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1 Introduction

In this project we shall discuss conditions on the convergence of Markov

chains and present some convergence rate results. We shall introduce the

coupling construction and use it to prove convergence theorems for Markov

chains. Mostly this project is based on the article General State Space

Markov Chains and MCMC Algorithms by Gareth O. Roberts and Jeffrey

S. Rosenthal (see reference [1]). We’ll discuss conditions on the convergence

of Markov chains, and consider the proofs of convergence theorems in de-

tails. We will modify some of the proofs, and try to improve some parts

of them. But in total we’ll be repeating the main ideas from the indicated

above article.

First of all, let us give a general idea about Markov chains and introduce

a few notations that we shall use from now on. For more detailed definitions

see [3] W.R. Gilks, S. Richardson and D.J. Spiegelhalter, 1996 Markov Chain

Monte Carlo in practice.

Suppose we generate a sequence of random variables, {X0, X1, X2, ...},

such that at each time n ≥ 0, the next state Xn+1 is sampled from a dis-

tribution P (Xn+1|Xn) which depends only on the current state of the chain,

{Xn}. In other words, given Xn, the next state Xn+1 doesn’t depend on

the other states of the chain {X0, X1, ..., Xn−1}. This sequence is called a

Markov chain, and P (.|.) is called the transition kernel of the chain. So we

can define:

Definition. A Markov chain is characterized by three ingredients: a

state space X , an initial distribution, and transition kernel. The transition

kernel is a function P (x, A) that takes values between 0 and 1, and such that

for any n ≥ 0

P{Xn+1 ∈ A|Xn = x} = P (x, A)

for all x ∈ X and A ⊆ X . That is, P (x, ·) is the distribution of the Markov
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chain after one step given that it starts at x.

For a probability distribution ν on X , we define ∀A ⊆ X

(νP )(A) =
∫

P (x, A)ν(dx)

to be the distribution of the position of a Markov chain with transition kernel

P and initial distribution ν after one step. A Markov chain has a stationary

distribution π if
∫

x∈X

π(dx)P (x, dy) = π(dy).

Note: P (x, dy) is the probability of moving to a small measurable subset

dy ∈ X given that the move starts at x.

Also for a real-valued function h on X define

(Ph)(x) =
∫

P (x, dy)h(y) = E[h(X1)|X0 = x].

The product of two transition kernels P and Q is the transition kernel defined

by

(PQ)(x, A) =
∫

P (x, dy)Q(y, A)

for all x ∈ X and A ⊆ X . The nth iterate P n = PP n−1 for n ≥ 2, and we

say that P 0 is the identity kernel that puts probability one on the staying at

the initial value.

Using this notations, we can write P{Xn ∈ A|X0 = x} = P n(x, A) for

any n ≥ 0.

The first return time of a Markov chain to a set A ⊆ X we denote by τA,

that is,

τA = inf{n ≥ 1 : Xn ∈ A},

and τA = ∞ if the chain never returns to A.

The indicator function of a set C is

IC(x) =







1 if x ∈ C

0 if x /∈ C
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For a probability distribution ν on X a statement holds for ’ν-a.e. x’ if

ν gives probability zero to the set of points in X where the statement fails.

Consider one more useful notation. Let Pij(n) = P [Xn = j|X0 = i].

Then for a countable state space X we can define:

Definition. A Markov chain {Xn} is called irreducible if for all i, j, there

exists an n > 0 such that Pij(n) > 0.

Let τii = min{n > 0 : Xn = i|X0 = i}. Then we say that an irreducible

chain {Xn} is recurrent if P [τii < ∞] = 1 for some (and hence for all) i.

Otherwise, {Xn} is transient. Another equivalent condition for recurrence is

∑

n

Pij(n) = ∞

for all i, j.

An irreducible recurrent chain {Xn} is called positive recurrent if E[τii] <

∞ for some (and hence for all) i. Otherwise, it is called null-recurrent. The

equivalent condition for positive recurrence is the existence of a stationary

distribution for the Markov chain, that is there exists π(·) such that

∑

i

π(i)Pij(n) = π(j)

for all j and n ≥ 0.

An irreducible chain {Xn} is called aperiodic if for some (hence for all) i,

gcd{n > 0 : Pii(n) > 0} = 1.

Note that the above definitions are for a discrete state space. We shall

consider a general state space, so we’ll give corresponding definitions for this

case in the next following sections.
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2 Total Variation Norm

Suppose we have a Markov chain {Xn} with n-step transition law, i.e.

P n(x, A) = P [Xn ∈ A|X0 = x], ∀A ⊆ X .

We want to know how close P n(x, A) is to the stationary distribution π(A)

for large n, and how large this n should be, if we want P n(x, A) to be very

close to π(A). To answer this question we define total variation norm.

Definition. The total variation norm between two probabilitiry mea-

sures µ1(·) and µ2(·) is

||µ1(·) − µ2(·)|| = sup
A

|µ1(A) − µ2(A)| (1)

Now we can restate our question in terms of the total variation norm: Is

limn→∞ ||P n(x, ·) − π(·)|| = 0? To proceed let’s discuss some properties of

the total variation norm. But before we shall give a few useful definitions

from measure theory.

Definition. A measure space (Ω,B, ρ) is a finite measure space if ρ(Ω) <

∞; it is σ - finite if the total space is the union of countable family of sets

of finite measure, i.e. there is a countable set F ⊂ B such that ρ(A) < ∞

∀A ∈ F , and Ω =
⋃

A⊂F A. In this case we also say that ρ is a σ - finite.

Any finite measure space is σ - finite. But the converse is not always true,

e.g. Lebesgue measure λ in Rn: it is σ-finite, but not finite, in fact, Rn =
⋃

k∈N [−k, k]n, but λ(Rn) = ∞.

Definition. A measure µ is absolutely continuous w.r.t. measure ρ

(µ � ρ) if µ(E) = 0 ∀E such that ρ(E) = 0.

By the Radon-Nikodym Theorem, this is equivalent to saying that

µ(E) =
∫

E

fdρ,

for some integrable function f . The function f is like a derivative, and is

called the Radon-Nikodym derivative, denoted by dµ
dρ

.
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The following proposition was proven in [1] for a particular case. We shall

prove it in general:

Proposition 2.1. ||µ1(·) − µ2(·)|| = 1
b−a

supf :X→[a,b] |
∫

fdµ1 −
∫

fdµ2|

∀a < b

Proof: Let ρ = µ1 + µ2. Then µ1 � ρ and µ2 � ρ. Define functions

g = dµ1

dρ
and h = dµ2

dρ
. Then for any f : X → [a, b] we have

∣
∣
∣
∣

∫

fdµ1 −
∫

fdµ2

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

f(g − h)dρ

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

{g>h}

f(g − h)dρ +
∫

{g<h}

f(g − h)dρ

∣
∣
∣
∣

Since g − h ≥ 0 on the set {g > h}, then from a ≤ f(x) ≤ b it follows that

a
∫

{g>h}

(g − h)dρ ≤
∫

{g>h}

f(g − h)dρ ≤ b
∫

{g>h}

(g − h)dρ (2)

Since g − h ≤ 0 on the set {g < h}, then

b
∫

{g<h}

(g − h)dρ ≤
∫

{g<h}

f(g − h)dρ ≤ a
∫

{g<h}

(g − h)dρ (3)

From (2) and (3), using the equality
∫

X
(g−h)dρ = µ1(X )−µ2(X ) = 1−1 = 0,

we have that

(b − a)
∫

{g<h}

(g − h)dρ + a
∫

X

(g − h)dρ = b
∫

{g<h}

(g − h)dρ + a
∫

{g>h}

(g − h)dρ

≤
∫

X

f(g − h)dρ

≤ b
∫

{g>h}

(g − h)dρ + a
∫

{g<h}

(g − h)dρ

= (b − a)
∫

{g>h}

(g − h)dρ + a
∫

X

(g − h)dρ

= (b − a)
∫

{g>h}

(g − h)dρ

So,

(b − a)
∫

{g<h}

(g − h)dρ ≤
∫

X

f(g − h)dρ ≤ (b − a)
∫

{g>h}

(g − h)dρ
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Thus,

sup
f :X→[a,b]

∣
∣
∣
∣

∫

X

f(g − h)dρ
∣
∣
∣
∣ = max

{

(b − a)
∫

{g>h}

(g − h)dρ, (b − a)
∣
∣
∣
∣

∫

{g<h}

(g − h)dρ
∣
∣
∣
∣

}

so,
1

b − a
sup

f :X→[a,b]

∣
∣
∣
∣

∫

X

f(g − h)dρ

∣
∣
∣
∣ = max

{ ∫

{g>h}

(g − h)dρ,

∣
∣
∣
∣

∫

{g<h}

(g − h)dρ

∣
∣
∣
∣

}

(4)

Now, ∀A ⊆ X we have

||µ1(A) − µ2(A)|| =

∣
∣
∣
∣

∫

A

(g − h)dρ

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

A
⋂

{g>h}

(g − h)dρ +
∫

A
⋂

{g<h}

(g − h)dρ

∣
∣
∣
∣

Hence, the biggest value is obtained if either A = {g > h}, or A = {g < h}.

So,

||µ1(·) − µ2(·)|| = max
{ ∫

{g>h}

(g − h)dρ,
∣
∣
∣
∣

∫

{g<h}

(g − h)dρ
∣
∣
∣
∣

}

=
1

b − a
sup

f :X→[a,b]

∣
∣
∣
∣

∫

X

f(g − h)dρ

∣
∣
∣
∣ (see (4))

2

So, in particular, we have ||µ1(·)−µ2(·)|| = supf :X→[0,1] |
∫

fdµ1 −
∫

fdµ2|

and ||µ1(·) − µ2(·)|| = 1
2
supf :X→[−1,1] |

∫

fdµ1 −
∫

fdµ2|

The next few propositions are not changed much, but we added several

details, so to make proofs more clear.

Proposition 2.2. If π(·) is stationary for our MC, then

||P n+1(x, ·) − π(·)|| ≤ ||P n(x, ·) − π(·)||,

n ∈ N , i.e. ||P n(x, ·) − π(·)|| is non-decreasing in n.

Proof:

∣
∣
∣P n+1(x, A) − π(A)

∣
∣
∣ =

∣
∣
∣
∣

∫

y∈X

P n(x, dy)P (y, A)−
∫

y∈X

π(dy)P (y, A)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

y∈X

P n(x, dy)f(y)−
∫

y∈X

π(dy)f(y)

∣
∣
∣
∣ (here f(y) = P (y, A))

≤ ||P n(x, ·) − π(·)||(by Proposition 2.1 for a=0, b=1)
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2

Proposition 2.3. Let t(n) = 2 supx∈X ||P n(x, ·) − π(·)||, where π(·) is a

stationary distribution. Then t is submultiplicative, i.e.

t(n + m) ≤ t(n)t(m)

for n, m ∈ N .

Proof: Let P ∗(x, ·) = P n(x, ·)−π(·) and Q∗(x, ·) = P m(x, ·)−π(·). Then

we’ll have that

(P ∗Q∗f)(x) ≡
∫

y∈X

f(y)
∫

z∈X

[P n(x, dz) − π(dz)][P m(z, dy) − π(dy)]

=
∫

y∈X

f(y)
[ ∫

z∈X

P n(x, dz)P m(z, dy) −
∫

z∈X

P n(x, dz)π(dy)

−
∫

z∈X

P m(z, dy)π(dz) +
∫

z∈X

π(dy)π(dz)
]

=
∫

y∈X

f(y)[P n+m(x, dy) − π(dy) − π(dy) + π(dy)] since π is stationary

=
∫

y∈X

f(y)[P n+m(x, dy) − π(dy)]

Let f : X → [0, 1], g(x) = (Q∗f)(x) ≡
∫

y∈X
Q∗(x, dy)f(y), and let ḡ =

supx∈X |g(x)|. Then

ḡ = sup
x∈X

∣
∣
∣
∣

∫

y∈X

(P m(x, dy) − π(dy))f(y)

∣
∣
∣
∣

≤ sup
x∈X

[

sup
f :X→[0,1]

∣
∣
∣
∣

∫

y∈X

fdP m −
∫

y∈X

fdπ
∣
∣
∣
∣

]

= sup
x∈X

||P m(x, ·) − π(·)|| by Proposition 2.1

=
1

2
t(m)

So, 2ḡ ≤ t(m). If ḡ = 0, then supx∈X |(Q∗f)(x)| = 0 => P ∗Q∗f = 0. If

ḡ 6= 0, then

2 sup
x∈X

|(P ∗Q∗f)(x)| = 2
ḡ

ḡ
sup
x∈X

|(P ∗g)(x)|

= 2ḡ sup
x∈X

|(P ∗g

ḡ
)(x)|

≤ t(m) sup
x∈X

|(P ∗g

ḡ
)(x)|
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Since −1 ≤ g
ḡ
≤ 1, we have

(P ∗g

ḡ
)(x) ≡

∫

y∈X

P ∗(x, dy)
g

ḡ
(y)

=
∫

y∈X

P n(x, dy)
g

ḡ
(y) −

∫

y∈X

π(dy)
g

ḡ
(y)

≤ sup
g

ḡ
:X→[−1,1]

∣
∣
∣
∣

∫

y∈X

g

ḡ
dP n −

∫

y∈X

g

ḡ
dπ

∣
∣
∣
∣

= 2||P n(x, ·) − π(·)|| by Proposition 2.1

So, supx∈X (P ∗ g
ḡ
)(x) ≤ t(n). Hence

t(n + m) = 2 sup
x∈X

||P n+m(x, ·) − π(·)||

= 2 sup
x∈X

sup
f :X→[0,1]

∣
∣
∣
∣

∫

fdP n+m −
∫

fdπ

∣
∣
∣
∣ (by Proposition 2.1)

= 2 sup
x∈X

sup
f :X→[0,1]

|(P ∗Q∗f)(x)| = 2ḡ sup
x∈X

sup
g

ḡ
:X→[−1,1]

|(P ∗g

ḡ
)(x)|

≤ t(m) sup
x∈X

sup
g

ḡ
:X→[−1,1]

|(P ∗g

ḡ
)(x)| ≤ t(n)t(m)

2

Example. Let X = {1, 2}, P (1, {1}) = 0.3, P (1, {2}) = 0.7, P (2, {1}) =

0.4, P (2, {2}) = 0.6. Let π(1) = 4
11

, π(2) = 7
11

, then π is a stationary

distribution. Indeed,
∑2

i=1 Pi1π(i) = 0.3 · 4
11

+ 0.4 · 7
11

= 1.2+2.8
11

= 4
11

= π(1),

and
∑2

i=1 Pi2π(i) = 0.7 · 4
11

+ 0.6 · 7
11

= 2.8+4.2
11

= 7
11

= π(2).

Let’s check if the above proposition is true, if we calculate

t(n) = sup
x∈X

||P n(x, ·) − π(·)||

without factor of 2. When x = 1 we have |P (1, {1})− π({1})| = |0.3− 4
11
| =

|0.3 − 0.3636363| = 0.0636, and |P (1, {2}) − π({2})| = |0.7 − 7
11
| = |0.7 −

0.6363636| = 0.0636. When x = 2 we have |P (2, {1}) − π({1})| = 0.0363,

and |P (2, {2}) − π({2})| = 0.0363. So, supx∈X ||P (x, ·) − π(·)|| = 0.0636.

Similarly, we can calculate that supx∈X ||P 2(x, ·) − π(·)|| = 0.00636. So,

t(1 + 1) = t(2) = 0.00636 > 0.004045 = (0.0636)2 = t(1)t(1). This example

shows that we, indeed, need factor of 2 in the property we just proved.
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Proposition 2.4. If µ1(·) and µ2(·) have densities g and h, respectively,

w.r.t. some σ-finite measure ρ(·), and M = max(g, h) and m = min(g, h),

then

||µ1(·) − µ2(·)|| =
1

2

∫

X

(M − m)dρ = 1 −
∫

X

mdρ

Proof: In the proof of Proposition 2.1 let a = −1 and b = 1. Then

||µ1(·) − µ2(·)|| =
1

2






∫

g>h

(g − h)dρ +
∫

g<h

(h − g)dρ




 =

1

2

∫

X

(M − m)dρ

Now, since M + m = g + h, it follows that
∫

X

(M + m)dρ =
∫

X

gdρ +
∫

X

hdρ = 1 + 1 = 2

So,

1

2

∫

X

(M − m)dρ = 1 −
1

2



2 −
∫

X

(M − m)dρ





= 1 −
1

2





∫

X

[(M + m) − (M − m)]dρ



 = 1 −
∫

X

mdρ

2

Proposition 2.5. For any probability measures µ1(·) and µ2(·) with

densities g and h, respectively, w.r.t. some σ-finite measure ρ(·), there exist

jointly defined random variables X and Y such that X ∼ µ1(·), Y ∼ µ2(·),

and P (X = Y ) = 1 − ||µ1(·) − µ2(·)||.

Proof: Let a =
∫

X
mdρ, b =

∫

X
(g − m)dρ =

∫

X
gdρ −

∫

X
mdρ = 1 − a,

c =
∫

X
(h − m)dρ, where m = min(g, h). When any of a, b, c are zero, the

proof is trivial. So, consider the case when they are all positive. We jointly

construct random variables U , V , W and I such that U has density m
a
, V

has density g−m
b

, W has density h−m
c

, and I is independent of U , V , and W

with P [I = 1] = a and P [I = 0] = 1 − a. Let X = Y = U is I = 1, and

X = V , Y = W if I = 0. Since X ∼ m
a
· (a) + g−m

b
· (1− a) = m + g −m = g

=> X ∼ µ1(·) and, similarly, Y ∼ µ2(·). Also, P [X = Y ] = P [I = 1] = a =
∫

X
mdρ = 1 − ||µ1(·) − µ2(·)|| (by the previous property).

2

11



3 When Does a Markov Chain Converge?

Our goal is to find out when and how fast our Markov chain converges to

the stationary distribution. Note that even if a Markov chain has a stationary

distribution π(·), it still may fail to converge to it. Consider the following

example:

Example. Let X = {1, 2, 3}, π({1}) = π({2}) = π({3}) = 1
3
. Let

P (1, {1}) = P (1, {2}) = P (2, {1}) = P (2, {2}) = 1
2

and P (3, {3}) = 1.

Then it’s easy to check that π is stationary, but if we start at {1}, that

is, if X0 = 1, then Xn ∈ {1, 2} ∀n. Thus, P (Xn = 3) = 0 ∀n, and so,

P (Xn = 3) 6→ π({3}), and therefore the distribution of Xn doesn’t coverge

to π(·). (This example, and examples below can be also found in [1].)

Note that here we have a reducible Markov chain, and countable state

space. For uncountable state space we’ll need a general definition for irre-

ducibility.

Definition. A chain is φ-irreducible if there exists a non-zero σ-finite

measure φ on X such that ∀A ⊆ X with φ(A) > 0 and ∀x ∈ X ∃n =

n(x, A) ∈ N such that P n(x, A) > 0.

Note: If a chain is irreducible, then it has many different irreducibility

distributions. However, it is possible to show that any irreducible chain has

a maximal irreducible distribution in the sense that all other irreducibility

distributions are absolutely continuous with respect to it. Maximal irre-

ducibility distributions are not unique but are equivalent, in sense that they

have the same null sets. From now on when we say φ-irreducible, we mean

that φ is a maximal irreducibility distribution.

But even if our chain is φ-irreducible it still might not converge to its

stationary distribution.

Example. Let X = {1, 2, 3} with π({1}) = π({2}) = π({3}) = 1
3
. Let

P (1, {2}) = P (2, {3}) = P (3, {1}) = 1. Then π(·) is stationary and the chain

is φ-irreducible (take φ(·) = δ1(·)). But if we start at {1}, that is, X0 = 1,

12



then Xn = 1 ∀n = 3k, k = 1, 2, .... So, P (Xn = 1) oscillates between 0 and 1,

and again we have that P (Xn = 1) 6→ π({3}), and there is no convergence.

In this case we have a periodic chain, so to have convergence we need to

get rid of the periodicity of our Markov chain.

Definition. A Markov chain with stationary distribution π(·) is aperi-

odic if there do not exist d ≥ 2 and disjoint subsets X1,X2, ...Xd ⊆ X with

P (x,Xi+1) = 1 ∀x ∈ Xi, i = 1, ..., d− 1, and P (x,X1) = 1 ∀x ∈ Xd such that

π(X1) > 0 (and hence π(Xi) > 0 ∀i). Otherwise, the chain is periodic with

period d, and periodic decomposition (X1, ...Xd).

3.1 The Asymptotic Convergence Theorem

Now we can formulate the main theorem of the current section.

Theorem 1. If a Markov chain with a stationary distribution π(·) on a

state space X with countable generated σ-algebra is φ-irreducible and ape-

riodic, then for π-a.e. x ∈ X ,

lim
n→∞

||P n(x, ·) − π(·)|| = 0.

In particular, limn→∞ P n(x, A) = π(A) for any measurable A ⊆ X .

Note that the ’π-a.e.’ part is very important in this theorem, because the

chain may fail to converge on a set of π-measure zero.

Example. Let X = {1, 2, ...}. Let P (1, {1}) = 1, and for x ≥ 2

P (x, {1}) = 1
x2 and P (x, {x + 1}) = 1 −

(
1
x2

)

. Then the chain has a

stationary distribution π(·) = δ1(·), and it is π-irreducible and aperiodic.

But if X0 = x ≥ 2, then P [Xn = x + n ∀n] =
∏∞

j=x

(

1 − 1
j2

)

> 0. So,

||Pn(x, ·) − π(·)|| 6→ 0 ∀x ≥ 2.

But what if we want our statement be true for all x, not just π-a.e.? It

turns out that it’s enough for a chain to be Harris recurrent.

Definition. A φ-irreducible Markov chain is Harris recurrent if for ∀A ⊆

X with φ(A) > 0, and ∀x ∈ X , P [∃n : Xn ∈ A|X0 = x] = 1, in words, the

chain will eventually reach A from x with probability 1.
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Now we know when our Markov chain converges, but we still don’t know

how fast.The following section will partially answer this question.

4 Quantative Convergence Rates

We want is to find quantative bounds on convergence rates, i.e. to find

some explicit function g(x, n) such that ||P n(x, ·)−π(·)|| ≤ g(x, n) and which

is getting small when n grows up.

4.1 Geometric and Uniform Ergodicity

Consider two types of Markov chains that allow us to define bounds for

the total variation form. For this task we need a stronger condition:

Definition. A Markov chain is ergodic if it’s irreducible, aperiodic and

positive Harris recurrent.

One convergence rate condition that is often considered is geometric er-

godicity

Definition. An ergodic Markov chain with stationary distribution π

is geometrically ergodic if there exist a non-negative extended real valued

function M which is finite for π-a.e. x ∈ X , and a positive constant ρ < 1

such that for n = 1, 2, 3...

||P n(x, ·) − π(·)|| < M(x)ρn

A stronger condition is uniform ergodicity:

Definition. An ergodic Markov chain with stationary distribution π is

uniformly ergodic if there exist a positive, finite constant M and a positive

constant ρ < 1 such that

||P n(x, ·) − π(·)|| ≤ Mρn

for all x and all n.

Proposition 4.2.1. A Markov chain with stationary distribution π is

uniformly ergodic if and only if supx∈X ||P n(x, ·)−π(·)|| < 1
2

for some n ∈ N .

14



Proof: (=>) Let the Markov chain be uniformly ergodic, then

lim
n→∞

sup
x∈X

||P n(x, ·) − π(·)|| ≤ lim
n→∞

Mρn = 0.

So, for n large enough we have supx∈X ||P n(x, ·) − π(·)|| < 1
2
.

(<=) Let supx∈X ||P n(x, ·)−π(·)|| < 1
2

for some n ∈ N . Then by Proposi-

tion 2.3 of the total variation norm we have that 2 supx∈X ||P n(x, ·)−π(·)|| =

t(n) ≡ β < 1, so using submultiplicativity we get that ∀j ∈ N t(jn) =

t(n + ... + n
︸ ︷︷ ︸

j

) ≤ t(n) · ... · t(n)
︸ ︷︷ ︸

j

= t(n)j = βj. Therefore from Proposition 2.2

of the total variation norm it follows that ||P m(x, ·)−π(·)|| ≤ ||P bm/ncn(x, ·)−

π(·)|| ≤ 1
2
t(bm/ncn) ≤ 1

2
βbm/nc ≤ βbm/nc ≤ β−1(β1/n)m = Mρm, where

M = β−1 < ∞ and ρ = β1/n < 1. So the chain is uniformly ergodic.

2

Before we state and prove the convergence theorems for geometrically and

uniformly ergodic Markov chains let us recall that if we are given a Markov

chain with transition probability P on a state space X , and a measurable

function f : X → R, we define the function Pf : X → R so that (Pf)(x)

is the conditional expected value of f(Xn+1) given Xn = x, i.e. (Pf)(x) =

E[f(Xn+1)|Xn = x] or,

(Pf)(x) =
∫

y∈X

f(y)P (x, dy).

We also define minorisation and drift conditions for a Markov chain:

Definition. A subset C ⊆ X is small (or (n0, ε, ν)-small) if there exist

n0 ∈ N, ε > 0, and a probability measure ν(·) on X such that

P n0(x, A) ≥ εν(A) (5)

∀x ∈ C and ∀ measurable A ⊆ X . The inequality (5) is called a minorisation

condition.

Definition. A Markov chain satisfies a drift condition if there exist

0 < λ < 1 and b < ∞, and a function V : X → [1,∞], such that

PV (x) ≤ λV (x) + bIC(x) (6)
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∀x ∈ X and some small set C ⊆ X .

Definition. A Subset C ⊆ X is petite ((n0, ε, ν)-petite), relative to a

Markov chain kernel P , if ∃n0 ∈ N, ε > 0, and a probability measure ν(·) on

X such that
n0∑

i=1

P i(x, ·) ≥ εν(·),

for all x ∈ C.

It’s easy to check that any small set is petite. The converse is false in

general, but

Lemma 4.2.2. For an aperiodic, φ-ireducible Markov chain, all petite

sets are small sets. (The proof of this lemma can be found in Chapter 5 of

[2].)

To prove convergence theorems we shall use the coupling method, so let’s

introduce it first.

4.2 Method of Coupling

Here we shall repeat the main idea of coupling from [1]. Suppose we have

two random variables X and Y , defined jointly on some space X . Let L(X)

and L(Y ) be their probability distributions. Then

||L(X) − L(Y )|| = sup
A

|P (X ∈ A) − P (Y ∈ A)|

= sup
A

|P (X ∈ A, X = Y ) + P (X ∈ A, X 6= Y )

− P (Y ∈ A, Y = X) − P (Y ∈ A, Y 6= X)|

= sup
A

|P (X ∈ A, X 6= Y ) − P (Y ∈ A, Y 6= X)|

≤ P (X 6= Y ),

Thus,

||L(X) − L(Y )|| ≤ P (X 6= Y ). (7)

In words, the total variation norm between the laws of two random vari-

ables is bounded by the probability that they are not equal. The inequality

(7) is called the coupling inequality.
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Now, suppose C is a small set. The coupling idea is to run two copies

of the Markov chain, {Xn} and {X ′
n}, each of which is being marginally

updated from P (x, ·), but whose joint construction gives a high probability

to become equal to each other, i.e. to couple.

THE COUPLING CONSTRUCTION:

We start with X0 = x and X ′
0 ∼ π(·), where π is a stationary distribution

of our Markov chain {Xn}, and n = 0, and repeat the following loop forever.

Beginning of Loop. Given Xn and X ′
n:

1. If Xn = X ′
n, then choose Xn+1 = X ′

n+1 ∼ P (Xn, ·), and replace n by

n + 1.

2. Else, if (Xn, X ′
n) ∈ C × C, then:

(a) with probability ε, choose Xn+n0
= X ′

n+n0
∼ ν(·);

(b) else, with probability 1 − ε, conditionally independently choose

Xn+n0
∼

1

1 − ε
[P n0(Xn, ·) − εν(·)],

X ′
n+n0

∼
1

1 − ε
[P n0(X ′

n, ·) − εν(·)].

If n0 > 1, then we go back to construct Xn+1, ..., Xn+n0−1 from their

correct conditional distributions given Xn and Xn+n0
, and also condi-

tionally independently construct X ′
n+1, ..., X

′
n+n0−1 from their correct

conditional distributions given X ′
n and X ′

n+n0
. In any case, replace n

by n + n0.

3. Else, conditionally independently choose Xn+1 ∼ P (Xn, ·) and X ′
n+1 ∼

P (X ′
n, ·), and replace n by n + 1.

Return to Beginning of Loop.

Under this construction, Xn and X ′
n are each marginally updated accord-

ing to the transition kernel P , and P [Xn ∈ A] = P n(x, A) and P [X ′
n ∈ A] =
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π(A) for all n and A ⊆ X . Note that the two chains are run independently

until they both in C at which time the minorisation splitting construction is

utilised. Such construction helps us to ensure successful coupling of the two

chains.

We shall show that we can use it to obtain bounds on ||P n(x, ·) − π(·)||.

In fact, we shall use the coupling construction to prove important theorems

that we’ll state below.

4.3 Statements and Proofs of Convergence Theorems

We shall need a bivariate drift condition of the form:

Ph(x, y) ≤
h(x, y)

α
(8)

∀(x, y) /∈ C × C, for some function h : X × X → [1,∞) and some α > 1,

where

Ph(x, y) =
∫

X

∫

X

h(z, w)P (x, dz)P (y, dw).

Here P represents running two independent copies of the Markov chain.

Then we can rewrite the coupling inequality as

||P n(x, ·) − π(·)|| ≤ P [Xn 6= X ′
n].

The following proposition will be very useful in our proofs. So let’s state

and prove it in a little more details than it is in [1].

Proposition 4.3.1. Let the univariate drift condition PV ≤ λV + bIC

be satisfied for some V : X → [1,∞], C ⊆ X , λ < 1, and b < ∞. Let

d = infx∈Cc V (x). Then if d > b
1−λ

−1, then the bivariate drift condition holds

for the same set C, with h(x, y) = 1
2
[V (x)+V (y)] and α =

(

λ+ b
d+1

)−1

> 1.

Proof: When (x, y) /∈ C × C, then either x /∈ C or y /∈ C, or both.

Without loss of generality assume that x /∈ C => x ∈ Cc => V (x) ≥ d =

infx∈Cc V (x), and we have that V (y) ≥ 1 ∀y. Thus,

h(x, y) =
1

2
[V (x) + V (y)] ≥

1

2
[d + 1] =

1 + d

2
.
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So, 2h(x,y)
1+d

≥ 1.

Also we have that

PV (x) ≤ λV (x) + bIC = λV (x)

PV (y) ≤ λV (y) + bIC ≤ λV (y) + b.

Therefore,

PV (x) + PV (y) ≤ λV (x) + λV (y) + b.

Then

Ph(x, y) =
1

2
[PV (x) + PV (y)]

≤
1

2
[λV (x) + λV (y) + b]

= λh(x, y) +
b

2

≤ λh(x, y) +
b

2

2h(x, y)

1 + d

=
[

λ +
b

1 + d

]

h(x, y)

And if d > b
1+λ

−1 => 1−λ > b
1+d

=> λ+ b
1+d

< 1, then α =
(

λ+ b
1+d

)−1

> 1.

So, the bivariate drift condition is satisfied.

2

Now, let B = max[1, α(1 − ε) supC×C Rh], where

Rh(x, y) =
∫

X

∫

X

(1 − ε)−2h(z, w)[P (x, dz) − εν(dz)][P (y, dw)− εν(dw)] (9)

for all (x, y) ∈ C × C.

Using all above we can now give quantative bounds on total variation

norm.

Theorem 2. Consider a Markov chain on a state space X with transition

kernel P . Suppose ∃C ⊆ X , h : X × X → [1,∞), a probability distribution

ν(·) on X , α > 1, n0 ∈ N, ε > 0 such that P n0(x, ·) ≥ εν(·) and Ph(x, y) ≤

h(x,y)
α

, ∀(x, y) /∈ C × C. Define B as above. Then for any joint initial
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distribution L(X0, X
′
0), and any integers 1 ≤ j ≤ k, if {Xn} and {X ′

n}

are two copies of the Markov chain started in the joint initial distribution

L(X0, X
′
0), then

||L(Xk) − L(X ′
k)|| ≤ (1 − ε)j + α−kBj−1E[h(X0, X

′
0)].

Proof: Let Nk = #{m : 0 ≤ m ≤ k, (Xm, X ′
m) ∈ C × C}. Then for

1 ≤ j ≤ k we have that

||L(Xk) − L(X ′
k)|| ≤ P [Xk 6= X ′

k]

= P [Xk 6= X ′
k, Nk − 1 ≥ j] + P [Xk 6= X ′

k, Nk−1 < j]

We can right away estimate the first term of the above sum, since

{Xk 6= X ′
k, Nk − 1 ≥ j} ⊆ {the first j coin flips all come up tails}.

Thus,

P [Xk 6= X ′
k, Nk−1 ≥ j] ≤ (1 − ε)j.

So, it’s left to estimate the second term. To do that, define

Mk = αkB−Nk−1h(Xk, X
′
k)I{Xk 6=X′

k
},

k = 0, 1, 2, ...; N−1 = 0.

Claim: {Mk} is a supermartingale, i.e.

E[Mk+1|X0, ...Xk, X
′
0, ..., X

′
k] ≤ Mk.

Proof of the Claim: Consider two cases:

Case 1: (Xk, X
′
k) /∈ C × C, then Nk = Nk−1. Thus,

E[Mk+1|X0, ..., Xk, X
′
0, ..., X

′
k] = E[Mk+1|Xk, X

′
k] (since {Xn} is a Markov chain)

= αk+1B−Nk−1E[h(Xk+1, X
′
k+1)I{Xk+1 6=X′

k+1
}|Xk, X

′
k]

≤ αk+1B−Nk−1E[h(Xk+1, X
′
k+1)|Xk, X

′
k]I{Xk 6=X′

k
}

= Mkα
E[h(Xk+1, X

′
k+1)|Xk, X

′
k]

h(Xk, X ′
k)

= Mkα
Ph(Xk, X

′
k)

h(Xk, X ′
k)

≤ Mkα
h(Xk, X

′
k)

αh(Xk, X ′
k)

(since Ph(x, y) ≤ h(x,y)
α

for (x, y) /∈ C × C)

= Mk
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So, in this case {Mk} is a supermartingale.

Case 2: (Xk, X
′
k) ∈ C × C, then Nk = Nk−1 + 1. Assume that Xk 6= X ′

k

(otherwise case is trivial). Then

E[Mk+1|X0, ..., Xk, X
′
0, ..., X

′
k] = E[Mk+1|Xk, X

′
k] (since {Xn} is a Markov chain)

= αk+1B−Nk−1−1E[h(Xk+1, X
′
k+1)I{Xk+1 6=X′

k+1
}|Xk, X

′
k]

= αk+1B−Nk−1−1(1 − ε)Rh(Xk, X
′
k)

= MkαB−1(1 − ε)
Rh(Xk, X

′
k)

h(Xk, X
′
k)

≤ Mk (since B = max(1, α(1 − ε) supC×C Rh) and h ≥ 1)

Thus,{Mk} is a supermartingale.

2

So, since {Mk} is a supermartingale, we can show, by taking expectation

and using induction, that E[Mk] ≤ E[M0] ∀k = 0, 1, 2, ....

Now, since B ≥ 1,

P [Xk 6= X ′
k, Nk−1 < j] = P [Xk 6= X ′

k, Nk−1 ≤ j] = P [Xk 6= X ′
k,−Nk−1 ≥ −j]

≤ P [Xk 6= X ′
k, B

−Nk−1 ≥ B−(j−1)]

= P [I{Xk 6=X′

k
}B

−Nk−1 ≥ B−(j−1)]

≤
E[I{Xk 6=X′

k
}B

−Nk−1 ]

B−(j−1)
(by Markov)

≤ Bj−1E[I{Xk 6=X′

k
}B

−Nk−1h(Xk, X
′
k)] (since h ≥ 1)

= α−kE[αkB−Nk−1I{Xk 6=X′

k
}h(Xk, X

′
k)] = α−kBj−1E[Mk]

≤ α−kBj−1E[M0] = α−kBj−1E[h(X0, X
′
0)]

Hence, ||L(Xk) − L(X ′
k)|| ≤ (1 − ε)j + α−kBj−1E[h(X0, X

′
0)].

2

Now we shall state two important results that give us more information

about the rate of convergence of the Markov chain to its stationary distribu-

tion.
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Theorem 3. Let {Xn} be a Markov chain with stationary distribution

π(·). Suppose the minorisation condition holds for all x ∈ X . More formally,

let for all x ∈ X P n0(x, ·) ≥ εν(·) be satisfied for some n0 ∈ N and ε > 0

and probability measure ν(·), i.e. X is a small set itself. Then the chain is

uniformly ergodic, and, in fact,

||P n(x, ·) − π(·)|| ≤ (1 − ε)bn/n0c

for all x ∈ X .

Proof: Since C = X , every n0 iteration Xn and X ′
n might be equal with

probability at least ε. Then, if n = n0m, P [Xn 6= X ′
n] ≤ (1− ε)m. Therefore,

||P n)x, ·) − π(·)|| ≤ P [Xn 6= X ′
n] ≤ (1 − ε)m = (1 − ε)

n
n0 .

Then, by Proposition 2.2, ||P n(x, ·) − π(·)|| ≤ (1 − ε)
b n

n0
c
∀n.

2

Before we state the next theorem, let’s prove the follwing lemma, that

appears to be a useful tool in our proof.

Lemma 4.3.2. Given a small set C satisfying the minorisation condition,

and a drift fucntion V satisfying the drift condition, there exists a small set

C0 ⊆ C such that these conditions still hold (with the same n0, ε and b, but

with λ replaced by some λ0 < 1), and such that

sup
x∈C

V (x) < ∞ (10)

Proof: Let λ and b be as in the drift condition. Choose δ such that

0 < δ < 1 − λ, and let λ0 = 1 − δ. Thus, λ < λ0 < 1. Let K = b
1−λ−δ

, and

let C0 = C
⋂
{x ∈ X : V (x) ≤ K}. Since C0 ⊆ C, then the minorisation

condition hold for C0. So, we need to show that the drift condition also holds

on C0 with λ0, i.e. for all x ∈ X

PV (x) ≤ λ0V (x) + bIC0
(x).
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We have that for all x ∈ X

PV (x) ≤ λV (x) + bIC(x).

Thus, for all x ∈ C0 we have

PV (x) ≤ λV (x) + bIC(x) = λV (x) + b ≤ λ0V (x) + b = λ0V (x) + bIC0
(x).

For all x ∈ Cc we have

PV (x) ≤ λV (x) + bIC(x) = λV (x) ≤ λ0V (x) = λ0V (x) + bIC0
(x).

For all x ∈ C \ C0 we have that V (x) > K, and therefore

PV (x) ≤ λV (x) + bIC(x) = (1 − δ)V (x) − (1 − λ − δ)V (x) + b

≤ (1 − δ)V (x) − (1 − λ − δ)K + b

= λ0V (x) − b + b = λ0V (x)

= λ0V (x) + bIC0
(x)

2

Theorem 4. Let {Xn} be a Markov chain with stationary distribution

π(·). Suppose that the minorization condition is satisfied for some C ⊂ X ,

n0 ∈ N, ε > 0 and probability measure ν(·). Suppose that also the drift

condition is satisfied for some constants 0 < λ < 1 and b < ∞, and a

function V : X → [1,∞] with V (x) < ∞ for at least one (hence for π-a.e.)

x ∈ X . Then the chain is geometrically ergodic.

Proof: Set h(x, y) = 1
2
[V (x) + V (y)]. According the above lemma we

can assume that (10) holds, which is together with the drift condition gives

us that supC×C Rh(x, y) < ∞. Thus,

B = max[1, α(1 − ε) sup
C×C

Rh] < ∞.

Let d = infx∈Cc V (x). Then if d > b
1−λ

−1, by Proposition 4.3.1, the bivariate

drift condition will hold. In this case our theorem follows from Theorem 2.

But if d ≤ b
1−λ

− 1, then we cannot prove the theorem in that way. The
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condition d > b
1−λ

−1 ensures that the chain is aperiodic, and when we don’t

have this condition, we have to use the aperiodicity more directly. If we could

enlarge C so that the new value of d would satisfy d > b
1−λ

− 1, and to use

apperiodicity to show that this enlarged C is still a small set, then we would

finish the proof. (Note: We then shall have no direct control over the new

values of n0 and ε, and, thus, this approach does not provide a quantitative

convergence rate bound.)

So, let’s continue. Choose any d′ > b
(1−λ)−1

, and let S = {x ∈ X : V (x) ≤

d′}. Set C ′ = C
⋃

S. Then

d = inf
x∈Cc

V (x) ≥ d′ >
b

1 − λ
− 1.

Since (10) holds on C and V is bounded on S, then (10) will still hold on

C ′ = C
⋃

S. Then B < ∞ even upon replacing C by C ′. Therefore our

theorem will follow from Proposition 4.3.1. and Theorem 2, if we show that

C ′ is a small set. Since our chain is aperiodic and φ-irreducible, then, by

Lemma 4.2.2, it’s enough to show that C ′ is a pitite set. (Note: This is

where we use aperiodicity.)

Claim: C ′ is a petite set.

Proof of the Claim: Since λ < 1, it is possible to find N large enough

so that r ≡ 1 − λNd > 0. Let’s denote the first return time to C by τC =

inf{n ≥ 1, Xn ∈ C}. Let Zn = λ−nV (Xn), and let Wn = Zmin(n,τC). Then if

τC ≤ n, we have that

E[Wn+1|X0, X1, ..., Xn] = E[Zmin(n+1,τC)|X0, X1, ..., Xn]

= E[ZτC
|X0, X1, ..., Xn]

= ZτC
= Wn.

And if τC > n, then Xn /∈ C, and, thus,

E[Wn+1|X0, X1, ..., Xn] = E[Zmin(n+1,τC)|X0, X1, ..., Xn]

= λ−(n+1)E[V (Xn+1)|X0, X1, ..., Xn] = λ−(n+1)PV (Xn)
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≤ λ−(n+1)λV (Xn) (since PV ≤ λV + bIC = λV )

= λ−nV (Xn) = Wn.

Hence we showed that {Wn} is a supermartingale. Now, for x ∈ S we have:

P [τC ≥ N |X0 = x] = P [λ−τC ≥ λ−N |X0 = x] (since λ−1 > 1)

≤
E[λ−τC |X0 = x]

λ−N
(by Markov)

≤ λNE[λ−τCV (XτC
)|X0 = x] (since V ≥ 1)

= λNE[ZτC
|X0 = x]

≤ λNE[Z0|X0 = x] (since {Zmin(n,τC)} = {Wn} is a supermartingale)

= λNE[V (X0)|X0 = x] = λNV (x) ≤ λNd (since x ∈ S).

Therefore,

P [τC < N |X0 = x] = 1 − P [τC ≥ N |X0 = x] ≥ 1 − λNd ≡ r.

Since ∀x ∈ C P n0(x, ·) ≥ rεν(·), then ∀x ∈ S we have that

N+n0∑

i=1+n0

P i(x, ·) =
N∑

i=1

P i+n0(x, ·) ≥
∫

C

N∑

i=1

P i(x, dy)P n0(y, ·)

≥
N∑

i=1

P i(x, C)εν(·) =
N∑

i=1

Px(Xi ∈ C)εν(·)

≥ Px

[ N⋃

i=1

{Xi ∈ C}
]

εν(·) = P [τC < N |X0 = x]εν(·) ≥ rεν(·).

Hence, ∀x ∈ S
⋃

C,
∑N+n0

i=n0
P i(x, ·) ≥ rεν(·). Thus, C ′ = C

⋃
S is petite,

which proves the claim and, hence, the theorem 4.

2
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5 Proof of the Asymptotic Convergence The-

orem

In this section we shall prove the Theorem 1 that we stated in the Section

3, i.e. if we have a φ-irreducible and aperiodic Markov chain on a state space

X , and it has a stationary distribution π(·), then limn→∞ ||P n(x, ·)−π(·)|| =

0, for π-a.e. x ∈ X . The main details of this proof are taken from [1].

As we can notice, this theorem does not assume the existence of a small

set C, which we need in order to use the coupling construction. Therefore,

let us give an important result about the existence of a small set.

Theorem 5.1. Every φ-irreducible Markov chain, on a state space

X with countably generated σ-algebra, contains a small set C ⊆ X with

φ(C) > 0. Furthermore, the minorisation measure ν(·) may be taken to

satisfy ν(C) > 0.

The proof of this theorem can be found in Chapter 5 of [2].

Now, knowing that a small set C exists, we can show that the pair

(Xn, X ′
n) in the coupling construction will hit C × C infinitely often. Thus,

they will have infinitely many opportunities to couple with probability greater

than ε > 0. Therefore they will couple eventually with probability 1, proving

our asymptotic theorem.

We’ll state two useful lemmas that we are going to use, but for now we

leave them without proofs, although the proofs can be found in [1].

Lemma 5.2. Let {Xn} be a Markov chain on a state space X with

a stationary distribution π(·). Suppose that for some A ⊆ X , we have

Px(τA < ∞) > 0 ∀x ∈ X . Then for π-a.e. x ∈ X , Px(τA < ∞) = 1, where

τA = inf{n ≥ 1 : Xn ∈ A}.

Lemma 5.3. Let {Xn} be an aperiodic Markov chain on a state space

X with a stationary distribution π(·). Let ν(·) be any probability measure

on X . Assume that ν(·) � π(·), and that ∀x ∈ X there exist n = n(x) ∈ N

and δ = δ(x) > 0 such that P n(x, ·) ≥ δν(·). Also, let T = {n ≥ 1; ∃δn >
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0 s.t.
∫

ν(dx)P n(x, ·) ≥ δnν(·)}, and assume that T is non-empty. Then

∃n∗ ∈ N with T ⊇ {n∗, n∗ + 1, n∗ + 2, ...}.

Now, let C be a small set as in Theorem 5.1. Let {(Xn, X ′
n)} be our

coupling construction. Let G = {(x, x′) ∈ X × X : P(x,x′)(∃n ≥ 1 : Xn =

X ′
n) = 1}. If (X0, X

′
0) ≡ (x, X ′

0) ∈ G, then from the coupling construction it

follows that limn→∞ P [Xn = X ′
n] = 1. Hence, limn→∞ ||P n(x, ·) − π(·)|| = 0,

which proves Theorem 1. So, it’s enough for us to show that P [(x, X ′
0) ∈

G] = 1 for π-a.e. x ∈ X .

To show this, let Gx = {x′ ∈ X : (x, x,′ ) ∈ G} for x ∈ X , and let

G = {x ∈ X : π(Gx) = 1}. Then if we prove that π(G) = 1, we’ll finish our

proof.

Let’s first show that (π × π)(G) = 1. Since, by Theorem 5.1, ν(C) > 0,

applying Lemma 5.3 we have that from any (x, x′) ∈ X × X , the joint chain

will eventually hit C×C with positive probability. Then by applying Lemma

5.2 to the joint chain, it follows that the joint chain will return to C × C

with probability 1 from (π × π)-a.e. (x, x′) /∈ C × C. When the joint chain

hits C × C, then conditional on not coupling, it will update from R which

must be absolutely continuous with respect to π×π, and therefore, applying

Lemma 5.2 one more time, the chain will return to C × C with probability

1. Thus, the joint chain will repeatedly return to C × C with probability 1,

until we get Xn = X ′
n. By the coupling construction, whenever the chain

hits C × C, the event that Xn = X ′
n has probability greater than ε > 0. So,

eventually we shall have Xn = X ′
n and, thus, (π × π)(G) = 1.

Now, assume by contradiction that π(G) < 1. Then

(π × π)(Gc) =
∫

X

π(dx)π(Gc
x) =

∫

X

π(dx)[1 − π(Gx)] =
∫

G
c

π(dx)[1 − π(Gx)] > 0,

which contradicts the fact that (π × π)(G) = 1. Hence, π(G) = 1.

This finishes the proof of the asymptotic theorem.

2
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6 V-Uniform Ergodicity

Let P1 and P2 be Markov transition kernels, and for a positive function

1 ≤ V < ∞ define the V -norm distance between P1 and P2 as

|||P1(·) − P2(·)|||V := sup
x∈X

||P1(x, ·) − P2(x, ·)||

V (x)
(11)

Note: We usually consider the distance |||P n − π|||V , which is actually is

not defined by (11), because π is a probability measure, not a kernel. But if

we consider π as a kernel by defining π(x, A) := π(A), A ⊆ X , x ∈ X , then

|||P n − π|||V is well-defined.

Let’s first show that ||| · |||V is an operator norm.

Lemma 6.1. Let L∞
V be the vector space of all functions f : X → R+

such that

|f |V := sup
x∈X

|f(x)|

V (x)
< ∞.

If |||P n−π|||V is finite, then P n −π is a bounded operator from L∞
V to itself,

and |||P n − π|||V is its operator norm.

Proof: We can rewrite ||| · ||| as

|||P n − π|||V = sup
x∈X

{

sup|g|≤V |P n(x, g) − π(g)|

V (x)

}

= sup
|g|≤V

sup
x∈X

|P n(x, g) − π(g)|

V (x)

= sup
|g|≤V

|P n(·, g) − π(g)|V

= sup
|g|V ≤1

|P n(·, g) − π(g)|V

which is, by definition, the operator norm of P n − π.

2

Definition. An ergodic chain is V -uniformly ergodic if

lim
n→∞

|||P n(x, ·) − π(·)|||V = 0.
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Note: A chain is uniformly ergodic if it is V -uniformly ergodic in the

special case where V ≡ 1, i.e. limn→∞ supx∈X ||P n(x, ·) − π(·)|| = 0.

Proposition 6.2. Let {Xn} be a Markov chain with a stationary distri-

bution π, and let for some n0, |||P − π|||V < ∞ and |||P n0 − π|||V < 1. Then

the chain is V-uniformly ergodic.

Proof: Since ||| · ||| is an operator norm, then ∀n, m ∈ N we have that

|||P n+m − π|||V = |||(P − π)n(P − π)m|||V (since π is stationary)

≤ |||P n − π|||V |||P
m − π|||V

Now, ∀n ∈ N we write n = jn0 + i, 1 ≤ i ≤ n0. Since |||P − π|||V < ∞

without lost of generality we can find 1 ≤ M < ∞ such that |||P−π|||V ≤ M .

Then since |||P n0 − π|||V = γ < 1 we have that

|||P n − π|||V = |||P kn0+i − π|||V = |||(P n0 − π)k(P − π)i|||V

≤ |||P − π|||iV |||P
n0 − π|||kV ≤ M iγk ≤ Mn0γ

( n
n0

− i
n0

)

≤ Mn0γ
n

no
−1 = Mn0γ−1

(

γ
1

n0

)n

Thus, since γ
1

n0 < 1 and M < ∞, we have that |||P n − π|||V → 0 as n → ∞.

By definition, it means that the Markov chain is V-uniformly ergodic.

2

Note that when V ≡ 1, Proposition 6.2 is equivalent to Proposition 4.2.1,

though the proofs are quite different. So we can say that the proof of Propo-

sition 6.2 is an equivalent proof of Proposition 4.2.1 in the case when V ≡ 1.

6.1 Open Problem

Now we are ready to state an interesting fact and an existing problem, that

we’ll try to solve in the near future.

Fact 1. The minorisation condition (5) and the drift condition (6) are

equivalent to the V-uniform ergodicity.
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To prove this fact we would need to combine Proposition 1 of [4] and a

few theorems from Meyn and Tweedie [2].

Since the Proposition 6.2 is a part of the proof of one of those theorems,

let us state the theorem itself.

Theorem 6.1.1(see theorem 16.0.1 in [2]). Let a Markov chain {Xn} be

φ-irreducible and aperiodic. Then the following are equivalent for any V ≥ 1:

(i) {Xn} is V -uniformly ergodic.

(ii) There exists r > 1 and R < ∞ such that for all n ∈ N

|||P n − π|||V ≤ Rr−n.

(iii) There exists some n > 0 such that |||P i − π|||V < ∞ for i ≤ n and

|||P n − π|||V < 1.

(iv) The drift condition holds for some small set C and some V0, where

V0 is equivalent to V in the sense that for some c ≥ 1

c−1V ≤ V0 ≤ cV.

And the open problem consists in proving the above fact 1 using the

coupling method described in the previous sections.

To be continued...
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