschitz and f is

(ρ, L2)-compositionally Lipschitz then f is also (L1L2)-Lipschitz.

Theorem 2.1 (Distributional Integration by Parts, a.k.a. Stein’s Lemma). Suppose that

π : Rn → R is a compositionally Lipschitz probability density. Then, for any f : Rn →

R which is locally Lipschitz, with ∇f(x) and f(x)∇ log π(x) extended integrable functions

(w.r.t. π(x)Ln(dx)) we have:

E
X∼π

f(X)∇ log π(X) = − E
X∼π
∇f(X)

Remark 2.1 (On the differentiability of f). By Rademacher’s Theorem ([34], Theorem

3.1.6), such f will be differentiable almost everywhere with a measurable gradient, giving

meaning to the subsequent expressions. The assumption that f is locally Lipschitz is equiv-

alent to the assumption that f is Lipschitz on compact sets. /

Remark 2.2 (Some less smooth choices for π for which the theorem holds). Our weak

assumptions allow us to handle some non-smoothness in π. Two examples are (i) the

semi-circle law, π(x) ∝ 1|x|<2
√

4− x2, which is not Lipschitz, has compact support, and
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is of significance in random matrix theory, and (ii) unbounded elliptic densities, such as

π(x) ∝ |x|−1/2 ∧ x−2. Neither of these satisfy the conditions of [37, Prop. 3]. /

Corollary 2.1 (Jacobians and divergences of vector valued functions). By applying the

integration by parts formula for real valued functions coordinate-wise, the analogous formula

for Jacobians also holds. If π satisfies the conditions above and f : Rn → Rm is locally

Lipschitz with Jf and f(X)∇ log π(X)′ coordinate-wise extended integrable, then

E
X∼π

[f(X)∇ log π(X)′] = − E
X∼π

[Jf(X)],

where Jf denotes the Jacobian of f .

If, additionally, m = n and neither E
X∼π

[f(X)∇ log π(X)′] nor E
X∼π

[Jf(X)] have both

+∞ and −∞ on the diagonal, then

E
X∼π

[∇ log π(X)′f(X)] = − E
X∼π

[div(f)(X)].

Proof of Distributional Integration by Parts. By assumption, there exists an absolutely con-

tinuous function with a.e. positive derivative ρ : R → R such that π is ρ-CL (see Defini-

tion 2.1). For each ε > 0, let Aε = π−1((ε,∞]) ⊂ Kε = π−1([ε,∞]). By definition,

E
X∼π
∇f(X) =

∫
Rn
π(x)∇f(x) Ln(dx) =

∫
Rn

∫ π(x)

0
L1(dr) ∇f(x) Ln(dx).

(Key step 1): Since ∇f(X) is assumed to be extended integrable, by Fubini-Tonelli

∫
Rn

∫ π(x)

0
L1(dr) ∇f(x) Ln(dx) =

∫ ∞
0

∫
Ar
∇f(x) Ln(dx) L1(dr).

(Key step 2): Using a version of the Gauss-Green theorem, Lemma 2.2,

∫ ∞
0

∫
Ar
∇f(x) Ln(dx) L1(dr) =

∫ ∞
0

∫
∂∗(Ar)

f(x)n̂(Ar, x) Hn−1(dx) L1(dr),

where ∂∗(Ar) ⊆ ∂(Ar) is the reduced boundary of Ar (see [69, Chapter 15]); and n̂(Ar, x)

is the unit outward-facing measure-theoretic normal vector to Ar at x when Ar has locally-
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finite perimeter and x ∈ ∂∗(Ar); and n̂(Ar, x) is 0 otherwise. Note that L1-almost every

superlevel set of a Lipschitz function has locally finite perimeter [69, Example 13.3]. Since

π is ρ-CL, Ar has locally finite perimeter for L1-almost every r > 0.

(Key step 3): If r 6∈ Eπ =
{
s > 0 : ∂(π−1((s,∞])) 6= π−1({s})

}
, then ∂(Ar) = π−1({r}).

From Lemma 2.4, L1(Eπ) = 0. Therefore, for L1-almost every r > 0,

∫
∂∗(Ar)

f(x)n̂(Ar, x) Hn−1(dx) =
∫
π−1({r})

f(x)ñ(Ar, x) Hn−1(dx),

where ñ(Ar, x) is the unit outward-facing normal vector to Ar at x when r 6∈ Eπ, Ar has

locally finite perimeter, and x ∈ ∂∗(Ar), and is 0 otherwise. Therefore

∫ ∞
0

∫
∂∗(Ar)

f(x)n̂(Ar, x)Hn−1(dx)L1(dr) =
∫ ∞

0

∫
π−1({r})

f(x)ñ(Ar, x)Hn−1(dx)L1(dr).

Changing from π-coordinates to ρ ◦ π coordinates, s = ρ(r), so that our level sets are taken

with respect to a Lipschitz function (and hence we can later apply the co-area formula):

∫ ∞
0

∫
π−1({r})

f(x)ñ(Ar, x) Hn−1(dx) L1(dr)

=
∫ ρ(∞)

ρ(0)

∫
(ρ◦π)−1({s})

f(x)
ρ′(π(x)) ñ(Ar, x) Hn−1(dx) L1(ds)

Let J1[ρ ◦ π] denote the 1 × 1 Jacobian of ρ ◦ π [34, Definition 3.2.1]. From [34] we have

the formula J1π(x) = ‖∧1∇ρ ◦ π(x)‖ = ρ′(π(x)) ‖∇π(x)‖. For r 6∈ Eπ, at every point,

x ∈ π−1({r}), where π is differentiable and ∇π(x) 6= 0, from [69, Theorem 15.9], we

have x ∈ ∂∗Ar and ñ(Ar, x) = − ∇π(x)
‖∇π(x)‖ . This captures the intuition that when π is

differentiable at x and ∇π(x) 6= 0 then the negative standardized gradient is the unit

outward facing normal to the level set. Moreover, if ∇π(x) = 0 and x ∈ ∂∗(Ar) ⊂ π−1({r}),

then ñ(Ar, x) J1[ρ ◦ π(x)] = 0. Thus f(x)
ρ′◦π(x) ñ(Ar, x) J1[ρ ◦ π(x)] = −f(x)∇π(x) almost

everywhere, and hence is extended integrable (w.r.t π(x)Ln(dx)) by assumption.

(Key step 4): Applying the co-area formula [34, Theorem 3.2.12] coordinate-wise, we
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get: ∫ ρ(∞)

ρ(0)

∫
(ρ◦π)−1({s})

f(x)
ρ′(π(x)) ñ(Ar, x) Hn−1(dx) L1(ds)

=
∫
Rn

f(x)
ρ′ ◦ π(x) ñ(Ar, x) J1[ρ ◦ π(x)] Ln(dx)

= −
∫
Rn
f(x)∇π(x)Ln(dx)

= − E
X∼π

f(X)∇ log π(X)

Lemma 2.2 (Gauss-Green theorem for super level sets of densities.). If π is a CL prob.

density on Rn, then for L1-a.e. r > 0 and any locally Lipschitz f : Rn → R

∫
Ar
∇f(x) Ln(dx) =

∫
∂∗Ar

f(x)n̂(Ar, x) Hn−1(dx)

where Ar = π−1((r,∞]), ∂∗Ar is the reduced boundary of Ar and n̂(Ar, x) is the unit outward

facing normal vector to Ar at point x.

Proof. This is a specialization of the Gauss-Green theorem from geometric measure theory

to the problem at hand. The purpose of this Lemma is essentially to verify that existing

versions of Gauss-Green can be applied to the collection integrals in question. Let Pπ be the

set of r > 0 such that Ar has locally finite perimeter. Since almost every superlevel set of a

Lipschitz function has locally finite perimeter [69, Example 13.3], L1(P cπ) = 0. We consider

only r ∈ Pπ from now on. Sets of locally finite perimeter admit Gauss-Green measures [69,

Proposition 12.1 and Remark 12.2] – the Gauss-Green measure for E ⊂ Rn is an Rn-valued

Radon measure, µE , such that

∫
E
∇g(x) Ln(dx) =

∫
Rn
g(x) µE(dx) ∀g ∈ C1

c (Rn).

The Gauss-Green Measure of E ⊂ Rn admits the representation µE = n̂(E, x)Hn−1|∂∗E

where ∂∗E is the reduced boundary of E, and n̂(E, x) is the (measure-theoretic) outer unit

normal to E [69, Chapter 15 and Corollary 16.1]. The definition of µE only guarantees a

Gauss-Green formula holds for integrands g ∈ C1
c (Rn). This extends to Lipschitz functions

with compact support, as outlined in [69, Exercise 12.12], via convolution with smooth



CHAPTER 2. 68

bump functions. Recalling that locally Lipschitz functions are Lipschitz on compacts, a

locally Lipschitz integrand, f , must have been Lipschitz on π−1([r/2,∞] ⊃ Ar which is

compact by Lemma 2.3. The function f could be extended to a globally Lipschitz function

with compact support without changing its value on π−1([r/2,∞]). Hence the Gauss-Green

formula extends to locally Lipschitz functions on the domains {Ar : r ∈ Pπ}.

2.4 Geometry of Density Functions

Lemma 2.3 (Compositionally Lipschitz densities have compact superlevel sets). If π is a

(ρ, L)-CL probability density on Rn then the closed superlevel sets of π,

{
Kε = π−1([ε,∞]) s.t. ε > 0

}
,

are all compact.

Proof. Since π is continuous, Kε = π−1([ε,∞]) is closed for all ε > 0. Suppose, for contra-

diction, that Kε is not compact for some ε > 0. For Kε to fail to be compact, it must be

unbounded (since we know it is closed). Let R ∈
(
0, ρ(ε)−ρ(ε/2)

L

]
. If Kε is unbounded, we

may find {xj}j∈N ⊂ Kε such that for i 6= j, ‖xi − xj‖ ≥ 3R. Then BR(xi)∩BR(xj) = ∅ for

i 6= j. Hence

1 =
∫
π(x)Ln(dx) ≥

∑
j∈N

∫
BR(xj)

π(x)Ln(dx)

≥
∑
j∈N

∫
BR(xj)

ρ−1(ρ ◦ π(xj)− L ‖x− xj‖)Ln(dx)

≥
∑
j∈N

∫
BR(xj)

ρ−1(ρ(ε)− L ‖x− xj‖)Ln(dx)

≥
∑
j∈N

∫
BR(xj)

ρ−1(ρ(ε/2))Ln(dx)

=
∑
j∈N

Vol(BR(0)) ε/2

This is a contradiction, since the last term is clearly +∞

Lemma 2.4 (Almost every level set of a CL density is the boundary of a superlevel set).
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Figure 2.1: Visualization of Cr ∩ Cs = ∅ for r < s in the proof of Lemma 2.4

If π is a (ρ, L)-CL probability density on Rn then

Eπ =
{
r > 0 : ∂(π−1((r,∞])) 6= π−1({r})

}

is countable (and hence has L1(Eπ) = 0).

Proof. Since π is continuous, Ar = π−1((r,∞]) is open. Suppose that x ∈ ∂(Ar). Then

x 6∈ Ar so π(x) ≤ r and π(x) is a limit point of π(Ar) ⊆ (r,∞]. Hence ∂(Ar) ⊂ π−1({r}).

Let Gπ = {(x, y) : x ∈ Rn and 0 ≤ y ≤ π(x)}. Then Lk+1(Gπ) = 1 since π is a probability

density. Let d(x,A) = infy∈A ‖x− y‖. Suppose r ∈ Eπ. Then there exists an xr ∈

π−1({r}) \ ∂(Ar) with δr = d(xr, Ar) > 0. Since ρ ◦ π is Lipschitz, the ρ-transformed cone

Cr =
{

(x, y) s.t. x ∈ Bδr/2(xr) and ρ−1(ρ(r)− δrL/2) < y < ρ−1(ρ(r)− ‖x− xr‖L)
}

has Cr ⊂ Gπ and Cr is open, and hence Lk+1(Cr) > 0. We show below that for s, r ∈ Eπ

with s < r we have Cs∩Cr = ∅. This is visualized in Fig. 2.1. Once established, this implies∑
r∈Eπ L

k+1(Cr) ≤ Lk+1(Gπ) = 1, which further implies that Eπ is at most countable.

Suppose now that s, r ∈ Eπ with s < r. Then ‖xr − xs‖ ≥ δs + (ρ(r) − ρ(s))/L; since

the line segment from xr to xs must pass trough ∂As at some point x?s ∈ ∂As ⊂ π−1({s}),

and the portion of the segment from xs to x?s is at least δs in length, while the remaining

portion from ∂As to xr is bounded using the Lipschitz property of ρ ◦π, since ρ(r)−ρ(s) =

ρ(π(xr))− ρ(π(x?s)) ≤ L ‖x?s − xr‖.
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Suppose, now, that there exists a pair (x, y) ∈ Cr ∩ Cs. Then

ρ(r)− ‖x− xr‖L > ρ(y) > ρ(s)− δsL/2 ,

which implies that

0 < ρ(r)− ρ(s)− L ‖x− xr‖+ Lδs/2

≤ L ‖xr − xs‖ − L ‖x− xr‖ − Lδs/2

≤ L(‖xr − x‖+ ‖x− xs‖)− L ‖x− xr‖ − Lδs/2

≤ L ‖x− xs‖ − Lδs/2

< 0 ,

which is a contradiction.

2.5 Properties of Grad-Log-Lipschitz Densities

A probability density, π, with ∇ log π Lipschitz will be referred to as a grad-log-Lipschitz

density.

Lemma 2.5 (Grad-Log-Lipschitz Densities are Tangentially Minorized by Gaussians). If

π is a probability density on Rn, and ∇ log π is L-Lipschitz, then for any x, x0 ∈ Rn.

π(x) ≥ π(x0)e

∥∥∥∇ log π(x0)
∥∥∥2
/2L

exp
(
−
∥∥∥∥x− x0 −

∇ log π(x0)
L

∥∥∥∥2 L

2
)

≥ π(x0) exp
(
−
∥∥∥x− x0 −

∇ log π(x0)
L

∥∥∥2L

2
)
.

Proof. Since ∇ log π is L-Lipschitz,

log π(x)− log π(x0)− (x− x0)′∇ log π(x0) ≥ −L ‖x− x0‖2 /2

The result follows by completing the square and exponentiating.

Lemma 2.6 (Grad-Log-Lipschitz Densities are Bounded Above). If π is a probability den-
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sity on Rn, and ∇ log π is L-Lipschitz then:

π(x) ≤
(
L

2π

)n/2
e−‖∇ log π(x)‖2/2L ≤

(
L

2π

)n/2

Proof. Using Lemma 2.5

1 =
∫
π(y)Ln(dy)

≥ π(x)e‖∇ log π(x)‖2/2L
∫

exp
(
−
∥∥∥y − x− ∇ log π(x)

2L
∥∥∥2L

2
)
Ln(dy)

= π(x)e‖∇ log π(x)‖2/2L
∫

exp
(
−‖y‖2 L2

)
Ln(dy)

= (2π/L)n/2e‖∇ log π(x)‖2/2Lπ(x).

Lemma 2.7 (Grad-Log-Lipschitz Densities are Lipschitz). If π is a probability density on

Rn, and ∇ log π is L-Lipschitz then π is
√
Le−1/2

(
L
2π

)n/2
-Lipschitz.

Proof. Applying Lemma 2.6, for any x ∈ Rn

‖∇π(x)‖ = π(x) ‖∇ log π(x)‖ ≤
(
L

2π

)n
2
e−
‖∇ logπ(x)‖2

2L ‖∇ log π(x)‖ ≤
(
L

2π

)n
2
sup
s≥0

(
se−

s2
2L

)
.

Now, d
ds

(
s e−s

2/2L
)

=
(
e−s

2/2L(1− s2/L)
)
so the maximum of s e−s2/2L over s ≥ 0 occurs

at s =
√
L (since the derivative is positive to left and negative to the right of this value)

and the maximum value is
√
Le−1/2. Hence ‖∇π(x)‖ ≤

√
Le−1/2

(
L
2π

)n/2
.

Corollary 2.2. Suppose that π is a grad-log-Lipschitz probability density on Rn. Then,

for any f : Rn → R which is locally Lipschitz, with ∇f(X) and f(x)∇ log π(x) extended

integrable (w.r.t. π(x)dx) we have:

E
X∼π

f(X)∇ log π(X) = − E
X∼π
∇f(X)

Similar formulas for the Jacobian and divergence also hold.

Proof. This is just the combination Theorem 2.1 and Lemma 2.7.
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Lemma 2.8. Suppose that π is a grad-log-Lipschitz probability density on Rn.

E
X∼π

[∇ log π(X)] = 0, and Var
X∼π

[∇ log π(X)] = − E
X∼π

[∇2 log π(X)].

Proof. Since ∇ log π(X)′∇ log π(X) is non-negative, then it is extended integrable. Since

[div(∇ log π)](X) = Tr(∇2 log π(X)) ∈ [−nL, nL]

is bounded, Tr(∇2 log π(X)) is also integrable. Hence Corollary 2.2 gives us that

E
X∼π

[∇ log π(X)′∇ log π(X)] = − E
X∼π

[Tr(∇2 log π)] ≤ nL.

Now, we have that

E ‖∇ log π(X)‖ ≤
√
E[∇ log π(X)′∇ log π(X)] ≤

√
nL,

so that ∇ log π(X) is integrable. Hence Corollary 2.2 gives us that E∇ log π = −E∇1 = 0.

Next,

∥∥∇ log π∇ log π′
∥∥
F =

√
Tr(∇ log π∇ log π′∇ log π∇ log π′)

=
√

Tr(∇ log π′∇ log π∇ log π′∇ log π) = ∇ log π′∇ log π.

Hence, ∇ log π(X)∇ log π(X)′ is integrable. Moreover, ∇2 log π(X) is bounded, and hence

is also integrable. Therefore the Jacobian version Corollary 2.2 gives us that

E
X∼π

[∇ log π(X)∇ log π(X)′] = − E
X∼π

[∇2 log π].

Theorem 2.2 (If π is a Grad-Log-Lipschitz Density then [∇ log π]]π is Sub-Gaussian). Let

π be a probability density on Rn such that ∇ log π is L-Lipschitz. If X ∼ π then ∇ log π(X)
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is sub-Gaussian with proxy-variance L:

ψ(t) := E
X∼π

exp(〈t, ∇ log π(X)〉) ≤ exp(L ‖t‖2 /2)

Proof. We first prove the result with a sub-optimal, dimension dependent, sub-Gaussian

constant. We then refine the result to the form stated in the theorem.

Since ∇ log π is L-Lipschitz, then we must have that
∥∥∇2 log π(x)

∥∥ ≤ L (and hence

|∆ log π(x)| ≤ nL as well) for all x ∈ Rn. Let µn denote the nth moment of ‖∇ log π(X)‖.

As in the proof of Lemma 2.8,

E
X∼π

[
‖∇ log π(X)‖2

]
= E

X∼π

[
∇ log π(X)′∇ log π(X)

]
= − E

X∼π
[∆ log π(X)] ≤ nL

For r ≥ 2,

µ2r = E
X∼π

[
‖∇ log π(X)‖2r

]
= E

X∼π

[(
∇ log π(X)′∇ log π(X)

)
‖∇ log π(X)‖2r−2

]
.

Note that (
∇ log π(X)′∇ log π(X)

)
‖∇ log π(X)‖2r−2

is non-negative, so it must be extended integrable.

We need to check that div
(
∇ log π(X) ‖∇ log π(X)‖2(r−1)

)
is integrable as well in order

to apply Corollary 2.2. Note that

div
(
∇ log π(X) ‖∇ log π(X)‖2(r−1)

)
= ∇ log π(X)′ 2(r − 1) ‖∇ log π(X)‖2(r−2)∇2 log π(X)∇ log π(X)

+ (∆ log π(X)) ‖∇ log π(X)‖2(r−1) .

Thus

∣∣∣div
(
∇ log π(X) ‖∇ log π(X)‖2(r−1)

)∣∣∣ ≤ L(2(r − 1) + n) ‖∇ log π(X)‖2(r−1) .

Now, if µ2r−2 is finite then div
(
∇ log π(X)

∥∥∇ log π(X)
∥∥2(r−1)) is absolutely integrable.
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Hence, using (the divergence version of) Corollary 2.2,

µ2r = − E
X∼π

[
∇ log π(X)′ 2(r − 1) ‖∇ log π(X)‖2(r−2)∇2 log π(X)∇ log π(X)

]
− E
X∼π

[
(∆ log π(X)) ‖∇ log π(X)‖2(r−1)

]
≤ L(2(r − 1) + n) E

X∼π

[
‖∇ log π(X)‖2(r−1)

]
= L(2(r − 1) + n)µ2(r−1)

≤ (n+ 2)Lrµ2(r−1)

By induction, we find that µ2r ≤ r![(n+ 2)L]r. Hence, from [15, Theorem 2.1], we get that

‖∇ log π(X)‖ is sub-Gaussian with proxy variance 4(n+2)L. Thus we know that ∇ log π(X)

must be a sub-Gaussian vector, with proxy variance no larger than 4(n+ 2)L.

Now that we know that∇ log π(X) is sub-Gaussian, we know that its moment generating

function is entire. This allows us us to refine our analysis to get a dimension-free sub-

Gaussian constant. Fix t ∈ Rn. The moment generating function of ∇ log π(X) is finite

everywhere and is given by:

ψ(t) := E
X∼π

[exp(〈t, ∇ log π(X)〉)]

Then,

∇tψ(t) = ∇t E
X∼π

[exp(〈t, ∇ log π(X)〉)]

= E
X∼π

[∇t exp(〈t, ∇ log π(X)〉)] = E
X∼π

[∇ log π(X) exp(〈t, ∇ log π(X)〉)]

By Cauchy-Schwartz,

E
X∼π

[‖∇ log π(X)‖ exp(〈t, ∇ log π(X)〉)]

≤
√

E
X∼π

[
‖∇ log π(X)‖2

]
E

X∼π
[exp(〈2t, ∇ log π(X)〉)] <∞,

hence ∇ log π(X) exp(〈t, ∇ log π(X)〉) is absolutely integrable. Moreover,

∥∥∥(∇2 log π(X)t) exp(〈t, ∇ log π(X)〉)
∥∥∥ ≤ L ‖t‖ exp(〈t, ∇ log π(X)〉),
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so (∇2 log π(X)t) exp(〈t, ∇ log π(X)〉) must also be absolutely integrable. Therefore, using

(the Jacobian version of) Corollary 2.2,

E
X∼π

[∇ log π(X) exp(〈t, ∇ log π(X)〉)] = − E
X∼π

[
(∇2 log π(X)t) exp(〈t, ∇ log π(X)〉)

]
∈ Lψ(t)Bt

where Bt is the ball of radius ‖t‖ centred at the origin. This gives us a differential inequality

which is easily solved:

∇t logψ(t) ∈ LBt =⇒ logψ(t) ≤ L ‖t‖2 /2 =⇒ ψ(t) ≤ exp(L ‖t‖2 /2)

Remark 2.3. Consequently all the moments of ∇ log π exist. Moreover, since
∥∥∇2 log π

∥∥ ≤
L, all the moments of ∇2 log π must exist as well. This means that the assumptions in

Roberts et al. [94], Neal and Roberts [81], Bédard [11], etc. that E
(
π′

π

)8
< ∞ (or similar

moment conditions) and E
(
π′′

π

)4
<∞ are redundant once π′

π is assumed to be Lipshitz. /



Chapter 3

Optimal Shaping and Scaling of

the Random Walk Metropolis

Algorithm

3.1 Introduction

Markov Chain Monte Carlo (MCMC) algorithms are a common tool for estimating

expectations with respect to a arbitrary probability measures (the “target”). These methods

operate by defining a Markov Chain whose stationary distribution is the target, and whose

dynamics are easily computable. Running this Markov chain forwards in time yields a

dependent sequence of samples which can be used to estimate expectations. Performance

of such algorithms are typically measured based on how quickly empirical expectations will

converge to their target values. Among the simplest of such algorithms is Random-Walk

Metropolis (RWM), which proposes IID increments (from a “proposal distribution”) which

are either accepted or rejected with probabilities tuned so that the stationary measure

matches the target distribution. Proposals which land in areas with low target density are

likely to be rejected, while those that land in areas with higher density are likely to be

accepted.

The choice of proposal distribution is they key tuning parameter in the design and appli-

76
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cation of RWM algorithms and has a decisive impact on the performance of the algorithm,

especially in a high dimensional setting. A typical choice is to use a mean-zero Gaussian

proposal, yet among this class one is still required to select the variance-covariance matrix

of the proposal. Proposing steps which are too large in any particular direction will lead to

poor performance due to frequent rejection, as the proposed point will typically have low

target density. Proposing steps which are too small in any particular direction will lead

to poor performance, since it will take many steps to move a meaningful distance in any

direction. A step size and orientation which is “just right" (not too big, and also not too

small, in each direction) is required for good performance. This leads us to consider the

optimal shaping and scaling for Gaussian proposals for the RWM algorithm.

The seminal paper of [94] introduced techniques for analyzing the optimal scaling prob-

lem in the limit, as the dimension of the target tends to infinity, for independent and

identically distributed targets (IID targets). The key insight was that, under appropriate

rescaling, the random paths of any single component converge in law to the random path

of a diffusion process weakly in the Skorohod topology, and that the speed of the limit-

ing diffusion can be optimized using elementary techniques. Since that work, there has

been a reasonable amount of attention placed on extending their results to other MCMC

algorithms, as well as to more general targets.

3.1.1 Contributions

In this work we derive the scaling limit of RWM with block-independent targets with

possibly complex dependence structures within blocks, and anisotropic proposals. We show

that the random path of a full dependent block converges in law to the path of a multivariate

anisotropic diffusion. We also show that the entire random path in RN converges in law to

an infinite product of block-independent multivariate anisotropic diffusions.

Using this scaling limit, we aim address both the optimal scaling and the shaping of

the proposal under convergence of the joint process. We find that the optimal scaling for

a fixed proposal covariance shaping is the same as given by Roberts et al. [94], to tune the

acceptance rate to be approximately 0.234. Thus, this recommendation is independent of

whether the anisotropy of proposal covariance aligns in any particular was with the shape
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of the target distribution. We also provide a variational characterization of the optimal

shaping matrix. The optimal proposal anisotropy matrix (called the shaping matrix in the

sequel) is given by

arg max
Λ�0

inf
f∈D(G)

Var
X∼π

[f(X)]=1

E
X∼π

[∇f(X)′ Λ ∇f(X)]

E
X∼π

[∇ log π(X)′ Λ ∇ log π(X)] , (3.1)

where π is the target distribution, D(G) is the domain of the infinitesimal generator of the

limiting diffusion process of a single block, and Λ � 0 means that Λ ranges over symmetric

strictly positive definite matrices. We show that when the blocks are rotation-scalings of

independent and identical components, that this can be solved yielding the recommendation

from Roberts and Rosenthal [97], to tune RWM so that the covariance of the proposals is

proportional to the covariance of the target distribution. More generally, we show that this

recommendation optimizes the instantaneous autocorrelation of linear functions in the the

scaling limit. Finally, we provide conditions under which high-dimensional dependence in

the target distribution will cause RWM performance under optimal shaping and scaling to

deteriorate relative to an IID target. This supports the intuition that RWM performance

is worse under complex dependence structures.

3.1.2 Outline of this chapter

A summary of prior work is given in Section 3.1.3. Section 3.1.4 sets up the weak con-

vergence and optimal scaling/shaping problems, and also provides notation and definitions

used through out this chapter. That subsection also provides a list of consequences of the

assumption on the target distribution used to prove weak convergence (that, when π is the

target density, ∇ log π is Lipschitz), many of which were demonstrated in Chapter 2.

Section 3.2 includes the main contributions of this work. In particular, Section 3.2.1

states the weak convergence results for the finite dimensional and the infinite dimensional

processes. Section 3.2.2 provides the optimal scaling of the RWM proposals for a fixed

shaping. Section 3.2.3 formulates the optimal shaping problem in terms of the spectral

gap of the generator, and provides a variational characterization of the optimal shaping
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matrix. Section 3.2.4 presents the optimal shaping problem in terms of the spectral gap of

the generator for certain special target distributions for which it is analytically tractable.

Section 3.2.5 presents the optimal shaping in terms of short term autocorrelations for more

general target distributions, and demonstrates that this alternative objective upper bounds

the spectral gap, providing “speed limits” on the performance of RWM algorithms. Lastly

among the key results, Section 3.2.6 provides a discursive analysis of the implications of the

derived speed limits upon the performance decay of RWM in scenarios of high-dimensional

dependence, relative to the independent target case.

3.1.3 Prior work

The seminal paper using scaling limits to address the optimal scaling problem in MCMC

is that of Roberts et al. [94]. They consider IID targets of the form π⊗d as d→∞, where π is

a density on R1 withD log π Lipschitz continuous1 They provide a scaling limit for the RWM

algorithm with spherical Gaussian proposals, which establishes weak convergence of the first

component’s path process to that of a univariate Langevin diffusion, and derives an optimal

scaling criteria of accepting ≈ 23.4%. The paper has additional regularity assumptions of

smoothness (that the density is twice continuously differentiable) and moment conditions

(that E
X∼π

(D log π(X))8 <∞ and E
X∼π

(D2π
π )4 <∞).

The subsequent work of Roberts and Rosenthal [98], derives similar optimal scaling

results for the Metropolis Adjusted Langevin Algorithm (MALA). They also consider IID

targets of the form π⊗d as d→∞ as well, where π is a density on R1 with D log π Lipschitz

continuous. That work proves weak convergence of the first component’s path process to

that of a univariate Langevin diffusion, and derives an optimal scaling criteria of accepting

≈ 57.4% of proposals when using MALA. They require additional regularity assumptions of

smoothness (that the density is eight times continuously differentiable), a growth assump-

tion (that the first eight derivatives of log π are all bounded by a polynomial) and moment

conditions (that all polynomial moments of π are finite; ∀k ∈ N
(
EX∼π(Xk) <∞

)
.

The survey paper of Roberts and Rosenthal [97], provides further context to the op-

timal scaling problem and presents both theoretical and empirical results. In addition to
1D denotes the first derivative operator.
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summarizing previous work, the paper provides an examination of how the optimal scaling

in finite dimensions approaches the infinite dimensional limits derived via diffusion limits.

Lastly, and a large inspiration for this work, they consider extensions to independent prod-

ucts which differ only by heterogeneity of scale. This provides the first optimal shaping

result we are aware of. They note that “this result does not appear in any of the MCMC

scaling literature, so we have sketched a proof which appears in the Appendix,” however

the sketched proof considers only convergence of a single component and so the impact of

optimal scaling and shaping on the mixing properties of the full multidimensional target

remains ambiguous. Our present paper builds on their ideas to provide multivariate con-

vergence and optimal scaling and shaping results which apply to the full multidimensional

limit.

The work of Neal and Roberts [81] considers modified RWM and MALA where only a

fraction of the components are updated at a time. Algorithms of that type are typically more

efficient as an update which would have been rejected because of a single “bad proposal”

in one component is not going to affect the speed of all dimensions. That paper derives

the optimal scaling and update rate simultaneously with the same assumptions as Roberts

et al. [94]. Their proof of weak convergence in the Skorohod topology had more exposition,

detail and precision than that of previous work, and largely inspired our proof.

The work of Bédard [11] and Bédard and Rosenthal [13], and the Ph.D. thesis of Bé-

dard [12] consider a more extreme version of the scale homogeneity problem for the RWM

algorithm. Particularly they address the case that the scaling of various components shrink

or grow at disparate rates as the dimension tends to infinity. That collection of work shows

that, depending on which scalings are dominant, the limiting law of the first component may

be either a univariate RWM process or a Langevin diffusion, and that in certain situations

the optimal acceptance rate will be quite different than the 23.4% of the homogeneous or

limited inhomogeneity cases. That work also slightly relaxed the assumptions of the original

paper of Roberts et al. [94] by reducing the powers in their moment assumptions.

More recently, some authors have considered working with infinite dimensional targets,

particularly in the case that the target has a density with respect to the law of a Gaussian

process. This includes the work of Mattingly et al. [71] which covers the RWM case and
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that of Pillai et al. [90] which covers the MALA case. These papers allow for a non-trivial

dependence structure, but only under the strong assumption of absolute continuity with

respect to an infinite-dimensional Gaussian distribution. They show that the ≈ 23.4%

and ≈ 57.4% optimal acceptance rates for RWM and MALA respectively carry over to

infinite dimensional distributions which have densities with respect to the laws of a Gaussian

processes. Though these papers allow for a non-trivial dependence structure, they do not

consider the optimal shaping problem.

Lastly, Zanella et al. [126] utilize the theory of Dirichlet forms to establish weak con-

vergence of the infinite dimensional limit process for targets of the same form as considered

by Roberts et al. [94]. Using the powerful theory of Mosco convergence, they are able to

eliminate many of the assumptions needed by Roberts et al. [94]. In particular, that paper

requires no additional smoothness or moment assumptions. In fact, they are able to demon-

strate convergence of the Markov semigroup with assumptions on D log π which are weaker

than Lipschitz continuity, though to ensure weak convergence of the path processes they do

require Lipschitz continuity. Hence, the present chapter’s assumptions used to demonstrate

weak convergence of the infinite dimensional paths are the same as in that work.

3.1.4 Notation and Definitions

Let π be the Lebesgue density of a probability distribution on Rk. For each d ∈ N,

let Πd = π⊗d. Then Πd is the joint density for d independent blocks, each of dimension

k, identically distributed according to π. Let Λ ∈ Rk×k be a symmetric positive definite

covariance matrix representing a RWM proposal shaping, and let l > 0 representing the

RWM proposal scaling. Let Λr = Ir ⊗ Λ for r ∈ N, where Ir is the r × r identity matrix.

The “accelerated, continuous time” stationary RWM process with stationary distribution

Πd, and proposal distribution:

Nd(l2Λ) := N
(

0, l2

(d− 1)Λd
)
, (3.2)
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is the Markov process, Xd(t) with initial distribution Xd(0) ∼ Πd and infinitesimal generator

[Ĝl,Λd f ](x) = kd E
Z∼Nd(l2Λ)

[
(f(x+ Z)− f(x))

(
1 ∧ Πd(x+ Z)

Πd(x)

)]
. (3.3)

defined for f ∈ C(Rkd), where for a topological space S, C(S) denotes the space of bounded

continuous functions S → R.

Note that Id ⊗ Λ is the kd × kd block diagonal matrix with d blocks of size k × k all

equal to Λ:

Λd = Id ⊗ Λ =



Λ 0 0 · · · 0 0

0 Λ 0 · · · 0 0

0 0 Λ · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · Λ 0

0 0 0 · · · 0 Λ


(3.4)

Equivalently, Xd(t) is the pure-jump Markov process with jump intensity in state x

given by

kd E
Z∼Nd(l2Λ)

[
1 ∧ Πd(x+ Z)

Πd(x)

]
, (3.5)

and jumps leaving state x distributed according the conditional distribution of a proposal

given that it is accepted.

Let X(i)
d (t) be the stochastic process on Rk consisting of the ith k-dimensional block

of Xd(t). In general, this process is not Markov because the intensity depends on the full

state and does not factor. For i < j, let X(i):(j)
d (t) be the stochastic process consisting of

the ith, (i + 1)th,...,jth k-dimensional blocks of Xd(t), so that X(i):(j)
d (t) has paths which

take values in Rk(j−i+1).

For each r ∈ N, the anisotropic Langevin diffusion with stationary distribution Πr,

anisotropy matrix Λ, and time-scaling factor l2aΛ(l), Xr(t), is the Markov process with

Xr(0) ∼ Πr and infinitesimal generator

[Gl,Λr f ] = kl2aΛ(l)
(1

2Λr : (∇2f) + 1
2[∇ log Πr]′Λr(∇f)

)
, (3.6)
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for a sufficiently large class of functions f , and where

aΛ(l) = 2Φ
(
− l
√

Σ : Λ
2

)
Σ = Var

X∼π
(∇ log π(X)) A : B = Tr(A′B) . (3.7)

Equivalently, it is the diffusion process with initial distribution Πr satisfying the stochastic

differential equation (SDE):

dXr(t) = kl2aΛ(l)Λr[∇ log Πr(Xr(t))] dt+
√

2kl2a(l)Λr dB(t) (3.8)

where B(t) is a standard kr-dimensional Wiener process, and
√

Λr is the symmetric positive

definite square-root of the symmetric positive definite matrix Λr. Thus, Xr is the same

process, in distribution, as r independent copies of the X1 appended together. Let D(GΛ)

be the domain of the generator GΛ. Note that D(GΛ) = D(GΘ) for Λ and Θ both symmetric

and strictly positive definite. Thus, without ambiguity, we denote this common domain by

D(G) := D(GIk).

Later, in the case r = 1, we will also compare this to the generator of a similar diffusion,

with the same stationary measure and anisotropy matrix, at a standardized speed

[GΛf ](x) = k

( Λ
Λ : Σ : (∇2f) + [∇ log π]′ Λ

Λ : Σ(∇f)
)

(3.9)

The choice of time-scaling used for the standardized speed corresponds to Gl,Λ1 for the

optimal choice of l given π and Λ up to universal constants (not dependent on k, π, or Λ),

as we show in Corollary 3.1.

We make the following assumption about π throughout this work:

Assumption 3.1. ∇ log π is L-Lipschitz continuous for some L > 0.

Some geometric and analytic consequences of this assumption are summarized in Sec-

tion 3.3.
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3.2 Results

3.2.1 Weak Convergence in the Skorohod Topology

Theorem 3.1 (Weak convergence of finite dimensional processes in the Skorohod topology).

Under the definitions above, if Assumption 3.1 holds then (for each r ∈ N) then X(1):(r)
d

converges weakly in the Skorohod topology on Rkr to Xr as d→∞.

The proof of this result is in Section 3.4. By bootstrapping our result on weak conver-

gence of finite dimensional processes we are also able to demonstrate weak convergence of

the infinite dimensional process.

Theorem 3.2 (Weak convergence of the infinite dimensional process in the Skorohod topol-

ogy). There is a unique (in law) process XN taking values in RN such that the marginal

process of the first kr components has the same law as Xr. Let Yd(t) = (Xd(t), 0, 0, ...), so

that Yd(t) ∈ RN for each d ∈ N, t > 0. If Assumption 3.1 holds then Yd converges weakly

to XN in the Skorohod topology of RN, where RN is endowed with the product topology.

The proof of this result is in Section 3.6. The processes Yd(t) are similar to the processes

considered by Zanella et al. [126] to derive their infinite dimensional scaling limit.

3.2.2 Optimal Scaling Under a Fixed Shaping

For the rest of Section 3.2, for simplicity, we assume that r = 1 so that we consider only

the limiting dynamics of a single block. We are able to do this without loss of generality,

and the results carry over to multiple blocks and to the infinite dimensional limit, because

of tensorization properties of spectral gaps, as discussed by Bakry et al. [7].

Having shown that the limiting process is a Langevin diffusion, it is natural to try to

select the tuning parameters, (l,Λ) such that the limiting diffusion mixes as quickly as

possible. For a fixed choice of Λ, if we change l then we only change the time scaling of

the process. That is, for different values of l, we are running a diffusion with the dynamics

given by GΛ accelerated by a factor of l2aΛ(l)(Λ : Σ)/2.

Thus we find that the optimal choice of l for a fixed Λ is easy to determine; we need

only maximize the time-change factor l2aΛ(l) in order to make the diffusion move towards
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stationarity as quickly as possible. As in Roberts et al. [94] we will characterize the optimal

scaling both in terms of the value of the scaling factor, l, and in terms of the limiting average

acceptance probability for the RWM algorithm. The optimal choice of Λ will prove more

challenging to derive as changing Λ does not induce only a time-change on the dynamics of

the process.

Lemma 3.1 (Limiting Acceptance Rate). The limiting acceptance rate for the RWM pro-

posals of Xd is aΛ(l). That is to say:

lim
d→∞

E
X∼Πd
Z∼Nd(l2Λ)

[
1 ∧ Πd(X + Z)

Πd(X)

]
= aΛ(l) = 2Φ

(
− l
√

Σ : Λ
2

)
(3.10)

where Σ = Var
X∼π

[∇ log π(X)] and (:) is the Frobenius inner product.

This result is proved as a step in the proof of Theorem 3.1, in Section 3.4.

Corollary 3.1 (Optimal Scaling of l for fixed Λ). The optimal scaling over l for a fixed Λ

is lΛ ≈ 2.38√
Σ:Λ . This is the lΛ which solves a(lΛ) ≈ 0.234, as in the original Roberts et al.

[94] result. The limiting diffusion corresponds to GΛ sped up (or slowed down) by a factor

of is l2Λa(lΛ)(Λ : Σ)/2 ≈ 0.66. This acceleration factor is universal; it does not depend on

k, π, or Λ.

The proof of this result may be found in Section 3.7.

3.2.3 Optimal Shaping I: Variational Characterization via Spectral Gaps

For the rest of this section, we work only with GΛ. This is equivalent to assuming

that the optimal scaling is always used for a given choice of shaping: l = lΛ, and the

universal acceleration factor 4h̃(ω?) ≈ 0.66 is ignored. We note that, since X := X1 is

Feller (Lemma 3.4) then the spectrum of GΛ is a subset of the non-positive real line, and

we note that there is an eigenvalue at 0 corresponding to the constant function.

Definition 3.1 (Spectral Gap of an Infinitesimal Generator). If L is the infinitesimal

generator of Markov process with stationary measure π, then the spectral gap of G is given
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by

ρ(L) = sup
{
ρ > 0 s.t. ∀f ∈ D(L)

(
Var
X∼π

f(X) ≤ −1
ρ

E
X∼π

(f(X) [Lf ](X))
)}

(3.11)

If ρ(L) > 0 then we say that L has a spectral gap.

Lemma 3.2 (Co-occurrence of spectral gaps). Either all of the generators in the set{
GΛ s.t. Λ � 0

}
have a spectral gap or none of them do.2

The proof of this result may be found in Section 3.7.

3.2.3.1 Variational Characterization of Optimal Shaping

When GΛ has a spectral gap for at least one strictly positive definite Λ, then the ideal

choice of shaping is that which maximizes the spectral gap of GΛ. This would in turn

optimize the exponential rate of convergence to stationarity of the diffusion process (see,

for example, [7]). Thus, we add the following assumption when needed, in order to ensure

that the optimization over Λ can be meaningfully reduced to the optimization of the spectral

gap of GΛ.

Assumption 3.2. GIk has a spectral gap.

In light of Lemma 3.2 this is equivalent to assuming that GΛ has a spectral gap for at

least one Λ � 0, and that GΛ has a spectral gap for all Λ � 0.

Theorem 3.3 (Variational Characterization of Optimal Shaping). Under Assumptions 3.1

and 3.2 the optimal shaping matrix is given by

Λ? ∈ arg max
Λ�0

inf
f∈D(G)

Var
X∼π

[f(X)]=1

E
X∼π

[∇f(X)′ Λ ∇f(X)]

E
X∼π

[∇ log π(X)′ Λ ∇ log π(X)]

≡ arg max
Λ�0

inf
f∈D(G)

Var
X∼π

[f(X)] 6=0

E
X∼π

[∇f(X)′ Λ ∇f(X)]

(Λ : Σ) Var
X∼π

f(X)

(3.12)

2Recall that Λ � 0 means that Λ ranges over symmetric strictly positive definite matrices.
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Remark 3.1 (The spectral gap assumption is satisfiable). The curvature-dimension con-

dition of Bakry et al. [7] provides one way to verify assumption (A2). A simple example is

that if log π is strongly concave, then the condition is satisfied with

1
ρΛ

= ess inf
x∈Rk

λ1(−∇2 log π(x)) > 0

for all Λ (where λ1 is the function which returns the minimal eigenvalue of a matrix. In

this case, 1
ρΛ

is the strong convexity parameter). /

3.2.4 Optimal Shaping II: Optimal Spectral Gaps in Special Cases

As mentioned before, the optimal shaping problem turns out to be a much more difficult

than the optimal scaling was. We solve this problem exactly, first when the target is a mul-

tivariate normal distribution, and second when the target density is a rotated independent

product of a scale family.

For more general target distributions, the problem of optimizing the spectral gap is not

so easily approachable as it is not known in general how to directly compute the spectral

gap of the generator for a Langevin diffusion process (or even to determine sharp conditions

for when there is a spectral gap at all) or how the spectrum transforms under a change

in anisotropy. Instead, we optimize a surrogate measure of the process’ speed: the rate of

decay of autocorrelations of functions of X near lag-0. As will be discussed in the next

section, this is a continuous time analogue of a common heuristic for the short term mixing

properties of MCMC algorithms in discrete time, as well as a relaxation of the variational

formula for the spectral gap problem which we would strive to solve if we could. This

surrogate will also give novel ‘speed limits’ on the convergence of RWM—upper bounds on

the spectral gap of the generator which limit the convergence rate in terms of properties of

π.

Theorem 3.4 (Optimal Shaping when π ≡ N(µ,Γ)). When π is the density of a N(µ,Γ)

distribution, then Σ := Var
X∼π

(∇ log π(X)) = Γ−1 and the spectral gap of GΛ is maximized by

taking the shaping matrix to be (proportional to) the covariance of the target distribution;

Λ = Σ−1 = Γ. The convergence to stationarity is Tr(Σ)
kλ1(Σ) times faster when using the optimal
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shaping as opposed to spherical shaping, where λ1(Σ) is the minimal eigenvalue of Σ.

Proof. Let σ(A) denote the spectrum of the operator A.

Without loss of generality, µ = 0. In this case, ∇ log π(x) = −Γ−1x, so

Σ = E
X∼π

(Γ−1XX ′Γ−1) = Γ−1 . (3.13)

Now, we note that:

[GΛf ](x) = k

Λ : Σ
(
Λ : ∇2f(x) + (−x′Γ−1)Λ∇f(x)

)
= k

Λ : Σ
(
Λ : ∇2f(x) + x′(−ΣΛ)∇f(x)

) (3.14)

From Metafune et al. [75] we know that

σ(GΛ) =

 ∑
s∈σ(B)

sns s.t. ns ∈ N ∪ {0} ∀s ∈ σ(B)

 , (3.15)

where B = −kΣΛ
Λ:Σ . Therefore the spectral gap of GΛ is exactly the smallest eigenvalue of

kΣΛ
Λ:Σ . Now, letting A = ΣΛ, and letting {λi(A)}ki=1 be the (non-decreasing) eigenvalues of

A we can solve:

arg max
A

λ1(A)∑k
i=1 λi(A)

(3.16)

This function is bounded above by 1/k since a1 ≤ ai for all 1 ≤ i ≤ k and the function

is equal to 1/k if and only if A = γI for some γ 6= 0. Hence the optimal spectral gap is

achieved at ΣΛ = I. Therefore Λ? = Σ−1 = Γ.

We also find that the spectral gap of GΛ? is 1. On the other hand, the spectral gap of

GI is kλ1(Σ)
Tr(Σ) = λ1(Σ)

λ(Σ) , where λ(Σ) is the average eigenvalue of Σ. Therefore, the convergence

is λ(Σ)
λ1(Σ) times faster when using the optimal shaping as opposed to spherical shaping.

Theorem 3.5 (Optimal Shaping when π is a rotated independent product of a scale fam-

ily). Suppose that π1 is a probability density on R, with D[log π1] Lipschitz, and the one-

dimensional generator

G1f =
(
D2[f ] +D[log π1]D[f ]

)
(3.17)
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satisfies assumption (A2) with spectral gap ρ = λ?.

Let ci > 0 for each 1 ≤ i ≤ k and let Q be a unitary transformation, so Q′ = Q−1.

Let π(x) = ∏k
i=1 ciπ1(cie′iQx), so that X ∼ π if and only if cie′iQX

iid∼ π1 for 1 ≤ i ≤ k.

(Where ei are the standard basis vectors).

Then

Σ := Var
X∼π

(∇ log π(X)) = σ2Q′ diag(c2
i )Q (3.18)

where σ2 = E
X1∼π1

[
D log π1(X1)2] and the spectral gap of GΛ is maximized (among those Λ

of the form Q′BQ with B diagonal) by Λ = Σ−1. The convergence to stationarity is Tr(Σ)
kλ1(Σ)

times faster when using the optimal shaping as opposed to spherical shaping, where λ1(Σ)

is the minimal eigenvalue of Σ.

Proof. We first compute

∇ log π(x) =
k∑
i=1

ciQ
′ei[D log π1](cie′iQx) (3.19)

and
E

X∼π
∇ log π(x)∇ log π(x)′

=
k∑
i=1

k∑
j=1

cicjQ
′eie
′
jQ E

X∼π
[D log π1](cie′iQX)[D log π1](cje′jQX)

=
k∑
i=1

k∑
j=1

cicjQ
′eie
′
jQ E

Y∼π⊗k1

[D log π1](Yi)[D log π1](Yj)

=
k∑
i=1

k∑
j=1

cicjQ
′eie
′
jQδ

j
i σ

2

= σ2Q′ diag(c2
i )Q

(3.20)

Thus Σ = σ2Q′ diag(c2
i )Q.

Suppose that Q = I. Consider the generator G1 as in the theorem statement. G1

generates a Feller semigroup with stationary measure π1, and so there is a complete basis (for

L2(R, π1)) of eigenfunctions forH (see section 4.7 of Pavliotis [88]). Let these eigenfunctions

be {φα}α∈N∪{0} and the corresponding eigenvalues be {λα}α∈N∪{0}.

Under the assumption that a spectral gap exists for G1 with tight constant λ?, we may

assume that λ0 = 0, λ1 = λ? and λα ≥ λ? for α ≥ 2.
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Then S =
{∏k

i=1 φαi ◦ Ci s.t. αi ∈ N ∀i
}
is a complete basis for L2(Rk, π), where Ci :

x 7→ cixi. Moreover, S contains only eigenvectors for GΛ:

GΛ
[
k∏
i=1

φαi ◦ Ci

]

= k

Λ : Σ
∑
i

Λiic2
i

(D2φαi ◦ Ci + (D log π1)(D[φαi ◦ Ci]))
∏
j 6=i

φαj ◦ Cj


= k

Λ : Σ
∑
i

Λiic2
iλαi

[
k∏
i=1

φαi ◦ Ci

]
(3.21)

Therefore, σ(GΛ) =
{
k

∑k

i=1 Λiic2i λαi∑k

i=1 Λiic2i
s.t. αi ∈ N ∪ {0} ∀1 ≤ i ≤ k

}
. Hence the spectral gap

for GΛ is the minimal eigenvalue of λ? kΛΣ
Λ:Σ . The optimal spectral gap is thus achieved, as

in Theorem 3.4, by Λ = Σ−1.

For general Q, unitary, let MQf = f ◦ Q. Then GΛ has the same spectrum as GΛ
Q =

M−1
Q GΛMQ since these are similar operators.

[GΛ
Qf ](x) = kΛ

Λ : Σ :
(
Q′∇2f(x)Q+∇ log π(Q′x)∇f(x)′Q

)
= kΛ

Λ : Σ :
(
Q′∇2f(x)Q+Q′

k∑
i=1

ci[D log π1](cixi)ei∇f(x)′Q
)

= kQΛQ′
Λ : Σ :

(
∇2f(x) +

k∑
i=1

ci[D log π1](cixi)ei∇f(x)′
) (3.22)

This generator is of the same form as GQΛQ′ when Q = I, except with Σ replaced by QΣQ′.

Thus the spectrum of this operator is optimized when QΛQ′ = (QΣQ′)−1, which occurs

exactly when Λ = Σ−1.

3.2.5 Optimal Shaping III: Decay of Autocorrelations and Speed Limits

In this section we first describe how the generator GΛ is related to the slope of the

autocorrelation of functions of X. Then we consider a relaxation of the spectral gap problem

to searching for smaller subspaces of D(GΛ).

Lemma 3.3 (Relationship between autocorrelation and generators). For any f ∈ D(GΛ)
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which is not is not almost everywhere constant. Let Y (t) = f(X(t)). Then

d

dt
Cov(Y (0), Y (t))

∣∣
t=0+ = E

X∼π

[
f(X) [GΛf ](X)

]
= − E

X∼π

[
∇f(X)′ kΛ

Λ : Σ∇f(X)
] (3.23)

and
d

dt
Corr(Y (0), Y (t))

∣∣
t=0+ =

E
X∼π

[
f(X) [GΛf ](X)

]
Var
X∼π

[f(X)]

= −
E

X∼π

[
∇f(X)′ kΛ

Λ:Σ∇f(X)
]

Var
X∼π

[f(X)]

(3.24)

Hence, the spectral gap of GΛ is given by

λΛ
? = inf

f∈C2(Rk)∩D(GΛ)

∣∣∣∣ ddt Corr(Y (0), Y (t))
∣∣
t=0+

∣∣∣∣
= inf

f∈C2(Rk)∩D(GΛ)

k E
X∼π

[∇f(X)′Λ∇f(X)]

Var
X∼π

[f(X)]

(3.25)

Proof. From Itô’s lemma, for t > 0:

Y (t)− Y (0) =
∫ t

0
GΛf(X(t))dt+

∫ t

0
∇f(X(t))′ kΛ

Λ : Σ∇ log π(X(t))dB(t)

=
∫ t

0
GΛf(X(t))dt+Mt

(3.26)

In this expansion, Mt is a {B(t),X(0)}-martingale starting at 0, and hence is uncorrelated

with Y(0) which is σ(X(0))-measurable. Moreover, by Fubini’s theorem,

E
[∫ t

0
GΛf(X(t))dt

]
=
∫ t

0
E[GΛf(X(t))]dt = 0 (3.27)

where the last equality follows by integration by parts. Hence, using Fubini’s theorem again:

Cov(Y (0), Y (t)) = E
[
Y (0)

(
Y (0) +

∫ t

0
GΛf(X(t))dt+Mt

)]
= Cov(Y (0), Y (0)) +

∫ t

0
E[f(X(0)GΛf(X(t))]dt

(3.28)
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Now, using the fundamental theorem of calculus,

d

dt
Cov(Y (0), Y (t))

∣∣∣∣
t=0+

= E
X∼π

[
f(X) [GΛf ](X)

]
(3.29)

Applying integration by parts, we get:

d

dt
Cov(Y (0), Y (t))

∣∣∣∣
t=0+

= E
X∼π

[
f(X) [GΛf ](X)

]
= − E

X∼π

[
∇f(X)′ kΛ

Λ : Σ∇f(X)
] (3.30)

Finally, the statement regarding correlations follows from the definition of correlation in

terms of covariance.

Since C2(Rk) ∩ D(GΛ) is dense in D(GΛ), if assumption (A2) holds, then the spectral

gap of GΛ is exactly the worst-case (negative) lag-0 slope of the autocorrelation of functions

in C2(Rk) ∩ D(GΛ).

Thus, for convenience of solution, one may consider in place of C2(Rk)∩D(GΛ) a smaller

class of functions, F ( C2(Rk) ∩ D(GΛ) over which to solve

max
Λ�0

min
f∈F

E
X∼π

[
∇f(X)′ kΛ

Λ:Σ∇f(X)
]

Var
X∼π

[f(X)]
(3.31)

The solution to this relaxed problem may be interpreted as optimizing the worst case auto-

correlation (in a neighbourhood of lag-0) among functions from F . When F is itself a

subspace of C2(Rk)∩D(GΛ), then the solution may be interpreted as optimizing the spectral

gap of the restricted generator GΛ∣∣
F : F → GΛ(F) which is also a linear operator (which

may be bounded or unbounded, depending on the choice of F). Obviously, the solution to

the restricted problem, for some choice of F , is in fact optimizing an upper bound on the

spectral gap of GΛ, not the actual spectral gap of GΛ.

Suppose that X ∼ π has finite second moments, so that (for each v ∈ Rk) if the process

v′X(t) is started from the stationary distribution, it admits a stationary autocorrelation

function. A heuristic commonly used to tune MCMC algorithms in discrete time is the

lag-1 autocorrelation of each component (Xi), with smaller lag-1 autocorrelation being
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better. The continuous time analogue of minimizing the discrete-time lag-1 autocorrelation

is maximizing the (absolute value of the) slope of the autocorrelation function at lag 0.

Rather than considering only each component projection, F0 = {x→ e′ix : i ∈ {1, ..., k}},

we will consider their span, the subspace F =
{
x→ v′x : v ∈ Rk \ {0}

}
. Solving the

optimization problem in Eq. (3.31) with F will provide a tighter surrogate optimization

problem (since F0 ⊂ F , it corresponds to optimizing a better bound on the spectral gap),

and the solution will be covariant to linear transformations of X(t).

Theorem 3.6 (Λ = VarX∼π(X) is optimal in terms of lag-0 rate of decay of auto-

correlations of linear functions of X). Suppose that π admits second moments. Let Γ =

Var
X∼π

(X). If X has generator GΛ, then Λ = Γ maximizes the worst case (over f ∈ F ={
x→ v′x : v ∈ Rk \ {0}

}
) rate at which the autocorrelation of f(X) decays in a neigh-

bourhood of lag-0. Thus, in terms of short-run autocorrelations of linear functions of X,

the optimal shaping matrix for RWM proposals is the covariance matrix of the target dis-

tribution.

Proof. From Lemma 3.3, for v ∈ R \ {0} and for t > 0:

d

dt
Corr(v′X(0), v′X(0))

∣∣
t=0+ = −

v′ kΛ
Λ:Σv

v′Γv
(3.32)

Hence, we need to solve:

max
Λ�0

min
v∈Rk\{0}

v′ kΛ
Λ:Σv

v′Γv (3.33)

Substituting w = Γ1/2v, we can instead solve:

max
Λ�0

min
w∈Rk\{0}

w′Γ−1/2kΛΓ−1/2w

(Λ : Σ)(w′w) ≡ max
Λ�0

λ1
(
Γ−1/2kΛΓ−1/2

)
Λ : Σ

(3.34)

where λi(A) returns the ith smallest eigenvalue of A. Equivalently, we can solve:

min
Λ

(
λk(Γ1/2Λ−1Γ1/2)(Λ : Σ)

)
(3.35)
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Substituting Θ = Γ1/2Λ−1Γ1/2, we can solve instead:

min
Θ

(
λk(Θ)(Θ−1 : (Γ1/2ΣΓ1/2))

)
(3.36)

We will solve this optimization problem by lower bounding the objective function. It

will be obvious that Θ = I achieves the lower bound, and so we will have Λ = Γ is optimal.

The lower bound is given by:

(
λk(Θ)(Θ−1 : (Γ1/2ΣΓ1/2))

)
≥ λk(Θ)λ1(Θ−1)Tr(Γ1/2ΣΓ1/2)

= Tr(Γ1/2ΣΓ1/2)
(3.37)

This result shows that the rate of convergence of RWM is fundamentally limited by k
Γ:Σ

in the sense that, no matter the choice of proposal shaping matrix, the spectral gap of the

generator will be bounded by k
Γ:Σ . When Γ−1 = Σ this leads to the same speed limit as is

witnessed by the π ≡ N case. When Γ−1 and Σ are very different, this would demonstrate

that RWM will be very inefficient no matter how it is tuned.

This can also be used to say, for example, that the rate of convergence of the limiting

diffusion, when the proposals are spherical (Λ= I), cannot be faster that kλ1(Γ−1)
Tr(Σ) . On the

other hand, using proposals of Λ = Γ, the convergence rate could plausibly be as fast as
k

Σ:Γ . Thus, we are somewhat justified to be more optimistic regarding the performance of

the shaping Λ = Γ than in that of the shaping Λ = I, but we cannot not provided any

formal guarantee that the worst case rate of convergence for an arbitrary expected value is

actually faster. The very short run performance, however has actually been optimized (by

construction), justifying the intuition that optimizing the lag-1 autocorrelation is a “greedy”,

suboptimal (but possibly reasonable) approximate solution to the optimal shaping problem.

One may also attempt to address the autocorrelations for non-linear functions. A par-

ticular function of interest is the log-density, log π(X), which is the only example we will

consider here. Corollary 3.2, which follows directly from Lemma 3.3, shows us that for all

choices of Λ (when the optimal scaling is used) log π has the same rate of decay of the
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autocorrelation at lag-0. This may be interpreted as saying that the speed of a RWM algo-

rithm is fundamentally limited by the variance of the log-density, uniformly over all possible

proposal shaping matrices. That is to say, when k−1 Var
X∼π

[log π(X)] is very large, then RWM

will be inefficient no matter how it is tuned.

Corollary 3.2. If X(t) has generator GΛ then the rate of change of the autocorrelation of

log π(X(t)) at lag-0 is k
Var
X∼π

[log π(X)] uniformly in Λ.

Proof. This follows directly from Lemma 3.3 applied to log π(X).

3.2.6 High Dimensional Dependence Asymptotics

We now consider the implications of the speed limits derived above on the performance

decay for targets with high-dimensional dependence. This section is intentionally less mathe-

matically rigorous than the rest of the work, with the intention of motivating future research

in the area of optimal scaling for high-dimensional targets with non-trivial dependence struc-

tures.

We attempt to use the two “speed limits” derived in the previous section to characterize

some regimes in which RWMwill perform poorly. Consider a sequence of densities of varying

dimension {πk}k∈N with πk a density on Rk. We consider Πk,d = π⊗dk .

Having chosen to scale time by dk rather than by d the acceleration required to get

the weak limit in Theorem 3.1 is comparable across targets with equal total dimension, and

hence the limiting diffusions should be comparable as well (at least in terms of their spectral

gaps and rates of convergence).

If Var
X∼πk

log πk(X) 6∈ O(k) then RWM performance drops off as k → ∞, so depen-

dence structures for which lead to this behaviour are expected to work poorly using RWM

(much worse than for an IID target, with a spectral gap tending to 0), no matter how

they are tuned. In the case of IID targets (where πk = π⊗k1 ) we have Var
X∼πk

log πk(X) =

k Var
X∼π1

log π1(X) ∈ Θ(k). A similar result will hold for rotations and scalings of IID tar-

gets), showing that properly shaped proposals will yield commensurate performance for

such targets.

The same story holds true if Γ : Σ = Var
X∼π

[X] : Var
X∼π

[∇ log π] 6∈ O(k). Again, in the case
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of IID targets (where πk = π⊗k1 , Γ = diag(γ), Σ = diag(σ)) we have Γ : Σ = kγσ ∈ Θ(k).

A similar result will hold for rotations and scalings of IID targets), showing that properly

shaped proposals will yield commensurate performance for such targets.

While these criteria may not be the sharpest possible, the recipe of (i) deriving a diffusion

limit, (ii) deriving upper bounds on the spectral gap using formulas such as Eq. (3.31), and

(iii) considering the asymptotics of the upper bound on the spectral gap as the dependence

structure tends to infinity can be useful in developing our understanding of the behaviour of

MCMC methods for dependent targets (which is an under explored topic in the literature).

3.3 Consequences of Assumption 3.1

Proposition 3.1 (Summary of consequences of Assumption 3.1 on π). The assumption

that ∇ log π is L-Lipschitz continuous implies all of the following:

(a) ∇ log π is differentiable (Lebesgue-)almost everywhere, and
∥∥∇2 log π

∥∥ ≤ L where it

exist (by Rademacher’s theorem, see Federer [34]).

(b) The tails of π are at least as heavy of those of a Gaussian distribution. In fact it can

be bounded below by a tangent Gaussian curve with variance-covariance matrix 1
LI at

each point. (Lemma 2.5). This further implies that Support(π) = Rk.

(c) π is uniformly bounded above (Lemma 2.6).

(d) π is Lipschitz (Lemma 2.7).

(e) π has a broadly applicable integration by parts formula (Corollary 2.2): For any f :

Rk → R which is locally Lipschitz, with ∇f(X) and f(x)∇ log π(x) integrable (w.r.t.

π(x)dx) we have

E
X∼π

f(X)∇ log π(X) = − E
X∼π
∇f(X) . (3.38)

Similar formulas also hold for Jacobians of locally Lipschitz functions f : Rk → Rm,

and for divergences of locally Lipschitz functions f : Rk → Rk.
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(f) The following identities hold (Lemma 2.8):

E
X∼π

[∇ log π(X)] = 0 and Var
X∼π

[∇ log π(X)] = − E
X∼π

[∇2 log π(X)] . (3.39)

(g) If X ∼ π then ∇ log π(X) is sub-Gaussian with proxy-variance L (Theorem 2.2).

Hence all polynomial moments of ∇ log π and ∇2 log π are finite (Remark 2.3).

3.4 Proof of Theorem 3.1

This section utilizes well-established results on infinitessimal generators and Markov

semigroups in order to prove our weak convergence result. For some introductory details

to these topics see Section 4.6.3. Further suggested reading includes Ethier and Kurtz [33]

and Kallenberg [53].

3.4.1 Definitions

We will make consistent use of the results listed in Proposition 3.1 which hold under our

assumptions. Let Ĝl,Λd be the generator for a pure jump process with homogeneous jump

intensity kd, and jump distribution given by the Random Walk Metropolis transition kernel

with normal increments of mean 0 and variance l2Id⊗Λ/(d− 1), where Λ is symmetric and

strictly positive definite. The generator is explicitly given by

Ĝl,Λd f(x) = kd EZ∼Nd(l2Λ)

[
(f(x+ Z)− f(x))

(
1 ∧ Πd(x+ Z)

Πd(x)

)]
. (3.40)

Then Ĝl,Λd is a bounded linear operator on Ĉ(Rkd), so we can take its domain to be the

Banach space Ĉ(Rkd). Let Gl,Λd be the restriction of Ĝl,Λd to functions of the form f(x1:kd) =

f1(x1:rk) which act only on the first rk components.

Let Gl,Λ be the generator of an anisotropic Langevin diffusion,

Gl,Λf = kl2a(l)1
2
(
[Ir ⊗ Λ] : ∇2f + (∇ log π⊗r)′[Ir ⊗ Λ](∇f)

)
(3.41)
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where A : B = Tr(A′B), and where a(l) = 2Φ
(
−l
√
J

2

)
, and

Σ = Var
X∼π

[∇ log π(X)] = E
X∼π
∇ log π(X)∇ log π(X)′

J = E
X∼π

[
[∇ log π(X)]′Λ[∇ log π(X)]

]
= Λ : Σ

(3.42)

We take the domain of Gl,Λ to be D(Gl,Λ) = C∞c (Rrk) ∩ L2(Rrk, π).

3.4.2 A General Convergence Theorem

Our goal is to show that if Xd has generator Ĝl,Λd and Xr has generator Gl,Λ then the

stochastic process of the first rk components of Xd, X(1:r)
d , converges weakly to Xr in the

Skorohod topology: X(1:r)
d ⇒ Xr. The following result, paraphrased and specialized from

Ethier and Kurtz [33], establishes sufficient conditions for this convergence to hold.

Proposition 3.2 (Convergence Theorem from Ethier and Kurtz [33]). Suppose that:

(i) Xd is a Markov process in Ed with cadlag sample paths and with single-valued full

generator Ĝd, and X(1:r)
d = ρd(Xd) where ρd : Ed → E is measurable.

(ii) G is single-valued and its closure generates a Feller semigroup on E corresponding to

the Markov process Xr.

(iii) The initial distribution of X(1:r)
d converges weakly to the initial distribution of Xr;

X(1:r)
d (0) Xr(0) . (3.43)

(iv) D(G) contains an algebra which strongly separates points,

(v) For each f ∈ D(G), and each T > 0, there is a sequence of functions fd ∈ D(Ĝd), and

a sequence of sets Fd ⊂ Ed such that supd ‖fd‖ <∞, and:

lim
d→∞

P(Xd ∈ Fd ∀0 ≤ t ≤ T ) = 1 (3.44)

lim
d→∞

sup
xd∈Fd

|f(ρd(xd))− fd(xd)| = 0 (3.45)
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lim
d→∞

sup
xd∈Fd

∣∣∣[Gf ](ρd(xd))− [Ĝdfd](xd)
∣∣∣ = 0 (3.46)

Then X(1:r)
d converges weakly in the Skorohod topology to Xr: X(1:r)

d ⇒ Xr..

Proof. This is a restatement of Ethier and Kurtz [33] Chapter 4, corollary 8.7. where we

have simplified and specialised some of the stated assumptions. In particular, we use that

(cadlag =⇒ progressive), and we assume that all generators involved are single valued, and

that Xr is Feller which implies its generator must generate a strongly continuous contraction

semigroup.

Remark 3.2. Because Xr is assumed to be a Feller process, it has a cadlag modification.

Thus without loss of generality, Xr may be assumed to be cadlag. /

Thus, taking E = Rrk, and Ed = Rkd, and ρd(x1:kd) = x1:rk, and Ĝd = Ĝl,Λd and

G = Gl,Λ as defined above, we need only verify the five premises of Proposition 3.2 in order

to establish Theorem 3.1. The first four are relatively straight forward, while the fifth will

be much more involved.

Lemma 3.4 (Verifying Premises (i)-(iv) of Proposition 3.2). Under the definitions above,

and the assumption that ∇ log π is L-Lipschitz we have that premises (i)-(iv) of Proposi-

tion 3.2 hold.

Proof. (i) Since Ĝl,Λd is a bounded linear operator it must be single valued, and since the

domain is the Banach space Ĉ(Rrkd) it must be its own closure. Since it generates

a pure jump Markov process (with homogeneous intensity and the RWM transition

function), the sample paths of Xd must be cadlag.

(ii) Since ∇ log π is assumed to be Lischitz, then by Ethier and Kurtz [33] [chapter 8,

theorem 2.5], the closure of

{
(f,Gl,Λf) : f ∈ C∞c (Rrk)

}
(3.47)

is single valued and generates a Feller semigroup on Ĉ(Rrk).
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(iii) This is trivially satisfied because of the assumption that X(0) ∼ π and Xd(0) ∼ Πd =

π⊗d.

(iv) In our case, Ĉ(Rrk) ⊇ D(Gl,Λ) ⊇ C∞c (Rrk). We verify that the algebra C∞c (Rrk)

strongly separates points. Fix x ∈ Rk and δ > 0. Consider the location-scale bump

function:

fx,δ(y) = exp

− 1
1− ‖y−x‖

2

δ2

1‖y−x‖<δ . (3.48)

This function is in C∞c (Rrk), and for ‖x− y‖ > δ we have

|f(y)− f(x)| ≥ 1/e . (3.49)

Therefore, to prove Theorem 3.1 we need only verify premise (v) of Proposition 3.2.

This is done in the next subsection.

3.4.3 Verifying Premise (v) of Proposition 3.2

This premise is more complicated to verify. We first construct the sequence of “large

sets”, {Fd}d∈N and verify Eq. (3.44). Then, we verify “uniform convergence of generator

evaluations on large sets”, Eq. (3.46) for f ∈ C∞c which we have taken to be the domain of

Gl,Λ, using fd = f ◦ ρd.

The structure of this section closely follows that of the weak convergence proof in Neal

and Roberts [81]. In addition to proving a scaling limit for RWM in the multivariate setting,

we make two additional notable changes to the structure of the proof relative to [81]. First,

we control the size of
∥∥∥∇ log π⊗r(x(1:r))

∥∥∥ on our “large set” by including Fd,4, which we

need for our proof. It also seems necessary and missing from their proof, since they need to

control a term of the form

lim
d→∞

sup
x∈Fd

∣∣∣∣d∇ log π⊗r(x(1:r))′
(

E
Z(1:r)

[
Z(1:r)

(
h(x(1:r) + Z(1:r))− h(x(1:r))

)]
− [Ir ⊗ Λ]∇h(x(1:r))

)∣∣∣∣ = 0

(3.50)
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while they appear to only show the equivalent of

lim
d→∞

sup
x∈Fd

∣∣∣∣kd E
Z(1:r)

[
Z(1:r)

(
h(x(1:r) + Z(1:r))− h(x(1:r))

)]
− kl2Λ∇h(x(1:r))

∣∣∣∣ , = 0 (3.51)

which is not sufficient , since ∇ log π may be unbounded and EZ(1:r)h(x(1:r) + Z(1:r)) is not

compactly supported even if h is. Secondly, [81] implicitly assumes that the 3rd order partial

derivatives of π exist and are uniformly bounded. This is needed in their proof to control

the 3rd order remainder of a 2nd order Taylor expansion. We circumvent this by including

Fd,3 below in our “large set”, allowing us to control the relevant error using the convergence

of an integrated finite difference to the corresponding derivative. The use of dominated

convergence to control the approximation error on this set was inspired by Lalancette [60],

though we have modified the technique to also not require continuous second derivatives.

Thirdly, we correct an apparent error in the proof of [81] from taking a second order Taylor

expansion of x 7→ 1 ∧ exp(x), which is not valid since it’s first derivative is discontinuous.

That the final result was correct regardless of the error is serendipitous, and perhaps reflects

that the authors had insight into what the limit should be before beginning the derivation.

Remark 3.3. Taking fd = f ◦ ρd, we have that Eq. (3.45) is trivially satisfied. /

3.4.3.1 Large Sets

Suppose that d > r. The behaviour on the initial segment is irrelevant for the limit.

Let

Fd = F d0 ∩ F1,d ∩ F2,d ∩ F3,d ∩ F4,d (3.52)

where:
F0 =

{
x ∈ Rk : ∇ log π is differentiable at x

}
,

F1,d =
{
x ∈ Rkd :

∣∣∣Rd(x(r+1:d))− J
∣∣∣ < d−1/8 + J(r − 1)

(d− 1)

}
,

F2,d =
{
x ∈ Rkd :

∣∣∣Sd(x(r+1:d))− J
∣∣∣ < d−1/8 + J(r − 1)

(d− 1)

}
,

F3,d =

x ∈ Rkd : Ud(x(r+1:d)) ≤ θ(d) + Ll2KΛ

√
log d
d

 ,
F4,d =

{
x ∈ Rkd :

∥∥∥∇ log π⊗r(x(1:r))
∥∥∥ ≤ 2

√
krL log d

}
,

(3.53)
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and

Rd(x(r+1:d)) = 1
d− 1

d∑
i=r+1

(∇ log π(x(i))′Λ(∇ log π(x(i)))

Sd(x(r+1:d)) = −1
d− 1

d∑
i=r+1

Λ : (∇2 log π(x(i)))

Ud(x(r+1:d)) = E
Z∼Nd(l2Λ)

∣∣∣∣∣∣
d∑

i=r+1

(
log
(
π(x(i)+Z(i))

π(x(i))

)
−Z(i)′∇ log π(x(i))−Z(i)′ ∇2 logπ(x(i))

2 Z(i)
)∣∣∣∣∣∣

KΛ =
√

2 ‖Λ‖2F + Tr(Λ)2

θ(d) = l2KΛ E
X∼π

√√√√√ E
Z∼N

(
0, l2Λ
d−1

) 1
‖Z‖4

∣∣∣∣log π(X + Z)
π(X) −∇ log π(X)Z − Z ′∇

2 log π(X)
2 Z

∣∣∣∣2 .
(3.54)

Lemma 3.5. Under assumption (A1) limd→∞ θ(d) = 0

Proof. For w 6= 0, z = w/
√
d− 1, and x ∈ F0, using the fundamental theorem of calculus:

1
‖z‖2

(
log π(x+ z)

π(x) − z′∇ log π(x)− z′∇
2 log π(x)

2 z

)

= 1
‖w‖2

(
√
d− 1

∫ 1

0

(
∇ log π

(
x+ hw√

d− 1

)
−∇ log π(x)

)
w dh− w′∇

2 log π(x)
2 w

)

= 1
‖w‖2

∫ 1

0

∇ log π
(
x+ hw√

d−1

)
−∇ log π(x)

1/
√
d− 1

w dh− w′∇
2 log π(x)

2 w

 .
(3.55)

As d→∞ the integrand converges pointwise to

w′∇2 log π(x)wh (3.56)

from the differentiability of ∇ log π at x. Also, from the Lipschitz property of ∇ log π, the

integrand is bounded by Lh ‖w‖2 for all d ≥ 2 and all h ∈ [0, 1]. In fact, we have the
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following bound which will also be useful later:

∣∣∣∣∣∣
∫ 1

0

∇ log π
(
x+ hw√

d−1

)
−∇ log π(x)

1/
√
d− 1

wdh− w′∇
2 log π(x)

2 w

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ 1

0

∇ log π
(
x+ hw√

d−1

)
−∇ log π(x)

1/
√
d− 1

wdh

∣∣∣∣∣∣+
∣∣∣∣∣w′∇2 log π(x)

2 w

∣∣∣∣∣
≤
∫ 1

0
L ‖w‖2 h dh+ L

2 ‖w‖
2

= L ‖w‖2

(3.57)

Therefore, by the bounded convergence theorem, for w 6= 0 and x ∈ F0

lim
d→∞

∫ 1

0

∇ log π
(
x+ hw√

d−1

)
−∇ log π(x)

1/
√
d− 1

wdh

=
∫ 1

0
′∇2 log π(x)wh dh

= w′
∇2 log π(x)

2 w.

(3.58)

Therefore, for x ∈ F0, and w 6= 0,

lim
d→∞

d− 1
‖w‖2

(
log

π(x+ w√
d−1)

π(x) − w′√
d− 1

∇ log π(x)− w√
d− 1

′∇2 log π(x)
2

w√
d− 1

)
= 0

(3.59)

Now, using the bound in Eq. (3.57) again to upper bound the integrand by L2, by the

dominated convergence theorem, we have (with W ∼ N(0, l2Λ)):

lim
d→∞

E
(d− 1)2

‖W‖4

∣∣∣∣∣∣
log

π(x+ W√
d−1)

π(x) − W ′∇ log π(x)√
d− 1

− W√
d− 1

′∇2 log π(x)
2

W√
d− 1

∣∣∣∣∣∣
2

= 0 .

(3.60)

As a function of x, this is uniformly bounded by L2 on F0, so applying the dominated

convergence theorem a third time, since F0 has measure 1 under π (since π is absolutely
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continuous with respect to the Lebesgue measure) we have:

θ(d) = l2KΛ E
X∼π

√√√√√ E
Z∼N

(
0, l2Λ
d−1

) 1
‖Z‖4

∣∣∣∣log π(X + Z)
π(X) − Z ′∇ log π(X)− Z ′∇

2 log π(X)
2 Z

∣∣∣∣2

→ 0
(3.61)

Lemma 3.6. If Xd is the pure jump process with generator Gl,Λd , and if Xd(0) ∼ Πd, then

for any T > 0

P(Xd(t) ∈ Fd ∀0 ≤ t ≤ T )→ 1 (3.62)

Proof. Since the number of possible jumps times of the process X in the interval [0, T ], NT ,

is distributed as NT ∼ Poisson(Tkd), we have

P(not (Xd(t) ∈ Fd ∀0 ≤ t ≤ T ))

= E
[
E
[
1∃t∈[0,T ]: Xd(t) 6∈Fd |NT

]]
≤ E

[
E
[
1
X

(1:d)
0 6∈Fd

+
∑
t>0

Nt 6=Nt−

1Xd(t)6∈Fd

∣∣∣∣NT

]]

= E
[
(NT + 1) P

Xd∼Πd
(Xd 6∈ Fd)

]
= (Tkd+ 1) P

Xd∼Πd
(Xd 6∈ Fd)

(3.63)

Thus it is sufficient to show that P
Xd∼Πd

(Xd 6∈ Fd) ∈ o(1/d). Applying subadditivity:

P
Xd∼Πd

(Xd 6∈ Fd) ≤ P
Xd∼Πd

(∣∣∣Rd(X(r+1:d)
d )− J

∣∣∣ > d−1/8 + J(r − 1)
(d− 1)

)
+ P
Xd∼Πd

(∣∣∣Sd(X(r+1:d))− J
∣∣∣ > d−1/8 + J(r − 1)

(d− 1)

)

+ P
Xd∼Πd

Ud(X(r+1:d)) > θ(d) + Ll2KΛ

√
log d
d


+ P
Xd∼Πd

(∥∥∥∇ log π⊗r(X(1:r))
∥∥∥ > 2

√
Lkr log d

)
,

(3.64)

so it is sufficient to show that each of these four terms is individually o(1/d).
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It is obvious that EXd∼ΠdRd(X
(r+1:d)
d ) = J d−rd−1 . From distributional integration by parts

(Theorem 2.1) we also have EX∼ΠdSd(X(r+1:d)) = J d−rd−1 .

For the first term, since ∇ log π(Y ) is subgaussian for Y ∼ π (see Theorem 2.2), and

hence has all of its polynomial moments, applying Markov’s inequality gives:

P
X∼Πd

(∣∣∣Rd(X(r+1:d))− J
∣∣∣ > d−1/8 + J(r − 1)

(d− 1)

)
≤ E
X∼Πd

(∣∣∣Rd(X(r+1:d))−EXd∼ΠdRd(X(r+1:d)
d

)
∣∣∣4)d1/2

=d1/2
E

Y∼π
(A(Y )4)+3(d−2) E

Y∼π
(A(Y )2)2

(d−1)3

≤ 6
(d−1)3/2

‖Λ‖4M1

(3.65)

for M1 <∞ sufficiently large, where A(Y ) = (∇ log π(Y )′Λ(∇ log π(Y ))− J .

For the second term, again since ∇ log π(Y ) has all of its polynomial moments for Y ∼ π:

P
X∼Πd

(
|Sd(X(r+1:d))−J|>d−1/8+J(r−1)

(d−1)

)
≤ E
X∼Πd

(
|Sd(X(r+1:d))−EX∼ΠdSd(X(r+1:d))|4

)
d1/2

=d1/2
E

Y∼π
(B(Y )4)+3(d−2) E

Y∼π
(B(Y )2)2

(d−1)3

≤ 6
(d−1)3/2

‖Λ‖4FM2

(3.66)

for M2 <∞ sufficiently large, where B(Y ) = Λ : (∇2 log π(Y ))− J .
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For the third term (letting W ∼ N
(
0, l2Λ

)
):

Ud(x(r+1:d))

= E
Z∼Nd(l2Λ)

∣∣∣∣∣∣
d∑

i=r+1

(
log π(x(i)+Z(i))

π(x(i))
−∇ log π(x(i))′Z(i)−Z(i)′ ∇2 logπ(x(i))

2 Z(i)
)∣∣∣∣∣∣

≤ E
Z∼Nd(l2Λ)

d∑
i=r+1

∣∣∣(log π(x(i)+Z(i))
π(x(i))

−∇ log π(x(i))′Z(i)−Z(i)′ ∇2 logπ(x(i))
2 Z(i)

)∣∣∣
= 1
d− 1

d∑
i=r+1

EW

∣∣∣∣∣∣
∫ 1

0

∇ logπ
(
x(i)+ hW√

d−1

)
−∇ logπ(x(i))

1/
√
d−1 Wdh−W ′ ∇

2 logπ(x(i))
2 W

∣∣∣∣∣∣
≤ (EW ‖W‖4)

1
2

d− 1

d∑
i=r+1

EW
1
‖W‖4

∣∣∣∣∣∣
∫ 1

0

∇ logπ
(
x(i)+ hW√

d−1

)
−∇ logπ(x(i))

1/
√
d−1 Wdh−W ′ ∇

2 logπ(x(i))
2 W

∣∣∣∣∣∣
2


1
2

(3.67)

Using Isserlis’ theorem (Isserlis [46], equation (39)* therein)

E
W∼N(0,l2Λ)

‖W‖4 = E
W∼N(0,l2Λ)

(
k∑
i=1

W 2
i

)2

=
k∑
i=1

k∑
j=1

E
W∼N(0,l2Λ)

[W 2
i W

2
j ]

=
k∑
i=1

k∑
j=1

l4(ΛiiΛjj + 2Λ2
ij) = l4

(
2 ‖Λ‖2F + Tr(Λ)2

) (3.68)

Thus:

Ud(x(r+1:d)) ≤ Vd(x(r+1:d))

:= l2KΛ

(d− 1)

d∑
i=r+1

E

∣∣∣∣∣∣ 1
‖W‖2

[∫ 1

0

∇ log π
(
x(i) + hW√

d−1

)
−∇ log π(x(i))

1/
√
d− 1

Wdh−W ′∇
2 log π(x(i))

2 W
]∣∣∣∣∣∣

2
1
2

and so:

EX∼ΠdVd(X) = θ(d)d− r
d− 1 ≤ θ(d) (3.69)

Moreover, from Eq. (3.57), for x ∈ F0:

E
∣∣∣∣∣∣ 1
‖W‖2

[∫ 1

0

∇ log π
(
x(i) + hW√

d−1

)
−∇ log π(x(i))

1/
√
d− 1

Wdh−W ′∇
2 log π(x(i))

2 W
]∣∣∣∣∣∣

2
1
2

≤ L

(3.70)
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Thus, by Hoeffding’s Inequality (Boucheron et al. [15], theorem 2.8 therein):

P
Xd∼Πd

Ud(X(r+1:d)
d ) > θ(d) + l2LKΛ

√
log d
d


≤ P

Xd∼Πd

Vd(X(r+1:d)
d ) > θ(d) + l2LKΛ

√
log d
d


≤ 1
d2

(3.71)

For the fourth (and last) term, since, ∇ log π(X) is subgaussian with proxy variance L

for X ∼ π (see Theorem 2.2), then

E
X∼π

[exp(s ‖∇ log π(X)‖)] ≤ E
X∼π

[exp(s
√
kmax
j≤k
|∂j log π(X)|)]

= E
X∼π

[max
j≤k

exp(s
√
k |∂j log π(X)|)]

≤ E
X∼π

[
∑
j≤k

exp(s
√
k∂j log π(X)) + exp(−s

√
k∂j log π(X))]

≤ 2k exp(s2kL/2),
(3.72)

so
P

X∼π
(‖∇ log π(X)‖ > t) ≤ inf

s>0
e−st E

X∼π
[exp(s ‖∇ log π(X)‖)]

≤ 2k inf
s>0

e−st+s
2kL/2

= 2ke−
t2

2kL .

(3.73)

Now, for
(∥∥∥∇ log π⊗r(X(1:r)

d )
∥∥∥ > 2

√
rkL log d

)
to occur, at least one block, indexed by

j ∈ {1, ..., r}, must have
(∥∥∥∇ log π(X(j)

d )
∥∥∥ > 2

√
kL log d

)
. Thus,

P
Xd∼Πd

(∥∥∥∇ log π⊗r(X(1:r)
d )

∥∥∥ > 2
√
rkL log d

)
≤ 2kr

d2 (3.74)

Thus:

1− P(Xd(t) ∈ Fd ∀0 ≤ t ≤ T ) ≤ (Tkd+ 1) P
Xd∼Πd

(Xd 6∈ Fd)→ 0 (3.75)
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3.4.3.2 Uniform Convergence of Generator Evaluations on Large Sets

For each h ∈ C(Rk) let hd = h ◦ ρd. For the remainder of this section, Z ∼

N
(
0, l2

(d−1)Id ⊗ Λ
)
unless stated otherwise, and Z(1) ∼ Nd

(
l2Λ

)
is the first k component

block of Z.

We introduce an intermediate object, G̃l,Λd on {h ◦ ρd : h ∈ C∞c }, which resembles, but

is not, a generator for a diffusion process. Take G̃l,Λd given by:

G̃l,Λd hd(x)

= kl2

2 EZ [1 ∧ eBd(x,Z(r+1:d))] [Ir ⊗ Λ] : ∇2h(x(1:r))

+ kl2EZ [1 ∧ eCd(x,Z);Cd(x, Z) < 0] (∇ log π⊗r(x(1:r)))′[Ir ⊗ Λ](∇h(x(1:r)))

(3.76)

where
ε(x, z) = log π(x+ z)

π(x) ,

Bd(x, z(r+1:d)) =
d∑

i=r+1
ε(x(i), z(i)) ,

E(x, z(1:r)) =
r∑
j=1

ε(x(j), z(j)) ,

Cd(x, z) = E(x, z(1:r)) +Bd(x, z(r+1:d)) .

(3.77)

We will show that for any h ∈ C∞c (Rrk) we have both:

lim
d→∞

sup
x∈Fd

∣∣∣Ĝl,Λd hd(x)− G̃l,Λd hd(x)
∣∣∣ = 0 (3.78)

which is verified in Lemma 3.7, and

lim
d→∞

sup
x∈Fd

∣∣∣G̃l,Λd hd(x)−Gl,Λh(x)
∣∣∣ = 0 (3.79)

which is verified through Lemma 3.8.

Then, since Gl,Λh(x(1:r)) = [Gl,Λh] ◦ ρd(x), we will have verified Eq. (3.46).
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Lemma 3.7 (G̃l,Λd is close to Ĝl,Λd ).

lim
d→∞

sup
x∈Fd

∣∣∣Ĝl,Λd hd(x)− G̃l,Λd hd(x)
∣∣∣ = 0 (3.80)

Proof. We will make use of the following shorthands in the proof: Bd = Bd(x, Z(r+1:d)),

ε = E(z(1:r), x), E = E(Z(1:r), x), cd = ε+Bd, and Cd = E +Bd.

Recall that:

Ĝl,Λd hd(x) = kd E
Z(1:r)

[(
h(x(1:r) + Z(1:r))− h(x(1:r))

)
E

Z(r+1:d)

(
1 ∧

d∏
i=1

π(x(i) + Z(i))
π(x(i))

)]
.

(3.81)

Let
γ(x, z) = E

Z(r+1:d)

(
1 ∧ eE(x,z)+Bd(x,Z(r+1:d))

)
= E

Z(r+1:d)
(1 ∧ ecd) .

(3.82)

We can compute the first derivative of γ by differentiating under the integral, since the

integrand in question is weakly differentiable. We cannot compute the second derivative in

the same way, since the integrand is not twice differentiable. In contrast to [81], we will

avoid needing to take a second derivative of γ in the proof, which will allow us to circumvent

this issue. The first derivative is given by:

∇zγ(x, z(1:r))

= ∇ log π⊗r(x(1:r) + z(1:r)) E
Z(r+1:d)

(
eE(x,z(1:r))+Bd(x,Z(r+1:d)); E(x, z(1:r)) +Bd(x, Z(r+1:d)) < 0

)
= ∇ log π⊗r(x(1:r) + z(1:r)) E

Z(r+1:d)
(ecd ; cd < 0) .

(3.83)
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Now, since h ∈ C∞c (Rrk), there is a [0, 1]-valued random variable H with:

Ĝl,Λd hd(x)

= kd E
Z(1:r)

[(
∇h(x(1:r))′Z(1:r) + ∇

2h(x(1:r)) : [Z(1:r)]⊗2

2 + ∇
3h(x(1:r) +HZ(1:r)) : [Z(1:r)]⊗3

6

)
γ(x, Z(1:r))

]
= kd∇h(x(1:r))′ E

Z(1:r)

[
Z(1:r)′γ(x, Z(1:r))

]
+ kd

∇2h(x(1:r))
2 : E

Z(1:r)

[
[Z(1:r)]⊗2γ(x, Z(1:r))

]
+ kd E

Z(1:r)

[
∇3h(x(1:r) +HZ(1:r)) : [Z(1:r)]⊗3

6 γ(x, Z(1:r))
]

(3.84)

First, using Stein’s lemma,

kd∇h(x(1:r))′ E
Z(1:r)

[
Z(1:r)′γ(x, Z(1:r))

]
= kl2

d

d− 1∇h(x(1:r))′Λ E
Z(1:r)

[
∇zγ(x, Z(1:r))

]
= kl2

d

d− 1∇h(x(1:r))′Λ E
Z(1:r)

[
∇ log π⊗r(x(1:r) + z(1:r)) E

Z(r+1:d)

(
eCd ;Cd < 0

)]

Thus,

sup
x∈Fd

∣∣∣∣kd∇h(x(1:r))′ E
Z(1:r)

[
Z(1:r)′γ(Z(1:r), x)

]
− kl2∇h(x(1:r))′Λ∇ log π⊗r(x(1:r))EZ

[
eCd ;Cd < 0

]∣∣∣∣
= sup

x∈Fd

kl2d

d− 1

∣∣∣∣∇h(x(1:r))′Λ E
Z(1:r)

[(
∇ log π⊗r(x(1:r) + Z(1:r))−∇ log π⊗r(x(1:r))

)
E

Z(r+1:d)

(
eCd ;Cd < 0

)]∣∣∣∣
+ kl2

d− 1

∣∣∣∣∇h(x(1:r))′Λ E
Z(1:r)

[
∇ log π⊗r(x(1:r)) E

Z(r+1:d)

(
eCd ;Cd < 0

)]∣∣∣∣
≤ sup

x∈Fd

kl2

d− 1
∥∥∥∇h(x(1:r))

∥∥∥ ‖Λ‖ (dL E
Z(1:r)

[
∥∥Z(1:r)∥∥] +

∥∥∇ log π⊗r(x(1:r))
∥∥)

≤ sup
x∈Fd

kl2

d− 1 ‖‖∇h‖‖∞ ‖Λ‖ (dL
√
rl2Tr(Λ)/(d− 1) + 2

√
krL log d)

∈ O(d−1/2)

where, in the last inequality we used the bound on
∥∥∇ log π⊗r(x(1:r))

∥∥ for x ∈ F4,d.
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Second, for W ∼ N(0, l2Ir ⊗ Λ)

sup
x∈Fd

∣∣∣∣∣kd∇2h(x(1:r))
2 : E

Z(1:r)

[
[Z(1:r)]⊗2γ(Z(1:r), x)

]
− kl2

2 EZ [1 ∧ eBd ] [Ir ⊗ Λ] : ∇2h(x(1:r))
∣∣∣∣∣

≤ sup
x∈Fd

∣∣∣∣∣kd∇2h(x(1:r))
2 : E

Z(1:r)

[
[Z(1:r)]⊗2

(
γ(Z(1:r), x)− E

Z(r+1:d)
[1 ∧ eBd ]

)]∣∣∣∣∣
+ k∇2h(x(1:r))

2(d− 1) EZ [1 ∧ eBd ]

≤ sup
x∈Fd

∣∣∣∣∣kd∇2h(x(1:r))
2 : EZ

[
[Z(1:r)]⊗2

(
E

Z(r+1:d)
[1 ∧ eE+Bd − 1 ∧ eBd ]

)]∣∣∣∣∣
+
k
∥∥∥∥∇2h

∥∥
F

∥∥
∞ ‖Λ‖F

2(d− 1) EZ [1 ∧ eBd(x,Z(r+1:d))]

≤ sup
x∈Fd

kd

∥∥∥∥∇2h
∥∥∥∥
∞

2 EZ
[∥∥∥Z(1:r)

∥∥∥2 ∣∣∣E(Z(1:r), x)
∣∣∣]+

k
∥∥∥∥∇2h

∥∥
F

∥∥
∞ ‖Λ‖F

2(d− 1)

≤ sup
x∈Fd

kd

∥∥∥∥∇2h
∥∥∥∥
∞

2 EZ
[∥∥∥Z(1:r)

∥∥∥2
(∥∥∥∇ log π⊗r(x(1:r))

∥∥∥ ∥∥∥Z(1:r)
∥∥∥+

∥∥∥Z(1:r)
∥∥∥2
L/2

)]

+
k
∥∥∥∥∇2h

∥∥
F

∥∥
∞ ‖Λ‖F

2(d− 1)

≤ sup
x∈Fd

k

∥∥∥∥∇2h
∥∥∥∥
∞

2 E
[
d
√

log d
(d− 1)3/2 ‖W‖

3 2
√
krL+ d

(d− 1)2 ‖W‖
4 L/2

]

+
k
∥∥∥∥∇2h

∥∥
F

∥∥
∞ ‖Λ‖F

2(d− 1)

∈ O(
√

log(d)/d)
(3.85)

Third, for W ∼ N(0, l2Ir ⊗ Λ),

sup
x∈Fd

∣∣∣∣∣kd E
Z(1:r)

[
∇3h(x(1:r) +HZ(1:r)) : [Z(1:r)]⊗3

6 γ(Z(1:r), x)
]∣∣∣∣∣

≤ sup
x∈Fd

kd
∥∥∥∥∥∥∇3h

∥∥∥∥∥∥
∞

E
Z(1:r)

[∥∥∥Z(1:r)
∥∥∥3
]

≤ sup
x∈Fd

kd

(d− 1)3/2

∥∥∥∥∥∥∇3h
∥∥∥∥∥∥
∞
E
[
‖W‖3

]
∈ O(d−1/2)

(3.86)

Thus:

sup
x∈Fd

∣∣∣Ĝdhd − G̃dhd∣∣∣ ∈ O(
√

log(d)/d) (3.87)
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Lemma 3.8 (G̃l,Λd is close to Gl,Λ).

lim
d→∞

sup
x∈Fd

∣∣∣∣2Φ(−l
√
I/2)− E

Z(r+1:d)

[
1 ∧ eBd(x,Z(r+1:d))

]∣∣∣∣ = 0 (3.88)

and:

lim
d→∞

sup
x∈Fd

∣∣∣∣Φ(−l
√
I/2)− E

Z(r+1:d)

[
eCd(x,Z);Cd(x, Z) < 0

]∣∣∣∣ = 0 (3.89)

and hence:

lim
d→∞

sup
x∈Fd

∣∣∣G̃l,Λd hd(x)−Gl,Λh(x(1:r+1))
∣∣∣ = 0 (3.90)

Proof. Let

Ad(x, Z(r+1:d)) =
d∑

i=r+1

[
∇ log π(x(i))′Z(i) − l2

2(d− 1)∇ log π(x(i))′Λ∇ log π(x(i))
]

(3.91)

and let

Wd(x(1:d)) = 1
2

d∑
i=r+1

[
Z(i)′[∇2 log π(x(i))]Z(i)+ l2

(d−1) (∇ log π(x(i)))′Λ(∇ log π(x(i)))
]

(3.92)

Thus, since y 7→ 1 ∧ ey is 1-Lipschitz,

sup
x∈Fd

∣∣∣∣ E
Z(r+1:d)

[
1 ∧ eAd(x,Z(r+1:d))

]
− E
Z(r+1:d)

[
1 ∧ eBd(x,Z(r+1:d))

]∣∣∣∣
≤ sup

x∈Fd
E |Wd(x)|+ Ud(x)

≤ θ(d) +
√

2Ll2KΛ
log d
d

+ sup
x∈Fd

E |Wd(x)| .

(3.93)

where Ud was defined in the Section 3.4.3.1.

Let φd = θ(d) +
√

2Ll2KΛ
log d
d + supx∈Fd E |Wd(x)|. By Lemmas 3.5 and 3.9, φd → 0.

For the second result, let

qd(x, Z) =
(
eAd(x,Z(r+1:d));Ad(x, Z(r+1:d)) < 0

)
−
(
eCd(x,Z);Cd(x, Z) < 0

)
(3.94)

and let δd = δ1,d+ δ2,d where δ1,d =
√
φd and δ2,d = (d−1)−1/4. For simplicity in the rest of

the proof, we abbreviate qd(x, Z),q1,d(x, Z), q2,d(x, Z), and Ad(x, Z(r+1:d)), as qd, q1,d, q2,d,
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and Ad respectively.

EZ |qd| ≤ δdP(|qd| ≤ δd) + P(|qd| > δd) (3.95)

The first term is O(δd), uniformly in x, so its limd→∞ supx∈Fd is 0.

The second term can be bounded as:

PZ(|qd| > δd) = PZ(|qd| > δd; Ad(x, Z) < 0; Cd < 0)

+ PZ(|qd| > δd; Ad ≥ 0; Cd < 0)

+ PZ(|qd| > δd; Ad < 0; Cd ≥ 0)

≤ PZ(|Ad − Cd| > δd; Ad < 0; Cd < 0)

+ PZ(Ad ≥ 0; Cd < 0) + PZ(Ad < 0; Cd ≥ 0)

≤ PZ(|Ad − Cd| > δd; Ad < 0; Cd < 0)

+ PZ(|Ad − Cd| > δd; Ad ≥ 0; Cd < 0) + P(|Ad − Cd| > δd; Ad < 0; Cd ≥ 0)

+ PZ(|Ad − Cd| ≤ δd; Ad ≥ 0; Cd < 0) + PZ(|Ad − Cd| ≤ δd; Ad < 0; Cd ≥ 0)

≤ PZ(|Ad − Cd| > δd) + PZ(−δd ≤ Ad ≤ δd)

≤ PZ(|Ad −Bd| > δ1,d) + PZ(|Bd − Cd| > δ2,d) + PZ(−δd ≤ Ad ≤ δd)
(3.96)

First, by Markov’s Inequality, uniformly in x ∈ Fd

PZ(|Ad −Bd| > δ1,d) ≤
1
δ1,d

φd ≤
√
φd (3.97)
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Second, for each x ∈ Fd

PZ(|Bd − Cd| > δ2,d)

= PZ(|E| > δ2,d)

= PZ
(∣∣∣∣(∇ log π⊗r(x(1:r))Z(1:r) +

∫ 1

0
(1− h)Z(1:r)′∇2 log π⊗r(x(i) + hZ(1:r))Z(1:r) dh

)∣∣∣∣ > δ2,d

)
≤ PZ

(∥∥∥∇ log⊗r π(x(1:r))
∥∥∥ ∥∥∥Z(1:r)

∥∥∥+ L

2
∥∥∥Z(1:r)

∥∥∥2
> δ2,d

)
≤ PZ

(∥∥∥∇ log π⊗r(x(1:r))
∥∥∥ ∥∥∥Z(1:r)

∥∥∥ > δ2,d/2
)

+ PZ
(
L

2
∥∥∥Z(1:r)

∥∥∥2
> δ2,d/2

)
≤ PZ

(
2
√
krL log d

∥∥∥Z(1:r)
∥∥∥ > δ2,d/2

)
+ PZ

(
L

2
∥∥∥Z(1:r)

∥∥∥2
> δ2,d/2

)
≤ P

W∼N(0,Ir⊗Λ)

(
‖W‖2 >

δ2
2,d(d− 1)

16krL log d

)
+ P
W∼N(0,Ir⊗Λ)

(
‖W‖2 > (d− 1)Lδ2,d

)
≤ P

W∼N(0,Ir⊗Λ)

(
‖W‖2 >

√
d− 1

16krL log d

)
+ P
W∼N(0,Ir⊗Λ)

(
‖W‖2 > (d− 1)3/4L

)
≤ rTr(Λ)

(16krL log d√
d− 1

+ 1
(d− 1)3/4L

)
(3.98)

Third, since Ad ∼ N(−l2Rd/2, l2Rd), and since |Rd − J | ≤ d−1/8 + J r−1
d−1 on Fd, and

since J > 0, we have:

sup
x∈Fd

P(−δd < Ad < δd) = sup
x∈Fd

Φ(l
√
Rd/2 + δd/

√
lRd)− Φ(

√
lRd/2− δd/

√
lRd)

≤ sup
x∈Fd

δd

√
2

πlRd

≤ δd
√

2
πl(J − d−1/8 − J r−1

d−1)

(3.99)

Thus, limd→∞ supx∈Fd P(−δd < Ad < δd) = 0.

Now, since Ad ∼ N(−l2Rd/2, l2Rd), by Proposition 3.3:

E[1 ∧ eAd ] = 2Φ(−l
√
Rd/2) (3.100)
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Thus, because J > 0, we have:

lim
d→∞

sup
x∈Fd

∣∣∣E[1 ∧ eAd ]− 2Φ(−l
√
J/2)

∣∣∣
= lim

d→∞
sup
x∈Fd

∣∣∣2Φ(−l
√
Rd/2)− 2Φ(−l

√
J/2)

∣∣∣
≤ lim

d→∞
sup
x∈Fd

√
l

2π
∣∣∣√Rd −√J ∣∣∣

≤

√
l

2π lim
d→∞

sup
x∈Fd

|Rd − J |
2
√

min(Rd, J)

≤

√
l

2π lim
d→∞

sup
x∈Fd

(
d−1/8 + J r−1

d−1

)
2
√
J − d−1/8 − J r−1

d−1

= 0

(3.101)

Analogously, for the truncated expectation:

lim
d→∞

sup
x∈Fd

∣∣∣E[1 ∧ eAd ;Ad < 0]− Φ(−l
√
J/2)

∣∣∣
= lim

d→∞
sup
x∈Fd

∣∣∣Φ(−l
√
Rd/2)− Φ(−l

√
J/2)

∣∣∣
= 0

(3.102)

Finally, since h is smooth with compact support, then both of the functions
∥∥∇2h(x)

∥∥
F

and ‖∇ log π⊗r(x)‖ ‖∇h(x)‖ are continuous with compact support, and hence they are both

uniformly bounded over x ∈ Rk. Let Mh <∞ be a uniform bound on both. Then:

lim
d→∞

sup
x∈Fd

∣∣∣G̃l,Λd hd(x)−Gl,Λh(x)
∣∣∣

≤ lim
d→∞

sup
x∈Fd

kl2

2

∣∣∣∣2Φ(−l
√
I/2)− E

Z(r+1:d)

[
1 ∧ eBd

]∣∣∣∣ ‖Λ‖F ∥∥∥∇2h(x)
∥∥∥
F

+ kl2
∣∣∣∣Φ(−l

√
I/2)− E

Z(r+1:d)

[
eCd ;Cd < 0

]∣∣∣∣ ∥∥∇ log π⊗r(x)
∥∥ ‖Λ‖ ‖∇h(x)‖

≤Mh lim
d→∞

sup
x∈Fd

kl2

2

∣∣∣∣2Φ(−l
√
I/2)− E

Z(r+1:d)

[
1 ∧ eBd

]∣∣∣∣+ kl2
∣∣∣∣Φ(−l

√
I/2)− E

Z(r+1:d)

[
eCd ;Cd < 0

]∣∣∣∣
= 0

(3.103)
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3.5 Additional Lemmas for the Proof of Theorem 3.1

Proposition 3.3 (Acceptance Moments (Roberts et al. [94], proposition 2.4)). If W ∼

N(µ, σ2) then

E[1 ∧ eW ] = Φ(µ/σ) + eµ+σ2/2Φ(−σ − µ/σ) (3.104)

and

E[eW ;W < 0] = eµ+σ2/2Φ(−σ − µ/σ) (3.105)

Lemma 3.9. Let

Wd(x) = 1
2

d∑
i=r+1

[
Z(i)′[∇2 log π(x(i))]Z(i)+ l2

(d−1) (∇ log π(x(i)))′Λ(∇ log π(x(i)))
]

= 1
2

d∑
i=r+1

[
[∇2 log π(x(i))]:[Z(i)Z(i)′]+ l2

(d−1) (∇ log π(x(i)))′Λ(∇ log π(x(i)))
] (3.106)

where Z(i) iid∼ N
(
0, l2Λ

(d−1)

)
.

Then limd→∞ supx(1:d)∈Fd E |Wd(x)| = 0

Proof. Using Isserlis’ theorem (Isserlis [46], equation (39)*):

E
[
([∇2 log π(x(i))] : [Z(i)Z(i)′])2

]
= E


∑
α,β

∂2 log π(x(i))
∂x

(i)
α ∂x

(i)
β

Z(i)
α Z

(i)
β

2


=
∑

α,β,γ,δ

∂2 log π(x(i))
∂x

(i)
α ∂x

(i)
β

∂2 log π(x(i))
∂x

(i)
γ ∂x

(i)
δ

E
[
Z(i)
α Z

(i)
β Z(i)

γ Z
(i)
δ

]

= l4

(d− 1)2

∑
α,β,γ,δ

∂2 logπ(x(i))

∂x
(i)
α ∂x

(i)
β

∂2 logπ(x(i))

∂x
(i)
γ ∂x

(i)
δ

(ΛαβΛγδ+ΛαγΛβδ+ΛαδΛβγ)

= l4

(d− 1)2


∑
α,β

∂2 logπ(x(i))

∂x
(i)
α ∂x

(i)
β

Λαβ

2

+ 2
∑

α,β,γ,δ

∂2 logπ(x(i))

∂x
(i)
α ∂x

(i)
β

∂2 logπ(x(i))

∂x
(i)
γ ∂x

(i)
δ

ΛαγΛβδ


= l4

(d− 1)2

[Λ : ∇2 log π(x(i))]2 + 2
∑

α,β,γ,δ

∂2 logπ(x(i))

∂x
(i)
α ∂x

(i)
β

∂2 logπ(x(i))

∂x
(i)
γ ∂x

(i)
δ

ΛαγΛβδ



(3.107)

where all Greek subscripts range over {1, ..., k}.
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Thus we have:

[E |Wd(x)|]2

≤ E
[
|Wd(x)|2

]
= l4

4(d− 1)2

 d∑
i=r+1

([Λ:∇2 log π(x(i))]+(∇ log π(x(i)))′Λ(∇ log π(x(i))))

2

+ 2l4
4(d− 1)2

d∑
i=r+1

∑
α,β,γ,δ

∂2 log π(x(i))
∂x

(i)
α ∂x

(i)
β

∂2 log π(x(i))
∂x

(i)
γ ∂x

(i)
δ

ΛαγΛβδ

(3.108)

For x(1:d) ∈ Fd we have:

1
2(d− 1)

∣∣∣∣∣∣
d∑

i=r+1
([Λ:∇2 log π(x(i))]+(∇ log π(x(i)))′Λ(∇ log π(x(i))))

∣∣∣∣∣∣ ≤ d−1/8 (3.109)

Since ∇ log π is Lipschitz, the second order partials of log π are essentially bounded,

hence ∑α,β,γ,δ
∂2 log π(x(i))
∂x

(i)
α ∂x

(i)
β

∂2 log π(x(i))
∂x

(i)
γ ∂x

(i)
δ

ΛαγΛβδ is essentially bounded. Thus:

sup
x∈Rkd

2l2
4(d− 1)2

d∑
i=r+1

∑
α,β,γ,δ

∂2 log π(x(i))
∂x

(i)
α ∂x

(i)
β

∂2 log π(x(i))
∂x

(i)
γ ∂x

(i)
δ

ΛαγΛβδ ∈ O(1/d) (3.110)

Combining these two limits we get that limd→∞ supx∈Fd E |Wd(x)| = 0.

3.6 Proof of Theorem 3.2

To prove convergence of Yd to XN in the Skorohod topology (of RN with the product

topology) we need the following lemma:

Lemma 3.10. If RN is equipped with the metric

r(x, y) =
∑
i≥1

2−i(|xi − yi| ∧ 1), (3.111)

which happens to generate the product topology, then

M =
{
f ◦ ρj s.t. j ∈ N, f ∈ C(Rj)

}
(3.112)
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strongly separates points (where ρj : RN → Rj is the projection map onto the first j compo-

nents).

Proof of Lemma 3.10. Fix 1 > δ > 0 and x ∈ RN, and let mδ = d− log2(δ)e. Let

hx,δ(z) = 2
δ

δ
2 −

mδ+1∑
i=1

2−i(|xi − zi| ∧ 1)


+

. (3.113)

Notice that hx,δ ∈M . Obviously hx,δ(x) = 1.

Suppose y ∈ RN such that r(x, y) ≥ δ; since

∞∑
i=mδ+2

2−i(|xi − yi| ∧ 1) ≤ 2−(mδ+1) ≤ δ/2 , (3.114)

then
mδ+1∑
i=1

2−i(|xi − yi| ∧ 1) ≥ δ/2 (3.115)

and hence hx,δ(y) = 0.

Proof of Theorem 3.2. By the Kolmogorov extension theorem (see for example [114], section

2.4 therein) applied to the sequence Xr over r ∈ N, there is a unique (in probability law)

process XN taking values in RN such that the marginal process of the first kr components

has the same distribution as Xr.

From Lemma 3.10, M (as defined above) strongly separates points. Consider any finite

subset of M , say {h1, ..., hn}. Then without loss of generality there exists an m ∈ N with

and a set of functions {f1, ..., fn} ⊂ C(Rmk) with hi = fi ◦ ρmk for all i ∈ {1, ..., n}.

If E is a metric space, and f : E → R then define its “lift” onto DE [0,∞) as f̃ : (t 7→

X(t)) 7→ (t 7→ f(X(t)), so that f̃ : DE [0,∞)→ DR[0,∞). If f is continuous in the topology

on E then f̃ must be continuous in the Skorohod topology on DE [0,∞). This fact is proven

by Jakubowski [49] (theorem 4.3 therein)3.

Now, since all of the finite dimensional processes of Yd converge weakly in the Skorohod

topology, and since the lift of a continuous function on Rkm to DRkm [0,∞) is continuous
3In fact, Jakubowski [49] tells us the stronger result, that the Skorohod topology on DE(0,∞] is the

coarsest topology for which the lifts of all continuous functions are continuous.
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then, by the continuous mapping theorem,

(h1, ..., hn)(Yd)⇒ (h1, ..., hn)(XN) . (3.116)

By Ethier and Kurtz [33] (corollary 9.2 therein) this is sufficient to ensure that Yd converges

weakly in the Skorohod topology to XN.

Moreover, since the product topology on RN is generated by a collection of compatible

pseudometrics, Jakubowski [49, Theorem 1.3] tells us that the Skorohod topology on RN

defined using the metric r, only depends on the product topology of RN; it does not depend

on the choice of metric.

3.7 Proofs of Scaling and Shaping Results

Proof of Corollary 3.1. For fixed Λ, Gl,Λ = l2aΛ(l)(Λ : Σ)GΛ/2. Thus Gl,Λ corresponds to

GΛ accelerated (decelerated) by a factor of l2aΛ(l)(Λ : Σ)/2. Hence, to maximize the speed

of Gl,Λ over the choice of l we need only maximize h(l) := l2aΛ(l) = 2l2Φ
(
− l
√

Σ:Λ
2

)
over l.

This is equivalent to the original optimization from Roberts et al. [94]. Notice that:

h(l) = 8
Σ : Λ

(
l
√

Σ : Λ
2

)2

Φ
(
− l
√

Σ : Λ
2

)
(3.117)

Taking ω = l
√

Σ:Λ
2 we can maximize instead:

h̃(ω) = ω2Φ(−ω) (3.118)

This may be done numerically to get ω? ≈ 1.1906, h̃(ω?) ≈ 0.165717. Then solving for l

yields lΛ = 2ω?√
Σ:Λ = ≈2.3812√

Σ:Λ and h(lΛ) = 8h̃(ω?)
Σ:Λ = ≈1.32574

Σ:Λ .

Hence GlΛ,Λ = 4h̃(ω?)GΛ = (≈ 0.66)GΛ

Proof of Lemma 3.2. If GΛ has a spectral gap for at least one strictly positive definite shap-

ing matrix, Λ, then it has a spectral gap for all strictly positive definite shaping matrices.

This is true because, for f in a core of D(GΛ) = D(GΘ), we can use the Dirichlet form
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corresponding to the generator (see, for example, [7]) to write

E
X∼π

(
f(X) [GΛf ](X)

)
= E

X∼π

(
∇f(X)′ Λ

Λ : Σ∇f(X)
)

≤
λmax (Λ)

Λ:Σ
λmin (Θ)

Θ:Σ

E
X∼π

(
∇f(X)′ Θ

Θ : Σ∇f(X)
)

= λmax (Λ)
λmin (Θ)

Θ : Σ
Λ : Σ E

X∼π

(
f(X) [GΘf ](X)

)
,

(3.119)

implying that

ρ(GΛ)λmax (Θ)
λmin (Λ)

Λ : Σ
Θ : Σ ≥ ρ(GΘ) ≥ ρ(GΛ) λmin (Λ)

λmax (Θ)
Θ : Σ
Λ : Σ . (3.120)



Chapter 4

Statistical Inference with

Stochastic Gradient Methods

4.1 Introduction

Stochastic gradient algorithms were originally proposed as optimization methods by

Robbins and Monro [93], and have become the unequivocal standard for large scale opti-

mization problems in statistics and machine learning. The success of stochastic gradient

methods is due to the fact that improvements in computational complexity from subsam-

pling outweigh the accuracy loss from stochastic approximation for empirical objectives,

and thus stochastic optimization methods scale more favourably with the sample size and

model complexity than their deterministic counterparts. Moreover theoretical results for

stochastic optimization demonstrate that it can match the accuracy of deterministic meth-

ods. In contrast, classical and exact gradient-based MCMC methods cannot directly benefit

from subsampling in the same way as optimization, due to the need to accept/reject us-

ing the full-sample likelihood in the Metropolis-Hastings adjustment. Thus, apparently,

one must either sacrifice the speed gains from subsampling, or lose accuracy relative to

non-stochastic-gradient methods for sampling.

Regardless of the loss in accuracy, the need for faster sampling methods has lead re-

searchers to use approximate, unadjusted MCMC methods, based on discretizations of

121
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continuous time stochastic processes (e.g., [29, 30, 31, 68]), and their stochastic gradient

counterparts [121]. While these methods may be asymptotically exact when run with de-

creasing step-sizes, this does not directly characterize their finite time behaviour, and the

use of decreasing step-sizes means that time we wait for the next effective sample is ever

increasing. A practical way around this is to accept that some approximation error will

persist, and to work with fixed step-sizes. When working with fixed step-sizes, then, it is

important to understand in what way and to what degree the use of stochastic gradients

affects the samples we generate, and how to tune our stochastic gradient algorithms to

provide accurate uncertainty quantification.

This chapter addresses questions of accuracy, tuning, and robustness of stochastic gra-

dient algorithms with fixed step-sizes for approximate sampling by examining the scaling

limits of stochastic gradient algorithms as the sample size tends to infinity. We show that

the sample paths of stochastic gradient algorithms with fixed step-sizes converge weakly in

the Skorohod topology in probability to the sample paths of an Ornstein–Uhlenbeck process

under relatively mild statistical conditions. We then use the properties of the limiting pro-

cess (e.g., stationary law, mixing time, etc.) to characterize the corresponding properties of

the stochastic gradient algorithm. The scaling limit result we prove provides rigorous justi-

fication for the similar scaling limit proposed heuristically by Mandt et al. [70], and a more

complete theory characterizing such limits by examining a wider range of tuning parameters

and their relative scalings. The present work is further motivated by an empirical finding:

that properly tuned stochastic gradient methods can yield approximate uncertainty quan-

tification that is asymptotically more robust to model misspecification. More specifically,

we show that the tuning parameters of stochastic gradient algorithms can be chosen so that

the stationary distributions of the limiting process matches either the asymptotics of the

posterior, the bagged posterior, or a local asymptotic fiducial distribution for the maximal

likelihood estimator.

4.1.1 Formalism

Let X(n) = (Xi)ni=1 ∈ X n denote a dataset with observations Xi independently and

identically distributed (i.i.d.) from an unknown distribution P . Consider the potential
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U (n)(θ) := log π(0)(θ) + ∑n
i=1 `(θ;Xi) where ` typically either represents a log-likelihood,

or a negative loss function; and π(0) typically represents either a (possibly improper) prior

density that is everywhere positive on Θ, or log π(0)(θ) is a regularizer. The potential U (n)(θ)

can be viewed either in a frequentist setting as the complete log-likelihood with regularizer

log π(0)(θ) or in a Bayesian setting as the log of the joint model density.

In the frequentist case, perhaps the most popular estimator for the (locally) optimal pop-

ulation parameter θ? satisfying E{∇` (θ?;X1)} = 0, is the M-estimator θ̂(n) satisfying the

first-order optimality condition ∇U (n)(θ̂(n)) = 0. In the Bayesian case, the quantity of inter-

est is (usually) an expectation with respect to the posterior density π(n)(θ) ∝ exp{−U (n)(θ)}

of a function f : Θ → R`, which we denote π(n)(f). In either case, when n is large rel-

ative to computational cost of evaluating `(θ;Xi), classical optimization methods (e.g.,

Newton–Raphson) for approximating θ̂(n) and sampling methods for estimating π(n)(f)

(e.g., Metropolis-Hastings methods) become computationally prohibitive.

Stochastic gradient algorithms have been widely adopted for both optimization and

sampling as a means to reducing computational cost of each iteration of an iterative method,

improving scalability. For a stochastic gradient algorithm, to generate a sequence of iterates

θ
(n)
1 , . . . , θ

(n)
k , . . . ∈ Θ, rather than computing exact gradients of n−1U (n) using the full

dataset, at iteration k a small batch of subsampled data is instead used to compute an

unbiased gradient estimate

Ĝ
(n)
k := 1

n
∇ log π(0)

(
θ

(n)
k

)
+ 1
b(n)

b(n)∑
j=1
∇`
(
θ

(n)
k ; X

I
(n)
k

(j)

)
, (4.1)

where (I(n)
k )k∈N ∈ ([n]b)N are an independent and identically distributed (i.i.d.) sequence

of uniform random samples from {1, . . . , n} of size b(n), which are formed either with or

without replacement.1

Most analyses of stochastic gradient optimization procedures focus on the optimality

gap, while analyses of stochastic gradient sampling procedures focus on how well the stan-

dard posterior is approximated. In practice stochastic gradient algorithms appear to be
1“With replacement” means that (I(n)

k )k∈N
iid∼ Unif([n]b) and “without replacement” means that

(I(n)
k )k∈N

iid∼ Unif({I ∈ [n]b s.t. (j1 6= j2 =⇒ I(j1) 6= I(j2))}).
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successful even when used with tuning parameter combinations (e.g., large step-size and

small batch size) insufficient to result in accurate approximations according to the stan-

dard theory. The lack of an explanatory theory has forced users to rely on heuristic and

problem-specific approaches to setting tuning parameters. The aim of the present work is

to take a step toward filling this gap, allowing users to understand how the choice of tuning

parameters affect the statistical properties of the algorithms. Our approach is motivated

by the hypothesis that, while the variability introduced by subsampling is usually viewed

as detrimental, it is plausible—in light of the success of methods like the bootstrap—that

it could also be beneficial. For example, an immediate consequence of Polyak and Judit-

sky [92] is that averaging the iterates of stochastic gradient descent (SGD), whose one-step

updates are

θ
(n)
k+1 = θ

(n)
k + h

(n)
k

2 Ĝ
(n)
k , (4.2)

can provide automatic optimal uncertainty quantification in maximum likelihood estima-

tion. More precisely, when hk ∝ k−ς for ς ∈ (0, 1), the iterate average θ̄(n)
k := 1

k

∑k
k′=1 θ

(n)
k′

satisfies

lim
n→∞

lim
k→∞

kCov(θ̄(n)
k ) = J −1

? I?J −1
? = lim

n→∞
nCov(θ̂(n)), (4.3)

where I? := E {∇θ`(θ?;X)⊗∇θ`(θ?;X)} is the first-order Fisher information matrix and

J? := −E{∇⊗2
θ `(θ?;X)} is the second-order Fisher information matrix.

We develop conceptually similar results that characterize the large-sample behavior of

iterates of a large class of preconditioned stochastic gradient algorithms with fixed step-size

h
(n)
k = h(n) depending on the sample size but not the iteration number. The fixed–step-size

setting proves to be practically relevant because convergence to a near-optimum is rapid

and robust to the precise step-size choice [27, 78]. Moreover, for sampling the fixed step-

size setting leads to better mixing time behaviour as the number of iterations until the

next approximately independent sample will be static, unlike in the decreasing-step-size

regime where the number of iterations until the next approximately independent sample is

increasing without bound.
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4.1.2 Scope of the present work

Our analysis covers both optimization algorithms—including stochastic and determin-

istic gradient descent with and without momentum, SGD with Nesterov acceleration—and

unadjusted Markov chain Monte Carlo (MCMC) algorithms—(preconditioned) over/under-

damped Langevin dynamics with and without stochastic gradients—where the fixed–step-

size setting is the most relevant since the iterates form a time-homogeneous Markov chain

which typically has a well-defined stationary distribution and mixes after a fixed number

of iterations. We characterize the behaviour not just of individual iterates, but also of the

iterates jointly, which enables a unified analysis of stationarity, mixing, and iterate aver-

aging properties of stochastic gradient algorithms. Specifically, we show that, near a local

optimum, the iterates converge (weakly) to sample paths of an Ornstein–Uhlenbeck (OU)

process in probability as the sample size tends to infinity and, jointly, the constant step-

size decreases to 0. Under an additional regularity condition, we also establish that the

global stationary distribution of the limiting OU process exists, implying a Bernstein–Von

Mises-like theorem. Depending on the choice of step-size, preconditioner, batch size, and

method used, the stationary covariance of the limiting OU process can be tuned to equal

the sandwich covariance, the asymptotic posterior covariance J −1
? , or a linear combination

of the two. For example, consider stochastic gradient Langevin dynamics [SGLD; 121], a

popular stochastic gradient MCMC algorithm that has one-step update given by

θ
(n)
k+1 = θ

(n)
k + hk

2 Ĝ
(n)
k +

√
hk
β
ξk, (4.4)

where ξk ∼ Nd(0, I) is standard Gaussian noise and β ∈ (0,∞] is the inverse temperature,

which is usually taken to be n.2 We show that SGD and SGLD then have mixing times

of order n when tuned to have asymptotic covariance matching the asymptotic posterior

covariance, the asymptotic covariance of the MLE (the sandwich), or a mixture thereof

(as would be obtained from the asymptotics of the bagged posterior [20, 45]). The latter

tunings depart from targeting the posterior distribution, but still leads to plausible—and

potentially better—uncertainty quantification.
2We take β−1 to mean 0 when β = +∞, in which case we recover SGD from Eq. (4.2).
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Overall, our results (1) demonstrate that stochastic gradient algorithms can provide

computationally efficient, statistically robust asymptotic uncertainty quantification, partic-

ularly in the case of model misspecification, and (2) provide practical guidance to users of

these algorithms for both optimization and sampling. Our theory is supported by a number

of experiments, using both real and simulated data.

The assumptions required by our analysis are substantially weaker than the previous

results that have characterized scaling limits of specific stochastic gradient algorithms. We

allow the batch size used to compute the stochastic gradient to depend on the dataset size

and allow the batches to be sampled with or without replacement. We only require the local

maximizer to converge in probability and we do not assume the model is correctly specified.

At the same time, our results are stronger than previous analyses since we characterize both

the sample paths of the iterates and the complete stationary distribution; not just, e.g., first

and second moments. As such, our results can be viewed a generalization and formalization

of the heuristic arguments of Mandt et al. [70], and open the way for further generalizations

to situations where heuristics provide minimal insight such as infinite-dimensional models

and models where the number of parameters scales with the sample size. Our results also

complement those of Kushner and Yin [59], who provides the basis for the assumptions in

[70], and who do in fact establish weak convergence of stochastic gradient algorithms to OU

process in a large number of settings. Notably, they do not cover the case that the objective

function is itself stochastic (in particular arising as the random likelihood function based

on an IID sample of size n), or the joint scaling of the objective function with the tuning

parameters of the algorithm required to obtain asymptotic statistical results.

4.1.3 Asymptotic distributions and misspecification

In order to interpret our scaling limits in the context of asymptotic uncertainty quantifi-

cation, it is important that we identify the relevant asymptotic distributions for Bayesian

and frequentist inference under misspecification.

The Bernstein-von Mises theorem tells us that the posterior distribution of the param-

eter θ is asymptotically normal, centred at the MLE, with covariance J −1
? . Similarly, the

(local) maximum likelihood estimator θ̂(n) is itself asymptotically normal, centred at the
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true parameter θ?, with covariance equal to the “sandwich” covariance matrix, J −1
? I?J −1

? .

If the model is well-specified (i.e., P = Qθ for some θ ∈ Θ), then J? = I?, and so

J −1
? I?J −1

? = J −1
? . However, if the model is misspecified (i.e., P 6= Qθ for any θ ∈ Θ), then

the sandwich may differ from J −1
? [43, 123]. In this case, posterior credible sets are not

asymptotically well-calibrated frequentist confidence sets [58].

The question of how to account for misspecification in the Bayesian setting has been

addressed in a number of ways. The asymptotic normality of the posterior under misspec-

ification was identified by Chen [24] and Bunke and Milhaud [22]. Shalizi [107] presents

sufficient conditions for posterior convergence when the model hypotheses are wrong and

the data have complex dependencies. Kleijn and van der Vaart [58] prove the Bernstein-

Von-Mises theorem under misspecification. Bühlmann and van de Geer [21] investigate the

robustness of asymptotic high-dimensional inference for misspecified linear models.

There are also several modified Bayesian approaches proposed in the literature. Royall

and Tsou [101] show that the posterior based on the adjusted (profile) likelihood function

[111] can be robust asymptotically. Müller [79] shows that Bayesian inference about the

pseudo-true parameter under squared error has lower frequentist risk asymptotically when

the posterior is substituted by an artificial normal posterior centred at the MLE with sand-

wich covariance matrix. Grünwald and van Ommen [38] study the use of power likelihood to

improve robustness to misspecification and propose a method for choosing the power term.

Bissiri et al. [14] suggest a general framework for Bayesian inference using a loss function

rather than the traditional likelihood function. Recently, Huggins and Miller [45] study the

use of bagging technique on the Bayesian posterior and develop the asymptotic theory. It

is shown that under misspecification, the covariance of the “bagged posterior” is a mixture

of J −1
? and the sandwich covariance.

4.1.4 Other Related Work

There is extensive work on the viability of stochastic gradient algorithms for approx-

imate inference. Some examples which are relevant in the context of the present work

include the following. Dieuleveut et al. [27] analyse the optimization properties of constant

step-size stochastic gradient algorithms using tools from the theory of time homogeneous
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Markov chains, and proposes numerical extrapolation methods to improve optimization

performance. Toulis and Airoldi [117] characterizes the asymptotic first and second mo-

ments of the iterates of stochastic gradient algorithms, and the asymptotic normality of

iterate averages, but not the full limiting distribution of the path-process, and show that

these limits are robust to online tuning of algorithm parameters. Brosse et al. [19] study

the asymptotic properties of SGD and SGLD, and find that, with naive tuning parameters,

they do not provide an accurate representation of the posterior, while control-variate based

methods do, which is consistent with our results. Teh et al. [115] study the consistency,

CLT, and asymptotic bias–variance decomposition of SGLD for a sequence of decreasing

step-sizes that converge zero. Vollmer et al. [120] characterize the asymptotic bias of con-

stant step-size SGLD explicitly with its dependence on the step-size and the variance of the

stochastic gradient, as well as bounds on the finite-time bias, variance and mean squared

error (MSE). Mandt et al. [70] study constant learning rate SGD by approximating it with

a continuous-time Ornstein–Uhlenbeck process. The conclusions they draw are similar to

ours, however that the OU process is a good approximation for SGD in the large-sample

scaling limit is taken as an assumption in that work, while we prove that the limit does in

fact hold under reasonable conditions. They compute the stationary distribution for a class

of SGD algorithms, all of which converge to a Gaussian distribution parameterized by the

learning rate, mini-batch size and preconditioning matrix. Tzen et al. [118] study path-wise

behaviour of discrete-time Langevin algorithm for non-convex empirical risk minimization

through metastability. They show that, for a particular local optimum of the empirical

risk, with high probability, either the Langevin trajectory ends up outside the a neighbour-

hood of this local optimum within a short recurrence time, or it enters this neighbourhood

by the recurrence time and stays there until a potentially exponentially long escape time.

This states that the Langevin scheme will eventually visit all local minima, but it will take

an exponentially long time to transit among them. Yu et al. [125] show that the aver-

age of constant learning rate SGD iterates is asymptotically normally distributed around

the expected value of their unique invariant distribution, as long as the non-convex and

non-smooth objective function satisfies a dissipativity property. Liu et al. [66] study the

stationary distribution of discrete-time SGD and its variants in a quadratic loss function
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and obtain the analytic form for the asymptotic covariance matrix of the model parameters.

The asymptotics of their results agree with ours.

Some existing work studies a continuous-time process by assuming it as a model of

an iterative algorithm. For example Li et al. [63] study the stochastic modified equations

framework for analyzing the dynamics of stochastic gradient algorithms, where the latter

is approximated by a class of stochastic differential equations with small noise parame-

ters. Gupta et al. [40] consider recursive stochastic algorithms as approximations of certain

contraction operators and view them within the framework of iterated random operators.

Sirignano and Spiliopoulos [108, 109] study stochastic gradient descent in continuous time,

where the algorithm follows a (noisy) descent direction along a continuous stream of data

and the parameter updates occur in continuous time and satisfy a stochastic differential

equation.

Weak convergence techniques have become very popular in the theoretical MCMC lit-

erature since the seminal paper of Roberts et al. [94]. However, most of analyses have been

performed in the asymptotic regime where the parameter dimension d → ∞. The “large-

sample regime” where d is fixed and the number of data goes to infinity has been recently

studied in [105, 106] for random-walk Metropolis algorithms. To the best of our knowledge,

our work is the first work for analyzing stochastic gradient algorithms in the “large-sample

regime” using the weak convergence techniques originating from the MCMC optimal scaling

literature.

This chapter does not cover several popular topics in recent literature, which we leave

as future directions. For example, studying properties of stochastic gradient algorithms

for overparameterized models (see e.g. [64, 124, 127]) and for Bayesian deep learning (see

e.g. [1, 47, 76, 122]).

4.1.5 Additional notation

Let M1,+ (X ) denote the set of probability measures on the observation space X and

suppose that Xi (i ∈ N := {1, 2, . . .}) are independent and identically distributed (i.i.d.)

from P ∈ M1,+ (X ). Let X(n) = (Xi)i∈[n], where n ∈ N is the sample size and [n] :=

{1, . . . , n}. Fix a model {Qθ : θ ∈ Θ} ⊆ M1,+ (X ) for P and unless otherwise noted take
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the parameter space Θ = Rd. We will assume that {Qθ}θ∈Θ are absolutely continuous with

respect to a common base measure µ on X , and write their densities as qθ := dQθ/dµ for

each θ ∈ Θ, and their log-likelihood functions as `(x; θ) := log qθ(x). For a θ? ∈ Θ, the

first-order and second-order Fisher information matrices at θ? are (respectively) defined by

I? = I(θ?) := E
X∼P

{∇θ`(θ?;X)⊗∇θ`(θ?;X)} , and

J? = J (θ?) := − E
X∼P
{∇⊗2

θ `(θ?;X)}.
(4.5)

Let
Î(n)(θ) = 1

n

∑
i∈[n]

[∇`(θ; Xi)]⊗2, and

Ĵ (n)(θ) = 1
n

∑
i∈[n]

[−∇⊗2`(θ; Xi)]

denote the empirical first-and second-order Fisher information matrix functions, respec-

tively.

For d ∈ N, denote the d-dimensional Gaussian distribution with mean µ ∈ Rd and

(positive semi-definite) covariance matrix Σ ∈ Rd×d as Nd(µ,Σ). For vectors a, b ∈ Rd,

define the outer product a ⊗ b ∈ Rd×d given by (a ⊗ b)ij = aibj and write a⊗2 := a ⊗ a.

Let ∇ ⊗ ∇ = ∇⊗2 denote the Hessian operator. For random elements (ξk)k∈N and ξ, we

write ξk  ξ to denote convergence in distribution; that is, ξk  ξ if and only if for

every bounded continuous function f , E{f(ξk)} → E{f(ξ)} as k → ∞. We write L(ξ) for

the distribution (law) of a random element ξ, and Lν(ξ) for the conditional distribution

of ξ given another random element ν. For a square matrix M , define the symmetrization

operator as Sym(M) := (M +M>)/2. A square matrix M is Hurwitz (also called stable) if

every eigenvalue of M has negative real part. For a function f : A → L with A a set and

(L, ‖·‖) a normed linear space, define ‖f‖∞ := supa∈A ‖f(a)‖.

4.2 Stochastic gradient algorithms and their scaling limits

In this section we develop a comprehensive framework that accurately predicts the large-

sample asymptotics of stochastic gradient algorithms with fixed step sizes for inference and

parameter estimation, including in cases where the model is misspecified. Our goal is to
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make their behaviour as methods for both optimization and sampling as transparent as

possible – eliminating the ambiguity in the effects of hand-tuning the various parameters,

except insofar as the user must determine the goal of the analysis and account for computing-

related constraints.

4.2.1 A stochastic gradient meta-algorithm

We develop our methods and theory in the framework of a stochastic gradient meta-

algorithm, with one-step update

θ
(n)
k+1 = θ

(n)
k + h(n)Γ

2 Ĝ
(n)
k +

√
h(n)Λ
β(n) ξk, (4.6)

where Γ ∈ Rd×d is the (not necessarily positive semi-definite) gradient preconditioner, Λ ∈

Rd×d is the (positive semi-definite) diffusion anisotropy matrix, ξk are i.i.d. Nd(0, Id), and

Ĝ
(n)
k implicitly depends on the batch size b(n) (which in turn may vary with the sample size

n).

The meta-algorithm subsumes the SGD and SGLD algorithms discussed above. It also

includes momentum-based methods, which can be seen by lifting the parameter space to a

phase space; the details of this modification for underdamped stochastic Langevin dynamics

are given in Section 4.4.1. This meta-algorithm does not include variants of stochastic

gradient algorithms where the stochastic gradient is not of the form Eq. (4.1), such as the

variance-reduction methods of Baker et al. [6], though we will sketch an extension of our

results to that particular example in Section 4.4.2.

4.2.2 Scaling limit of the stochastic gradient meta-algorithm

For each n ∈ N, let θ̂(n) satisfy the first-order optimality condition∑n
i=1∇`(θ̂(n);Xi) = 0

for the optimization problem of maximizing the likelihood function∑n
i=1 `(θ;Xi). We aim to

characterize the behaviour of the sample path of the iterates of Eq. (4.6) in the region about

θ̂(n). By so doing, we will be able to determine the limiting distribution of the iterate average

(for optimization), the asymptotic stationary distribution of the iterates (for optimization

and sampling), and the mixing speed (for sampling). Our approach is to obtain a functional
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central limit theorem by taking the scaling limit of the piecewise-constant, continuous-time

process

ϑ
(n)
t := w(n)

(
θ

(n)
bα(n)tc − θ̂

(n)
)
, (4.7)

where w(n) → ∞ determines the spatial scaling and α(n) → ∞ determines the temporal

scaling.

Since it suffices for practical application, we assume polynomial scaling of all tuning

parameters as a function of sample size: h(n) = chn
−h for h > 0, b(n) =

⌊
cbn

b
⌋
for b ≥ 0,

and β(n) = cβn
t for t ∈ R. Given these tuning parameters, in order to have a stable and

non-trivial3 limit, we must take the time scaling to be α(n) = nh and the spatial scaling to

be w(n) = nw for w = min {b + h, t} /2. In this setting we have the following result, under

Assumptions 4.1 to 4.5 discussed below.

Theorem 4.1 (Scaling limit of the meta-algorithm). If Assumptions 4.1 to 4.5 all hold,

and there exists θ? ∈ Θ such that both θ̂(n) p→ θ? and ϑ(n)
0  ϑ0, then

(ϑ(n)
t )t∈R+  (ϑt)t∈R+

(4.8)

in the Skorohod topology4 in probability, where (ϑt)t∈R is an Ornstein–Uhlenbeck process

given by

dϑt = −1
2Bϑt dt+

√
AdWt, (4.9)

with Wt a d-dimensional standard Brownian motion, drift matrix B = chΓJ?, positive

semi-definite diffusion matrix A = I[b+h≤t]
c2hcb
4cb ΓI?Γ> + I[t≤b+h]

ch
cβ

Λ, and batch constant

cb :=


1− cb b = 1 and “no replacement”

1 otherwise.

Assumptions 4.1 to 4.5 are fairly mild given the strength of the result.

Assumption 4.1. ∇ log π(0) is L0-Lipschitz, and `(·;x) ∈ C2(Θ) for each x ∈ X .
3By non-trivial here, we mean that the limiting SDE should have both non-zero drift and non-zero

diffusion terms if possible.
4See Section 4.6.3 for further discussion.
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Assumption 4.2. h−w− a/3 > 0 and E [‖∇`(θ?;X1)‖p2 ] <∞ for some p2 >
1

h−w−a/3 .

Assumption 4.3. There exists q3 ∈ [0,w) such that

‖θ̂(n) − θ?‖ ∈ op(1/nq3), and E
[∥∥∥∇⊗2`(·;X1)

∥∥∥p3

∞

]
<∞, (4.10)

where p3 = 1
h+q3−w−a/3 .

Assumption 4.4. There is a nondecreasing sequence (rJ ,n)n∈N with rJ ,n →∞, such that

sup
θ∈B

(
θ̂(n),rJ ,n/nw

) ∥∥∥Ĵ (n)(θ)− J (θ?)
∥∥∥ p→ 0

Assumption 4.5. There is a nondecreasing sequence (rI,n)n∈N with rI,n →∞, such that

sup
θ∈B

(
θ̂(n),rI,n/nw

) ∥∥∥Î(n)(θ)− I(θ?)
∥∥∥ p→ 0

Assumption 4.1 requires that the likelihood has a minimal number of continuous deriva-

tives, and that the log-prior is smooth.5 Assumption 4.2 ensures that the gradient value

of the log-likelihood at the limiting parameter is not too volatile via a moment condition.

Assumption 4.3 ensures that the random likelihood functions from each data sample are

sufficiently smooth via a moment condition on the random smoothness parameter. As-

sumptions 4.4 and 4.5 require convergence of the empirical Fisher information matrices.

The assumptions all hold, for example, for generalized linear models with bounded covari-

ates and either Lipschitz inverse-link functions, or suitably constrained parameter domains

(see Section 4.4.3 for the extension of the main result to constrained parameter spaces).

Several sufficient conditions for each of Assumptions 4.4 and 4.5 are given in Section 4.9.

The proof of Theorem 4.1 is given in Section 4.7. With minor modifications it can be

extended to the SGLD fixed point algorithm [e.g., 6], in which case cb = 0. For a discussion

of this modification see Section 4.4.2.
5“Smoothness” here is being used in the optimization theory sense of the word, referring to Lipschitz

gradients.
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4.2.3 Theoretical implications of the scaling limit

Based on Theorem 4.1, we can to establish the following corollaries which we will fur-

ther leverage to explain the empirical behaviour of stochastic gradient methods and to make

recommendations for how these methods could be best tuned. First, we have a characteri-

zation of the marginal and (when it exists) the stationary covariance of the limiting process,

including conditions under which simplified forms are possible.

Corollary 4.1. In the setting of Theorem 4.1, the following hold:

1. For any initial parameter ϑ0, the marginal covariance of the limiting process is

Qt := Cov(ϑt|ϑ0) =
∫ t

0
e−sB/2Ae−sB

>/2ds

and

Lϑ0(ϑt) = N
(
e−sB/2ϑ0, Qt

)
.

2. If −ΓJ? is Hurwitz, then Q∞ := limt→∞Qt exists and the stationary distribution of

(ϑt)t∈R is ν = Nd(0, Q∞). In this case, Q∞ solves the equation

1
2BQ∞ + 1

2Q∞B
> = A. (4.11)

where, as before,
B = chΓJ?

A = I[b+h≤t]
c2
hcb
4cb

ΓI?Γ> + I[t≤b+h]
ch
cβ

Λ.

The previous corollary leads to conditions for a Bernstein–von Mises-like result for the

stationary distributions of the meta-algorithm.

Corollary 4.2 (Bernstein–von Mises-like theorem). In the setting of Theorem 4.1, if

((ϑ(n)
t )t∈R+)n∈N has a sub-sequence with uniformly tight stationary measures, and if −ΓJ?

is Hurwitz, then the sub-sequence of stationary measures converges weakly to Nd(0, Q∞) in

probability.
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4.2.4 Iterate Averages

Let θ̄(n)
k = 1

k

∑k
j=1 θ

(n)
j be the average of the first k iterations of the algorithm. The

accuracy of the iterate average is characterized by its covariance Q̄(n)
k := Cov(θ̄(n)

k ). We

can approximate Q̄(n)
k in terms of the covariance of the averaged limiting process, which is

defined as ϑ̄t := t−1 ∫ t
0 ϑs ds.

Proposition 4.1. For a stationary initial parameter ϑ0 ∼ N(0, Q∞), the covariance of the

averaged limiting process is

Q̄t := Cov
(
ϑ̄t
)

= 4
t
Sym

(
(chΓJ?)−1Q∞

)
− 8
t2

Sym
(
(chΓJ?)−2

{
I − e−t(chΓJ?)/2

}
Q∞

)
.

(4.12)

The proof of this result is in Section 4.10. Using Eq. (4.11), the leading term has the

explicit form

4
t
Sym

(
(chΓJ?)−1Q∞

)
= 1
t

(
I[b+h≤t]

cb
chcb
J −1
? I?J −1

? + I[t≤b+h]
4

cβch
J −1
? Γ−1Λ(Γ>)−1J −1

?

)
.

When either b + h < t, or b + h = t and cβ = +∞, then this simplifies to

4
t
Sym

(
(chΓJ?)−1Q∞

)
= cb
tcb
J −1
? I?J −1

? .

It is interesting, and perhaps initially surprising, that this is invariant to the choice of

preconditioning matrix. Moreover, up to rescaling by cb/ (tcb), this matches the covariance

matrix of the asymptotic distribution of the MLE. However, it is perhaps less surprising in

light of similar results for SGD with decreasing step-size due to Polyak and Juditsky [92].

4.3 Practical implications of the scaling limit

The characterization of the stochastic gradient meta-algorithm given by Theorem 4.1

and Corollaries 4.1 and 4.2 lets us answer fundamental questions about the large-sample

properties of the stochastic gradient meta-algorithm:

1. When and how does mini-batch noise affect the algorithm?
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2. When does the meta-algorithm sample from the posterior?

3. What other useful distributions can the meta-algorithm sample from?

4. What is the mixing time of the meta-algorithm?

5. What is the behaviour of the iterate averages?

We address each question in turn.

4.3.1 Effect of mini-batch noise

The mini-batch noise contributes in the large-sample regime when h + b ≤ t. This

exactly corresponds to when the mini-batch noise in a single step is on the same order (=)

or dominates (<) the noise from the Gaussian innovations, ξk. We can interpret the phase

transition as occurring because the variance of the mini-batch gradient scales as n−2h−b

while the variance of update due to the Gaussian innovations scale as n−h−t. The spatial

scaling is chosen as w = min {b + h, t} /2 to ensure that at least one of (a) the mini-batch

noise or (b) the Gaussian innovations contribute to the limit, as otherwise the limit would

be a gradient flow instead of a OU process, and hence fail to capture the asymptotically

dominant local stochastic behaviour around θ̂(n).

4.3.2 Sampling from the posterior

In order for the large-sample stationary distribution of Eq. (4.6) to match the Bernstein–

von Mises limit of the posterior, we must first enforce that w = 1/2. Then, there are two

ways to ensure that the limiting process has the same distribution as the limiting posterior.

First we can chose our hyperparameters so that h + b > t. This will require us to set t = 1

to ensure w = 1/2. This condition can be interpreted as saying that combinations of mini-

batch size and step size must yield mini-batch gradient variances that vanish fast enough

to become negligible in the limit. In this case, selecting Γ = Λ for any positive definite Λ,

cβ = 1, and arbitrary values of ch, cb will suffice.

The second way in which we can match the posterior is by trying to precondition the

mini-batch gradients so that the contribution of mini-batch noise to the limit is oriented
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exactly to give the correct variance. This, in turn can be achieved in two ways. First, if

h + b < t one may select Γ such that the smatrix Q∞ that solves

1
2ΓJ?Q∞ + 1

2Q∞J
>
? Γ> = chcb

4cb
ΓI?Γ> (4.13)

is Q∞ = J?. As can be verified directly, and is essentially argued in Mandt et al. [70,

Corollary 4], taking Γ = I−1
? and ch = 4cb

cb
, the limiting stationary measure will match the

limiting posterior. Similarly, if h + b = t, then taking Λ = I−1
? = Γ and choosing ch and cβ

jointly so that chcb
4cb + 1

cβ
= 1, then the limiting stationary measure will match the limiting

posterior.

In terms of the number of gradient queries per unit time in the scaling limit scales,

the second way is more efficient as the query-count scales linearly with the dataset size

(h + b = 1), while for the first way it scales super-linearly (h + b > 1).

4.3.3 Alternative uncertainty quantification

When our models are misspecified, however, the posterior distribution may provide less-

than-robust uncertainty quantification [45]. In this case, we may want to either match the

asymptotic covariance of the MLE, which by definition is robust to model misspecification,

or match the asymptotic distribution of the bagged posterior, which combines aspects of

both the asymptotics of the posterior and the MLE. Either of these desiderata can be

obtained by setting Γ = Λ = J −1
? , and any valid h + b = 1 = t. With this tuning, for any

v1, v2 > 0, taking ch = 4v1cb and cβ = v−1
2 , gives

Q∞ = v1J −1
? I?J −1

? + v2J −1
? .

This matches the asymptotic distribution of the bagged posterior with re-sampling rate v1

when v1 = v2 [45]. Moreover, we can obtain any convex combinations of the uncertainty

quantification from the posterior and from the asymptotics of the MLE, by taking v1 +v2 =

1. This would allow one to interpolate between frequentist-like and Bayesian-like forms of

inference. We can also obtain the covariance of the MLE when sampling with replacement
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by using h + b = 1, cβ = +∞, preconditioning with Γ = J −1
? , and setting ch = 4cb.

4.3.4 Mixing time

Let ν̂(n)
k (f) := k−1∑k

k′=1 f(θ(n)
k′ ) denote the Monte Carlo estimate of ν(n)(f), where

ν(n) is that stationary measure of the stochastic gradient algorithm when the sample-size

is n, if it exists. We can use the mixing time (or worst-case integrated autocorrelation

time) τ (n) := supf inf{k : Var
ν̂

(n)
k

(f)/Varν(n)(f) ≤ 1} to characterize the efficiency of

MCMC algorithms. For the limiting process, define the “Monte Carlo average” ν̂t(f) :=

t−1 ∫ t
0 f(ϑs) ds and the mixing time τ := supf inf{t : Varν̂t(f)/Varν(f) ≤ 1}. When the

limiting process is reversible, standard results (e.g., applying the spectral theorem for self-

adjoint operators [102] to the Poincaré inequality [8]) allow us to upper bound τ by the

reciprocal of the spectral gap of the limiting process. Since the spectral gap of the Ornstein–

Uhlenbeck process is λmin(B)/2, where λmin(B) denotes its minimum eigenvalue of B, we

may heuristically conclude then that the limiting mixing time is τ (n) = 2α(n)/λmin(B)

iterations. This mixing time corresponds to 2α(n)b(n)/λmin(B) likelihood evaluations, or

equivalently 2α(n)b(n)/{nλmin(B)} dataset passes. Even when the limiting process is not

reversible, the spectral gap is still a useful metric for the large-time rate of mixing of the

process, and is given by the same formula, while the integrated autocorrelation time becomes

intractable.

This is only a heuristic because, even if the process converge weakly and the stationary

distributions converge weakly, it is insufficient to conclude that the mixing times converge.

Instead the mixing time of limiting process corresponds to fixing a duration of scaled time

for which to run the process, say T , then computing the limit of the covariance of an

estimator based on the run up to time T , then letting T tend to infinity. The mixing time

of the limit is of more practical relevance for our understanding of the local process since

it accurately reflects the time needed for the limiting stationary distribution to provide a

good approximation to a sample from the local process. On the other hand the limit of

mixing times determines how long it would take to visit other modes if they exist, and would

often tend to∞ with sample size. This can be seen by considering a simple non-identifiable

model, for example Gaussian location clustering, for which there would be two identical
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optimal solutions which differ only by permutations of the clusters. The limit of mixing

times corresponds to the time it takes to explore both modes, while the mixing time of the

limit corresponds to the time needed to explore the model closer to which the process is

started. Even if there was not a second equally good mode, a second suboptimal mode that

persists (though shrinking) at all sample sizes, and is moving farther away as the process

is re-scaled, could lead to mixing times that do not converge.

In future work, we plan to introduce a more rigorous characterization of the corre-

spondence between limit of mixing times and the mixing time of the limiting process. In

particular, Atchadé [5] introduces the ζ-spectral gap, defined as

SpecGapζ := inf
{
π[f2]− 〈f, Pf〉L2(π)

π[f2]− ζ/2 s.t. f ∈ L2(π), πf = 0, π[f2] > ζ, ‖f‖L2(π)

}
.

(4.14)

We conjecture that for any ζ > 0, under appropriate scaling (corresponding to the time

rescaling factor α(n)), if the sequence of posterior distributions is tight, then the ζ-spectral

gap will converge to that of the OU-process for all ζ > 0. This is supported by the intuitive

interpretation of the ζ-spectral gap; that it corresponds to the mixing time of the process

within a local region containing most of the probability mass of the stationary distribution.

Under the tightness assumption we expect that this is sufficient to rule out the types of

pathological behaviour described in the previous paragraph.

4.3.5 Iterate averages

Let m = kb(n)/n denote the number of passes over the dataset (that is, the expected

number of times each likelihood term is evaluated) by iteration k.

Corollary 4.3. Fix a number of passes over the dataset, m ∈ R+. Suppose Assumptions 4.1

to 4.5 all hold. If b+ h ≤ t and ((ϑ(n)
t )t∈R+)n∈N have initial distributions converging weakly

to ν, then the following hold:
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nCov
(
θ̄

(n)
bmn/b(n)c

)
→ 4cb

chm

{
I[b+h≤1]Sym

(
{ΓJ?}−1Q∞

)
− I[b+h=1]

8c2
b

c2
hm

2 Sym
(

[ΓJ?]−2
[
I − e−

chm

2cb
ΓJ?

]
Q∞

)}
,

(4.15)

If in addition b + h < min(1, t) or cβ = +∞, then

nCov
(
θ̄

(n)
bmn/b(n)c

)
→ J

−1
? I?J −1

?

m
. (4.16)

Proof. For Eq. (4.15), we have

Q̄
(n)
k = Cov

(
θ̄

(n)
bmn/b(n)c

)
≈ 1

(w(n))2 Cov
(
ϑ̄mn/(b(n)α(n))

)
= 4
m

α(n)b(n)

n(w(n))2 Sym
(
{chΓJ?}−1Q∞

)
− 8
m2

(α(n)b(n))2

(nw(n))2 Sym
(
{chΓJ?}−2

{
I − exp

[
− chmn

2b(n)α(n) ΓJ?
]
Q∞

})
.

Now, given b + h ≤ t,

lim
n→∞

nQ̄
(n)
k = 4cb

m
Sym

(
{chΓJ?}−1Q∞

)
− I[b+h=1]

8c2
b

m2 Sym
(

[chΓJ?]−2
[
I − e−

chm

2cb
ΓJ?

]
Q∞

)}

The rest follows by combining this with Proposition 4.1 and the simplifications following it,

and by noting that since h + b ≤ 1 and h > 0 we must have b < 1, and hence cb = 1.

We are now positioned to characterize the rate at which Bernstein–von Mises-like limit

for the paths of the general stochastic gradient algorithm concentrates, the asymptotic

variance of the iterate average, and the mixing speed at stationarity. Observe that a phase

change occurs at b + h = 1. When b + h = 1, the rate of concentration for the Bernstein–

von Mises-like result is classical, w = 1/2, and the iterate average has smaller asymptotic

variance while the underlying OU process also has a mixing time of order n likelihood

evaluations. However, if b + h > 1, the process begins to behave more like a gradient flow

and no longer mixes in a constant number of passes over the dataset, so the iterate average
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would converge more slowly (as measured by number of passes over the dataset) in that

regime. If b+ h < 1, the mixing time decreases, but is exactly offset by a slower Bernstein–

von Mises-like concentration rate relative to when b + h = 1, overall yielding the same rate

of concentration for the iterate averages as when b + h = 1.

4.4 Further applications and extensions

In this section we discuss applications and extensions of our scaling limit to more com-

plex, practically relevant stochastic gradient algorithms. In particular, the poor approxima-

tion accuracy of SGLD with uninformed tunings has led to the proposal of many alternatives,

including [85, 91, 120]. Of particular note are two approaches which are used to reduce the

error of both stochastic optimization and sampling. First, momentum-based methods such

as (stochastic) heavy ball [39] and underdamped (stochastic gradient) Langevin dynamics

[3, 26, 57, 62, 68, 119] aim to improve on SGLD by improving the mixing time of the

stochastic process being discretized, typically by moving to a non-reversible process which

can in general mix faster than a reversible one. Second, variance reduction methods aim

to improve the accuracy of the approximate posterior obtained by improving the stochastic

estimates of the gradients used in the update formula at each step. For example [6, 80],

does this with a clever choice of control variates. Lastly, in practice, often our parameter

spaces are constrained, and we show that this does not affect the scaling limit.

4.4.1 Applications to momentum-based algorithms

Special cases of our results include momentum-based acceleration of SGD, for example,

the quasi-hyperbolic momentum algorithm of Ma and Yarats [68], which includes many

momentum-based algorithms as special cases, such as momentum algorithm, Nesterov’s

accelerated gradient, PID control algorithms [3], synthesized Nesterov variants [62], noise-

robust momentum [26], triple momentum [119], least-squares acceleration of SGD [57]. See

[68, Table 1] for more.

As an example, we show how we can express underdamped stochastic gradient Langevin

dynamics in terms of our general stochastic gradient algorithm. We lift the parameter
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space to a phase space given by Θ̃ = Θ × Rd, extend the log-likelihood to the phase space

according to ˜̀((θ, θ̃);x) = `(θ;x) − θ̃>M−1θ̃/2, and lift the prior to phase space using

the (improper) prior π̃(0)((θ, θ̃)) = π(0)(θ). For (stochastic) heavy ball and underdamped

(stochastic gradient) Langevin dynamics (cf., e.g., Duncan et al. [29, Eqs. 4 and 5]), the

lifted Hamiltonian preconditioner Γ̃ and the lifted diffusion matrix Λ̃ (?) are:

Γ̃ =

0 −I

I Γ

 and Λ̃ =

0 0

0 Γ

 .
This yields a combined parameter update formula of

θ
(n)
k+1 = θ

(n)
k + h(n)

2 M−1θ̃
(n)
k

θ̃
(n)
k+1 =

(
I − h(n)Γ

2 M−1
)
θ̃

(n)
k + h(n)

2 Ĝ
(n)
k +

√
h(n)

β(n) Γ ξk.

(4.17)

4.4.2 Extension to control variates

SGLD Methods with control variates [6, 80] aim improve the reliability of SGLD as an

MCMC method to reduce the variance caused by mini-batching by introducing a “zero vari-

ance control variate.” This control variate is obtained by comparing the mini-batch gradient

at the evaluated current parameter to the mini-batch gradient evaluated at the posterior

mode (or MLE). Because this modification corresponds to a data-dependent change in the

structure of the way stochastic gradients for the potential function are generated, this algo-

rithm does not quite fit into the framework we have analyzed in the present work. However,

the methods used herein to derive our scaling limit can be applied with modification to

these control variate methods. In Section 4.11 we sketch such a result and its implications.

We find that the scaling limit for SGLD with control variates is nearly the same as

without control variates, except that the diffusion term corresponding to mini-batch noise

is always 0. This is because the average drift is (by design) not affected by the control

variate, the additional Gaussian innovations have the same contribution as before, and the

mini-batch noise is now always lower order. Because of this, the spatial scaling can always

be chosen so that the noise from Gaussian innovations persists in the limit: that is, taking
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w = t/2. Under this scaling, the corresponding limiting process the Ornstein–Uhlenbeck

process:

dϑt = −1
2Bϑt dt+

√
AdWt, (4.18)

with B = chΓJ? the drift matrix, A = ch
cβ

Λ the positive semi-definite diffusion matrix, and

Wt a d-dimensional standard Brownian motion.

4.4.3 Extension to constrained parameter spaces

If Θ ( Rd, then the iterations given by Eq. (4.6) may exit Θ, resulting in undefined

behaviour. The typical way modify these algorithms to handle this case is to impose bound-

ary dynamics. The two most common examples of such boundary dynamics for these are

reflecting and projecting. Projecting maps iterates that would exit Θ to the nearest point

within Θ. Reflecting, defined when the boundary is sufficiently smooth, treats the dynamics

between two iterates as the motion of a particle in constant speed linear motion over a fixed

time, and when the particle reaches the boundary it collides elastically and “bounces” off.

In either case the new iterate is a measurable function of the previous iterate and the vector

between the previous iterate what the new iterate would have been without adjusting for

the constraint. Moreover, these conditions both satisfy that the distance between iterates is

constrained by what the distance would have been without adjusting for the constraint. In

this section we consider boundary dynamics satisfying a generalized version of this property.

Let P : Θ× (Rd)3 → Θ be a measurable function such that:

(i) P is faithful to Θ, meaning that if Conv(θ, θ + ∆π(0) + ∆` + ∆ξ) ⊂ Θ then

P (θ,∆π(0) ,∆`,∆ξ) = θ + ∆π(0) + ∆` + ∆ξ (4.19)

where Conv(θ1, θ2) is the line segment from θ1 to θ2.

(ii) P is local, meaning that there exists cP > 0 such that for all (θ,∆π(0) ,∆`,∆ξ) ∈

Θ× (Rd)3

‖P (θ,∆π(0) ,∆`,∆ξ)− θ‖ ≤ cP (‖∆π(0)‖+ ‖∆`‖+ ‖∆ξ‖) . (4.20)
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We will consider the iterative algorithm on Θ given by

θ
(n)
k+1 = P

θ(n)
k ,

hΓ
2n∇ log π(0)

(
θ

(n)
k

)
,
hΓ
2

1
b

∑
j∈[b]
∇`
(
θ

(n)
k ; X

I
(n)
k

(j)

)
,
√
hβ−1Λ ξk

 .
(4.21)

When Θ ( Rd and θ? ∈ interior(Θ) the proof is essentially the same because the

boundary dynamics are faithful and local. Intuitively, the assumption that ϑ(n)(0) ϑ(0)

ensures that the processes we consider all start near θ? and away from the boundary of

Θ, and thus the spatial scaling drives the boundary of Θ outside any bounded set. This

means that for any compactly supported test function f and any finite time T > 0 there is

a minimal sample size n0 large enough that the finite-sample-size process will not witness

the boundary condition being activated by time T for sample sizes n ≥ n0. For more details

see Section 4.12

4.5 Numerical Experiments

In this section we present the results of three experiments using both simulated and real

data. We find that the theory we developed is closely reflected in the practical results.

4.5.1 Experiment 1: Gaussian simulation study

In this experiment, we demonstrates the effect of model misspecification. Exact spec-

ifications for the experiment are given in Table 4.1. The combination of true distribution

and likelihood function was chosen specifically to ensure that J? 6= I?, so that the effect

of misspecification would be apparent. We run SGD with no preconditioning, with precon-

ditioning by J?, and with preconditioning by I?, and SGLD with preconditioning by J?.

We interpret this using our scaling limit with parameters w = 1/2, h = 1, b = 0. This

combination of scaling parameters corresponds to the standard statistical local scaling, and

a fixed batch size. For SGLD we also use t = 0 corresponding to a constant tempering.

We present the results for this experiment using contour plots for the joint density of the

first and last coordinates of the parameter vector. The density for the empirical run of

the algorithms is given by a 2D kernel density estimate. The density for the predicted
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behaviour is given by the stationary distribution of the limiting process. As predicted by

our results, preconditioning by J? leads to an empirical distribution for the iterates of the

algorithm matching the covariance of the MLE, preconditioning by I? leads to an empirical

distribution for the iterates of the algorithm matching the asymptotics of the posterior, and

not preconditioning leads to behaviour that matches neither (but is still predictable using

our results). Finally preconditioning by J? for SGLD leads to an empirical distribution for

the iterates of the algorithm matching the asymptotics of a bagged posterior, which is given

by a linear combination of the covariance of the MLE and the covariance of the posterior.

Experiment 1 Experiment 2 Experiment 3
true distribution N10

(
0, 1

2I + 1
211′

)
unknown unknown

log-likelihood `(·; θ) ∑10
i=1

(xi−θi)2
√
i

yx>θ − log(1 + ex
>θ) yx>θ − exp(x>θ)

log-prior log π(0)(θ) 0 0 0
sample size n 1000 1000000 150000
batch size b 1 1000 1000
number of steps k 10000n/b 1000n/b 1000n/b
step size (SGD) h 4b/n 4b/n 4b/n
step size (SGLD) h 2b/n b/n 2b/n
inv. temp. (SGLD) β 2 1 2

Table 4.1: Settings for experiments 1, 2, & 3. When the true distribution is unknown it
is approximated by the empirical distribution on a larger version of the dataset for these
experiments.

4.5.2 Experiment 2: Large-scale inference for airline delay data – logistic

regression

In this experiment, we examine the same airline dataset and model as in Pollock et al.

[91], using the pre-processed data they provided. The responses are binary and there are

Method Empirical IACT Predicted IACT
SGD, no preconditioning 3.2 epochs 3.2 epochs
J −1
? -preconditioned SGD 1.1 epochs 1.0 epochs
I−1
? -preconditioned SGD 2.3 epochs 2.8 epochs
J −1
? -preconditioned SGLD 2.2 epochs 2.0 epochs

Table 4.2: Mixing times for experiment 1 as measured by integrated autocorrelation times
(IACT). The empirical value is computed numerically from the run. The predicted value is
computed based on the spectral gap of the limiting process.
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(a) No preconditioning (b) SGD preconditioned by J−1
?

(c) SGD preconditioned by I−1
? (d) SGLD precond. by J−1

? , w = 1/2

Figure 4.1: Results of experiment 1

3 covariates. We use the full dataset (≈ 120 million observations) to estimate the “ground

truth” quantities (θ?,J?, I?), and we apply the stochastic gradient algorithms using as a

dataset a random subsample of size 1 million from the full dataset. In particular, we compare

SGLD without preconditioning to SGD preconditioned by I?. For this example, the matrices

J? and I? are numerically indistinguishable, and hence all three preconditioned methods we

examined in experiment 1 yield essentially identical results, and all are materially different

from not preconditioning. Again, we interpret this using our scaling limit with parameters

w = 1/2, h = 1, b = 0. An experimental finding of Pollock et al. [91] was that (non-

preconditioned) SGLD had relatively poor mixing performance as compared with the ScaLE

algorithm they introduce. Our experiment is consistent with their finding; we also find that

without preconditioning, SGLD fails to properly quantify uncertainty in the true parameter

(marginally for coordinate 4, and jointly) and mix slowly, which is not surprising since it

was not properly tuned to. Furthermore, SGLD without preconditioning mixes materially
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Method Empirical IACT Predicted IACT
SGD, no preconditioning 150 epochs 480 epochs
J −1
? -preconditioned SGD 1.2 epochs 1.0 epochs
I−1
? -preconditioned SGD 1.0 epochs 1.0 epochs
J −1
? -preconditioned SGLD 2.3 epochs 2.0 epochs

Table 4.3: Mixing times for experiment 2 as measured by integrated autocorrelation times
(IACT). The empirical value is computed numerically from the run. The predicted value is
computed based on the spectral gap of the limiting process.

more slowly than preconditioned methods, as evidenced by the jagged histogram from its

run, and the contour plot. However, we have shown that their findings would have been

significantly different had they used the appropriate preconditioning as predicted by our

theoretical results. Our experiments support the prediction made based on our theoretical

results, that appropriate preconditioning accelerates the mixing of SGLD considerably and

leads to more accurate uncertainty quantification.

(a) Parameter 1 (b) Parameter 2

(c) Parameter 3 (d) Parameter 4

Figure 4.2: Univariate results of experiment 2
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(a) SGLD without Preconditioning (b) SGD Preconditioned by I?

Figure 4.3: Joint results of experiment 2: Parameters 1 and 4

4.5.3 Experiment 3: Large-scale inference for airline delay data – Poisson

regression

In this experiment we examine the final year from the original airline dataset that the

experiments in Pollock et al. [91] were based upon, in order to examine a more complex,

more misspecified model on thematically similar data. In this case the responses are are

non-negative integers and significantly 0-inflated (relative to a Poisson distribution), and

we have opted not to model the zero-inflation to magnify the effect of misspecification. We

use the full 2008 data (≈ 1.5 million observations) to estimate the “ground truth” quantities

(θ?,J?, I?), and we apply the stochastic gradient algorithms to a dataset generated as ran-

dom subsample of size 150,000 from the full dataset. For this example, the matrices J? and

I? differ significantly in scale, and hence all three preconditioned methods we examine yield

materially different uncertainty quantification for the parameter. The non-preconditioned

methods are numerically unstable at the comparable step-sizes, and quickly diverge. All

three preconditioned methods behave exactly as predicted by the asymptotic theory, with

the caveat that I−1
? -preconditioned SGD mixes much slower than the J −1

? -preconditioned

methods in this example, and hence has not mixed as well as the J −1
? -preconditioned meth-

ods for the number of epochs we have run. In this case, I? ≈ rJ? for some r � 1, thus

the faster mixing when preconditioning by J −1
? is to be expected since the spectral gap

of the limiting process is roughly r times larger when preconditioning by J −1
? than when

preconditioning by I−1
? .
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Parameter 2 Parameter 3
I−

1
?

SG
D

J
−

1
?

SG
LD

J
−

1
?

SG
D

Figure 4.4: Univariate results of experiment 3

Method Empirical IACT Predicted IACT
J −1
? -preconditioned SGD 1.1 epochs 1.0 epochs
I−1
? -preconditioned SGD 130.0 epochs 98.0 epochs
J −1
? -preconditioned SGLD 1.9 epochs 2.0 epochs

Table 4.4: Mixing times for experiment 3 as measured by integrated autocorrelation times
(IACT). The empirical value is computed numerically from the run. The predicted value is
computed based on the spectral gap of the limiting process.



CHAPTER 4. 150

4.6 Additional Definitions and Technical Results

Before presenting proofs of the various results of this work, we introduce some additional

miscellaneous notations, definitions, and technical results that we will use.

4.6.1 Bernstein-von Mises under misspecification

Definition 4.1. The first and second order Fisher information matrices, I and J respec-

tively, are defined for a log-likelihood function ` and probability distribution P by

I(θ) = E
X∼P

[∇θ`(θ;X)⊗∇θ`(θ;X)] , and J (θ) = − E
X∼P
∇⊗2
θ `(θ;X).

Let X be a Polish space with σ-field ΣX ,M1,+ (X ) denote the set of probability measures

on X , and suppose that P ∈ M1,+ (X ). Suppose that X(N) := (Xi)i∈N ∼ P⊗N. Let n ∈ N

denote a sample size, let [n] := {1, . . . , n}, and let X(n) := (Xi)i∈[n] ∼ P⊗n be an I.I.D.

sample of size n from P .

Let Θ ⊆ Rd be open and nonempty, let Q be a regular conditional distribution from Θ

to (X ,ΣX ); i.e.:

(i) for all θ ∈ Θ, Qθ ∈M1,+ (X ), and

(ii) for all A ∈ ΣX , Q·(A) : θ 7→ Qθ(A) is measurable6.

Suppose there exists a σ-finite measure, µ, on X , such that for all θ ∈ Θ, Qθ � µ. Let

qθ denote a version of dQθ/dµ for each θ ∈ Θ. Let `(θ;x) := log qθ(x) for all θ ∈ Θ and

x ∈ X . We consider M := {Qθ | θ ∈ Θ} to be a model for P . The model is well-specified

when P ∈ M, and is misspecified otherwise. The pseudo-true parameter of the model is

defined as θ? := arg maxθ∈Θ E
X∼P

`(θ;X). If µ� P then

θ? = arg max
θ∈Θ

E
X∼P

`(θ;X) = arg min
θ∈Θ

KL (P ‖Qθ) .

6Θ is equipped with the Borel σ-field inherited from Rd
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Let Π(0) ∈M1,+ (Θ) be any distribution on Θ. Let PΠ(0),M ∈M1,+
(
Θ⊗XN

)
, given by

PΠ(0),M(A×B) :=
∫

I[θ∈A]

[∫
I[x(N)∈B]Qθ

N(dx(N))
]

Π(0)(dθ)

denote the joint distribution of the data and the parameter according to the model and the

prior, where QθN(dx(N)) denotes the law of an I.I.D. sequence from Qθ (an infinite product

measure on the cylinder σ-field). Let EΠ(0),M denote the expectation under PΠ(0),M. The

posterior for θ under the model M given data X(n) is the random probability measure on

Θ given by

Π(X(n))(A) := EX(n)

Π(0),M

[
I[θ∈A]

]
,

where for a random variable or σ-field G, an expectation operator E and a random variable

Y , EG(Y ) is the conditional expectation of Y given G. The posterior Π(X(n)) can be viewed

as a probability kernel from X n to Θ.

Let λ denote the Lebesgue measure. If Π(0) � λ with dΠ(0)/dλ =: π(0), then Π(X(n)) � λ

with dΠ(X(n))/dλ = π(X(n)) given by

π(X(n))(θ) ∝ π(0)(θ)
∏
i∈[n]

qθ(Xi) = π(0)(θ) exp

∑
i∈[n]

`(θ;Xi)

 . (4.22)

Let θ̂(n) := arg maxθ∈Θ
∑
i∈[n] `(θ;Xi) denote the maximum likelihood estimator (MLE)

of θ? given the data X(n). Posterior distributions have a general tendency to concentrate

around the MLE as the sample size increases. Therefore, we will often reparameterize the

model by considering a local parametrization, where to each parameter θ ∈ Θ we associate

a local parameter, ϑ ∈
√
n
(
Θ− θ̂(n)

)
based on the identification

ϑ =
√
n
(
θ − θ̂(n)

)

and the local model is given by

M(X(n)) :=
{
Q
θ̂(n)+ 1√

n
ϑ
| ϑ ∈

√
n
(
Θ− θ̂(n)

)}
.
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The random localization map is given by

locX(n) : θ 7→
√
n
(
θ − θ̂(n)

)

For a measurable function f : A → B and a measure µ on A, the pushforward of µ

through f is the measure f]µ on B defined by [f]µ](B) = µ(f−1(B)) for all measurable

B ⊂ B.

Proposition 4.2 (BvM under model misspecification, Kleijn and van der Vaart [58]).

Under regularity conditions,

∥∥∥[locX(n) ]]Π
(X(n)) − Φ

∥∥∥
TV

P→ 0.

with θ? = arg maxθ∈Θ E
X∼P

`(θ;X), J? = − E
X∼P

[
∇⊗2`(θ?; X)

]
, and Φ = N

(
0,J −1

?

)
.

4.6.2 Convergence modes of measures and operators

Let A be a measurable space, and let B(A) denote the collection of bounded measurable

functions on A. For a function f : A → L with (L, ‖·‖) a normed linear space, define

‖f‖∞ := sup
a∈A
‖f(a)‖ .

For a sequence of probability measures, {µn}n∈N and a probability measure µ on a measur-

able space A, we have the following modes of convergence:

• µn converges in total variation to µ, denoted by µn TV→ µ, if and only if

sup
f∈B(A)

|µnf − µf |
‖f‖∞

→ 0.

• if A is also a topological space and the σ-field on A is the Borel σ-field, then µn

converges in distribution (also called weakly) to µ, denoted by µn  µ, if and only if

for all f ∈ C(A), |µnf − µf | → 0.
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Clearly (
µn

TV→ µ
)

=⇒
(
µn

s→ µ
)

=⇒ (µn  µ)

while the converses do not hold in general.

For a Banach Space L with norm ‖·‖ denote its dual space (the space of all bounded

linear operators on L) by L′. L′ is a Banach space with norm ‖y‖ := supx∈L\{0} |fx| / ‖x‖

for all f ∈ L′. Denote the set of bounded linear operators from L to itself by B(L). B(L)

is also a Banach space with norm given by ‖T‖ = supx∈L\{0} ‖Tx‖ / ‖x‖.

For a sequence of bounded linear operators, {Tn}n∈N, and a bounded linear operator,

T , all mapping a Banach Space L to itself, we have the following modes of convergence:

• Tn converges in norm to T if and only if

‖Tn − T‖ = sup
(x,y)∈L×L′

|〈y, (Tn − T )x〉|
‖x‖ ‖y‖

→ 0 (4.23)

• Tn converges strongly to T , denoted Tn s→ T if and only if for all x ∈ L

sup
y∈L′

|〈y, (Tn − T )x〉|
‖y‖

→ 0 (4.24)

Clearly

(‖Tn − T‖ → 0) =⇒
(
Tn

s→ T
)

while the converse does not hold in general.

4.6.3 Operator Semigroups and Weak Convergence of Markov Processes

For a Banach space, (L, ‖·‖), let B(L) denote the collection of all bounded linear oper-

ators from L to itself, and let I denote the identity operator. An operator semigroup on L

is a function T : R+ → B(L) such that

i) T (0) = I,

ii) T (t+ s) = T (t)T (s) for all t, s ∈ R.

An operator semigroup is strongly continuous if
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iii) limt→0+ ‖Ttf − f‖ = 0 for all f ∈ L.

An operator semigroup is contractive if

iv) ‖Tt‖ ≤ 1 for all t ∈ R+.

The infinitessimal generator (or just generator, for brevity) of the semigroup T is the

(possibly unbounded) linear operator defined by

Af = lim
t→0+

Ttf − f
t

for f ∈ dom(A) = {f ∈ L | limt→0+ (Ttf − f) /t exists}. Let

Ĉ(Rd) =
{
f ∈ C(Rd) | ∀ε > 0 ∃Kf,ε ⊂ Rd compact with sup

θ 6∈Kf,ε
|f(θ)| ≤ ε

}

Then Ĉ(Rd) is a Banach space under the norm ‖f‖∞ = supθ∈Rd |f(θ)|. The dual space of

Ĉ(Rd) is the space of bounded signed measures under the total variation norm

‖µ‖TV = sup
f∈Ĉ(Rd)
‖f‖∞≤1

∣∣∣∣∫ f(θ)µ(dθ)
∣∣∣∣ .

We will work with (L, ‖·‖) =
(
Ĉ(Rd), ‖·‖∞

)
. A semigroup on

(
Ĉ(Rd), ‖·‖∞

)
is positive if

v) f ≥ 0 =⇒ Tf ≥ 0.

A semigroup on
(
Ĉ(Rd), ‖·‖∞

)
is Feller if it is strongly continuous, contractive, and positive.

Semigroups naturally model the forward operators of Markov processes in continuous

time. If Xt is a Markov process with transition kernels kt(·, ·) then the forward operator

corresponding to the Markov process (equivalently, corresponding to its transitio kernels)

is defined by

Ttf(x) = Exf(Xt) =
∫
f(y)kt(x, dy) (4.25)

where Ex denotes expectation under the law of the Markov process given when X(0) =

x almost surely. The semigroup property is then equivalent to the Kolmogorov forward

equation.
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The generator, A, of a Feller semigroup T has a dense domain; dom(A) is dense in

Ĉ(Rd). A Markov process for which the corresponding forward operators form a a Feller

semigroup is called a Feller process. Feller processes have a richly developed theory; see,

for example, Ethier and Kurtz [33] or Kallenberg [53]. The following facts will be useful to

us. First, every Feller process on Rd has a version with càdlàg (a.k.a right continuous with

left limits, or rcll) paths, that is for all t > 0, lims→t− X(s) exists and lims→t+ Xt. Second

for each I ∈ {[0, T ] | T > 0} ∪ {R+}, the collection of all càdlàg functions from I to Rd is a

separable and complete metric space under the Skorohod metric [53, Theorem A2.2]. The

formula for the Skorohod metric is not particularly illuminating, so is omitted here and may

be found in the reference. This space is denoted by D(I,Rd). The Borel σ-field generated

by the Skorohod metric is equal to σ({πt | t ∈ I ′}) where πt(X) = Xt are the projection

maps, and I ′ is any dense subset of I.

Let C∞c (Rd) be the set of functions Rd → R with compact support and with continuous

derivatives of all orders. C∞c (Rd) is dense in C(Rd).

Proposition 4.3 (Approximation of Markov Chains (compiled from Ethier and Kurtz [33]).

Let A : C∞c (Rd) → C(Rd) be linear and suppose that the closure of the graph of A (with

respect to the graph norm defined by ‖f‖A = ‖f‖∞+‖Af‖∞ for all f ∈ L) generates a Feller

semigroup T on Rd. Let (ϑt)t∈R+
be a Markov process with forward operator semigroup T .

Let
(
(θ(n)
k )k∈N∪{0}

)
n∈N

be a sequence of (discrete-time) Markov chains on Rd with respective

transition kernels (U (n))n∈N. Suppose that 0 < α(n) →∞, and let

A(n) = α(n)
(
U (n) − I

)
T

(n)
t =

(
U (n)

)bα(n) tc
ϑ

(n)
t = θ

(n)
bα(n) tc.

If
∥∥∥A(n)f −Af

∥∥∥
∞
→ 0 for all f ∈ C∞c (Rd), then

(a) T (n)
t

s→ Tt for each t > 0, and

(b) If ϑ(n)(0) ϑ(0) then ϑ(n)(·) ϑ(·) in the Skorohod metric.

Proof of Proposition 4.3. (a) Follows from Chapter 1, Theorem 6.5 of Ethier and Kurtz

[33]. (b) Follows by combining Chapter 4, Theorem 8.2, Corollary 8.5, and Corollary 8.9 of

Ethier and Kurtz [33].
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4.6.4 Miscellaneous notation and definitions

Definition 4.2 (Convergence in Probability to a constant). Let (Ω,F ,P) be a probability

space, let (X , τ) be a topological space endowed with the σ-field FX = σ(τ), let (Xn)n∈N
be a sequence of X -valued random elements, and let x ∈ X . Then Xn converges to x in

probability as n→∞, denoted Xn
p→ x, when for every neighbourhood x ∈ U ∈ τ we have

lim
n→∞

P(Xn ∈ U c) = 0.

Lemma 4.1. Let (Ω,F ,P) be a probability space, let (X , τ) be a topological space endowed

with the σ-field FX = σ(τ), let (Xn)n∈N be a sequence of X -valued random elements, and

let x ∈ X .

If for every sub-sequence nm there is a sub-sub-sequence nmk such that Xnmk
→ x almost

surely as k →∞ then Xn
p→ x.

If (X , τ) is first-countable then the converse also holds; if Xn
p→ x then for every sub-

sequence nm there is a sub-sub-sequence nmk such that Xnmk
→ x almost surely as k →∞.

The proof of this result is the same as in Durrett [32, Theorem 2.3.2], generalizing the

metric space definition of convergence in probability and replacing a sequence of balls of

vanishing radius with a countable neighbourhood basis.

4.7 Proof of Theorem 4.1

In this section we prove Theorem 4.1, as well as an additional result along with what

was stated, since both follow from the same premises. The full statement of what we prove

is given below. Item 2 below is used in the proof of Corollary 4.2.

Theorem 4.2 (Scaling Limits of SGD/SGLD/LD (Full)). Suppose that (θ(n)
k )k∈N evolves

according to the gradient-based algorithm in Eq. (4.21) with step-size h(n) = chn
−h, b(n) =⌊

cbn
b
⌋
, β(n) = cβn

t, all other tuning parameters constant in n. Let θ? ∈ Rd. Let X(N) =

(Xi)i∈N ∼ P⊗N, and θ̂(n) be a critical point of the log-likelihood function
∑n
i=1 `(·, Xi) for

each n ∈ N; that is
∑n
i=1∇`(θ̂(n), Xi) = 0 for all n ∈ N.
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Let ϑ(n)
t = w(n)

(
θ

(n)
bα(n)tc − θ̂

(n)
)
, where w(n) = nw, α(n) = na, w ∈ (0, 1),

a = min {h, (t + h− 2w) , (b + 2h− 2w)} .

If Assumptions 4.1 to 4.5 all hold, a > 0, and ϑ(n)(0) ϑ(0) then

1. (ϑ(n)
t )t∈R+  (ϑt)t∈R+ in the Skorohod topology in probability, where (ϑt)t∈R follows

the Ornstein–Uhlenbeck process:

dϑt = −cd

2 ΓJ (θ?)ϑtdt+
√
cgΛ + cmbΓI(θ?)Γ′ dWt,

with

cd =


ch a = h

0 a < h

, cg =


ch
cβ

a = h + t− 2w

0 a < h + t− 2w

and

cmb =



c2h(1−cb)
4cb a = 1 + 2h− 2w and b = 1 and no replacement

c2h
4cb a = b + 2h− 2w and (b 6= 1 or replacement)

0 a < b + 2h− 2w.

2. If T (n) and T are defined as in Proposition 4.3, then under the conditions above, every

subsequence of
(
T (n)

)
n∈N

,
(
T (nm)

)
m∈N

, has a further sub-subsequence,
(
T (nmk )

)
k∈N

,

such that with probability 1, T (nmk )
t

s→ Tt for all t > 0.

Before beginning the proof of this result, Theorem 4.2, we require the following lemma,

which is used to turn the moment conditions in our assumptions into bounds on the mag-

nitudes of certain random variables that hold all but finitely often with probability 1.

Lemma 4.2. Let α : R+ → R+ be non-decreasing, right continuous with left limits, with

α(0) = 0, and limt→∞ αt = ∞. Let Zi ∼ µ for all i ∈ N (possibly not independent) with

Z1 ≥ 0 almost surely such that E [α(Z1)] < ∞. Let α+ : u 7→ inf {t ≥ 0 s.t. αt ≥ u} be the

generalized inverse of α. Then

P
(

max
i∈[n]

Zi ≥ α+(n) i.o.
)

= 0.
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Proof of Lemma 4.2. Let St = P(Z1 > t) be the survival function of µ, and let Wn = α(Zn)

for each n ∈ N. Note that P(W1 > t) = S(α+
t ). Then

∞ > E [(α(Z1))] =
∫ ∞

0
P(W1 > t)dt ≥

∞∑
n=1

P(W1 > n) =
∞∑
n=1

P(Wn > n)

Therefore, from the Borel–Cantelli lemma P(Wn > n i.o.) = 0, and equivalently P(Wn ≤

n a.b.f.o.) = 1. Now, whenever Wn ≤ n for all but finitely many n, then there exists

K ∈ N and I1, . . . IK ∈ N with Wn ≤ n for all n ∈ N \ {Ij : j ∈ [K]}. Therefore, for

all n ≥ maxj≤KWIj , maxi≤nWi ≤ n. Therefore P(maxi≤nWi ≤ n a.b.f.o.) = 1, and

equivalently P(maxi≤nWi > n i.o.) = 0. Finally, Wi > n if and only if Zi > α+(n), hence

P(max
i≤n

Zi > α+(n) i.o.) = 0.

4.7.1 Proof of Theorem 4.2

Let J? = J (θ?) and I? = I(θ?).

The proof proceeds in the following stages. In Section 4.7.1.1, we will reduce the problem

of weak convergence in the Skorohod topology in probability to one of weak convergence

in the Skorohod topology almost-surly along subsequences and construct appropriate such

subsequences. In Section 4.7.1.2 we introduce notation that will be useful in the remain-

der of the proof. In Section 4.7.1.3 we discuss what is needed to apply Proposition 4.3

to establish the processes converge weakly in the Skorohod topology almost-surely. This

amounts to showing that the difference between the approximate generator and limiting

generator evaluated a smooth test function with compact support vanishes uniformly. We

will examine this difference in two regimes. First, in Section 4.7.1.4, we will consider argu-

ments sufficiently far from the support of the test function. Then, in Section 4.7.1.5, we will

consider arguments in or close to the support of the test function, and use a Taylor series

expansion of the approximate generator to divide this into three types of non-zero terms.

The first type is non-remainder terms that vanish and have no corresponding term in the



CHAPTER 4. 159

limiting generator; these are handled in Section 4.7.1.6. The second type is terms that do

not vanish and do have corresponding terms in the limiting generator; these are handled in

Sections 4.7.1.7 to 4.7.1.9. The third type of term is the remainder term, which is handled

in Section 4.7.1.10. Putting all of this together allows us to apply Proposition 4.3 along our

subsequences, establishing the main result.

4.7.1.1 Reduction to almost-sure convergence on subsequences

Let
Υ(n) = max

(
Υ(n)

1 ,Υ(n)
2 ,Υ(n)

3

)
,

Υ(n)
1 = nq3

∥∥∥θ̂(n) − θ?
∥∥∥ ,

Υ(n)
2 = sup

θ∈B
(
θ̂(n),rJ ,n/nw

) ∥∥∥Ĵ (n)(θ)− J (θ?)
∥∥∥ ,

Υ(n)
3 = sup

θ∈B
(
θ̂(n),rI,n/nw

) ∥∥∥Î(n)(θ)− I(θ?)
∥∥∥ .

Each of the Υ terms corresponds to the important quantity that vanishes in probability for

one of the assumptions. For example, Υ(n)
1 controls how quickly the local MLE converges

under Assumption 4.2 which lets us use a weaker moment assumption for the sup-norm of

the Hessian of the log-likelihood.

By assumption, Υ(n) p→ 0. Then, by Lemma 4.1, for every subsequence (nm)m∈N there

is a further sub-subsequence (nmk)k∈N so that this convergence is almost sure. Along an

arbitrary such sub-subsequence, we will verify that (ϑ(nmk ))t∈R+  (ϑt)t∈R+ in the Skorohod

topology almost surely. Since weak convergence is metrizable (e.g., by the Levi–Prokhorov

metric, and hence corresponds to a topology on probability distributions), and since for

any subsequence (nm)m∈N we will have shown a further subsequence (nmk)k∈N such that

(ϑ(nmk )
t )t∈R+  (ϑt)t∈R+ a.s., by Lemma 4.1 it must hold that (ϑ(n)

t )t∈R+  (ϑt)t∈R+ in

probability.

Now, let (nm)m∈N be an arbitrary subsequence7 of N such that Υ(nm) a.s.→ 0. Let Ω
7Since every sub-subsequence is itself a subsequence, we can simplify our notation from here onward.



CHAPTER 4. 160

denote the underlying probability space. Let

Ω(0) =
3⋂
i=1

Ω(i),

Ω(1) =
{

Υ(nm) → 0
}
,

Ω(2) =
{

max
i∈[n]
‖∇`(θ?;Xi)‖ ≤ n1/p2 a.b.f.o

}
,

Ω(3) =
{

max
i∈[n]

∥∥∥∇⊗2`(·;Xi)
∥∥∥
∞
≤ n1/p3 a.b.f.o.

}
.

By assumption, and by applying Lemma 4.2 to power functions of the form α : t 7→ tp and

random variables ‖∇`(θ?;Xi)‖ and
∥∥∇⊗2`(·;Xi)

∥∥
∞, Ω(0) is a sure set.

4.7.1.2 Additional notation used in the proof

We notate the increments of the localized iterative algorithms (given that ϑ(n)
0 = ϑ) due

to the Gaussian innovation (ξ), the gradient step contribution of the prior (π(0)), the mini-

batch gradient step based on the log-likelihood (`), and the total increment, respectively,

as
∆(n)
ξ := w(n)

√
hβ−1Λ ξ1,

∆(n)
π(0)(ϑ) := hw(n)Γ

2n ∇ log π(0)
(
θ̂(n) + (w(n))−1ϑ

)
,

∆(n)
` (ϑ) := hw(n)Γ

2b(n)

∑
j∈[b(n)]

∇`
(
θ̂(n) + (w(n))−1ϑ; X

I
(n)
1 (j)

)
, and

∆(n)(ϑ) := ∆(n)
ξ + ∆(n)

π(0)(ϑ) + ∆(n)
` (ϑ).

We define the sequence of operators A(n) by

[A(n)f ](ϑ) = α(n)
(
EX(N) [

f(ϑ+ ∆(n)(ϑ))
]
− f(ϑ)

)
. (4.26)

for all n ∈ N, and all f ∈ C∞c (Rd), where α(n) = n. The generator of the (presumed, at this

point) limiting OU process is given by

[Af ](ϑ) = −
〈
cd

2 ΓJ?ϑ, ∇f(ϑ)
〉

+ 1
2
(
cgΛ + cmbΓI?Γ′

)
: ∇⊗2f(ϑ) (4.27)
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4.7.1.3 How Proposition 4.3 is applied

Consider a single realization of X(N) ∈ Ω(0). Our goal, now, is to apply Proposition 4.3,

treating X(N) as fixed. To do so, it suffices to show that for each f ∈ C∞c (Rd) we have

lim
m→∞

sup
ϑ∈Rd

∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣ = 0.

For an arbitrary test function, f ∈ C∞c (Rd), with compact support K0, we will show this

in two parts. First we will identify a compact extension, K1 ⊃ K0 to the compact support

of f such that

lim
m→∞

sup
ϑ∈Kc

1

∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣ = 0.

Then we will separately show that

lim
m→∞

sup
ϑ∈K1

∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣ = 0.

4.7.1.4 Convergence away from the test function support

For all ϑ ∈ Kc
0, f(ϑ) = 0, ∇f(ϑ) = 0, and ∇⊗2f(ϑ) = 0. Therefore, for any K1 ⊃ K0,

sup
ϑ∈Kc

1

∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣

≤ α(nm) ‖f‖∞ sup
ϑ∈Kc

1

PX(N) [
ϑ+ ∆(nm)(ϑ) ∈ K0

]
.

(4.28)

Let R0 = supϑ∈K0 ‖ϑ‖. Let K1 =
{
ϑ ∈ Rd s.t. ‖ϑ‖ ≤ 2R0 + 2c0

}
, where

c0 = ch ‖Γ‖
2

(
3 +

∥∥∥∇ log π(0) (θ?)
∥∥∥)+

√
ch/cβ ‖Λ‖.
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Then, using Eq. (4.28) and ∆(nm)(ϑ) = ∆(nm)
ξ (ϑ) + ∆(nm)

π(0) (ϑ) + ∆(nm)
` (ϑ),

sup
ϑ∈Kc

1

∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣

≤ α(nm) ‖f‖∞ sup
‖ϑ‖>2R0+2c0

PX(N) [∥∥∥ϑ+ ∆(nm)(ϑ)
∥∥∥ ≤ R0

]
≤ α(nm) ‖f‖∞ sup

‖ϑ‖>2R0+2c0
PX(N) [∥∥∥∆(nm)

ξ

∥∥∥ ≥ ‖ϑ‖ − ∥∥∥∆(nm)
π(0) (ϑ)

∥∥∥− ∥∥∥∆(nm)
` (ϑ)

∥∥∥−R0
]
.

(4.29)

For ϑ ∈ Kc
1, using the assumption that ∇ log π(0) is L0-Lipschitz and h(n) = chn

h and

w(n) = nw,

∥∥∥∆(nm)
π(0) (ϑ)

∥∥∥ ≤ h(nm)w(nm) ‖Γ‖
2nm

∥∥∥∇ log π(0)
(
θ̂(nm) + (w(nm))−1ϑ

)∥∥∥
≤ h(nm)w(nm) ‖Γ‖

2nm

(∥∥∥∇ log π(0) (θ?)
∥∥∥+ L0

∥∥∥θ̂(nm) − θ?
∥∥∥+ L0 ‖ϑ‖

w(nm)

)
≤ chn

w−h−1
m ‖Γ‖

2

(∥∥∥∇ log π(0) (θ?)
∥∥∥+ L0

∥∥∥θ̂(nm) − θ?
∥∥∥+ L0 ‖ϑ‖

nwm

)
,

and similarly

∥∥∥∆(nm)
` (ϑ)

∥∥∥
≤ h(nm)w(nm) ‖Γ‖

2b(nm)

∥∥∥∥∥∥∥
∑

j∈[b(nm)]
∇`
(
θ̂(nm) + (w(nm))−1ϑ; X

I
(nm)
1 (j)

)∥∥∥∥∥∥∥
≤ chn

w−h
m ‖Γ‖

2b(nm)

∑
j∈[b(nm)]

∥∥∥∥∇`(θ?; XI
(nm)
1 (j)

)∥∥∥∥+ L(X
I

(nm)
1 (j))

∥∥∥θ̂(nm) − θ?
∥∥∥+

L(X
I

(nm)
1 (j)) ‖ϑ‖
nmw


≤ chn

w−h
m ‖Γ‖

2

(
L?(X(nm)) + L(X(nm))

∥∥∥θ̂(nm) − θ?
∥∥∥+ L(X(nm)) ‖ϑ‖

nmw

)

where we define the (random) Lipschitz constants L(Xi), L?(X(nm)), and L(X(nm)) by:

L(Xi) :=
∥∥∥∇⊗2`(·;Xi)

∥∥∥
∞
,

L?(X(nm)) := max
i≤nm

‖∇` (θ?; Xi)‖ , and

L(X(nm)) := max
i≤nm

L(Xi).

Using that X(N) ∈ Ω(0), so that Υ(nm) → 0 etc., if m is large enough that all of the following
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hold:
sup
m′≥m

Υ(nm) ≤ min(1, L−1
0 ),

1 ≥ sup
m′≥m

L?(X(nm′ ))
n

1/p2
m′

,

nm ≥ max((2ch ‖Γ‖)1/(1/p3−h) , (2chL0 ‖Γ‖)
1

h+1−a−w ), and

1 ≥ sup
m′≥m

L(X(nm′ ))
n

1/p3
m′

;

then, using that 0 < w < 1,

∥∥∥∆(nm)
π(0) (ϑ)

∥∥∥ ≤ ch ‖Γ‖
2

(∥∥∥∇ log π(0) (θ?)
∥∥∥+ 1

)
+ 1

4 ‖ϑ‖ ,

and ∥∥∥∆(nm)
` (ϑ)

∥∥∥ ≤ chn
−h+w
m ‖Γ‖

2
(
n1/p2
m + n1/p3

m Υ(nm) + n1/p3−w
m ‖ϑ‖

)
≤ ch ‖Γ‖

2
(
n1/p2−h+w
m + n1/p3−h+w

m Υ(nm) + n1/p3−h
m ‖ϑ‖

)
,

≤ ch ‖Γ‖+ 1
4 ‖ϑ‖ .

Therefore, for ϑ ∈ Kc
1 (and hence ‖ϑ‖ > 2R0 + 2c0),

‖ϑ‖ −
∥∥∥∆(nm)

π(0) (ϑ)
∥∥∥− ∥∥∥∆(nm)

` (ϑ)
∥∥∥−R0

≥ 1
2 ‖ϑ‖ −

ch ‖Γ‖
2

(
3 +

∥∥∥∇ log π(0) (θ?)
∥∥∥)−R0

≥
√
ch/cβ ‖Λ‖.

Therefore, combining this with Eq. (4.29) and the definition of ∆(nm)
ξ (ϑ),

lim
m→∞

sup
ϑ∈Kc

1

∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣ ≤ lim

m→∞
α(nm) ‖f‖∞ PX(N) (‖ξ1‖ ≥ nh/2+t/2−w

m

)
≤ lim

m→∞
α(nm) ‖f‖∞ d PX(N)

(
|ξ1,1| ≥

1√
d
nh/2+t/2−w
m

)
≤ lim

m→∞
2nam ‖f‖∞ d exp(−nh+t−2w

m /2d)

= 0.

since h + t− 2w ≥ a > 0.
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4.7.1.5 Taylor expansion near the test function support

Recalling the definition of A(nm) in Eq. (4.26), using the definition of the time-scaling

factor α(n) = na, taking a second-order Taylor expansion of the test function f ∈ C∞c , and

applying the decomposition ∆(nm)(ϑ) = ∆(nm)
ξ (ϑ) + ∆(nm)

π(0) (ϑ) + ∆(nm)
` (ϑ),

[A(nm)f ](ϑ)

= α(nm)
(
EX(N) [

f
(
ϑ+ ∆(nm)(ϑ)

)]
− f(ϑ)

)
= namEX(N) 〈∇f(ϑ), ∆(nm)

ξ

〉
︸ ︷︷ ︸

[1.ξ](nm) (ϑ)=0

+namEX(N) 〈∇f(ϑ), ∆(nm)
π(0) (ϑ)

〉
︸ ︷︷ ︸[

1.π(0)
](nm)

(ϑ)

+namEX(N) 〈∇f(ϑ), ∆(nm)
` (ϑ)

〉
︸ ︷︷ ︸

[1.`](nm) (ϑ)

+ namEX(N)
〈1

2∇
⊗2f(ϑ)∆(nm)

ξ , ∆(nm)
ξ

〉
︸ ︷︷ ︸

[2.ξξ](nm) (ϑ)

+namEX(N) 〈∇⊗2f(ϑ)∆(nm)
π(0) (ϑ), ∆(nm)

ξ

〉
︸ ︷︷ ︸[

2.π(0)ξ
](nm)

(ϑ)=0

+ namEX(N) 〈∇⊗2f(ϑ)∆(nm)
` (ϑ), ∆(nm)

ξ

〉
︸ ︷︷ ︸

[2.`ξ](nm) (ϑ)=0

+namEX(N)
〈1

2∇
⊗2f(ϑ)∆(nm)

π(0) (ϑ), ∆(nm)
π(0) (ϑ)

〉
︸ ︷︷ ︸[

2.π(0)π(0)
](nm)

(ϑ)

+ namEX(N) 〈∇⊗2f(ϑ)∆(nm)
` (ϑ), ∆(nm)

π(0)

〉
︸ ︷︷ ︸[

2.`π(0)
](nm)

(ϑ)

+namEX(N)
〈1

2∇
⊗2f(ϑ)∆(nm)

` (ϑ), ∆(nm)
` (ϑ)

〉
︸ ︷︷ ︸

[2.``](nm) (ϑ)

+ namEX(N)
[1

6
[
∇⊗3f(ϑ+ S∆(nm)(ϑ))

] (
∆(nm)(ϑ),∆(nm)(ϑ),∆(nm)(ϑ)

)]
︸ ︷︷ ︸

[3.R](nm) (ϑ)

for some S ∈ [0, 1] depending on f, ϑ,∆(nm)(ϑ), where ∇⊗3f(ϑ) is the trilinear from of

third order partials of f at ϑ (and hence is linear in each of its three arguments). Terms

that are linear in ∆(nm)
ξ have mean 0 and can be eliminated outright, as indicated in their

corresponding underbraces. Terms are labelled by the order of the term, followed by the

increments that appear in the term; for example [2.`ξ](nm) (ϑ) is the second order term

involving a likelihood increment and a Gaussian noise (innovation) increment. The R in

[3.R](nm) (ϑ) denotes that it is the remainder.

Recall that

[Af ](ϑ) = −
〈
cd

2 ΓJ?ϑ, ∇f(ϑ)
〉

︸ ︷︷ ︸
[I.ΓJ?] (ϑ)

+ cg

2 Λ : ∇⊗2f(ϑ)︸ ︷︷ ︸
[II.Λ] (ϑ)

+ cmb

2 ΓI?Γ′ : ∇⊗2f(ϑ)︸ ︷︷ ︸
[II.ΓI?Γ′] (ϑ)

.
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We have similarly labelled these terms, with the roman numeral denoting the order and the

subsequent symbol denoting the coefficient matrix (up to scaling factors). Thus, after elmi-

nating terms which are linear in ∆(nm)
ξ , and thus have mean 0, the difference of approximate

and limiting generator applied to the test function can be expressed as

∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣

≤
∣∣∣∣[1.π(0)

](nm)
(ϑ)
∣∣∣∣+ ∣∣∣∣[2.π(0)π(0)

](nm)
(ϑ)
∣∣∣∣+ ∣∣∣∣[2.`π(0)

](nm)
(ϑ)
∣∣∣∣

+
∣∣∣[1.`](nm) (ϑ)− [I.ΓJ?] (ϑ)

∣∣∣
+
∣∣∣[2.ξξ](nm) (ϑ)− [II.Λ] (ϑ)

∣∣∣
+
∣∣∣[2.``](nm) (ϑ)−

[
II.ΓI?Γ′

]
(ϑ)
∣∣∣

+
∣∣∣[3.R](nm) (ϑ)

∣∣∣ .
We will show that each of these seven terms vanish uniformly on K1. The first three

terms listed above, those non-remainder terms with no corresponding term in the limiting

generator, will be handled first. Then we will handle each of the terms which corresponds

to part of the limiting generator, and lastly we will handle the remainder term.

4.7.1.6 Terms that do not contribute to the limit

∣∣∣∣[1.π(0)
](nm)

(ϑ)
∣∣∣∣ = nam

∣∣∣EX(N) 〈∇f(ϑ), ∆(nm)
π(0) (ϑ)

〉∣∣∣
≤ chn

a−h+w−1
m ‖Γ‖

2
∣∣∣EX(N) 〈∇f(ϑ), ∇ log π(0)

(
θ̂(nm) + n−wm ϑ

)〉∣∣∣
≤ chn

a−h+w−1
m ‖Γ‖

2 ‖∇f‖∞
(∥∥∥∇ log π(0) (θ?)

∥∥∥+ L0

(
Υ(nm) + 2R0 + 2c0

nwm

))
,

which vanishes uniformly on K1, since a + w− h− 1 ≤ w− 1 < 0.
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∣∣∣∣[2.π(0)π(0)
](nm)

(ϑ)
∣∣∣∣

=
∣∣∣∣namEX(N)

〈1
2∇
⊗2f(ϑ)∆(nm)

π(0) (ϑ), ∆(nm)
π(0) (ϑ)

〉∣∣∣∣
≤ nam

∥∥∥∇⊗2f
∥∥∥
∞

(
chn

w−h−1
m ‖Γ‖

2

)2

×
(∥∥∥∇ log π(0)(θ?)

∥∥∥+ L0
∥∥∥θ̂(nm) − θ?

∥∥∥+ L0
2R0 + 2c0

nwm

)2

which vanishes uniformly since a + 2w − 2h − 2 ≤ (2w − 2) − h < 0 (which follows from

h ≥ a and w < 1).

∣∣∣∣[2.`π(0)
](nm)

(ϑ)
∣∣∣∣

=
∣∣∣∣nam2EX(N)

〈1
2∇
⊗2f(ϑ)∆(nm)

` (ϑ), ∆(nm)
π(0) (ϑ)

〉∣∣∣∣
≤ 2nam

∥∥∥∇⊗2f
∥∥∥
∞

(
chn

w−h−1
m ‖Γ‖

2

)(
chn

w−h
m ‖Γ‖

2

)

×
(∥∥∥∇ log π(0)(θ?)

∥∥∥+ L0Υ(nm) + L0
2R0 + 2c0

nwm

)
×
(
n1/p2
m + n1/p3

m Υ(nm) + n1/p3−w
m

)
which vanishes uniformly due to the assumptions of the relationship between h, a,w, p3, p2

under each assumption.

4.7.1.7 Convergence of the drift term

Third, using that ∑i∈[nm]∇`
(
θ̂(nm); Xi

)
= 0,

[1.`](nm) (ϑ)

= namEX(N) 〈∇f(ϑ), ∆(nm)
` (ϑ)

〉
= EX(N)

〈
∇f(ϑ), chn

a+w−h
m Γ

2b(nm)

∑
j∈[b(nm)]

∇`
(
θ̂(nm) + 1

nwm
ϑ; X

I
(nm)
1 (j)

)〉

=
〈
chΓ†

2 ∇f(ϑ), na+w−h−1
m

∑
i∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)〉

=
〈
chΓ†

2 ∇f(ϑ),

∫ 1

0
na−h−1
m

∑
i∈[nm]

∇⊗2`

(
θ̂(nm) + s

nwm
ϑ; Xi

)
ds

〉

(4.30)
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Now, for all nm large enough that rJ ,nm ≥ R0 + c0

∣∣∣∣∣∣
〈
chΓ†

2 ∇f(ϑ),

∫ 1

0
n−1
m

∑
i∈[nm]

∇⊗2`

(
θ̂(nm) + s

nwm
ϑ; Xi

)
ds + J?

ϑ〉
∣∣∣∣∣∣

≤ ch ‖Γ‖ ‖∇f‖∞ (R0 + c0)

∥∥∥∥∥∥
∫ 1

0

n−1
m

∑
i∈[nm]

∇⊗2`

(
θ̂(nm) + s

nwm
ϑ; Xi

)
+ J?

 ds
∥∥∥∥∥∥

≤ ch ‖Γ‖ ‖∇f‖∞ (R0 + c0) ·Υ(nm),

and thus vanishes uniformly on K1.

When a > h, so cd = 0 and hence [I.ΓJ?] (ϑ) = 0 (where [I.ΓJ?] (ϑ) is the drift term

appearing in the definition of the limiting generator A in Eq. (4.27)), then the drift term

will be inactive in the limit. We show this by using the fact that [1.`](nm) (ϑ) is a vanishing

distance from a sequence that vanishes:

∣∣∣[1.`](nm) (ϑ)− [I.ΓJ?] (ϑ)
∣∣∣

≤ nh−am

∣∣∣∣∣∣
〈
chΓ†

2 ∇f(ϑ),

∫ 1

0
n−1
m

∑
i∈[nm]

∇⊗2`

(
θ̂(nm) + s

nwm
ϑ; Xi

)
ds + J?

ϑ〉
∣∣∣∣∣∣

+ nh−am

∣∣∣∣∣
〈
chΓ†

2 ∇f(ϑ), J?ϑ
〉∣∣∣∣∣ ;

and hence vanishes uniformly on K1.

When a = h, then the drift term is active in the limit, and we show that [1.`](nm) (ϑ)

converges to the drift term from the limiting process [I.ΓJ?] (ϑ):

∣∣∣[1.`](nm) (ϑ)− [I.ΓJ?] (ϑ)
∣∣∣

= nh−am

∣∣∣∣∣∣
〈
chΓ†

2 ∇f(ϑ),

∫ 1

0
n−1
m

∑
i∈[nm]

∇⊗2`

(
θ̂(nm) + s

nwm
ϑ; Xi

)
ds + J?

ϑ〉
∣∣∣∣∣∣

vanishes uniformly on K1.
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4.7.1.8 Convergence of the diffusion term corresponding to Gaussian noise

∣∣∣[2.ξξ](nm) (ϑ)− [II.Λ] (ϑ)
∣∣∣

=
∣∣∣∣∣namEX(N)

〈1
2∇
⊗2f(ϑ)∆(nm)

ξ , ∆(nm)
ξ

〉
− ch

2cβ
Λ : ∇⊗2f(ϑ)

∣∣∣∣∣
If a+ 2w− h− t = 0 then, the corresponding diffusion term is active in the limit. Using the

definition of ∆(nm)
ξ and that β(n) = cβn

t, βh = chn
h, and βw = nw

∣∣∣[2.ξξ](nm) (ϑ)− [II.Λ] (ϑ)
∣∣∣

≤ ch
2cβ

∣∣∣na+2w−h−t
m EX(N) 〈∇⊗2f(ϑ)

√
Λξ1,

√
Λξ1

〉
− Λ : ∇⊗2f(ϑ)

∣∣∣
= 0

If a + 2w− h− t < 0 then the corresponding diffusion term is inactive in the limit, and so

cg = 0 and so [II.Λ] (ϑ) = 0. In that case we show that [2.ξξ](nm) (ϑ) vanishes uniformly.

∣∣∣[2.ξξ](nm) (ϑ)− [II.Λ] (ϑ)
∣∣∣

≤ ch
2cβ

na+2w−h−t
m

∣∣∣EX(N) 〈∇⊗2f(ϑ)
√

Λξ1,
√

Λξ1
〉∣∣∣

= ch
2cβ

na+2w−h−t
m ‖Λ‖F

∥∥∥∥∥∥∇⊗2f
∥∥∥
F

∥∥∥
∞
,

which vanishes uniformly.

4.7.1.9 Convergence of the diffusion term corresponding to minibatch noise

∣∣∣[2.``](nm) (ϑ) -
[
II.ΓI?Γ′

]
(ϑ)
∣∣∣

=
∣∣∣∣namEX(N)

〈1
2∇
⊗2f(ϑ)∆(nm)

` (ϑ), ∆(nm)
` (ϑ)

〉
− cmb

2 ΓI?Γ′ : ∇⊗2f(ϑ)
∣∣∣∣

= 1
2

∣∣∣∣[namEX(N)
[(

∆(nm)
` (ϑ)

)⊗2
]

: ∇⊗2f(ϑ)− cmb

2 ΓI?Γ′ : ∇⊗2f(ϑ)
]∣∣∣∣

≤
∥∥∇⊗2fF

∥∥
∞

2

∥∥∥∥[namEX(N)
[(

∆(nm)
` (ϑ)

)⊗2
]
− cmb

2 ΓI?Γ′
]∥∥∥∥
F

≤
√
d

∥∥∇⊗2fF
∥∥
∞

2

∥∥∥∥[namEX(N)
[(

∆(nm)
` (ϑ)

)⊗2
]
− cmb

2 ΓI?Γ′
]∥∥∥∥
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Now,

EX(N)
nam

(
∆(nm)
` (ϑ)

)⊗2

= c2hn
a+2w−2h
m

4(b(nm))2 Γ

EX(N) ∑
j∈[b(nm)]

∇`
(
θ̂(nm) + 1

nwm
ϑ; X

I
(nm)
1 (j)

)⊗2
Γ′

+ c2hn
a+2w−2h
m

4(b(nm))2 Γ
(
EX(N) ∑

j∈[b(nm)]

∑
j′∈[b(nm)]\{j}

∇`
(
θ̂(nm) + ϑ

nwm
; X

I
(nm)
1 (j)

)

⊗∇`
(
θ̂(nm) + ϑ

nwm
; X

I
(nm)
1 (j′)

))
Γ′

= c2hn
a+2w−2h
m

4b(nm) Γ

 1
nm

∑
i∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)⊗2
Γ′

+ c2hn
a+2w−2h
m

4(b(nm))2 Γ
(
EX(N) ∑

j∈[b(nm)]

∑
j′∈[b(nm)]\{j}

∇`
(
θ̂(nm) + ϑ

nwm
; X

I
(nm)
1 (j)

)

⊗∇`
(
θ̂(nm) + ϑ

nwm
; X

I
(nm)
1 (j′)

))
Γ′

If the mini-batches are drawn with replacement, then

EX(N) ∑
j∈[b(nm)]

∑
j′∈[b(nm)]\{j}

∇`
(
θ̂(nm) + 1

nwm
ϑ; X

I
(nm)
1 (j)

)
⊗∇`

(
θ̂(nm) + 1

nwm
ϑ; X

I
(nm)
1 (j′)

)

= b(nm)(b(nm) − 1)
n2
m

∑
i∈[nm]

∑
i′∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)
⊗∇`

(
θ̂(nm) + 1

nwm
ϑ; Xi′

)

= b(nm)(b(nm) − 1)

 1
nm

∑
i∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)⊗2

= b(nm)(b(nm) − 1)

 1
nm

∑
i∈[nm]

∫ 1

0
∇⊗2`

(
θ̂(nm) + s

nwm
ϑ; Xi

)
ds

1
nwm

ϑ

⊗2

Thus, if a+ 2w− 2h−b = 0, so that cmb 6= 0 and the corresponding term is active in the

limit, and the minibtaches are drawn with replacement, then combining the past several
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equations gives:

∣∣∣[2.``](nm) (ϑ) -
[
II.ΓI?Γ′

]
(ϑ)
∣∣∣

≤
√
d ‖Γ‖2

∥∥∇⊗2fF
∥∥
∞

2

∥∥∥∥∥∥ c
2
h

4cb
cbn

b
m

bcbnbmc

 1
nm

∑
i∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)⊗2
− cmbI?

∥∥∥∥∥∥
+
√
dc2
h ‖Γ‖

2 ∥∥∇⊗2fF
∥∥
∞ n

−2w
m

8

∥∥∥∥∥∥∥
 1
nm

∑
i∈[nm]

∫ 1

0
∇⊗2`

(
θ̂(nm) + s

nwm
ϑ; Xi

)
ds ϑ

⊗2
∥∥∥∥∥∥∥

For ϑ ∈ K1, and for all nm large enough that rJ ,nm ≥ R0 + c0

n−2w
m

∥∥∥∥∥∥∥
 1
nm

∑
i∈[nm]

∫ 1

0
∇⊗2`

(
θ̂(nm) + s

nwm
ϑ; Xi

)
ds ϑ

⊗2
∥∥∥∥∥∥∥

= n−2w
m

∥∥∥∥∥∥ 1
nm

∑
i∈[nm]

∫ 1

0
∇⊗2`

(
θ̂(nm) + s

nwm
ϑ; Xi

)
ds ϑ

∥∥∥∥∥∥
2

≤ (2R0 + 2c0)2

n2w
m

(
‖J?‖+ Υ(nm)

)2
,

which vanishes uniformly.

Since the mini-batches are drawn with replacement, using the definition of cmb, for all

nm large enough that rI,nm ≥ R0 + c0

∥∥∥∥∥∥ c
2
h

4cb
cbn

b
m

bcbnbmc

 1
nm

∑
i∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)⊗2
− cmbI?

∥∥∥∥∥∥
≤ c2

h

4cb
cbn

b
m

bcbnbmc

∥∥∥∥∥∥
 1
nm

∑
i∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)⊗2
− I?

∥∥∥∥∥∥
+
∣∣∣∣∣ c2

h

4cb
cbn

b
m

bcbnbmc
− c2

h

4cb

∣∣∣∣∣ ‖I?‖
≤ c2

h

4cb
cbn

b
m

bcbnbmc
Υ(nm) +

∣∣∣∣∣ c2
h

4cb
cbn

b
m

bcbnbmc
− c2

h

4cb

∣∣∣∣∣ ‖I?‖ .
And, if a + 2w− 2h− b < 0 and the mini-batches are drawn with replacement, so that

cmb = 0, and the corresponding diffusion term is inactive in the limit and [II.ΓI?Γ′] (ϑ) = 0,
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then ∣∣∣[2.``](nm) (ϑ)−
[
II.ΓI?Γ′

]
(ϑ)
∣∣∣

≤
∣∣∣∣∣EX(N)

nam

(
∆(nm)
` (ϑ)

)⊗2
− na+2w−2h−b

m

c2
h

4cb
I?

∣∣∣∣∣+ na+2w−2h−b
m

∣∣∣∣∣ c2
h

4cb
I?

∣∣∣∣∣
which vanishes uniformly by the previous arguments.

Therefore, when the mini-batches are drawn with replacement, we find that

∣∣∣[2.``](nm) (ϑ) -
[
II.ΓI?Γ′

]
(ϑ)
∣∣∣

vanishes uniformly on K1.

If the mini-batches are drawn without replacement.

EX(N) ∑
j∈[b(nm)]

∑
j′∈[b(nm)]\{j}

∇`
(
θ̂(nm) + 1

nwm
ϑ; X

I
(nm)
1 (j)

)
⊗∇`

(
θ̂(nm) + 1

nwm
ϑ; X

I
(nm)
1 (j′)

)

= b(nm)(b(nm) − 1)
nm(nm − 1)

∑
i∈[nm]

∑
i′∈[nm]\{i}

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)
⊗∇`

(
θ̂(nm) + 1

nwm
ϑ; Xi′

)

= b(nm)(b(nm) − 1)
nm(nm − 1)

∑
i∈[nm]

∑
i′∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)
⊗∇`

(
θ̂(nm) + 1

nwm
ϑ; Xi′

)

− b(nm)(b(nm) − 1)
nm(nm − 1)

∑
i∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)⊗2

= b(nm)(b(nm) − 1) nm
nm − 1

 1
nm

∑
i∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)⊗2

− b(nm)(b(nm) − 1)
nm(nm − 1)

∑
i∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)⊗2
,

and so,

EX(N)
nm

(
∆(nm)
` (ϑ)

)⊗2

= c2
h

4b(nm)
nm − b(nm)

nm − 1 Γ

 1
nm

∑
i∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)⊗2
Γ′

+ c2
h

4(b(nm))2 Γ

b(nm)(b(nm) − 1) nm
nm − 1

 1
nm

∑
i∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)⊗2
Γ′
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In this case, for all nm large enough that rI,nm ≥ R0 + c0

∥∥∥∥∥∥ c2
h

4b(nm)
nm − b(nm)

nm − 1

 1
nm

∑
i∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)⊗2
− cmbI?

∥∥∥∥∥∥
≤ c2

h

4b(nm)
nm − b(nm)

nm − 1

∥∥∥∥∥∥
 1
nm

∑
i∈[nm]

∇`
(
θ̂(nm) + 1

nwm
ϑ; Xi

)⊗2
− I?

∥∥∥∥∥∥
+
∣∣∣∣∣ c2

h

4b(nm)
nm − b(nm)

nm − 1 − cmb

∣∣∣∣∣ ‖I?‖
≤ c2

h

4b(nm)
nm − b(nm)

nm − 1 Υ(nm) +
∣∣∣∣∣ c2

h

4b(nm)
nm − b(nm)

nm − 1 − cmb

∣∣∣∣∣ ‖I?‖ ,
Thus, when the mini-batches are drawn without replacement, we find that

∣∣∣[2.``](nm) (ϑ) -
[
II.ΓI?Γ′

]
(ϑ)
∣∣∣

vanishes uniformly on K1.

4.7.1.10 Convergence of the Remainder Term

∣∣∣[3.R](nm) (ϑ)
∣∣∣

= namEX(N)
[1

6
[
∇⊗3f(ϑ+ S∆(nm)(ϑ))

] (
∆(nm)(ϑ),∆(nm)(ϑ),∆(nm)(ϑ)

)]
≤ nam

6
∥∥∥∇⊗3f

∥∥∥
∞
EX(N)

∥∥∥∆(nm)(ϑ)
∥∥∥3

≤ 27nam
6

∥∥∥∇⊗3f
∥∥∥
∞

(
EX(N)

∥∥∥∆(nm)
ξ

∥∥∥3
+ EX(N)

∥∥∥∆(nm)
π(0) (ϑ)

∥∥∥3
+ EX(N)

∥∥∥∆(nm)
` (ϑ)

∥∥∥3
)
,

Now

EX(N)
∥∥∥∆(nm)

ξ

∥∥∥3
≤
(
ch
2cβ

n−h−t+2w
m ‖Λ‖

)3/2

EX(N) ‖ξ1‖3

= n−3/2 (h+t−2w)
m

(
ch
2cβ
‖Λ‖

)3/2

23/2
Γ
(
d+3

2

)
Γ
(
d
2

) ,

where Γ is the gamma function. Note that α−3/2 (h+t−2w) ≤ −1/2 (h+t−2w) ≤ −a/2 < 0
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Second,

∥∥∥∆(nm)
π(0) (ϑ)

∥∥∥3
≤
(
chn
−h+w−1
m ‖Γ‖

2

)3 (∥∥∥∇ log π(0)(θ?)
∥∥∥+ L0

∥∥∥θ̂(nm) − θ?
∥∥∥+ L0

2R0 + 2c0
nwm

)3
.

Note that a− 3h + 3w− 3 ≤ −2h− 3(1−w) < 0.

Third,
EX(N)

∥∥∥∆(nm)
` (ϑ)

∥∥∥3

≤
(
chn
−h+w
m ‖Γ‖

2

)3 (
n1/p2
m + n1/p3

m Υ(nm) + n1/p3−w
m

)3

≤
(
ch ‖Γ‖

2

)3 (
n1/p2−h+w
m + n1/p3−h+w

m Υ(nm) + n1/p3−h
m

)3

Therefore,
∣∣∣[3.R](nm) (ϑ)

∣∣∣ vanishes uniformly.

4.8 Proof of Corollary 4.2

Proof of Corollary 4.2. To verify that that the stationary measures, ν(nm) of T (nm) converge

weakly in probability to ν, we need to verify that every sub-subsequence ν(nmk ) has a sub-

sub-subsequence ν(nmkj ) converging weakly to ν almost surely. Since weak convergence of

probability measures is metrizable, then applying Lemma 4.1 yields the desired result.

By the second part of Theorem 4.2, every sub-subsequence of
(
T (nm))

m∈N,
(
T (nmk ))

k∈N,

has a further sub-sub-subsequence,
(
T

(nmkj ))
j∈N, such that with probability 1, T

(nmkj )
t

s→ Tt

on C(Rd) for all t > 0.

Applying Ethier and Kurtz [33, Part 4, Theorem 9.10], we have that every weak limit of{
ν

(nmkj )}
j∈N is stationary for T . As a consequence of the assumption that the spectrum of

ΓJ (θ?) is a subset of {x ∈ C s.t. <(x) > 0}, T has a unique stationary distribution (see, for

example, Karatzas and Shreve [54]), ν = N(0, Q∞). Thus every weak limit of
{
ν

(nmkj )}
j∈N

must be ν.

Since
{
ν(nm)}

m∈N is assumed to be tight, then all of its sub-subsequences have a weakly

converging sub-sub-subsequence, concluding the proof.
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4.9 Sufficient conditions for Assumptions 4.4 and 4.5

In this section we provide some sufficient conditions that ensure Assumptions 4.4 and 4.5.

For each of the two assumptions, we one sufficient condition based on convergence of the cor-

responding information matrix empirical process, one sufficient condition based on equicon-

tinuity of the derivatives of the likelihood function, and one sufficient condition based ex-

pected Lipschitz or local Lipschitz constants for the derivatives of the likelihood.

Proposition 4.4 (Sufficient conditions for Assumption 4.4). Each of the following imply

Assumption 4.4.

a) there exists a δ1 > 0 with supθ∈Bδ1 (θ?)

∥∥∥ 1
n

∑
i∈[n]∇⊗2`(θ;Xi) + J (θ)

∥∥∥ p→ 0 and J is

continuous at θ?,

b)
{
∇⊗2`(·;x) | x ∈ X

}
is equicontinuous at θ?,

c) there exists a δ1 > 0 with

E

 sup
θ∈Bδ1 (θ?)

∥∥∇⊗2`(θ;X1)−∇⊗2`(θ?;X1)
∥∥

‖θ − θ?‖

 <∞,
Proof of Proposition 4.4.

a) Let rJ ,n = δ1n
w/2/2. Then B

(
θ̂(n), rJ ,n/n

w
)
⊆ B

(
θ̂(n), δ1/2

)
.

Given that θ̂(n) p→ θ?, any subsequence of indices nm has a further sub-subsequence

of indices nmk where both θ̂(nmk ) → θ? and

sup
θ∈Bδ1 (θ?)

∥∥∥ 1
nmk

∑
i∈[nmk ]

∇⊗2`(θ;Xi) + J (θ)
∥∥∥→ 0 a.s.

Then there is a k0 such that if k ≥ k0 then
∥∥∥θ̂(nmk ) − θ?

∥∥∥ ≤ δ1/2. Therefore if k ≥ k0

then B
(
θ̂(nmk ), rJ ,n/n

w
mk

)
⊆ B (θ?, δ1).
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Thus, for k ≥ k0,

sup
θ∈B

(
θ̂(nmk ),rJ ,n/nw

mk

) ∥∥∥Ĵ (nmk )(θ)− J (θ?)
∥∥∥

≤ sup
θ∈B

(
θ̂(nmk ),rJ ,n/nw

mk

) ∥∥∥Ĵ (nmk )(θ)− J (θ)
∥∥∥+ sup

θ∈B
(
θ̂(nmk ),r/nw

mk

) ‖J (θ)− J (θ?)‖

≤ sup
θ∈B(θ?,δ1)

∥∥∥Ĵ (nmk )(θ)− J (θ)
∥∥∥+ sup

θ∈B
(
θ̂(nmk ),δ1/n

w/2
mk

) ‖J (θ)− J (θ?)‖

≤ sup
θ∈B(θ?,δ1)

∥∥∥Ĵ (nmk )(θ)− J (θ)
∥∥∥+ sup

θ∈B
(
θ?,
∥∥θ̂(nmk )−θ?

∥∥+δ1/nw/2
mk

) ‖J (θ)− J (θ?)‖

a.s.→ 0.

Therefore, every subsequence of Sn = sup
θ∈B

(
θ̂(n),rJ ,n/nw

) ∥∥∥Ĵ (n)(θ)− J (θ?)
∥∥∥ has a

further sub-subsequence converging almost surely to 0, and hence Sn converges in

probability to 0.

b) Equicontinuity implies there is a function ρJ? : R+ → R+ with limt→0 ρJ?(t) = 0, and

sup
x∈X

sup
ϑ∈Bδ(θ?)

∥∥∥∇⊗2`(ϑ;x)−∇⊗2`(θ?;x)
∥∥∥ ≤ ρJ?(δ).

Let rJ ,n = nw/2. Then

sup
θ∈B

(
θ̂(n),rJ ,n/nw

) ∥∥∥Ĵ (n)(θ)− J (θ?)
∥∥∥

≤ sup
θ∈B

(
θ̂(n),n−w/2

) ∥∥∥Ĵ (n)(θ)− Ĵ (n)(θ?)
∥∥∥+

∥∥∥Ĵ (n)(θ?)− J (θ?)
∥∥∥

≤ sup
θ∈B

(
θ?,
∥∥θ̂(n)−θ?

∥∥+n−w/2
) ∥∥∥Ĵ (n)(θ)− Ĵ (n)(θ?)

∥∥∥+
∥∥∥Ĵ (n)(θ?)− J (θ?)

∥∥∥
≤ ρJ?

(∥∥∥θ̂(n) − θ?
∥∥∥+ n−w/2

)
+
∥∥∥Ĵ (n)(θ?)− J (θ?)

∥∥∥
p→ 0.

In the last step we used that the first term vanishes in probability because θ̂(n) p→ θ?,

and the second term vanishes in probability by the weak law of large numbers.
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c) Let

Qn = 1
n

∑
i∈[n]

 sup
θ∈Bδ1 (θ?)

∥∥∇⊗2`(θ;Xi)−∇⊗2`(θ?;Xi)
∥∥

‖θ − θ?‖

 , and
q = E

 sup
θ∈Bδ1 (θ?)

∥∥∇⊗2`(θ;X1)−∇⊗2`(θ?;X1)
∥∥

‖θ − θ?‖

 .
By the weak law of large numbers, Qn

p→ q and Ĵ (nmk )(θ?)
p→ J (θ?). Let rJ ,n =

δ1n
w/2/2. As in part a), given that θ̂(n) p→ θ?, any subsequence of indices nm has

a further sub-subsequence of indices nmk where both θ̂(nmk ) → θ?, Qnmk → q, and

Ĵ (nmk )(θ?) → J (θ?) almost surely. Then there is a k0 such that if k ≥ k0 then∥∥∥θ̂(nmk ) − θ?
∥∥∥ ≤ δ1/2. Therefore if k ≥ k0 then B

(
θ̂(nmk ), rJ ,n/n

w
mk

)
⊆ B (θ?, δ1).

Thus, for k ≥ k0,

sup
θ∈B

(
θ̂(nmk ),rJ ,n/nw

mk

) ∥∥∥Ĵ (nmk )(θ)− J?
∥∥∥

≤
∥∥∥Ĵ (nmk )(θ?)− J (θ?)

∥∥∥+ sup
θ∈B

(
θ̂(nmk ),δ1n

−w/2
mk

/2
) ∥∥∥Ĵ (nmk )(θ)− Ĵ (nmk )(θ?)

∥∥∥
≤
∥∥∥Ĵ (nmk )(θ?)− J (θ?)

∥∥∥
+
(∥∥∥θ̂(nmk ) − θ?

∥∥∥+ δ1n
−w/2
mk

/2
)

sup
θ∈B

(
θ̂(nmk ),δ1n

−w/2
mk

/2
)
∥∥∥Ĵ (nmk )(θ)− Ĵ (nmk )(θ?)

∥∥∥
‖θ − θ?‖

≤
∥∥∥Ĵ (nmk )(θ?)− J (θ?)

∥∥∥
+
(∥∥∥θ̂(nmk ) − θ?

∥∥∥+ δ1n
−w/2
mk

/2
)

sup
θ∈B(θ?,δ1)

∥∥∥Ĵ (nmk )(θ)− Ĵ (nmk )(θ?)
∥∥∥

‖θ − θ?‖

≤
∥∥∥Ĵ (nmk )(θ?)− J (θ?)

∥∥∥
+
(∥∥∥θ̂(nmk ) − θ?

∥∥∥+ δ1n
−w/2
mk

/2
)

sup
θ∈B(θ?,δ1)

1
nmk

∑
i∈[nmk ]

[∥∥∇⊗2`(θ;Xi)−∇⊗2`(θ?;Xi)
∥∥

‖θ − θ?‖

]

≤
∥∥∥Ĵ (nmk )(θ?)− J (θ?)

∥∥∥+
(∥∥∥θ̂(nmk ) − θ?

∥∥∥+ δ1n
−w/2
mk

/2
)
Qnmk

a.s.→ 0

Therefore, every subsequence of Sn = sup
θ∈B

(
θ̂(n),rJ ,n/nw

) ∥∥∥Ĵ (n)(θ)− J (θ?)
∥∥∥ has a

further sub-subsequence converging almost surely to 0, and hence Sn converges in

probability to 0.



CHAPTER 4. 177

Proposition 4.5 (Sufficient conditions for Assumption 4.5). Each of the following imply

Assumption 4.5.

a) there exists a δ2 > 0 with supθ∈Bδ2 (θ?)

∥∥∥ 1
n

∑
i∈[n]∇`(θ;Xi)⊗2 − I(θ)

∥∥∥ p→ 0 and I is

continuous at θ?,

b)
{
∇`(·;x)⊗2 | x ∈ X

}
is equicontinuous at θ?,

c) E
[∥∥∇⊗2`(·;X1)

∥∥2
∞

]
<∞,

Proof of Proposition 4.5.

a), b) The proofs are the same as for Proposition 4.4 a), b).

c) Let Qn = 1
n

∑
i∈[n]

∥∥∇⊗2`(·;Xi)
∥∥2
∞, q = E

∥∥∇⊗2`(·;X1)
∥∥2
∞, and let rI,n = nw/2. By

the weak law of large numbers, Qn
p→ q, and Î(n)(θ?)

p→ I(θ?). Starting with

sup
θ∈B

(
θ̂(n),rI,n/nw

) ∥∥∥Î(n)(θ)− I?
∥∥∥ ≤ ∥∥∥Î(n)(θ?)− I(θ?)

∥∥∥+ sup
θ∈B

(
θ̂(n),n−w/2

) ∥∥∥Î(n)(θ)− Î(n)(θ?)
∥∥∥ ,

we can bound the second term with a Taylor series and Cauchy-Shwarz as

∥∥∥Î(n)(θ)− Î(n)(θ?)
∥∥∥

≤ 1
n

∑
i∈[n]

∥∥∥(∇` (θ?; Xi) +
∫ 1

0
∇⊗2` (θ? + s(θ − θ?); Xi) ds (θ − θ?)

)⊗2
−∇` (θ?; Xi)⊗2

∥∥∥
≤ 2
n

∑
i∈[n]
‖∇` (θ?; Xi)‖

∥∥∥∫ 1

0
∇⊗2` (θ? + s(θ − θ?); Xi) ds (θ − θ?)

∥∥∥
+ 1
n

∑
i∈[n]

∥∥∥(∫ 1

0
∇⊗2` (θ? + s(θ − θ?); Xi) ds (θ − θ?)

)⊗2∥∥∥
≤ 2
n

∑
i∈[n]
‖∇` (θ?; Xi)‖

∥∥∥∇⊗2`(·;Xi)
∥∥∥
∞
‖θ − θ?‖+ 1

n

∑
i∈[n]

∥∥∥∇⊗2`(·;Xi)
∥∥∥2

∞
‖θ − θ?‖2

≤ 2 ‖θ − θ?‖
√√√√ 1
n

∑
i∈[n]
‖∇` (θ?; Xi)‖2

√√√√ 1
n

∑
i∈[n]

L(Xi)2 + ‖θ − θ?‖2Qn

≤ 2 ‖θ − θ?‖
√

Tr(Î(n)(θ?))
√
Qn + ‖θ − θ?‖2Qn,
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Plugging this back in,

sup
θ∈B

(
θ̂(n),rI,n/nw

) ∥∥∥Î(n)(θ)− I?
∥∥∥

≤
∥∥∥Î(n)(θ?)− I(θ?)

∥∥∥+ sup
θ∈B

(
θ̂(n),n−w/2

)
(

2 ‖θ − θ?‖
√

Tr(Î(n)(θ?))
√
Qn + ‖θ − θ?‖2Qn

)

≤
∥∥∥Î(n)(θ?)− I(θ?)

∥∥∥+ 2
(∥∥∥θ̂(n) − θ?

∥∥∥+ n−w/2
)√

Tr(Î(n)(θ?))
√
Qn +

(∥∥∥θ̂(n) − θ?
∥∥∥+ n−w/2

)2
Qn

p→ 0.

4.10 Proof of Proposition 4.1

Recall that

dϑt = −1
2Bϑt dt+

√
AdWt, (4.31)

which implies

ϑt = exp(−B/2ϑ0) +
∫ t

0
exp(−Bt/2)A1/2dWt. (4.32)

Assuming stationarity, ϑt ∼ N (0, Q∞) where Q∞ =
∫∞

0 exp(−Bs/2)A exp(−Bs/2)ds, we

have
Cov(

∫ t

0
ϑs ds)

= E(
∫ t

0

∫ t

0
ϑsϑ

T
r dsdr)

=
∫ t

0

∫ s

0
E(ϑsϑTr )drds+

∫ t

0

∫ r

0
E(ϑsϑTr )dsdr.

(4.33)
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We focus on the first term since the second term can be written similarly:

∫ t

0

∫ s

0
E(ϑsϑTr )drds

=
∫ t

0

∫ s

0
E
[(

exp(−B(s− r)/2)ϑr +
∫ s

r
exp(−Bu/2)A1/2dWu

)
ϑTr

]
drds

=
∫ t

0

∫ s

0
exp(−B(s− r)/2)E(ϑrϑTr )drds

=
∫ t

0

∫ s

0
exp(−B(s− r)/2)Q∞drds

=
∫ t

0
−2B−1(exp(−Bs/2)− 1)Q∞ds

=
[
4B−2(exp(−Bt/2)− 1) + 2tB−1

]
Q∞.

(4.34)

We can write
∫ t

0
∫ r

0 E(ϑsϑTr )dsdr similarly and combine the two results

Cov
(
ϑ̄t
)

= 1
t2

Cov(
∫ t

0
ϑs ds)

= 1
t2

[∫ t

0

∫ s

0
E(ϑsϑTr )drds+

∫ t

0

∫ r

0
E(ϑsϑTr )dsdr

]
= 4
t
Sym

(
B−1Q∞

)
− 8
t2

Sym
(
B−2

{
I − e−tB/2

}
Q∞

)
,

(4.35)

which completes the proof.

4.11 Sketch Proof of Scaling Limit for SGLD with Control

Variates

We argue that the mini-batch noise is always lower order for SGLD with control variates

by showing that the corresponding [2.``](nm) (ϑ) from the proof of Theorem 4.1 in Section 4.7
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is vanishing under any scaling limit where the drift term [1.`] does not vanish.

namEX(N)
〈1

2∇
⊗2f(ϑ)∆(nm)

` (ϑ), ∆(nm)
` (ϑ)

〉
︸ ︷︷ ︸

[2.``](nm) (ϑ)

= namEX(N) 1
2∇
⊗2f(ϑ) :

(
∆(nm)
` (ϑ)

)⊗2

= namEX(N) 1
2Γ∇⊗2f(ϑ) :

hw(n)Γ
2b(n)

∑
j∈[b(n)]

(
∇`
(
θ̂(n) + (w(n))−1ϑ; X

I
(n)
1 (j)

)
−∇`

(
θ̂(n); X

I
(n)
1 (j)

))
⊗2

= c2
h

c2
b

na−2h+2w−2b
m

1
2Γ∇⊗2f(ϑ)Γ>

: EX(N)

 ∑
j∈[b(n)]

(
∇`
(
θ̂(n) + (w(n))−1ϑ; X

I
(n)
1 (j)

)
−∇`

(
θ̂(n); X

I
(n)
1 (j)

))
⊗2

≈ c2
h

c2
b

na−2h+2w−2b
m

1
2Γ∇⊗2f(ϑ)Γ> : EX(N)

 ∑
j∈[b(n)]

∇⊗2`

(
θ̂(n); X

I
(n)
1 (j)

)
(w(n))−1ϑ


⊗2

= c2
h

c2
b

na−2h−2b
m

1
2Γ∇⊗2f(ϑ)Γ> : EX(N)

 ∑
j∈[b(n)]

∇⊗2`

(
θ̂(n); X

I
(n)
1 (j)

)
ϑ


⊗2

≈ na−2h−2b
m

1
2Γ∇⊗2f(ϑ)Γ> :

[
b(n)(b(n) − 1)J?ϑϑ>J? + b(n)K(θ?;ϑ)

]

where K(θ?;ϑ) =
∫
∇⊗2`(θ?;x) ϑ⊗2 ∇⊗2`(θ?;x)P (dx).

Now, we recall that for the drift term to be non-zero in the limit, we need a = h.

However, at any such scaling the [2.``](nm) (ϑ) term is O(n−h−2b), and so is never not 0 in

the limit.

4.12 Sketch Proof for constrained parameter spaces

The key idea is that, if θ? ∈ interior(Θ), there is a r > 0 with θ? ∈ B(θ?, r) ⊂ interior(Θ),

and for any compactly supported test function f and compact extension of its support, K1,

for sufficiently large sample sizes n, K1 ⊆ B(0, w(n)r). In the proof of the Θ = Rd case we

found that, along sub-sequences (nmk), the increments from the log-likelihood and from the

prior vanish uniformly within a sufficiently large extension of the support of f . Combining

this with faithfulness of P (defined in Section 4.4.3) and an application of the Lebesgue
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dominated convergence theorem to handle truncation of the Gaussian increments shows

that the Anmf → Af uniformly within the extension of the support of f when Θ 6= Rd.

Moreover, the local property of the boundary condition (defined in Section 4.4.3) ensures

that for sufficiently large sample sizes, if the process were far enough outside of the support

of f then it cannot re-enter the support via an arbitrarily large jump caused by the boundary

condition. Thus, outside of the extension of the support of f , the deviation of Anmf from

0 is essentially indistinguishable from the unconstrained case. Using those two facts we

can rely on the faithfulness of the boundary dynamics to ensure that the process converges

weakly to the same Ornstein-Uhlenbeck limit as in the unconstrained case.
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