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Abstract

In the world of multidimensional random walk Metropolis algorithms, the seminal paper
of Roberts, Gelman and Gilks (1997) [Roberts et al.(1997)Roberts, Gelman, Gilks, et al.] pro-
posed a scaling of the proposal distribution that maximizes the algorithm’s efficiency, in the
case of an iid target distribution. Subsequent generalizations have been made (cf. Rosen-
thal, Bédard, Roberts, Stuart, etc.), where some hypothesis on the target distribution has
been somewhat relaxed, though keeping some simplifying property (product form, symmetry,
etc.). The next step would seek a stronger generalization, for example to target distributions
satisfying certain properties and where no product form is assumed. Discussion follows.
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1 The Random Walk Metropolis Algorithm and Variants

1.1 The Random Walk Metropolis Algorithm
The Random Walk Metropolis Algorithm, or RWA, is motivated by a simple fact of life: sampling
for a complicated distribution can be hard.
The idea of MCMC is this: in order to sample from the target distribution, we are going to
’approach’ it with a sequence of approximations. Because it is easier to work with a sequence
of random variables, we associate each approximating distribution to a random variable. We
start somewhere in the state space, jump randomly in a certain perimeter defined by a proposal
distribution, look at the new state we obtain, and decide to move to it with a probability describing
how closer this new position is to a ’high-density zone’ of the target distribution. After a while,
this stochastic process, which happens to be a Markov Chain, tends towards positions of ’higher
target distribution density’, and therefore the distributions associated with every new step better
emulate the target distribution.
In conclusion, we start somewhere and randomly explore the state space in directions of higher
density of target distribution we wish to emulate.

MATHEMATICAL NOTATION

Xn
s,i where i is the vector component, s is the time-index or step of process, and n is the vector

dimension. We will sometimes write one subscript index, which will refer to either time or vector
component, according to context.

The Markov process at hand, or ’sequence of approximations’, is Xn = (Xn
0 , X

n
1 , X

n
2 , ..., X

n
∞)

On the Target distribution:
It is the distribution we want to sample from. We write it Π(x), where x is a n-dimensional vector.

On the Proposal distribution:
At Xi, we jump with an iid Gaussian centered where we are and of variance σ2. It is the easiest
and less expensive choice. The expectancy of the Gaussian is well-defined, sigma is the only
’loose’ parameter: for the scaling, we might choose it to be inversely proportional to n, the vector
dimension of the process Xn: σ2 = l2

n−1 .

On the variance parameter:
Let us interpret intuitively how the proposal variance affects the Markov process. σ is sort of the
average jump distance at each step of the process: if it is too small, the state space takes too long
to be explored, and the convergence is significantly too slow; if it is too big, it is more probably
that the possible next step is of lower stationary density than the one we are at currently, such
a move would be refused by the transition probability and stationarity would result. Finding an
optimal value for the variance is key.

On the probability of jumping to a new state:
At state Xn

i , we obtain a candidate Y ni for Xn
i+1 by jumping following the proposal distribution:

Y ni = Xn
i + Jni where Jni ∼ N (0, σ2In)), is the ’jump’ following the RWM proposal distribution.

Now that we have a candidate Y ni , we must choose whether to move to it or remain in the current
state Xn

i by weighting out choice in favor of higher target density : this ’weight’ is the acceptance
function α(Xn, Y n) = min(1,

Π(Y n
i )

Π(Xn
i ) ). More specifically, α(xn, Y n)) is the probability that we

choose Y ni over Xn
i . It follows that the probability that we remain at Xn

i is 1− α(Xn, Y n).
On a side note, we often only have access to a distribution proportional to the true target distri-
bution. Thus, the quotient form Π(Y n

i )
Π(Xn

i ) ) that compares the target density of states Xn
i and Y ni is

relevant, as it is independent of that the coefficient of proportionality.

Efficiency criteria:
1/ a priori, to maximize the estimated squared jumping distance: maxlE[((Xd

n+1,i−Xd
n,i)α(xn, Y n))2]

[Atchadé et al.(2011)Atchadé, Roberts, and Rosenthal]
2/ after scaling and some work, maximize the velocity of the asymptotic continuous process, a
Langevin diffusion.
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1.2 The Metropolis-Adjusted Langevin Algorithm
Abbreviated as MALA, this novelty in this algorithm is that it adds intentionality in going from
a step of the Markov process to the next :

1. An ’intentional’ or ’damped’ proposed move.

The proposed ’next move’ is generated not by a symmetric Gaussian, a good working
choice for sure. Rather, knowing that asymptotically the probability distribution of a state
behaves like the invariant distribution Π(x), we damp in the ’direction of high probability
concentration of Π’. Simply put, the proposed ’next move’ is generated according to an SDE
dynamic relying on the direction of ∇Π and such that the stationary law of that dynamic
matches the invariant law of the Markov process.

2. An acceptance function evaluating the proposed move.

Here we use the traditional Metropolis acceptance function, in its entire - not symmetrical
as in the previous pages - form. Indeed, the transition distribution used will be an exponential
decreasing with the L2 distance between the current and proposed states: it is a harder
journey when the distance is long.

The result for optimality in the case of an iid target distribution is to fine tune the AOAR to
0.524 (vs. the 0.234 for the RMW) [Roberts and Rosenthal(1998)].

1.3 Hamiltonian Monte-Carlo
The statistics-physics analogy is this:
the physical position is the state space variables
the potential energy is minus log of the probability density of those variables
position space. The minus log expression is reminiscent of information theory and mathematical
entropy...
the momentum variables are artificially introduced with respect to the position variables

For more information, we refer the reader to [Neal et al.(2011)].
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2 The iid target distribution model
[Roberts et al.(1997)Roberts, Gelman, Gilks, et al.]

2.1 Preliminary notions

Generators A stochastic process (Zt) is characterized by an infinitesimal generator.
For a continuous-time process, the generator is the differential space-operator in the Feynman-Kac
equivalent PDE.
For a discrete-time process, the generator writes as < G,V > ((Zt)) = limt→0

E[V (Zt)]−V (z0)
t =

limt→0
E[V (Zt)−V (z0)]

t where Z0 = z0, V is functional. The expectancy kills the stochasticity and
brings the computation to R, an easily totally ordered set. If the process is time-homogenous
Markov, which loosely states that the ’starting point plays no big role’, we can write the generator
as: limt→0

E[V (Zs)−V (Zt)|Zt=z]
t . Like its continuous-time counterpart, it is clear that the genera-

tor somewhat emulates the logic of differentiating at time 0 (or t for a time-homogenous
process), but for a stochastic process.

Skorokhod topology Many central functions encountered in probability, for example the cu-
mulative distribution function, are càdlàg: continuous on the right side, with limits on the left side.
It therefore makes sense to group them in a space, which we call the Skorokhod space. The most
commonly used metric on that space assigns to it a topology, which we call the Skorokhod topol-
ogy. Among its properties, are a certain time-elasticity and space-elasticity: a function that is
epsilon-perturbed in time (input space) or in space (output-space) remains the same
through the lens of the Skorokhod topology.
In that sense, it generalizes the uniform convergence topology, which bears space-elasticity but not
time-elasticity.

Convergence of stochastic processes Much of the theory is to be found in Ethier and Kurtz’s
Characterization and Convergence, 1986. We here cite the lemma, theorems, and corollaries that
will support our proof:

Chapter 4, Theorem 8.2
In substance, it states that a sufficient condition for the finite-dimensional distributions of a

sequence of time-continuous processes to convergence weakly in the Skorokhod topology to those
of a Markov process, is L1 convergence of their generators.

Chapter 3, Theorem 7.8
To go beyond convergence of distributions to convergence of the time-continuous stochastic

processes themselves, a sufficient condition is relative compactness of the sequence of stochastic
processes.

Chapter 4, Corollary 8.7
The relative compactness can be verified by making the generators uniformly converge on a set or

limiting probability 1.

Lemma
Since, in our proof, the function g=log’f is lipschitz, a core function V for the generator G will be

C∞compact.

Precision
Most of the Ethier and Kurtz results stated above require that the functional space of the test

function V be complete and separable. That is the case of C∞compact.
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2.2 Intuition behind the proof
[Bédard and Rosenthal(2008)]

To ’force’ the convergence of the Markov chain toward a continuous stochastic process, we rescale
in time and space.

Time-wise, we accelerate the Markov process by the dimension number n. As such, the time
between two consecutive jumps becomes 1

n , which goes to zero as n grows to ∞.

Space-wise, we temper the proposal standard deviation, the typical ’jump’ if you will, by a
O(1/n) magnitude. More precisely, we choose σ2 = l2

n−1 . We want l to be a free parameter than
we can optimize for convergence speed. One may think: the jumps decrease, what if we have
premature convergence? This is compensated for by the time-wise rescaling: mobility = number
of jumps x length of jumps ∼ n l2

n−1 ∼ l
2.

Intuitively, as the dimension increases, the proposed moves become smaller and closer in time,
giving an asymptotically continuous process. This limiting process is actually driven by a Langevin
SDE: asymptotically optimizing convergence speed is now equivalent to maximizing the easily
recognizable coefficient of diffusion-speed.

In a sense, this is a more complicated case of the simple symmetric random walk converging to
a Brownian motion.
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2.3 Walkthrough RGG’s proof of weak convergence with generators

PROCESSES

Xn = (Xn
t )t∈Z is the original Markov process. It is reversible with respect to πn, and is πn-

irreducible, aperiodic and hence ergodic [Roberts and Smith(1994)] or [Mengersen et al.(1996)Mengersen, Tweedie, et al.]

Zn = (Znt )t is the accelerated Markov process. How do we choose the acceleration-type? The
first guideline is this: Ethier and Kurtz’s results on convergence are stated for continuous-time
processes: we must therefore transform our original discrete Markov process into a continuous
one.

The most obvious acceleration-type is:

• a deterministic n-linear acceleration: (Znt )t = (Xn
[nt])t

It is the easiest starting point. We know that this accelerated process will jump every other 1
n

and stay put between them. Let us note that throughout this document we use expectancies,
and the jumps being at discrete times, they are of measure 0 and do not interfere in a an
expectancy. What is more, this accelerated version does not preserve the time-homogeneous
property of the discrete-time version (cf. Appendix D) 11 which, if not absolutely necessary
to maintain Ethier and Kurtz’s results, remains a desirable property.

How do we preserve the time-homogeneous Markov property of the discrete-time and transpose it
into a continuous-time version? This property denotes a ’memoryless’ stochastic process. In

order to affect time with this ’memorylessness’, what better option than to link time transitions
with the ’memoryless’ property of the exponential distribution! The time index with thus follow

a Poisson process. Which brings us to our second acceleration-type...

• a stochastic acceleration
...allowing the process to fall an epsilon away from the deterministic jumping points. The
time between two consecutive steps is distributed according to an exponential with mean the
time-scaling term 1

n .

The distinction is a theoretical one: while the jumping times of the deterministic process are
every other 1

n , for the stochastic process the jumping times can fall an epsilon before or
afterhand. The time-elasticity of the Skorokhod topology views them as equivalent: indeed, in

practical terms, both have the same generator. (cf. Appendix C) 10.

Onwards, we write the accelerated process (Znt )t, knowing it is stochastically accelerated but can
be conceptually understood as deterministically accelerated, thanks to the time-elasticity of the

Skorokhod topology and the sharing of a same generator.

Un = (Znt,1)t is the 1st component of the accelerated process Zn. Thought it is embedded
in Zn which is Markov, Un itself is not Markov as it is one-dimensional and the acceptance
depends on all dimensions. We anticipate the results of our proof, yet let us state here that Un
will convergence to a one-dimensional Langevin, independent from the other components, and
satisfying the Markov property as solution of a regular SDE. In short, Un is Markov-embedded,
asymptotically Markov, but not Markov itself.
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GENERATORS

< Gn, V > (xn) = nEY [(V (Y n) − V (xn))α(xn, Y n)] where V acts on Rn, is the generator of
the accelerated process Zn (cf. Appendix B) 9.
Notation reminder : Y in subscript means that the expectancy acts on Y and is conditional to
Xn(s) = xn(s), the lowercase indicating a constant.

< Gn, V > (xn) = nEY [(V (Y n)− V (xn))α(xn, Y n)] where V is restricted to R, is the generator
of the one-dimensional accelerated process Un.
To be rigorous, restricting the core function of the generator to one dimension shouldn’t necessarily
give us the generator of the process restricted to one dimension: in other words, restricting to one
dimension and taking the generator don’t commute. It so happens that this is justified in our
case. We spare the details and content ourselves with saying that the supposed generator verifies
a martingale condition and is therefore the correct generator [Bédard(2006)].

< G,V > (x) = h(l)[ 1
2V
′′(x) + 1

2
d
dx (logf)(x)V ′(x)] is the anticipated limiting generator. It acts

on functions of R.

TARGET DISTRIBUTION

In the iid case, the target distribution is written Π(xn) = f(xn1 )...f(xnn). That is the whole
point: to break up the complexity of the problem by studying (decorrelated) one-dimensional
components instead of an n-dimensional vector.
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2.3.1 Starting point and Strategy

Looking at the generator, we have n times the expectancy of a product of terms (the integrand),
each clouding with functions the known behavior of Y nt − xnt ∼ N (0, σ2In)), the ’gaussian jump’.
We would like to ’extract’ that known behavior from the functions: that can be done by using
a Taylor formula on each of the product terms: we will be left with a polynomial in (Y nt − xnt )
plus a remainder. The expectancy kills the randomness, and replaces the polynomial in and spits
out a polynomial in (Y nt − xnt ) with a polynomial in σ = O( 1√

n
), plus the expected remainder.

Multiplied with n, the lower-order terms of the 1√
n
polynomial are saved whilst the higher-order

ones including the remainder disappear, as n → ∞. We will be left with the generator of the
limiting process.

Is there any smart economy of effort that can be done to spare from multivariate Taylor formulas
and convergence theorems? The limiting process is distributed according to an iid target distribu-
tion, so we can sensibly expect Xn to asymptotically act iid. As such, we choose to anticipate that
behavior by considering the generator not of (Ut), but of its first component (Ut,1). We are entitled
to do so is insofar as (Ut,1) is indeed stochastic process. It may not be independent from the other
components (Ut,i), it may not be Markov, we do not know that its limiting stochastic process will
be independent from that of the other components (Ut,i) (that is our hope, not a certainty, at this
point). Our new generator writes as:

< Gn, V > (xn) = nEY1
[(V (Y n)−V (xn))EY2,...,n

α(xn, Y n)] = nEY1
[(V (Y n1 )−V (xn1 ))EY2,...,n

α(xn, Y n)]
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2.3.2 Taylor for the second product term

The generator is the product of two inner terms. We take one of them, E, simplify it by looking
at its asymptotic behavior Elim, and compute a new, asymptotic generator G1, hopefully

malleable enough to optimize the rescaled MCMC algorithm’s efficiency.

We smartly rewrite the second product term

The second product term contains itself a product which we classically write in exp o ln form to
manipulate a sum, in which we isolate the term in y1 as it relates to the outer expectancy and is,
in the eyes of our inner expectancy, deterministic.

E = EY2,...,n
α(xn, Y n)] = E

[
1 ∧ exp

{
log( f(Y1)

f(x1) ) +
∑n
i=2(log(Yi)− log(xi))

}]
We can conveniently work the Taylor-Lagrange formula on R1 (this results from the product form
of the target distribution), for each term of the long sum.

E = E

[
1∧exp

{
log( f(Y1)

f(x1) ) +
∑n
i=2

[
(logf(xi))

′(Yi − xi) + 1
2 (logf(xi))

′′(Yi − xi)2 + 1
6 (logf(Zi))

′′′(Yi − xi)3
]}]

To simplify notation, as we are dealing with the function logf, let us write it g. As such,

g(xi) = logf(xi)

g′(xi) = (logf(xi))
′ = f ′(xi)

f(xi)
measures discontinuities of f

g′′(xi) = (logf(xi))
′′ = f ′′(xi)

f(xi)
− g′(xi)2
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We look at our rewritten term and notice that it
most likely simplifies asymptotically, making it

more easily computable. We conjecture the
simplified limit form

Can our E be simplified? Given the three sums, each of iid random variables, there is something
in hoping that asymptotically there occurs some simplification, by the likes of a law of large
numbers.

Let us look at each term more closely:

• 1st order term
It follows a N (0,

∑n
i=2 g

′(xi)
2) and we are comfortable working with a Gaussian.

• 2nd order term
Each term follows a χ2(1) law multiplied by a constant, which would add complexity to our
computation by hand. Does the sum simplify asymptotically? In spirit of a law of large
numbers, we might expect:∑n
i=2

1
2g
′′(xi)(Yi − xi)2 ∼

∑n
i=2

1
2g
′′(xi)σ

2 as E[(Yi − xi)2] = σ2.
Also ∼

∑n
i=2−

1
2g
′(xi)

2σ2 as g′′(xi) = (logf(xi))
′′ = f ′′(xi)

f(xi)
− g′(xi)2

and it is reasonable to hope that f ′′(xi)
f(xi)

is of higher order than g′(xi)2, and therefore asymp-
totically less consequential.
The asymptotically constant 2nd order term would add itself to the mean of the Gaussian.

• 3rd order term
In the same spirit, heuristically:
(Yi − xi)3 = O(1/n

3
2 ), so

∑n
i=2

1
6g
′′′(Zi)(Yi − xi)3 = O(1/n

1
2 ).

We therefore hope to be able to asymptotically neglect the 3rd order term.

We therefore conjecture this asymptotic simplification:
E → Elim = E[1 ∧ γ]

γ = exp(log( f(Y1)
f(x1) ) +A)

A ∼ N (µn,Σ
2
n), µn =

∑n
i=2−

σ2

2 g
′(xi)

2,Σ2
n =

∑n
i=2 g

′(xi)
2

Discussion We could have kept g′′ instead of −g′ and have found a different, more obvious, set
a limiting probability one, perhaps the set of points verifying |

∑n
i=2 g

′′(xi)(
(Yi−xi)

2

2 − σ2

2 )| ≤ f(n)
where f decreases as n increases. In that case, we might have made the following conjecture.
As it happens, a property often found optimizing MCMC algorithms is: E[µn] = −σ

2
n

2 E[Σ2
n], which

says that in an infinite sum, g” behaves like −g′2. The original RGG proof anticipates this and
that is why, following its format, we use the above conjecture.

E → Elim = E[1 ∧ γ]

γ = exp(log( f(Y1)
f(x1) ) +A)

A ∼ N (µn,Σ
2
n), µn =

∑n
i=2

σ2

2 g
′′(xi),Σ

2
n =

∑n
i=2 g

′(xi)
2

Let us put our conjecture to the test!
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We prove our conjecture of the simplified limit form
of the inner term

Let us show that E converges to Elim, where:

E = E

[
1∧exp

{
log( f(Y1)

f(x1) ) +
∑n
i=2

[
g′(xi)(Yi − xi) + 1

2g
′′(xi)(Yi − xi)2 + 1

6g
′′′(Zi)(Yi − xi)3

]}]
Elim = E

[
1 ∧ exp

{
log( f(Y1)

f(x1) ) +
∑n
i=2

[
g′(xi)(Yi − xi)− l2

2(n−1)g
′(xi)

2
]}]

Consider
∣∣E−Elim∣∣. The arguments of the exp function are so similar, it would be nice to compare

them instead of
∣∣E − Elim∣∣. In other words, it would be nice that difference of argument in the

exp function play a role in dominating
∣∣E − Elim∣∣: that is a Lipschitz property, and it bodes well

that the x→ 1 ∧ exp(x) function is 1-Lipschitz! Thus,

∣∣E−Elim∣∣ ≤ E

[∣∣∑n
i=2

1
2g
′′(xi)(Yi−xi)2− l2

2(n−1)g
′(xi)

2
∣∣]+E

[∑n
i=2

∣∣ 1
6 (logf(Zi))

′′′(Yi−xi)3
∣∣]

• The second term

The second term, using the Gaussian distribution of Yi−xi, the linearity of expectancy, and
the iid hypothesis, is bounded by: supz |logf(z)′′′| 1

6(n−1)
1
2

4l3

(2π)
1
2

= 0( 1

n
1
2

) as expected.

Point of observation: this justifies which sigma was chosen to be in 1
n−1 .

• The first term

As for the first term, let us rewrite it with easier notation to better strategize: E
[
|Wn|

]
. We

are hoping that it converges to zero as n gets bigger. Now, we know how to deal with E
[
Wn

]
:

through linearity of expectancy, we would have had to deal with a χ2 and constants. But
with |Wn|, getting the expectancy is more complicated. So it is best we bound E

[
Wn

]
by

some other calculable term which can be shown to converge to 0. A classical proceeding is
squaring the term and using Jensen’s inequality: we rid ourselves of the absolute value and
are able to compute!

E
[
|Wn|

]2 ≤ E
[
W 2
n

]
where W 2

n is an expression of well-known laws. The independence of
component Gaussian-jumps simplifies the computation as well. It is just a matter of writing
it out (cf. Appendix A) 8.

At this point, let us mention that in Appendix A, we obtain, in addition to the computation
of Roberts, Gelman, and Gilks, a cross-term which doesn’t seem to trivially disappear as the

dimension grows. We perhaps missed one step in their reasoning...

We obtain: 1
4(n−1)2

[∑n
i=2 g

′′(xi) + g′(xi)
2
]2

+ 2
4(n−1)2

∑n
i=2 g

′′(xi)
2

Before moving to any formal proof, let us informally discuss what we have.
For the second part: g” is bounded so its sup will be finite and the term decreases therefore
in O(1/n).
The first part, hopefully, must then converge to 0, which would be equivalent to: 1

n−1

∑n
i=2 g

′′(xi) ∼n→∞
−1
n−1

∑n
i=2 g

′(xi)
2, for example if both sides convergence to a common limit. If such is the

case, that limit I would most likely be Ef (g′2), by the weak law of large numbers, given that
asymptotically behave iid.
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Another way to write this conjecture is:


P (Ztn ∈ Fn)→n→∞ 1

Fn = {|Rn(x2, ..., xn)− I| < n−
1
8 } ∩ {|Sn(x2, ..., xn)− I| < n−

1
8 }

Rn(x2, ..., xn) = 1
n−1

∑n
i=2 g

′(xi)
2, Sn(x2, ..., xn) = − 1

n−1

∑n
i=2 g

′′(xi), I = E[g′(T )2]

Parenthetically, we write the condition with Zn because it is the accelerated process we are
truly considering. We have worked with Xn until then because, as shown in (cf. Appendix
B) 9, the generator of Zn can be expressed in terms of Xn only.

Why is this useful at all? Because the formalism of a set of limiting probability 1 intervenes
in the ’relative compactness’ part of the convergence theorems in the Skorokhod topology
(cf. preliminary notions).

Let us verify our conjecture:

At stationarity, so for ’n sufficiently big’:

P (Zts /∈ Fn, for some s ∈ [0, t]) = P (∪s∈[0,t]{Xt
[ns] /∈ Fn})

≤ tnP (T /∈ Fn) by sub-additivity

≤ tn
(
P [|Rn(x2, ..., xn)− I| ≥ n− 1

8 ] + P [|Sn(x2, ..., xn)− I| ≥ n− 1
8 ]

)
by sub-additivity

Regarding the part in Rn

– the part with Rn
= tnP [(Rn(x2, ..., xn)− I)4 ≥ n− 1

2 ] in order to have a non-negative random variable for
Markov’s inequality (we could have only squared but the powers of n have been chosen
all along for final convergence)
≤ tnE[(Rn(x2, ..., xn)− I)4]n

1
2 = tn

3
2E[( 1

n−1

∑n
i=2 g

′(xi)
2− I)4] by Markov’s inequality

Having a mental idea of how this develops, and knowing that I is a number not a random
variable, we know we will have a an algebra-type combination of moments of g′(xi)2. The
Cauchy-Schwarz inequality for product terms will justify looking at them individually
for boundedness. The highest order moment will be 4, and it would guarantee all
the lower-order moments. Therefore, we impose the condition: Ef [g′(xi)

8] < ∞.
The Central Limit Theorem tells us that Rn(Z) − I ∼ 1√

n
N (0, V arΠ) and therefore

E[(Rn(x2, ..., xn)− I)4] = O( 1
n2 ).

In conclusion, we have tnP [|Rn(x2, ..., xn)− I| ≥ n−
1
8 ] = O(tn−1/2) and therefore → 1

as n→∞.

– The part with Sn
A similar reasoning with Sn giving rise to imposed condition Ef [ f

′′

f (xi)
4] <∞, gives:

tnP [|Sn(x2, ..., xn)− I| ≥ n− 1
8 ]→ 1 as n→∞.

We have proved that P (Zts ∈ Fn, 0 ≤ s ≤ t) → 1 as n → ∞ for fixed t. This concludes our
proof for the overall result, that supxn∈Fn

∣∣E − Elim∣∣ = φ(n)→ 0 as n→∞.
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We smartly rewrite the asymptotic inner term

Having established that E asymptotically behaves as Elim, we are inclined to think that by plugging
it into< Gn, V > (xn), we might obtain its limit for n→∞. But first: how does Elim itself behave?

{
Elim = E[1 ∧ exp(A)]

A ∼ N (µn,Σ
2
n), µn = log( f(Y1)

f(x1) ) +
∑n
i=2

σ2

2 g
′′(xi),Σ

2
n =

∑n
i=2 g

′(xi)
2

We might expect that the expectancy of an altogether not-too-complicated transformation of a
Gaussian is computable. We here introduce this useful lemma:

E[1 ∧ exp(A)] = Φ(µσ ) + exp(µ+ σ2

2 )Φ(−σ − µ
σ )

where Φ is the cdf of a N (0, 1) and A ∼ N (µ,Σ2)

We obtain:

Elim = Φ

(
R
−1
2
n

(
l−1log( f(Y1)

f(x1) )− lRn

2

))
+ exp

(
log( f(Y1)

f(x1) )
)
Φ

(
−−lR

1
2
n

2 − log( f(Y1)
f(x1) )R

−1
2
n l−1

)
that we can write as a function M of ε = log( f(Y1)

f(x1) ).

We show that looking at the generator asymptotically is
nothing more than replacing the inner term by its asymptotic form

Now that we have a proper expression for Elim, we are ready to look back at < Gn, V > (xn).
Once again, it is reasonable to think that its limit for n→∞ is the same expression substituting
E for Elim. Let us verify that:

< Gn, V > (xn) = nEY1
[(V (Y n1 )− V (xn1 ))E]

Our supposed limit: < G1, V > (xn) = nEY1
[(V (Y n1 )− V (xn1 ))Elim]

supxn∈Fn
|(< Gn, V > − < G1, V >)(xn)| ≤ φ(n)nE[|V (Y n1 )− V (xn1 )|]→ 0

We have uniform convergence of Gn to G1 on a set Fn of limiting probability 1. Therefore, by Ethier
and Kurtz, we have weak convergence of Xn to the process described by the limiting generator,
for the Skorokhod topology, on all finite sets of components.

14



2.3.3 Taylor for the first product term

Previously, our Taylor expansion of one inner term, E, has led us to a simplified asymptotic
generator G1. By proceeding likewise with the other inner term, V (Y n1 )− V (xn1 ), we hope to

obtain an even more malleable limiting generator G2.

We Taylor-expand the first inner term

The asymptotic generator we’re working with:
< G1, V > (xn) = nEY1 [(V (Y n1 )− V (xn1 ))M(log( f(Y1)

f(x1) ))]

We apply the Taylor formula about x1 for the first product term (as well as the simplified second
term), working now with G1, the Skorokhod limit of Gn. To no big surprise, we obtain a polynomial
(product of polynomials) in (Y1 − x1) with determined coefficients:

(V (Y n1 ) − V (xn1 ))M(log( f(Y1)
f(x1) )) =

(
V ′(x1)(Y1 − x1) + 1

2V
′′(x1)(Y1 − x1)2 + 1

6V
′′′(Z1)(Y1 −

x1)3

)[
M(0) + (Y1 − x1)M ′(0)(g(xi))

′ + 1
2 (Y1 − x1)2T (x1,W1)

]
where 

T (x1,W1) = M ′′
(
log( f(W1)

f(x1) )

)
g′(W1)2 + g′′(W1)M ′

(
log f(W1)

f(x1)

)
Z1,W1 ∈ [min(x1, Y1),max(x1, Y1)]

M(0) = 2M ′(0) = 2φ(−l
√
Rn

2 )

This is what we wanted: to extract (Yi −Xi) whose behavior we know!

15



We simplify the Taylor expansion, the n in front multiplies
a polynomial heuristically in 1

n and thus decides which terms remain
and which will go to zero as the dimension grows

Now, let us not get muddled by all this fluff, but rather think clearly and what is going to
happen: we are to multiply by n and apply the expectancy. There is no 0-order term. The 1st
order term in (Yi − xi) is evaluated by the expectancy. Now for the rest: heuristically, Yi − xi is
of magnitude σ = O( 1√

n
) so for the higher order terms, n(Yi − xi)p is of magnitude n1−p/2. For

order 2, that gives a magnitude of 1, but starting order 3, we have magnitudes of n to negative
powers. What is more, coefficients formed of all-order derivatives of M or V are bounded, as
smooth functions on the compact domain of the test function. In conclusion, as n→∞, terms of
order 3 and higher will disappear.

All that remains is to write this out and clearly separate the terms of order 3 and higher. That
gives:

< G1, V > (x) = 2nφ(−l
√
Rn

2 )

[(
1
2V
′′(x1) + 1

2g(xi)
)
V ′(x1)

]
E[(Yi − xi)2] + E[B(Y1, x1, n)]

The part with B corresponds to the disappearing terms. The arguments of bounded coefficients
on the compact domain writes as:

E[B(Y1, x1, n)] ≤ n
(
a1(K)E[|Yi − xi|3] + a2(K)E[|Yi − xi|4] + a3(K)E[|Yi − xi|5]

)
We can show that this last term is uniformly O(n

1
2 ) and therefore supxn∈Fn

|(< G1, V > − <
G2, V >)(xn)| → 0. In other words, we have uniform convergence of G1 to G2 on a set Fn
of limiting probability 1. Therefore, by Ethier and Kurtz, we have weak convergence of Xn to
the process described by the limiting generator, for the Skorokhod topology, on all finite sets of
components.

< G2, V > (x) = h(l)[ 1
2V
′′(x) + 1

2
d
dx (logf)(x)V ′(x)], with h(l) = 2l2φ(−l

√
I

2 ).
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2.3.4 The Limiting Process

We have our final, hopefully simpler, asymptotic generator that we can work with. As a generator,
it encodes the dynamics of a stochastic process. Let us examine that process - an asymptotic
version of our rescaled Markov chain. If all goes well, we will reap the benefits of asymptotic

simplification by finding an easy way to optimize process speed, and therefore algorithm efficiency.

Now, from the generator of the limiting process, let us go to... the limiting process itself! The
limiting generator corresponds to a Langevin diffusion, driven by the SDE:

dWs =
√
h(l)dBs + h(l)

2 g′(Ws)

A word: the functional V has, out of convenience, been chosen to take the 1st vector component
as input. However, in all generality, it could have taken any finite component. Therefore, on every
finite subset of N, every component asymptotically follows a Langevin dynamic that is independent
from the other: intuitively, the SDE shows that every component can be expressed as an integral
form of itself; it is a function of itself and of no other component, and having an iid property for
the asymptotic target distribution...

h(l) identifies as the ’speed measure’ and its expression is 2l2φ(−l
√
I

2 ), where φ is the normal
standard cdf.

Asymptotically optimizing convergence speed means optimizing h(l) with respect to l, giving
l̂ ≈ 2.38√

I
.

This makes sense! I measures in fact the roughness of the target distribution density: I =
E[(logf)′2]. And l measures mobility. So we have obtained that the optimal mobility l for conver-
gence is smaller if the target density is rougher. Indeed, with roughness, one must proceed with
small steps of caution to avoid brutal variation.
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3 Practical consequences: Asymptotically Optimal Accep-
tance Rate

Now that we have a theoretical result, how do we implement it to ensure optimal convergence
for the RWM algorithm? The answer lies with the Asymptotically Optimal Accceptance Rate, or
AOAR.

By definition, the average acceptance rate is:

ad(l) = E[α(Xn
t , Y

n
t )] = E[α(Xn

t , X
n
t + Znt+1)] where Z ∼ N (0, In)

=

∫∫
α(xn, xn + zn) Π(xn)dxn pdfN(0,σ2)dz

n

A specific case of the Generator-based proof gives the asymptotic average acceptance rate: a(l)
= 2φ(−l

√
I

2 ).
Therefore, the optimal asymptotic average acceptance rate, or AOAR, is a(l̂) ≈ 2φ(−1.19) ≈ 0.234

Practically, this means tuning the proposal variance so that the algorithm accepts about 23% of
proposed moves.
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4 Further generalizations to date
For more detail, we refer the reader to Optimal scaling for various Metropolis-Hastings algorithms
by Roberts, Rosenthal.

4.1 The independent target distribution model
In this case, independent components assure the product form of the target distribution, which was
the structural backbone of the iid-case proof. However, their non-identical distribution explains
the individual scaling terms in the target density here shown:

Π(d, xd) =
∏d
i=1

1√
θ2i (d)

f( xi√
θ2i (d)

)

We shall not here expose the detailed results, for which we refer the reader to Optimal scal-
ing of Metropolis algorithms: Heading toward general target distributions, by Bédard and Rosen-
thal. However, a word. The proceeding, sufficient regularity conditions, and main result of an
AOAR=0.234, are similar to the iid case. The proposal variance scaling, instead of being in
O( 1√

(d)
), requires the dimension power to be more tailored to the individual target components,

as their scaling terms are not the same!

4.2 The infinite dimension Markov chain model
In this case, instead of considering a finite-dimension Markov Chain which asymptotically goes to
the infinite dimension, we suppose the state space of the process to be of infinite dimension from
the very beginning. The previous proofs relied on component-wise study, how do we make use
of that? By giving the infinite-dimensional space a Hilbert structure, so that any vector can be
projected via components unto a Hilbert base (for example, the eigenvector-base of a self-adjoint
operator). For results and proof, we refer the reader to Diffusion Limits Of The Random Walk
Metropolis Algorithm In High Dimensions by Mattingly, Pillai, Stuart.
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5 Present Leads on generalization
There are many ways to go about optimizing the RWM algorithm and attempt to extract nec-

essary hypotheses for our proof.

First, let us try to emulate RGG’s proof with no particular condition on the target distribution
and see what happens.

We start with the same generator: < Gn, V > (xn) = nE[(V (Y n)− V (xn))α(xn, Y n)]

At this point, there are many options at hand.
The RGG-like option would be to look at the first component of the accelerated process: Ut,1.
Because of possible correlation, we wouldn’t be to ’insert’ an expectancy like so:
< Gn, V > (xn) = nEY1

[(V (Y n)− V (xn))EY2,...,n
α(xn, Y n)]

but we can emulate this formula, making use of V’s dependence on x1 only, by using conditional
expectancy:

< Gn, V > (xn) = nE

[
E
[
(V (Y n)−V (xn))α(xn, Y n)|y1

]]
= nE

[
(V (Y n)−V (xn))E

[
α(xn, Y n)|y1

]]
The Taylor development of the core function V is classic: there is not much to say on its behalf.

The term that ’changes’ from RGG’s proof is the one we will have to concentrate on: E[α(xn, Y n)|y1].
It is a conditional inner expectancy, therefore a random variable, not a scalar. However, to get to
that random variable, we start with:
w(a) = E[α(xn, Y n)|Y1 = a] which is a scalar, knowing that w(Y1) = E[α(xn, Y n)|Y1]

w(a) = E[1∧ exp(g(Yn)− g(Xn))|Y1 = a] = E[1∧ exp(∇gxn .(Yn−xn) + (Yn−xn)T∇2gxn(Yn−
xn) +O(||Yn − xn||3)|Y1 = a] where || . || is a ’norme d’algèbre’.

In order to follow RGG’s steps, we would need something computable like: E[1∧exp(G)] where
G ∼ N (0, σ2). Let us see if asymptotically, we can replace the second order term with a constant,
as we did in RGG’s case.

E[1∧ exp( ∂g∂x1
(xn)(a−x1) +

∑n
i=2

∂g
∂xi

(xn)(Yi−xi) + 1
2
∂2g
∂x2

1
(xn)(a−x1)2 +

∑n
i=2

∂g
∂x1xi

(xn)(Yi−
xi)(a− x1) +

∑
2≤i≤j≤n

∂g
∂xixj

(xn)(Yi − xi)(Yj − xj) +O(||Yn − xn||3)]

What do we know? The first-order terms (Yi − xi) are Gaussian, the squared second-order
terms (Yi − xi)2 follow a χ2, yet regarding the cross second-order terms (Yi − xi)(Yj − xj), i 6= j,
we have a product of two iid Gaussians - and that is complicated. In this first draft, let us rid
ourselves of the cross-terms by annulling the coefficients before them. We hope to find a more
sophisticated hypothesis than ( ∂g

∂xixj
(xn) = 0, i 6= j), perhaps a sort of ’tail condition’ where i and

j have to be ’far away’ and we take the sup with respect to x, but setting them to 0 will do for
the moment. This should emulate a sort of ’independence’ between the variables of the target
distribution, mirroring the iid case.

We end up with:

E[1∧ exp( ∂g∂x1
(xn)(a−x1) +

∑n
i=2

∂g
∂xi

(xn)(Yi−xi) + 1
2
∂2g
∂x2

1
(xn)(a−x1)2 +

∑n
i=2

∂g
∂x1xi

(xn)(Yi−

xi)(a− x1) +
∑

2≤i≤n
∂2g
∂x2

i
(xn)(Yi − xi)2 +O(||Yn − xn||3)]

Once again, why bother with the χ2 when the sum of second-order terms may simplify asymptot-
ically, by some law-of-large-numbers-like property, from

∑
2≤i≤n

∂2g
∂x2

i
(xn)(Yi−xi)2 to

∑
2≤i≤n

∂2g
∂x2

i
(xn)σ

2

2 .
This requires a solid proof, but seems very feasible. So for the purposes of moving forward, let us
say that asymptotically we get:

20



E[1∧ exp( ∂g∂x1
(xn)(a−x1) +

∑n
i=2

∂g
∂xi

(xn)(Yi−xi) + 1
2
∂2g
∂x2

1
(xn)(a−x1)2 +

∑n
i=2

∂g
∂x1xi

(xn)(Yi−

xi)(a− x1) +
∑

2≤i≤n
∂2g
∂x2

i
(xn)σ

2

2 +O(||Yn − xn||3)]

We have finally obtained:


E[1 ∧ exp(X +O(||Yn − xn||3)]
X ∼ N (µn,Σ

2
n)

µn(a) = ∂g
∂x1

(xn)(a− x1) + 1
2
∂2g
∂x2

1
(xn)(a− x1)2 +

∑
2≤i≤n

∂2g
∂x2

i
(xn)σ

2

2

Σ2
n =

∑n
i=2

∂g
∂xi

(xn)
2

Supposing that the 3rd-order remainder phases out asymptotically, we recall the useful lemma
allowing use to compute the expression, and obtain:

Φ(µn(a)
Σn

) + exp(µn(a) +
Σ2

n

2 )Φ(−Σn − µn(a)
Σn

)

To reach our conditional expectancy, we replace Y1 = a with Y1: the parameter µn(a), a scalar,
thus becomes the random variable µn(Y1) which schematically∼ N (

∑
2≤i≤n

∂2g
∂x2

i
(xn)σ

2

2 ,
∂g
∂x1

(xn)2σ2)+

σ2

2
∂2g
∂x2

1
(xn)χ2(1)

It is possible to follow the RGG scheme of proof adapted to this situation further, but compu-
tation becomes more difficult.
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6 Concepts to get acquainted with

Definition: Tail-Field
τ = ∩n∈Nσ((Xk)k∈[n,∞[) = ∩∞n=0σ(Xn, Xn+1, ...) = ∩∞n=0σ

(
∪∞k=nσ(Xk)

)
Interpretation:

• sort of a limsup version for fields

• events of Ω for which the realization depends on the values of the Xi but is independent of
any finite subset of these Xi

Definition: Trivial Tail-Field
Tail field that is P-trivial, that contains events that are almost sure or negligible

Interpretation: generalizes traditional notion of independent random variables
Understanding it through the 0-1 theorems:

• Kolmogorov’s 0-1 Law
The tail sigma-field of a sequence of independent random variables is trivial.

• Hewitt-Savage 0-1 Law
The sigma-field of exchangeable events, a generalization of the tail-field defined by events
invariant under permutation, of a sequence of iid random variables is trivial.

Links with other notions of independence:

• Strong-mixing - Trivial Tail-Field equivalence

[Lindvall(2002)]

definition of strong mixing: sup
∣∣P (A ∩B)− P (A)P (B)

∣∣→ 0 as s→∞
where A ∈ σ(X−∞, ..., Xt) and B ∈ σ(Xt+s, ..., X∞)

definition of mixing: limn→∞ supA∈Fn

∣∣P (A ∩B)− P (A)P (B)
∣∣ = 0

interpretation of strong mixing: "for any two states of the system = realizations of the random
variables, when given a sufficient amount of time between the two states, the occurrence of
the states is independent"

[Samorodnitsky(2016)], p44 and whereabouts

"a stationary Gaussian process is mixing iff its correlation function asymptotically vanishes"

of a stationary stochastic process, if the tail sigma-field is trivial, then the process is ergodic
and mixing.

"This statement makes it possible to view the triviality of the tail sigma-field as a kind of
uniform mixing"
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8 AppendixA

Wn =
∣∣∑n

i=2
1
2g
′′(xi)(Yi − xi)2 − l2

2(n−1)g
′(xi)

2
∣∣.

To simplify computation, let us write this generic coefficients that we can specify at the end:
Wn =

∣∣∑n
i=2Ai(Yi − xi)2 −Bi

∣∣
W 2
n =

∑n
i=2

[
Ai(Yi−xi)2−Bi

]2
+2
∑

1≤i<j≤n
[
Ai(Yi−xi)2−Bi

][
Ai(Yj−xj)2−Bi

]
= squaredterms+

crossterms

Now we apply the expectancy.

• E[crossterms]

E[crossterms] = 2
∑

2≤i<j≤nE
[
Ai(Yi − xi)2 − Bi

]
E
[
Ai(Yj − xj)2 − Bi

]
by linearity of ex-

pectancy and independence of Gaussian jumps.

We make appear the standard score form (Yi − xi)2 = σ2(Yi−xi

σ )2 to have a χ2(1) and then,
once again, apply the expectancy’s linearity. Finally,

E[crossterms] = 2
∑

2≤i<j≤n
[
Aiσ

2 −Bi
][
Ajσ

2 −Bj
]

We now replace the coefficients Ai and Bi, as well as σ, with their specific values and obtain:

E[crossterms] = 2 l4

4(n−1)2

∑
2≤i<j≤n

[
g′′(xi)− g′(xi)2

][
g′′(xj)− g′(xj)2

]
• E[squaredterms]

It’s overall the same idea as with the crossterms, except that we lose the term- independence.

E[squareterms] =
∑n
i=2 E

[[
Ai(Yi − xi)2 −Bi

]2]

We develop the expression and apply the expectancy’s linearity:

E[squareterms] =
∑n
i=2A

2
iE[(Yi −Xi)

4]− 2AiBiE[(Yi −Xi)
2] +B2

i

We make once again appear the standard score form (Yi−xi)2 = σ2(Yi−xi

σ )2 to have a χ2(1)
and use V ar(X) = E(X2)− E(X)2. So that:

E[squareterms] =
∑n
i=2A

2
iσ

4

[
V ar((Yi−xi

σ )2) +E[(Yi−xi

σ )2]2
]
− 2AiBiσ

2E[(Yi−xi

σ )2] +B2
i =

3A2
iσ

4 − 2AiBiσ
2 +B2

i

We now replace the coefficients Ai and Bi, as well as σ, with their specific values and obtain:

E[squareterms] = l4

4(n−1)2

∑n
i=2 2g′′(xi)

2 +
[
g′′(xi)− g′(xi)2

]2

Now, we would have liked an expression with g′′(xi) + g′(xi)
2 (the sum would asymptotically

cancel out given that g′′(xi) = (logf(xi))
′′ = f ′′(xi)

f(xi)
− g′(xi)2 and Ef [ f

′′

f (xi)
4] < ∞) rather than

g′′(xi)− g′(xi)2. So we write: ai − bi = ai + bi − 2bi, where ai = g′′(xi) and bi = g′(xi)
2.
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We finally obtain for E[W 2
n ]:

• RGG’s term (where in the original paper, l is taken equal to 1)
l4

4(n−1)2

∑n
i=2

[
(ai + bi)

2 + 2a2
i

]
+ 2 l4

4(n−1)2

∑
2≤i<j≤n(ai + bi)(aj + bj)

= l4

4(n−1)2

[∑n
i=2 ai + bi

]2
+ 2l4

4(n−1)2

∑n
i=2 a

2
i

• Another term from the square part
l4

4(n−1)2

∑n
i=2−4aibi

• Another term from the cross part

2 l4

4(n−1)2

∑
2≤i<j≤n 4bibj−2bi(aj+bj)−2bj(ai+bi) the terms in bibj cancel out by symmetry

= l4

4(n−1)2

∑
2≤i<j≤n−4[aibj + ajbi]

As n→∞, do the terms of correction to RGG’s computation disappear?

For the additional term from the square part, we have a a sum of n bounded terms divided by
n2, so that goes to 0.

For the additional term from the cross part, we have a sum of O(n2) bounded terms
divided by n2. It is not obvious at first sight how such a term may be asymptotically
flushed out.
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9 AppendixB
By definition, the generator of the rescaled process Zn is:

< Gn, V > (Zn) = nE

[
V (Zn(s+ 1

n ))− V (Zn(s)
)
|Zn(s) = constant

]
The multiplying n, comes from the division by 1

n the time between two jumps, so between two
consecutive states.

By writing the accelerated process in terms of the original one,

< Gn, V > (Zn) = nE

[
V (Xn(ns+ 1))− V (Xn(ns)

)
|Xn(ns) = constant

]
Since the generator of a time-homogeneous Markov process doesn’t depend on s but on the last
state, we can write

< Gn, V > (Un) = nE

[
V (Xn(s+1))−V (Xn(s)

)
|Xn(s) = constant xn(s)

]
We write the constant

with a lowercase.

By the law of total probabilities, we write the conditional event in the expectancy as a sum of the
possibility that we move a step and of the possibility that we stay put:

V (Xn(s+1))−V (Xn(s))
∣∣[Xn(s) = xn(s)] =

{
V (Y n(s+ 1))− V (xn(s)) with probabilityα(xn(s), Y n(s+ 1))
V (Xn(s))− V (xn(s)) = 0 with probability1− α(xn(s), Y n(s+ 1))

Hence < Gn, V > (xn) = nE[(V (Y n(s+ 1))− V (xn(s)))α(xn(s), Y n(s+ 1))]
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10 AppendixC
We show that the generators of the linearly accelerated version and continuous-time Poisson version
are the same.

To obtain the generator of the Poisson version, we start with that of the linearly accelerated version
and add a condition: whereas in the deterministic case the process jumped for sure and arrived
at Y with probability the α function, for the Poisson process there is the preliminary step of the
probability that the process jumps at all, which is proportional to the length k of the time-segment
we consider.

Thus, < Gn, V > (xn) = limk→0 kEY [(V (Y n(s+k))−V (Xn(s)))α(Xn(s), Y n(s+k))(nk+o(k))] =
nEY [(V (Y n)− V (Xn))α(Xn, Y n)]

We recognize the same generator as for the linearly-accelerated version.
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11 AppendixD

DEFINITION: time-homogeneous stochastic process

For any t>0, P (Xt0+t|Xt0) is independent of t0
In other words, the transition probability between two states only depends on the time difference

(t− t0) these two states, and not on the beginning time t0.

Suppose for argument’s sake that n=1. The evolution of states over time can be visualized with
the first floor represents X0, the second is X1, etc.

Figure 1: Floor function

The transition probability between times 0 and 0.8 is 1, because we’re staying in the same state.
However, between times 0.8 and 1.6, we’re jumping to a new state Y1 with a certain probability,
given by the acceptance function α(X0, Y1) to be exact, which can very well be <1.

So even though the time difference between X0 and X0.8, and X0.8 and X1.6, is the same, the
transition probability isn’t. Therefore, the linearly-accelerated process is not time-homogeneous.

28



References
[Atchadé et al.(2011)Atchadé, Roberts, and Rosenthal] Yves F Atchadé, Gareth O Roberts, and

Jeffrey S Rosenthal. Towards optimal scaling of metropolis-coupled markov chain monte carlo.
Statistics and Computing, 21(4):555–568, 2011.

[Bédard(2006)] Mylene Bédard. On the robustness of optimal scaling for random walk Metropolis
algorithms, volume 68. 2006.

[Bédard and Rosenthal(2008)] Mylene Bédard and Jeffrey S Rosenthal. Optimal scaling of
metropolis algorithms: Heading toward general target distributions. Canadian Journal of
Statistics, 36(4):483–503, 2008.

[Lindvall(2002)] T. Lindvall. Lectures on the Coupling Method. Dover Books on Mathematics
Series. Dover Publications, Incorporated, 2002. ISBN 9780486421452. URL https://books.
google.ca/books?id=GUwyU1ypd1wC.

[Mengersen et al.(1996)Mengersen, Tweedie, et al.] Kerrie L Mengersen, Richard L Tweedie, et al.
Rates of convergence of the hastings and metropolis algorithms. The annals of Statistics, 24
(1):101–121, 1996.

[Neal et al.(2011)] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of Markov
Chain Monte Carlo, 2(11), 2011.

[Roberts and Rosenthal(1998)] Gareth O Roberts and Jeffrey S Rosenthal. Optimal scaling of
discrete approximations to langevin diffusions. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 60(1):255–268, 1998.

[Roberts and Smith(1994)] Gareth O Roberts and Adrian FM Smith. Simple conditions for the
convergence of the gibbs sampler and metropolis-hastings algorithms. Stochastic processes and
their applications, 49(2):207–216, 1994.

[Roberts et al.(1997)Roberts, Gelman, Gilks, et al.] Gareth O Roberts, Andrew Gelman, Wal-
ter R Gilks, et al. Weak convergence and optimal scaling of random walk metropolis al-
gorithms. The annals of applied probability, 7(1):110–120, 1997.

[Samorodnitsky(2016)] G. Samorodnitsky. Stochastic Processes and Long Range Dependence.
Springer Series in Operations Research and Financial Engineering. Springer International
Publishing, 2016. ISBN 9783319455754. URL https://books.google.ca/books?id=
39F5DQAAQBAJ.

29

https://books.google.ca/books?id=GUwyU1ypd1wC
https://books.google.ca/books?id=GUwyU1ypd1wC
https://books.google.ca/books?id=39F5DQAAQBAJ
https://books.google.ca/books?id=39F5DQAAQBAJ

	The Random Walk Metropolis Algorithm and Variants
	The Random Walk Metropolis Algorithm
	The Metropolis-Adjusted Langevin Algorithm
	Hamiltonian Monte-Carlo

	The iid target distribution model
	Preliminary notions
	Intuition behind the proof
	Walkthrough RGG's proof of weak convergence with generators
	Starting point and Strategy
	Taylor for the second product term
	Taylor for the first product term
	The Limiting Process


	Practical consequences: Asymptotically Optimal Acceptance Rate
	Further generalizations to date
	The independent target distribution model
	The infinite dimension Markov chain model

	Present Leads on generalization
	Concepts to get acquainted with
	Acknowledgements
	AppendixA
	AppendixB
	AppendixC
	AppendixD

