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Introduction

Markov Chain Monte Carlo (MCMC) is a computational method for approximately sampling
from distributions of interest. The method consists of starting with some measure space
(X,B(X)), where X ⊂ Rn for some n and B(X) is a countably generated sigma field, and
then simulating an ergodic Markov chain {Xk, k ≥ 0} on X , with transition probability P
such that π is a stationary distribution for the chain. An important usage of the sampling
process is to compute integrals of the form

π(f) ,
∫
X
f(x)π(dx)

where f : X → R is a π-integrable function, by using estimators of the type

Sn(f) =
1

n

n∑
k=1

f(Xk)

which motivates the concern for law of large number results for MCMC. Typically the transi-
tion probability P depends on some tuning parameter θ which affects the convergence proper-
ties of the algorithm. This tuning process is often done manually done by trial and error, but
this can be time consuming and increasingly difficult in higher dimensions. An alternative
approach is using adaptive MCMC algorithms which attempt to learn the best parameter
values on the fly while they run. However, adaptive MCMC algorithms may not always
preserve the stationarity of π, as we will demonstrate in the examples section. This failure
at ergodicity can sometimes occur very counter-intuitively. For example, in cases where the
tuning parameter is the index of a family of Markov transition kernels for the chain, adaptive
MCMC algorithms can ruin ergodicity even if each individual kernel converges to π. The
goal of this write up is to summarize the results found in different papers which deal with
conditions that ensure ergodicity of such algorithms, along with considering the relationship
between them. We will focus mainly on the strong law of large numbers results found in [1],[4]
and [9], as well as the ergodicity result found in [2].
A popular MCMC sampling technique is the Metropolis Hastings (MH) algorithm which re-
quires the choice of a proposal distribution q, and for our discussion we will assume the target
distribution π and q both admit densities which we will also denote π and q respectively with
a slight abuse of notation. The distribution q is used to generate a potential transition for
the Markov chain {Xk}. If the chain is currently at x and the proposed candidate is y, the
proposal is accepted with probability α(x, y) given by

α(x, y) =

{
1 ∧ π(y)q(y,x)

π(x)q(x,y) , if π(x)q(x, y) > 0,

1 otherwise

otherwise the proposal is rejected and the chain stays at x. It is clear that α is chosen such that
the Markov chain is reversible with respect to π. An algorithm proposed by Haario, Saksman
and Tammien in [6] deals with the case where the space is Rn for some n and the proposal
distribution q being multivariate normal with zero mean and covariance matrix Γ. Gelman,
Roberts and Gilks have shown in [5] that the optimal covariance matrix is (2.382/n)Γπ where
Γπ is the true covariance matrix of the proposal distribution. They propose to learn Γπ on
the fly with an algorithm which can be summarized by

µk+1 = µk + γk+1(Xk+1 − µk), k ≥ 0,

Γk+1 = Γk + γk+1

(
(Xk+1 − µk)(Xk+1 − µk)T − Γk

)
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where θk = (µk,Γk) is the index for a Metropolis Hastings transition kernel with multivariate
normal increment distribution having mean µk and covariance matrix λΓk, where λ is a
positive constant dependent only on the dimension of the space and kept constant throughout
the iterations.
It was realized that such a scheme is a particular case of the Robins-Monro stochastic control
algorithm which takes the form

θk+1 = θk + γkH(θk, Xk+1)

where γk is a sequence of step sizes. In our case H(θ, x) is given by

H(θ, x) , (x− µ, (x− µ)(x− µ)T − Γ)T (1)

The first result we will mention deals with this recursion which is quite important in stochastic
approximation algorithms.

1 Andrieu-Moulines

The result we will focus on in this paper is a strong law of large numbers dealing with the
case when the index parameter updates according to the Robins-Monro algorithm described
above. The assumptions will require geometric drift uniformly on compact sets, and will utilize
stochastic approximation to cover the space using a (possibly infinite) union of compact sets
embedded in each other, and re-initializing the chain once it leaves the current compact set
and wanders off to another one.

Definition of the chain

We will be working with an underlying measure space (X,B(X)), where X ⊂ Rnx , nx being
some integer, and B(X) is a countably generated σ-field. We also introduce:
1. A family Markov transition kernels on X, {Pθ, θ ∈ Θ}, indexed by a finite-dimensional
parameter θ belonging to some open set Θ ⊂ Rnθ . We assume that for each θ ∈ Θ, Pθ is
π-irreducible and that πPθ = π.
2. A family of update functions {H(θ, x) : Θ × X 7→ Rnθ} used to adapt the value of the
tuning parameter.
We extend the parameter space with a cemetery point, θc /∈ Θ and define Θ̄ , Θ ∪ {θc}.
We also introduce the family of transition kernels {Qγ̃ , γ̃ ≥ 0} such that for any γ̃ ≥ 0,
(x, θ) ∈ X ×Θ, A ∈ F and B ∈ B(Θ̄) (where B(Θ̄) denotes a countably generated σ-field of
subsets of Θ̄),

Qγ̃(x, θ;A×B) =

∫
A
Pθ(x, dy)I{θ + γ̃H(θ, y) ∈ B}

+ δθc(B)

∫
A
Pθ(x, dy)I{θ + γ̃H(θ, y) /∈ Θ}

where δθ denotes the Dirac delta function at θ. Set θ0 = θ ∈ Θ, X0 = x ∈ X and for k ≥ 0
define the sequence {(Xk, θk), k ≥ 0}: if θk = θc, then set θk+1 = θc and Xk+1 = x, otherwise
(Xk+1, θk+1) ∼ Qρk+1

(Xk, θk; ·), where ρ is a sequence of step sizes. We will use P̃ρx,θ and Ẽρx,θ
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to denote respectively the distribution and expectation of the stopped process with step size
sequence ρ . This corresponds to the algorithm which updates

θk+1 = θk + ρk+1H(θk, Xk+1)

The chain described above is the basic stopped form of the algorithm. Due to the interaction
between Xk and θk the stabilization of this inhomogeneous Markov chain is often difficult to
achieve and so we consider the new chain Z defined below. First we need to introduce some
notions. We say a family {Kq, q ≥ 0} of compact subsets of Θ is a compact coverage of Θ if⋃

q≥0

Kq = Θ and Kq ⊂ int(Kq+1), q ≥ 0

where int(A) denotes the interior of the set A. Let γ , {γk} be a monotone non-increasing
sequence of positive numbers and let K be a subset of X. For a sequence a = {ak} and an
integer l we define the shifted sequence a←l as follows : for any k ≥ 1, a←lk , ak+l. Let
Π : X × Θ̄ → K × K0 be a measurable function. We now define the homogeneous Markov
chain Zk = {(Xk, θk, κk, νk), k ≥ 0} on the product space Z , X× Θ̄×N×N, with transition
probability R : Z ×B(Z)→ [0, 1] algorithmically defined as follows. For any (x, θ, κ, ν) ∈ Z:
1. If ν = 0 then draw (X ′, θ′) ∼ Qγκ(Π(x, θ); ·); otherwise draw (X ′, θ) ∼ Qγκ+ν (x, θ; ·).
2. If θ′ ∈ Kκ, then set κ′ = κ and ν ′ = ν + 1; otherwise, set κ′ = κ+ 1 and ν ′ = 0.

Assumptions

For W : X → [1,∞) and f : X → R a measurable function, define

||f ||W = sup
x∈X

|f(x)|
W (x)

and LW = {f : ||f ||W <∞}

We say a family of functions {fθ : X → R, θ ∈ Θ} is W−Lipschitz if, for any compact subset
K ⊂ Θ,

sup
θ∈K
||fθ||W <∞ and sup

(θ,θ′)∈K×K,θ 6=θ′

||fθ − fθ′ ||W
|θ − θ′|

<∞

Conditions:
(A1) For any θ ∈ Θ), Pθ has π as its stationary distribution. In addition there exists a
function V : X → [1,∞) such that supx∈K V (x) < ∞ with K defined earlier and such that,
for any compact subset K ⊂ Θ:

(i) Minorization condition. There exists C ∈ B(X), ε > 0 and a probability measure ϕ
such that ϕ(C) > 0 and for all A ∈ B(X) and (x, θ) ∈ C ×K,

Pθ(x,A) ≥ εϕ(A)

.

(ii) Geometric Drift condition. There exist constants λ ∈ [0, 1), b ∈ (0,∞) satisfying

PθV (x) ≤
{
λV (x) if x ∈ Cc,
b if x ∈ C

for all θ ∈ K.
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(A2) For any compact subset K ⊂ Θ and any r ∈ [0, 1], there exists a constant C such that
for any (θ, θ′) ∈ K ×K and f ∈ LV r ,

||Pθf − Pθ′f ||V r ≤ C||f ||V r |θ − θ′|

where V is given in (A1).
(A3) {Hθ : θ ∈ Θ} is V β-Lipschitz for some β ∈ [0, 1/2] with V defined in (A1).

Result

Theorem 1. Let {Kq, q ≥ 0} be a compact coverage of Θ and let γ = {γk} be a nonincreaasing
positive sequence such that

∑∞
k=1 k

−1γk <∞. Consider the time homogeneous Markov chain
{Zk} on Z with transition probability R defined earlier. Assume (A1) - (A3) and let f : X →
R be a function such that ||f ||V α <∞ for some α ∈ [0, 1− β), with β as in (A3) and V as in
(A1). Assume, in addition that P̄∗{limn→∞ κn <∞} = 1. Then

lim
n→∞

1

n

n∑
k=1

[f(Xk)− π(f)] = 0

almost surely - P̄∗ where P̄∗ corresponds to the Markov chain started at (x, θ, 0, 0).

Example 1. We return to the algorithm of Haario et. al, and state a result due to theorem
1 above, for when the target distribution is super-exponential in the tails, and the step size
sequence γ satisfies certain conditions. More precisely we will assume:

(M)

(i) π is bounded away from zero on every compact set and continuously differentiable.

(ii)

lim
|x|→∞

〈
x

|x|
,∇ log π(x)

〉
= −∞

(iii)

lim
|x|→∞

sup

〈
x

|x|
,∇ log π(x)

〉
A discussion of the case when π is sub-exponential in the tails comes in the relationship
between AF and AM section.
We will also assume the sequence of step sizes γ is non-increasing, positive and

∞∑
k=1

γk =∞,
∞∑
k=1

{γ2
k + k−1/2γk} <∞ (2)

Now consider the process {Zk} with {Pθ, θ = (µ,Γ) ∈ Θ , Rnx × Cnx+ where nx is some
integer and Cnx+ is the cone of positive nx×nx matrices. We will let the proposal distribution
qθ be normal with covariance matrix λΓ where λ is a constant depending on the dimension
of the space only. Let {Hθ, θ ∈ Θ} be as in (1), π satisfy (M) and γ satisfy (2). If we let
W , π−1/(supπ)−1, then for any α ∈ [0, 1), for any f ∈ L(Wα)

lim
n→∞

1

n

∞∑
k=1

f(Xk)→ π(f)

almost surely P̄∗.

6



2 Roberts-Rosenthal

The following is another ergodicity result due to Roberts and Rosenthal which is stated
in terms of distributional convergence rather than the strong law of large number format
in which the previous result was stated. We define a new chain on X such that letting
Gn = σ(X0, . . . , Xn, θ0, . . . , θn) we have that

P [Xn+1 ∈ B|Xn = x, θn = θ,Gn−1] = Pθ(x,B), x ∈ X, θ ∈ Θ, B ∈ B(X)

We will use || · || to denote the total variation distance.

Theorem 2. Suppose that limn→∞ ||Pθn+1(x, ·) − Pθn(x, ·)|| = 0 in probability. Let x∗ ∈ X
and θ∗ ∈ Θ. Suppose further that for every ε > 0 the sequence {Mε(Xn, θn)}∞n=0 is bounded
in probability given X0 = x∗ and θ0 = θ∗, where

Mε(x, θ) = inf{n ≥ 1 : ||Pnθ (x, ·)− π(·)|| ≤ ε}

Then
lim
n→∞

||P[Xn ∈ ·|X0 = x∗, θ0 = θ∗]− π(·)|| = 0 (3)

This motivates the following open problem posed in [2], which attempts to weaken the so
called containment condition that {Mε(Xn, θn)}∞n=0 is bounded in probability.

Open Problem 1. Suppose that limn→∞ ||Pθn+1(x, ·)−Pθn(x, ·)|| = 0 in probability. Let x∗ ∈
X and θ∗ ∈ Θ. Suppose further that for every ε > 0 there is m ∈ N such that P[Mε(Xn, θn) <
m, infinitely often |X0 = x∗, θ0 = θ∗] = 1. Does this imply (3) ?

Example 2. An interesting example demonstrating the limitations of adaptive MCMC is
the following running example discussed in [7] which is also available in an animated Java
applet (See [8]). Let K ≥ 4 be an integer and let X = {1, . . . ,K}. Let π{2} = b > 0 be very
small, π{1} = a > 0, π{3} = π{4} = · · · = π{K} = (1 − a − b)/(K − 2) > 0 and π(x) = 0
for x /∈ X. Let Θ = N. For θ ∈ Θ, let Pθ be the kernel corresponding to a random walk
Metropolis algorithm for π(·), with proposal distribution

qθ(x, ·) = Uniform{x− θ, x− θ + 1, . . . , x− 1, x+ 1, . . . , x+ θ}

The adaptive scheme is defined as follows. Begin with θ0 = 1. Let M ∈ N ∪ {∞} and let
p : N→ [0, 1]. For n = 0, 1, 2, . . . , let

Zn =

{
1 if Xn 6= Xn+1

−1 if Xn = Xn+1

If Zn = 1 and θn = M then θn+1 = θn. If Zn = −1 and θn = 1 then θn+1 = θn. Otherwise
with probability p(n) let θn+1 = θn + Zn and with probability 1− p(n) let θn+1 = θn.
By changing M , K and p(n) and by manipulating a and b we can obtain a number of variations
for this algorithm, some of which surprisingly fail to be ergodic despite seeming fairly simple.
For example it is shown in [2] that for M = 2, K = 4 and p(n) ≡ 1 if we let a = ε and b = ε2

for some ε > 0 the chain gets stuck at {x = θ = 1} and has a disproportionate probability
of entering to that of leaving, which leads to the chain’s failure to be ergodic. More precisely
it is shown that limε→0 limn→∞ P (Xn = θn = 1) = 1. However it is also shown in [2] that as
long as p(n)→ 0 the example will be ergodic as a result of theorem 2 above.
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3 Atchadé and Fort

In this result due to Atchadeé and Fort, the geometric drift condition is relaxed to a polynomial
drift condition which allows consideration of a wider class of chains. For example if the target
distribution of interest has heavy tails, then the Random Walk Metropolis Algorithm and the
Metropolis Adjusted Langevin algorithm result in sub geometric kernels. We consider a chain
{Yk = (Xk, θk), k ≥ 0} on X × Θ with transition kernels {P̄ (n; ·)n ≥ 0} satisfying that for
any A ∈ B(X), ∫

A×Θ
P̄
(
n; (x, θ); (dx, dθ′)

)
= Pθ(x,A)

We also introduce, for any integer l ≥ 0, a family of sequences of transition kernels {P̄l(n; ·)n ≥
0} where P̄l(n; ·) , P̄ (l + n; ·) and let P(l)

x,θ denote the probability of of the Markov chain

{Yk = (Xk, θk), k ≥ 0} with transition kernels {P̄l(n; ·)n ≥ 0}, using Px,θ as shorthand no-

tation for P(0)
x,θ. The conditions needed for the strong law of large numbers result are as follows:

(B1) There exists C ∈ B(X), ε > 0 and a probability measure ϕ such that ϕ(C) > 0 and for
all A ∈ B(X) and (θ, x) ∈ Θ× C,

Pθ(x,A) ≥ εϕ(A)

(B2) There exists a measurable function V : X → [1,∞), constants α ∈ (0, 1) and b, c ∈ (0,∞)
satisfying

PθV (x) ≤
{
V (x)− cV 1−α(x) if x ∈ Cc,
b if x ∈ C

(B3) There exists a probability measure π and some constant β ∈ [0, 1−α) such that for any
level set D , {x ∈ X, V (x) ≤ d} of V ,

lim
n→∞

sup
D×Θ
||Pnθ (x, ·)− π||V β = 0

(B4) For any level set D of V and any ε > 0,

lim
n→∞

sup
l≥0

sup
D×Θ

P(l)
x,θ(D(θn, θn−1) ≥ ε) = 0

where D(θ, θ′) , supx ||Pθ(x, ·)− Pθ′(x, ·)||.

Theorem 3. Assume B1-B4. Then for any measurable function f : X → R in LV β and any
(x, θ) ∈ X ×Θ,

lim
n

1

n

n∑
k=1

f(Xk) = π(f), Px,θ − a.s

The following is the special case of the above result which we will focus on:

Proposition 1. Assume that B3 and B4 hold with D = X and β = 0. Then for any
measurable bounded function f : X → R and any (x, θ) ∈ X ×Θ,

lim
n→∞

1

n

n∑
k=1

f(Xk) = π(f)

almost surely Px,θ.
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Example 3. The following example mentioned in [4] demonstrates two points. The first
being that the conditions in the AF paper holding uniformly over compact sets is not suffi-
cient to guarantee that their result holds, and the second is that it displays that even if the
marginals converge the law of large numbers might not hold for bounded functions.
Let X = {0, 1} and {Pθ, θ ∈ (0, 1)} be a family of transition matrices with Pθ(0, 0) =
Pθ(1, 1) = 1 − θ. Let {θn, n ≥ 0}, θn ∈ (0, 1), be a deterministic sequence decreasing to
0, and {Xn, n ≥ 0} be a Markov chain on {0, 1} with transition matrices {Pθn , n ≥ 0}. One
can check that the conditions mentioned in the AF section hold uniformly over compact sets,
and that Px,θ0(Xn ∈ ·) → π(·) as n → ∞ but that, however, even the weak law of large
numbers fails to hold for bounded functions f . For this example in which the marginals do
converge to π, neither the conditions for AF nor the ones for RR hold.

In the next result found in [9] Atchade and Fort deal specifically with the Robins Monro
stochastic control algorithm dealt with in the AM paper. However the assumptions again
require only a sub-geometric drift instead of a geometric one. Consider the chain {Zk; k ≥ 0}
introduced in the AM section. We will require the following conditions:

(C1) There exists α ∈ (0, 1], and a measurable bounded function V : X → [1,∞) such that
for any compact subset K of Θ, there exists b, c ∈ (0,∞) such that for any (x, θ) ∈ X ×K,

PθV (x) ≤ V (x)− cV 1−α(x) + b

(C2) For any β ∈ [0, 1− α], ξ ∈ [0, 1−β
α − 1] there exists a constant C such that

sup
{g: ||g||

V β
≤1}
|Pnθ g(x)− π(g)|(n+ 1)ξ ≤ CV β+αξ(x), n ≥ 0

(C3)
P̄∗{ lim

n→∞
κn <∞} = 1

(C4) This conditions holds for β ∈ [0, 1− α), if there exist ε > 0, ξ > 0, β + αξ < 1− α such
that for any (x, θ, l) ∈ K ×K0 × N,

Ẽγ
←l

x,θ

[ ∞∑
k=1

1

k1−εDβ(θk, θk+1)I{σKl>k}V
β+αξ(Xk)

]
<∞

where Ẽγ
←l

x,θ as in the AM section is the expectation with respect to the stopped process

{(Xk, θk); k ≥ 0} with step size sequence γ←l, and

σKl , {inf k ≥ 1 : θk /∈ Kl}

Now for β ∈ [0, 1], θ, θ′ ∈ Θ define

Dβ(θ, θ′) , sup
||f ||

V β
≤1
||Pθf − Pθ′f ||V β

Theorem 4. Assume (C1)-(C3) and (C4) with some β ∈ [0, 1 − α). Let f : X → R ∈ LV β
be such that supθ∈K ||f ||V β <∞ for any compact subset K of Θ. Then

lim
n→∞

n∑
k=1

1

n
f(Xk) = 0

in P̄∗ probability.
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This brings us to another open problem.

Open Problem 2. Assume (C1) -(C4). Does this imply a weak law of large numbers for
measurable functions f without the additional assumptions that f ∈ LV β , 0 ≤ β < 1− α ?

4 Relationship between RR and AM

Theorem 5. If the conditions in Theorem 1 hold, then the conditions in Theorem 2 hold.

Proof. Suppose the conditions in theorem 1 hold. We first show that the diminishing adap-
tation condition must hold as well. Since we have that limn→∞ κn <∞ almost surely, we can
work on the set where κ∞ is finite. We can write the said set as the union,

⋃
n{κ∞ = n},

and hence it suffices to prove that the diminishing adaptation condition holds almost surely
on each set in the union. Suppose κ∞ = m. Then our kernel indices θk eventually live in the
compact set Km. Let τ = infk{θn ∈ Km ∀n > k}. Since our chain lives in

⋃
n{τ = n} we

need only prove that the desired result holds on each set of the form {τ = k}. Now suppose
τ = k. Then by (A2) we have that for all n > k and any f ∈ LV there exists a constant C
such that

||Pθn+1f − Pθnf ||V ≤ C||f ||V |θn+1 − θn|

where V is given in (A1). Since, in particular, this holds for all indicator functions we
deduce that the total variation distance between Pθn+1(x, ·) and Pθn(x, ·) is bounded above
by C|θn+1−θn|, for some constant C, uniformly over all x. On the other hand, by construction,
θn+1 − θn = γn+1H(θn, Xn+1) and, under assumption (A3) since V is bounded there exists a
constant C such that, for any x, θ ∈ X ×Km, |H(θ, x)| ≤ C. Hence

lim
n→∞

|θn+1 − θn| ≤ lim
n→∞

γn+1C = 0

since γn → 0 by assumption. Hence ||Pθn+1(x, ·)−Pθn(x, ·)|| goes to 0 almost surely as n goes
to infinity.
We now have to show that the containment condition holds. We know by theorem 2.3 in [3]
that (A1) implies that there exists positive constants C < ∞ and ρ < 1 such that for any
f ∈ LV , all θ ∈ Km and any j ≥ 0,

||P jθ − π(f)||V ≤ C||f ||V ρj

and again, by the same logic used earlier, the total variation distance between P jθ (x, ·) and π is
bounded above by Cρj uniformly over all x and all θ ∈ Km. Given ε > 0 let N1 = infj∈NCρ

j <
ε. Recalling that we are working on the set {τ = k}, for n ≤ k Mε(Xn, θn) is bounded almost
surely by some random integer, N . Since our chain lives in the set

⋃
n{N = n}, we need

only prove that the containment condition holds almost surely on each set in the union.
Suppose N = N2. For n > k, Mε(Xn, θn) is bounded above by N1 almost surely. Letting
N = max(N1, N2), we have that for all x ∈ X, and θ ∈ Θ,

P [Mε(Xn, θn) ≤ N |X0 = x, θ0 = θ] = 1, ∀n ∈ N

This completes the proof. For an example where the ergodicity result holds but the conver-
gence is not geometric (and therefore the AM conditions do not hold) consult example 4 in
the relationship between AF and AM section.
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5 Relationship between AF and AM

If the conditions for theorem 1 hold, the the conditions for theorem 4 hold as discussed in
section 2.5.1 in [4]. However the following example allows us to mention a case where the
convergence is sub-geometric and therefore the AM conditions do not hold, but where the AF
conditions do hold. More precisely we will consider a specific and slightly modified version of
the algorithm of Haario et. al.

Example 4. Consider the sequence {Zk : k ≥ 0} with Θ = K × Θ+ × [a, b] where K is
a compact subset of Rnx , Θ+ is a convex compact subset of the cone of positive nx × nx
matrices, and −∞ < a < b < ∞. We will use the sequence of step sizes {1/(k + 1); k ≥ 0}.
The algorithm updates according to the Haario et. al recursion discussed earlier, with the
additional parameter c updating according to

cn+1 =
1

n+ 1
(α(Xn, Yn+1)− ᾱ)

where Yn+1 is the candidate generated from the proposal distribution qθn , and ᾱ is some
constant. We will also assume π is sub-exponential in the tails. More specifically, assume

(N1) π is positive, continuous and twice continuously differentiable in the tails.

(N2) There exists m ∈ (0, 1), positive constants di < Di, i = 0, 1, 2 and r,R > 0 such
that

(i)
〈
∇π(x)
|∆π(x)| ,

x
|x|

〉
≤ −r

(ii) d0|x|m ≤ − log π(x) ≤ D0|x|m

(iii) d1|x|m−1 ≤ |∇ log π(x)| ≤ D1|x|m−1

(iv) d2|x|m−2 ≤ |∇2 log π(x)| ≤ D2|x|m−2

(N3) There exists s∗ > 0, 0 < v < 1−m and 0 < η < 1 such that

lim
|x|→∞

sup
θ∈Θ

∫
{z, |z|≥η|x|v}

(
1 ∨ π(x)

π(x+ z)

)s∗
qθ(z)dµLeb(z) = o(|x|2(m−1))

Assuming (N1) - (N3) then the algorithm described above satisfies the property that there
exists 0 < s ≤ s∗ such that for any function f ∈ Lπ−r+1, 0 ≤ r < s,

1

n

n∑
k=1

f(Xk)→ π(f)

almost surely P̄∗. The result above is due to the AF theorem, since the algorithm converges
sub-geometrically and the AM conditions are not satisfied.
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6 Relationship between RR and AF

It is clear that if the conditions for proposition 1 hold then the conditions for theorem 2 must
hold immediately. However example 4 will demonstrate that the conditions for theorem 2
being satisfied does not guarantee that the AF result will hold.

Example 5. We begin with the special case of example 1 discussed in the RR section,
with M = 2, p(n) ≡ 1, K = 4 and parameters a and b chosen so that limn→∞ P (Xn = 1) = p
for some p > π(1). (We can do that since limε→0 limn→∞ P (Xn = θn = 1) = 1). We will call
this the ”One-Two” adaptation scheme. Let {Ck}∞k=0 be a sequence of independent Bernoulli
random variables with P (Ck = 1) = 1/k, and let qk(·) denote the distribution of Ck.
We consider the chain {(Xn, Cψ(n), θn) : n ≥ 0}, where ψ : N → N maps n to k such

that 2k
2

+ 1 ≤ n ≤ 2(k+1)2 . The adaptation scheme sets θ0 = θ1 = θ2 = 1, and for
n ≥ 3 proceeds with the One-Two adaptation scheme if Cψ(n) = 1 and sets θn = 1 oth-
erwise. The transitions of this Markov process are given by the family of transition kernels
{P̄ (n; (x, c, θ), (dx′, dc′, dθ′), n ≥ 0} where

P̄ (n; (x, c, θ), (dx′, dc′, dθ′)) =
(
I{c = 1}Pθ(x, dx′)

(
I{x = x′}δ1∨(θ−1)(dθ

′) + I{x 6= x′}δM∧(θ+1)(dθ
′)
)

+ I{c = 0}Pθ(x, dx′)δθ(dθ′)
)

×
(
I{ψ(n) 6= ψ(n+ 1)}qψ(n+1)(dc

′) + I{ψ(n) = ψ(n+ 1)}δc(dc′)
)

It is shown in [2] that the above chain satisfies the conditions for theorem 2, however the
strong law of large numbers fails for the function g(x) = I{x = 1}.
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