
Parallel computing and Monte Carlo algorithms

by

Jeffrey S. Rosenthal*

[Far East Journal of Theoretical Statistics 4 (2000), 207–236.]

Abstract. We argue that Monte Carlo algorithms are ideally suited
to parallel computing, and that “parallel Monte Carlo” should be more
widely used. We consider a number of issues that arise, including dealing
with slow or unreliable computers. We also discuss the possibilities of
parallel Markov chain Monte Carlo. We illustrate our results with actual
computer experiments.

Keywords: parallel computing, distributed computing, parallel Monte
Carlo, Monte Carlo, Markov chain Monte Carlo, Gibbs sampler, Metropolis-
Hastings algorithm, estimation.

1. Introduction.

As computer processors become cheaper and more plentiful, there is great potential

for having them compute together in a coordinated fashion. This fact has been known in

the computer science community for many years, where the subject of parallel computing is

very prominent (see for example [29], [16], [30], and [3]), and includes such subspecialities as

parallel randomised algorithms (see e.g. [36]) and parallel simulation (see [41] and references

therein). A major issue in parallel computing is how to coordinate communication between

the various processors; indeed, some parallel computing environments (such as “vector

computing”) require specialised programming to allow the processors to work together in

parallel.

On the other hand, Monte Carlo algorithms (see for example [28], [44]) often proceed

by averaging large numbers of computed values. It is sometimes straightforward to have

* Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 3G3.
Internet: jeff@math.toronto.edu. Supported in part by NSERC of Canada.

1

different processors compute different values, and then use an appropriate (weighted) av-

erage of these values to produce a final answer. In this way, the communication between

processors is minimised, so that parallel processing is easily facilitated. Indeed, certain

Monte Carlo algorithms are so ideally suited to parallel computation that they would

be labeled “embarrassingly parallelisable” by computer scientists. However, I do not be-

lieve that the Monte Carlo community should be embarrassed about this situation; on the

contrary, we should exploit it to the fullest.

Parallel computing can mean many different things, depending on the extent to which

the computing is distributed. At one extreme are highly specialised supercomputer hard-

ware arrangements (see e.g. [38]), including Cray supercomputers (see [8]), which require

highly specialised software. At the other extreme are World Wide Web based distributed

computing efforts (e.g. [10], [12]), which require thousands of volunteers around the world

to assist in running software and sending in the results over the internet. Between these

two extremes are situations in which a large number of ordinary computers (e.g. in a stu-

dent computer laboratory, or scattered around the internet) are available for direct control

and use (cf. [1], [42], [9]). This situation will likely become more and more common in the

future, and this is the situation on which we focus.

Although Monte Carlo is well suited to parallel computation, there are a number of

potential problems in the above context. The available computers might run at different

speeds; they might have different user loads on them; one or more of them might be down;

etc. Handling these issues correctly is crucial to the success of parallel Monte Carlo. In

addition, Markov chain Monte Carlo algorithms are now very common (see for example

[17], [51], [53], [22], [45]), and parallelising them presents additional difficulties such as

determining appropriate burn-in time.

We note that similar issues have been considered in various contexts in the operations

research literature. In particular, in an excellent series of papers ([23], [24], [25], [26],

[27]), Glynn and Heidelberger have derived many results regarding parallel simulations

and weighted averages. In particular, they have considered taking the limit as the number

of processors goes to infinity, and have derived central limit theorems, bias expansions,

stopping rules, and other information in this context. They have also done some computer

2

experiments [27] related to simulation of queueing networks. In some sense, they have

blazed the trail that the statistical Monte Carlo community should follow.

In this paper, we provide a series of “Observations” regarding Monte Carlo computa-

tions in a parallel computing environment. Our observations vary from the more practical

to the more theoretical, but none should be taken as rigorous mathematical results. Fur-

thermore, most or all of them have undoubtedly been observed elsewhere, by computer

scientists and/or operations researchers and/or statisticians. The goal of this paper is

to bring such issues more into the mainstream of the Monte Carlo community, and to

advocate that parallel Monte Carlo algorithms be more widely used.

This paper is organised as follows. In Section 2, we present the basics of parallel Monte

Carlo algorithms. In Section 3, we consider a number of different issues related to possible

unreliability of some of the computers being used. In Section 4, we discuss additional issues

(especially burn-in time questions) that arise specifically for parallel Markov chain Monte

Carlo algorithms. In Section 5, we present some actual parallel Monte Carlo computer

simulations. Finally, in Section 6, we provide a few concluding remarks.

2. Parallel Monte Carlo.

Suppose we wish to compute some unknown quantity µ. Suppose further that we have

a computer program which is capable of producing an i.i.d. sample X1, X2, . . . of random

variables each having mean m and variance v. (Perhaps m = µ; if not, then m− µ is the

bias.)

Standard Monte Carlo would tell us to obtain some large number n of samples,

X1, . . . , Xn, and then to estimate µ by the estimator E = 1
n

∑n
i=1 Xi. This estimator

would have bias m− µ, and variance v/n.

Now let us consider parallel computing in this context. Suppose we have C computers

available to us. We wish to use all of these computers to better estimate µ.

The simplest idea, which could be called parallel i.i.d. Monte Carlo, is to run our

same program on each of the C computers. Each computer j then produces n samples

X
(j)
1 , . . . X

(j)
n , computes their average Ej = 1

n

∑n
i=1 X

(j)
i , and reports the result back to a

master program. The master program then averages these C results to obtain a master

3

result

E =
1
C

C∑
j=1

Ej . (1)

This master result E thus has mean m and variance v/Cn. The variance is thus reduced

by a factor of C, and our result is equivalent to the result we would have obtained upon

running our program on a single computer for C times as long. We have thus obtained

linear speed-up. We conclude:

Observation 1. Simple i.i.d. Monte Carlo algorithms can be run in parallel with

little difficulty. The resulting estimator has the same bias, and linearly-reduced variance,

compared to the original single-processor estimate.

We note that a similar observation is made, in considerably greater detail, by Glynn

and Heidelberger in [23]–[27].

Remark. In general, running the same algorithm on many different machines requires

that the program be copied to, and re-compiled on, each machine. This is not a great

difficulty, requiring little time and little thought, and it only has to be done once. (See

Section 5 for illustration of such practical matters through actual computer experiments.)

Furthermore, if the machines happen to have binary-compatible processors and to have

shared memory available to them, then they can share the compiled version of the program

and no re-compiling is required. In any case, an appropriate “master program” is required,

but this is straightforward; see e.g. [48].

Note in particular that, while we have reduced the variance of our estimate, the bias

of our estimate is unchanged (still m − µ in this case). No amount of parallel computing

can reduce this bias. We thus conclude:

Observation 2. When running parallel Monte Carlo with many computers, it is more

important to start with an unbiased (or low-bias) estimate than with a low-variance esti-

mate.

This fact will guide some of our later choices. Similar observations have been made

e.g. in [24].

4

2.1. Differing computer speeds.

Now suppose that the C available computers are known to run at different speeds (e.g.

perhaps some of them are aging IBM 386’s, while others are the latest Pentium III’s or fast

SGI machines). It is then inefficient to obtain the same number n of samples from each

machine. Instead, each machine j should be directed to obtain a number nj of samples

roughly proportional to its running speed; and then to compute and report the average

Ej = 1
nj

∑nj

i=1 X
(j)
i of these samples. To make optimal use of these results, the master

program should then compute the weighted average

E =

∑C
j=1 nj Ej∑C

j=1 nj

. (2)

(Note that it is tempting to use the simpler average 1
C

∑C
j=1 Ej , but for unequal nj this

simple average will have a higher variance than will E. This issue is considered in greater

detail in [26].) We conclude:

Observation 3. If using computers of different speeds, they should compute correspond-

ingly different numbers of samples, and their resulting averages should be weighted ac-

cordingly.

Remark. It may be possible to compute the individual sample sizes nj randomly, for

example by having each computer continue until some specified stopping time. However,

in this case the sizes nj may not be independent of the resulting sample values, possibly

leading to subtle biases. This is discussed further in Subsection 3.4.

The above outlines the basics of parallel Monte Carlo. It is straightforward to im-

plement, it leads to substantial improvements over ordinary Monte Carlo, and it should

be adopted more widely. (See Section 5 for some successful experiments illustrating this.)

However, when dealing with a typical collection of real, imperfect computers, certain com-

plications may arise. We consider some of these in the next section.

5

3. Unreliability issues.

If the C available computers are all single-user, dedicated, and fully maintained, then

we can be confident that they will all perform at their usual speed, and report back within

an appropriate time. However, if some of the C computers are spread out across the

internet, or may be down, or may malfunction, or may have a very high user load, then

we cannot be so confident. What is to be done in this case?

3.1. Independent failure events.

Suppose first that we have an a priori idea of how long each computation should take,

so that we know at what point we should conclude that there is a problem with the ith

computer. Let Zi equal 1 or 0 as the ith computer does or does not report back, correctly,

within the a priori reasonable amount of time, and let pi = P(Zi = 0) be the probability

of failure of computer i.

Suppose first that the variables Zi are independent of the result that the ith computer

would have returned. (This is reasonably likely in practice, since most of the possible

computer difficulties such as being down, having a high load, etc. are quite separate from

the actual computation we ask the computer to do.) Suppose furthermore that the failure

probabilities pi are generally fairly small, so that we expect only a small fraction of the C

computers to have problems.

In this case, there is a natural way for the master computer to proceed. Namely, all

computers that do not report back correctly within an appropriate amount of time are

ignored, and the sample average is computed based only on those computers that succeed.

In symbols,

Ef =

∑C
j=1 nj Zj Ej∑C

j=1 nj Zj

. (3)

Since the failure events are independent of the computed values, such a scheme does

not bias the result. And since the failure rate is low, we will obtain only slightly fewer

samples than before, so that the variance of our resulting estimate will be only slightly

larger. We conclude:

6

Observation 4. If there are small probabilities of failures, which are independent of the

computed sample values, then it is acceptable for the master program to simply compute

the appropriately-weighted average of those results that are returned. This will not bias

the resulting estimate, and it will only slightly increase the estimator’s variance.

Remark. Strictly speaking, in the unlikely event that all of the computers fail, the

estimator Ef in (3) would be undefined. Thus, in this and the next subsection, whenever

we discuss the bias and variance of Ef , we are actually referring to Ef conditional on at

least one computer successfully completing its task.

3.2. Dependent failure events.

Suppose now that the variables Zi are not independent of the values that would have

been returned. For example, perhaps extremely large sample values tend to crash the

computer before the computation finishes. In this case, the resulting estimator Ef as in

(3) is not an unbiased estimator of m = E(Xi). Rather, each Ej is an unbiased estimator

of E(Xj |Zj = 1), the conditional expected value given that the computer did not fail,

which may be somewhat different from the unconditional expected value m.

However, it is possible to control the errors that result from this. Indeed, recalling

the definition of total variation distance ‖ν − ρ‖ between two probability measures ν and

ρ, namely

‖ν − ρ‖ = sup
A
|ν(A)− ρ(A)| = sup

0≤f≤1

∣∣∣∣∫ f dν −
∫

f dρ

∣∣∣∣ , (4)

we claim that

‖L(Xi |Zi = 1)− L(Xi)‖ ≤ P(Zi = 0) .

(Here L stands for law or distribution; thus, L(Xi |Zi = 1) is the conditional distribution

of Xi, given that Zi = 1.)

To prove this, note that

‖L(Xi |Zi = 1)− L(Xi)‖ = sup
A

∣∣∣P(Xi ∈ A |Zi = 1)−P(Xi ∈ A)
∣∣∣

= sup
A

∣∣∣P(Xi ∈ A |Zi = 1)−P(Xi ∈ A |Zi = 0)P(Zi = 0)−P(Xi ∈ A |Zi = 1)P(Zi = 1)
∣∣∣

7

= sup
A

∣∣∣P(Xi ∈ A |Zi = 1) (1−P(Zi = 1))−P(Xi ∈ A |Zi = 0)P(Zi = 0)
∣∣∣ . (5)

But (1−P(Zi = 1)) = P(Zi = 0), so that the difference in (5) is the difference of two non-

negative terms, each of which is ≤ P(Zi = 0). Hence, their difference is also ≤ P(Zi = 0),

and the result follows.

It now follows from the definition (4) that, if (say) 0 ≤ Xi ≤ M , then E(Xi) −

E(Xi |Zi = 1) ≤ M P(Zi = 0). Furthermore, we recall from (3) that E is a weighted

average of various unbiased estimates of E(Xi |Zi = 1).

We therefore conclude:

Observation 5. If the computer failure events are not independent of the resulting

sample values, but if their probabilities are bounded above by p, and if the possible sample

values are restricted to a bounded interval [0,M], then the bias of the resulting estimator

Ef is at most Mp.

3.3. Repeating failed experiments.

There is an alternative approach to dealing with dependent computer failures as above.

(By Observation 5, this might be most useful when the failure probabilities are not small

and/or the sampled values are not bounded.) Namely, we can decide to repeat (on a

different computer) any computation which did not report back within an appropriate

amount of time.

In general it is non-trivial to do this; the computations involve randomness and hence

cannot necessarily be repeated exactly. Furthermore it does not suffice to do an indepen-

dent replication of the random experiment, since this does not eliminate the bias from

dependent computer failures as in the previous subsection.

On the other hand, the random computations typically involve only pseudo-randomness,

i.e. numbers obtained from a pseudo-random number generator. If the computation is

started again with the identical pseudo-random seed, then the pseudo-random number

generator will produce identical pseudo-random numbers, and hence will exactly duplicate

the desired computation.

This suggests a new way to handle computer failures. We let the master program

assign the pseudo-random number seeds to each computer, say s1, . . . , sC . Once a computer

8

(say, computer j) finishes its computation and reports back, it is then assigned a fresh

computation with a seed si taken from some computer that has not yet reported back.

(If all computers that have not yet reported back already have a second computer using

the same seed, then we would start a third, or fourth or fifth, computer from the same

seed.) In this way, eventually we obtain (at least once) a result based on each of the C

different seeds (even though some computers may not have reported back at all, and other

computers may have done several different computations). We can then average these C

results to obtain an estimator Er. The value of Er depends only on the initial choice

s1, . . . , sC of seeds, and is unaffected by any computer failures along the way.

On the other hand, if there is at least one failure, then it will take longer to compute

Er than it would have to compute Ef as in the previous subsection. Indeed, assuming that

between 1 and C/2 of the computers fail, and that each computation takes approximately

the same amount of time (assuming it does not fail), then to compute Er will require some

computers to do two computations, but no computer to do more than two computations.

The time to compute Er will therefore be about twice as long as the time to compute Ef .

We conclude:

Observation 6. An alternative approach to computer failure is to have all pseudo-

random number seeds assigned by the master program, and then to re-compute any failed

computations, using the same seed on a fresh computer. This approach results in an

estimator whose value is unaffected by computer failure. The total computation time is

increased by approximately a factor of 2.

Remarks. Even if we do not plan to repeat any experiments, it still may be a good

idea for the master program to provide pseudo-random seeds to all the computers. Indeed,

if instead each computer chooses a seed based on the current clock time, then there is

some risk that two computers will accidentally pick the same seed. We also note that it is

possible, due to implementation details such as floating-point rounding methods, that two

different computers may not get the same answer even if running the identical algorithm

with identical pseudo-random seed. It is even conceivable that such differences could bias

the resulting estimates. However, this seems unlikely and we do not consider it further

9

here.

3.4. Variable or unknown computer speeds: choosing nj on-line.

As mentioned in Subsection 2.1, with differing computer speeds it is sometimes neces-

sary to choose different values nj (corresponding to different numbers of simulated values

to be generated by computer j), with nj proportional to the computing speed of the jth

computer. The resulting estimates are then averaged together according to a weighted

average as in (2).

However, in some cases we will not know in advance the relative speeds of the different

computers involved. Indeed, because of heavy user loads, it may be difficult or impossible

to predict in advance the computational speed of certain computers. Thus, it is desirable

to have a way of determining the values nj on-line.

A natural way to proceed is to specify in advance the total amount of time T that we

want each computation to take. We can then instruct the various computers to keep on

simulating until time T , at which point they should simply average the values they have

obtained so far, and report that result.

A question that arises is what the computer should do if a simulation is in progress at

time T . This might seem like an unimportant detail. However, if the value of a simulation

is dependent upon the time taken to compute the simulation (which will often be the case),

then it is easy to see that we may bias our result if we do not handle this situation properly.

And, in light of Observation 2, we wish to avoid bias as much as possible.

Such issues were investigated by Glynn and Heidelberger [23] (see also [24], [25], [26],

[15], [(??)], and Remark 5.3 of [14]), where it was shown that to avoid biasing the result, the

following Unbiased Stopping Rule should be used: When time T approaches, the simulation

in progress should be continued if and only if it is still the first simulation; otherwise, the

simulation in progress should be discarded. If the computers follow this rule, then their

resulting estimate will be unbiased. However, if instead they always allow the simulation

in progress to complete, then they will in general introduce a bias of order 1/T into the

result.

Hence, we conclude:

10

Observation 7. When using computers of unknown or highly variable speed, we may

determine the sample numbers nj on-line, by pre-specifying a total computation time T and

then following the Unbiased Stopping Rule as above. Such a procedure will not introduce

any additional bias into our result, and will allow us to make use of whatever computer

power is available to us.

Of course, if the time per simulation is extremely small, or is not heavily dependent

on the value computed, then it is less important how we treat the simulation in progress,

and it might not be necessary to bother with the Unbiased Stopping Rule. See [23] for

further discussion and analysis.

Remark. It may be difficult to combine this “determine nj on-line” approach with the

“repeated experiment” approach presented in Subsection 3.3. Indeed, if the number of

simulations nj is allowed to depend on the speed at which the simulation happens to run,

then it follows that a second run would not produce identical results even if started with

the same pseudo-random number seed.

4. Parallel Markov chain Monte Carlo.

Markov chain Monte Carlo (MCMC) algorithms (see e.g. [17], [51], [53], [22], [45]),

such as the Gibbs sampler and the Metropolis-Hastings algorithm, have become extremely

popular in statistics (especially Bayesian statistics) as a method of approximately comput-

ing difficult high-dimensional integrals. They are also used in theoretical computer science

for approximate counting problems (see e.g. [50]). Like classical Monte Carlo, these algo-

rithms proceed by generating a sample X1, X2, However, in this case the sample values

are generally functionals of a Markov chain (i.e., Xi = g(Zi) where {Zi}∞i=0 is a Markov

chain, with Z0 chosen from some appropriate initial distribution) and are thus dependent.

For large i, the distribution of Xi is approximately stationary, with mean equal to µ, the

quantity to be estimated. However, for smaller i this may not be the case.

11

Remark. Of course, one might well be interested in estimating several functionals of

the Markov chain, say Xi = g(Zi) and Yi = h(Zi). In this case, all of our comments

would apply equally well to {Xi} and to {Yi} together. In this paper, we consider a single

functional solely for ease of exposition.

A typical estimator from an MCMC algorithm is of the form 1
N−B+1

∑N
i=B Xi, i.e.

1
N−B+1

∑N
i=B g(Zi). Here B is a “burn-in time”, designed to be large enough that the dis-

tributions of XB , XB+1, . . . are approximately stationary. However, it is often not obvious

how to choose a value for B, and indeed this is one of the biggest difficulties with MCMC

algorithms.

For parallel Markov chain Monte Carlo, we can have each computer j generate nj

samples X
(j)
1 , . . . , X

(j)
nj , and compute and return an estimate Ej = 1

nj−Bj+1

∑nj

i=Bj
X

(j)
i .

As before, the master program can then compute an overall estimate

E =

∑C
j=1 nj Ej∑C

j=1 nj

as in (2). We thus record that:

Observation 8. Like i.i.d. Monte Carlo algorithms, Markov chain Monte Carlo algorithms

can also be easily run in parallel.

We note that any burn-in period must be run separately on each computer, so that the

resulting speed-up is slightly less than linear in this case.

Of course, all of the unreliability problems and solutions for ordinary parallel Monte

Carlo, discussed in the previous section, still apply. Furthermore, if the Markov chain is

slowly mixing then the resulting samples X
(j)
1 , . . . , X

(j)
nj may be highly correlated, thereby

increasing the variance of E somewhat; but this is an unavoidable consequence of using

MCMC of any kind.

One new issue which arises for parallel MCMC, but not for parallel i.i.d. Monte Carlo,

is the choice of the burn-in times Bj . It is sometimes suggested (e.g. [20]) that, as long

as the total number of samples nj is large enough, the burn-in time isn’t so important.

[Indeed, as nj → ∞, the burn-in bias will only effect the resulting estimate by O(1/nj),

while random sample variability will effect the resulting estimate by O(1/
√

nj).]

12

However, for parallel MCMC, the total computation is divided into C different pieces,

so we may not have each nj as large as for conventional MCMC. Hence, if C is large,

then burn-in issues are still very important. (More formally, the burn-in bias will still be

O(1/nj), while random sample variability will now be O(1/
√

Cnj).) By Observation 2,

for parallel MCMC we want to eliminated bias as much as possible. (Similar issues were

considered, both experimentally and theoretically as C →∞, by Glynn and Heidelberger

[24], [26], [27].) We now discuss different methods of choosing Bj , with Observation 2 kept

in mind.

4.1. Fixed burn-in times.

One possibility is to simply choose Bj = K, for some fixed pre-chosen constant K.

(Perhaps K = 0, or perhaps K is a function of the number of processors C.) This is easy to

implement, and if nj is large enough, the resulting estimates Ej may be reasonably close to

µ. However, if K is too small, e.g. if the corresponding Markov chain is “slowly mixing”,

then the estimators Ej may be substantially biased. Similarly, if K is much too large,

then lots of computational effort is wasted. Furthermore, in the absence of additional

information about the Markov chain under consideration, it is usually very difficult to

determine an appropriate constant K in advance. Hence, this method of choosing Bj = K

would appear to have limited appeal for parallel MCMC in general.

4.2. Convergence diagnostics.

In the absence of good theoretical knowledge of appropriate burn-in times Bj , it is

common to use convergence diagnostics (see e.g. [18], [5], [2]) to determine the burn-in

time. Here the values Bj are chosen on-line, based on statistical analysis of the sample run

X
(j)
1 , X

(j)
2 , . . . (or perhaps of the underlying Markov chain run Z

(j)
1 , Z

(j)
2 , . . .) in progress.

Such convergence diagnostics often work well in practice. However, they have at least

two draw-backs from the parallel MCMC perspective. First, they sometimes prematurely

diagnose convergence by providing a burn-in time B which is too small (see e.g. [33], [5]),

leading to biases as in Subsection 4.1 above. Second, as shown in [6], by basing the burn-

in time on the sample in progress, convergence diagnostics sometimes introduce biases of

their own (even if the Markov chain converges immediately).

13

We thus record:

Observation 9. When running parallel Markov chain Monte Carlo, choice of burn-in is

a very important issue. Convergence diagnostics or fixed-length burn-in can be used, but

they may introduce bias into the resulting estimate.

Remark. It is possible to use the parallel MCMC results themselves as a form of

diagnostic. Specifically, if the estimates Ej from the different computers are all very

different, then this may suggest that the Markov chain has not yet converged, or that

there is a problem with the algorithm. (This is somewhat related to the multiple-runs

computer diagnostics of e.g. [18].) However, such “diagnostic” method should be used

with care, to avoid introducing additional biases (cf. [6]). In addition, it may be possible

to do more sophisticated analysis (e.g. of autocorrelations) on the multiple parallel runs,

though this may require greater communication between the different computers.

4.3. Theoretical quantitative bounds.

It is sometimes possible (cf. [34], [46], [47]) to use theoretical analysis to compute a

burn-in time B such that the distribution of the Markov chain after B steps is provably

within ε of its stationary distribution. Such theoretical analysis is too difficult to be

used routinely, however it has been successfully applied to some reasonably complicated

examples of the Gibbs sampler (see e.g. [47]). Furthermore, certain auxiliary-simulation

methods have been proposed ([7], [4]) to estimate such theoretical burn-in times B in more

general situations.

If we are able to obtain (or estimate) such a theoretical burn-in time B, then im-

plementing parallel MCMC is straightforward. Indeed, we simply set Bj = B for each

computer j, and then compute Ej and E as above. The resulting estimator E has ex-

tremely small bias (≤ εM if the possible values of Xi are in the interval [0,M]), and makes

good use of the computing power of all the available computers. We conclude:

Observation 10. When running parallel Markov chain Monte Carlo, if theoretical burn-

in bounds are available (or can be estimated), then they should be used to reduce bias in

the resulting estimates.

14

4.4. Perfect simulation.

A recent exciting development in MCMC methodology is the establishment of perfect

simulation algorithms by Propp and Wilson [43] and Fill [14] (see also [54] and references

therein). These algorithms use a Markov chain in a clever way, to produce a random

variable Z0 which is distributed exactly according to its stationary distribution. It then

follows that X0 = g(Z0) has precisely its stationary distribution, and in particular we have

E(X0) = µ. Such algorithms are therefore completely unbiased, and thus very attractive

for parallel MCMC purposes. Similarly, it is sometimes possible to produce perfect samples

by non-Markovian methods, e.g. using rejection sampling.

One difficulty is that such perfect samples (when they can be generated at all) often

take a rather long time to generate. Thus, it may be very inefficient to simply repeat

the perfect simulation algorithm over and over, and thus generate perfect i.i.d. stationary

samples. A natural idea (analysed in [37]) is to generate Z0 using a perfect simulation

algorithm, and then generate Z1, Z2, . . . simply using the Markov chain updating rule. In

this case, setting Xi = g(Zi), the resulting samples X0, X1, . . . will be highly dependent in

general. However, each sample will individually be distributed according to the stationary

distribution. In particular, for each i we will have E(Xi) = µ. Thus, all the bias (inherent

in ordinary MCMC) has been eliminated.

This idea carries over to parallel MCMC. If a perfect simulation algorithm exists (even

if it is fairly slow), then we can proceed as follows. We instruct each computer j to begin

by computing a single perfect sample Z
(j)
0 . The computer then uses this value as the initial

value in an ordinary Markov chain run Z
(j)
0 , Z

(j)
1 , . . . , Z

(j)
nj−1. When finished, the computer

returns the estimate Ej = 1
nj

∑nj−1
i=0 X

(j)
i = 1

nj

∑nj−1
i=0 g(Z(j)

i). (Note that now no burn-in

time is required.) The master program then computes an overall estimate E as in (2).

Such a scheme is completely unbiased. Furthermore, each computer only has to com-

pute a (slow) perfect sample once, and thereafter just computes (fast) Markov chain up-

dates. Thus, each computer makes good use of its available computational power. We

conclude:

15

Observation 11. When running parallel Markov chain Monte Carlo, if perfect samples

are available, then they should be used once (even if they are slow) on each computer, to

initialise the Markov chain exactly in its stationary distribution, and thereby eliminate all

initialisation bias.

4.5. Stopping rule.

If the computers are running Markov chains, then their simulated values are not

exchangable like they were in the i.i.d. case. In particular, the Unbiased Stopping Rule (as

in Observation 7) no longer guarantees an unbiased estimate.

Despite this, the Unbiased Stopping Rule still provides a good stopping rule for sim-

ulating from Markov chains. This seems intuitively clear by analogy to the i.i.d. case. It

is also implied by the more careful analysis of Glynn and Heidelberger ([26], Theorem 9),

who derive asymptotic expansions for the bias of this rule as the number of processors goes

to infinity.

Thus, we continue to use the Unbiased Stopping Rule in the MCMC case, even though

it may no longer be a perfectly unbiased stopping rule.

4.6. Multiple Markov chain Monte Carlo.

There is a more specialised Monte Carlo algorithm which has been suggested as a

candidate for parallelisation. This is the Metropolis-coupled Markov chain Monte Carlo

(or, multiple Markov chain Monte Carlo) method of Geyer [19]; see also [21], [52], [40].

The algorithm is related to simulated tempering (see [32], [21], [31]) and to tempered

transitions (see [39]). It proceeds by simultaneously running a number m of different

Markov chains, governed by different (but related) Markov chain transition probabilities.

It occasionally “swaps” values from two different chains, with probabilities governed by

the Metropolis algorithm to preserve stationarity of the target distribution. These swaps

hopefully speed up convergence of the algorithm, perhaps very substantially.

Now, if the number m of different Markov chains to be run happens to be the same

as the number C of computers available, then it is natural to try to parallelise this al-

gorithm. Specifically, each of the m different Markov chains could be run simultaneously

16

on a different computer, with the computers occasionally communicating for purposes of

engineering a swap.

If each computer is running perfectly reliably, and at the same rate, and if they are

able to communicate efficiently, then no difficulties arise, and we conclude:

Observation 12. If we have an ideal computing environment, in which m reliable com-

puters are available, run at the same rate, and communicate without difficulty, then

Metropolis-coupled Markov chain Monte Carlo algorithms can be effectively run in parallel.

However, in a non-ideal environment, parallel Metropolis-coupled Markov chain Monte

Carlo presents a number of additional difficulties to be overcome, such as:

1. How do the different computers communicate with each other in order to initiate

“swaps” in an efficient manner?

2. What do we do if one of the computers is down or fails to respond?

3. If the computers are running at different speeds, is it acceptable to swap values from

two Markov chains that have completed a different number of iterations?

4. If yes to question three, then if the number of iterations completed depends on the

values computed, will this introduce bias into the resulting estimate?

5. What if C < m, i.e. we have fewer computers available than different chains we wish

to run? Is it worth reducing the number m of chains in order to fit the available

hardware?

6. What if C > m, i.e. we have more computers available than different chains we wish to

run? Is it worth increasing the number m of chains to make best use of the available

hardware?

We leave these as open questions for future research. Their investigation would appear

to be important for effective implementation of parallel Metropolis-coupled Markov chain

Monte Carlo in non-ideal computing environments.

17

5. Computer experiments.

To better illustrate the parallel Monte Carlo algorithms we are advocating, we have

performed three very simple computer experiments. (For related experiments in the con-

text of queueing systems, see [27].)

For each of the experiments, we have run parallel simulation algorithms on five com-

puters to which the author happened to have access. (Of course, in a more serious use of

parallel Monte Carlo, the number of computers would be much greater than five, perhaps

numbering in the hundreds or thousands.) These five computers are all connected by the

internet (one of them at a distance of 100 kilometers). All five run some version of the

Unix operating system, and thus can easily run computer programs written in C.

To carry out the experiment, a master program jpar.c [48] was used. This program

used the rsh command to remotely run the compiled C programs on each of the five

computers, and used the popen command to collect the results. These results were then

averaged together, using weightings equal to the number of simulations represented by

each result.

The individual computers were each instructed to terminate their simulation after 60

seconds. Furthermore, the Unbiased Stopping Rule (cf. Observation 7) was used on each

computer to discard the iteration in progress when the 60 second deadline approached.

Each of the five computers are shared by many users; thus, the programs were all

executed using the nice command to reduce the amount of CPU time they took away

from other programs.

5.1. Uniform variable averaging.

As a simple first example, we considered the case where the Xi are all i.i.d. uniformly

distributed on [0, 1], and we are simply interested in computing their average. This case

does not involve Markov chains or any other such complications. The simple program

unifavr.c [48] was compiled on each computer (using a simple shell-script). It was then

simultaneously run on each computer (using the master program jpar.c), generating

and averaging Uniform[0, 1] pseudo-random numbers. The program on each computer

was instructed to cease computation (and issue a report to the master program) after 60

18

seconds. The results are summarised in Figure 1.

Computer Running Time # Samples Estimate

1. Linux 2.0.35 60.11064 sec 15,177,767 0.499937

2. Irix 6.5 60.43933 sec 10,747,492 0.500224

3. Irix 5.3 60.76017 sec 2,427,713 0.500008

4. Irix 6.2 60.52251 sec 4,925,341 0.499848

5. Linux 2.0.27 60.57984 sec 6,739,259 0.499954

MASTER 60.76256 sec 40,017,572 0.50001029

Figure 1. Results of the unifavr simulation.

As can be seen, the total time used by each computer was just slightly larger than

the 60 second target time. Furthermore, the total time for the entire parallel experiment

was essentially no larger than this; in other words, there was virtually no wasted time

in coordinating and collating the individual computers’ outputs. On the other hand, the

total number of simulations averaged into the final “master” estimate is the sum of the

individual simulation totals. This justifies the claim (Observation 1) that i.i.d. parallel

Monte Carlo can be run easily, and gives essentially linear speed-up over a single-computer

simulation.

The master program then produced a final estimate, based on the weighted sum (2),

making use of all the simulations on all five computers. The resulting master estimate is,

of course, extremely close to its expected value of 0.5.

5.2. A one-dimensional Markov chain.

We next consider a very simple Markov chain example. Here the Markov chain is

given by Z0, Z1, . . ., where L(Zi+1 |Zi) = N(Zi/2, 3/4). That is, given a value of Zi, we

choose Zi+1 from a normal distribution with mean Zi/2 and variance 0.75.

For illustrative purposes, let us suppose we are interested in estimating the expected

value E[(Zi)2], i.e. the expected value E[g(Zi)] where g(z) = z2. We therefore set Xi =

19

g(Zi) = (Zi)2, and use the estimator

Ej =
1
nj

nj∑
i=1

Xi

on the jth computer.

Now, it is well-known (see e.g. [49], [46]) that this Markov chain has as its stationary

distribution the standard normal distribution N(0, 1). For illustrative purposes, we pretend

that it is difficult and time-consuming to sample directly from this distribution. We thus

proceed (as in Observation 11 above) by having each computer j begin with a single

exact N(0, 1) sample, Z
(j)
0 , and then run the Markov chain to obtain further samples

Z
(j)
1 , Z

(j)
2 , (If, instead, the chains began with a large fixed value like Z

(j)
0 = 1000, then

this would serious bias the resulting estimates unless nj were extremely large.)

Since the chains begin with an exact sample, they do not require any burn-in period,

so the jth computer uses the estimator Ej = (1/nj)
∑nj

i=1 Xi as above. Here, like in the

previous example, nj is the number of simulations that can be computed within the target

60 second time-frame.

The experiment was carried out, again using jpar.c as the master program, and this

time using normalmc.c [48] on each individual computer. The results are summarised in

Figure 2.

Computer Running Time # Samples Estimate

1. Linux 2.0.35 60.09057 sec 5,471,868 1.000091

2. Irix 6.5 60.34377 sec 4,919,156 1.000248

3. Irix 5.3 60.81072 sec 915,644 1.001021

4. Irix 6.2 60.56002 sec 2,174,534 1.003149

5. Linux 2.0.27 60.93772 sec 2,242,576 0.999483

MASTER 60.94014 sec 15,723,778 1.00053044

Figure 2. Results of the normalmc simulation.

20

Once again, the parallel algorithm proceeded efficiently and gave linear speed-up (cf.

Observation 1). Furthermore, because each computer began with an exact sample, there

was no initialisation or burn-in bias (cf. Observation 11).

And, once again, the results are very close to the expected value, which in this case

is E(Xi) = E((Zi)2) = 1.0.

5.3. A random-effects Gibbs sampler Markov chain.

For our final example, we consider a more complicated Markov chain. This chain,

described in [47], arises from a Gibbs sampler related to a model for James-Stein estimates

applied to baseball players’ batting averages (see Efron and Morris [13], Morris [35]).

This Markov chain corresponds to the following model. For 1 ≤ i ≤ K, we observe

data Yi, where Yi | θi ∼ N(θi, V) and are conditionally independent. Here θi are unknown

parameters to be estimated, and V > 0 is assumed to be known. Furthermore θi |µ,A ∼

N(µ,A) and are conditionally independent. Finally, µ has a flat prior, and A has a prior of

the form IG(a, b), where IG is the inverse gamma distribution with density proportional

to e−b/xx−(a+1), and where a and b are fixed constants.

The Markov chain runs on the random variables Z = (A,µ, θ1, . . . , θK). We index

them by a time parameter k, so that the Markov chain variables are Zk = (Ak, µk, θk,1, . . . , θk,K),

for times k = 0, 1, 2, Given initial values θ0,1, . . . , θ0,K , the chain proceeds by, for

k = 1, 2, . . ., repeatedly sampling

Ak ∼ L(A | θ1 = θk−1,1, . . . , θK = θk−1,K , Y1, . . . , YK)

= IG

(
a +

K − 1
2

, b +
1
2

K∑
i=1

(θk−1,i − θk−1)2
)

;

µk ∼ L(µ |A = Ak, θ1 = θk−1,1, . . . , θK = θk−1,K , Y1, . . . , YK) = N(θk−1, Ak/K) ;

and then for i = 1, 2, . . . ,K,

θk,i ∼ L(θi |A = Ak, µ = µk, Y1, . . . , YK) = N

(
µkV + YiAk

V + Ak
,

AkV

V + Ak

)
;

here θk−1 = 1
K

∑K
i=1 θk−1,i.

21

[This Markov chain corresponds to a Gibbs sampler on the (K+2) variables (A,µ, θ1, . . . , θK),

where the pair (A,µ) is treated as a single block; for further details see [47].]

We consider this chain with K = 18, V = 0.00434, a = −1, b = 2, and the data

Y1, . . . , Y18 as in Table 1 of Morris [35]. Furthermore, we consider initial values θ0,1 =

. . . = θ0,18 = Y , where Y = 1
18

∑18
i=1 Yi.

For these values, it was rigorously proved in [47] that the Markov chain will converge

(to within 1% of its stationary distribution) after at most 140 iterations. Hence, as in Ob-

servation 10, we should instruct each computer, when running the Markov chain, to discard

all iterations before the 140th, and base their estimate solely on iterations 140, 141, . . . , nj .

An experiment was carried out, again using jpar.c as the master program, and this

time using the program james.c [48] (which in turn uses random-number generation al-

gorithms presented in [11]) on each individual computer. For illustrative purposes, we

have concentrated on estimating the expected value of the θ1 variable (i.e. we have set

Xk = g(Zk) = θk,1). Each computer was again instructed to iteratively run the Markov

chain, terminating after 60 seconds; once again, the Unbiased Stopping Rule (cf. Observa-

tion 7) was used on each computer. The results are summarised in Figure 3.

Computer Running Time # Samples Estimate

1. Linux 2.0.35 60.04929 sec 512,283 0.393020

2. Irix 6.5 60.56188 sec 1,256,488 0.392972

3. Irix 5.3 60.76236 sec 153,642 0.393143

4. Irix 6.2 60.42300 sec 429,747 0.393073

5. Linux 2.0.27 60.91139 sec 145,177 0.393006

MASTER 60.91375 sec 2,497,337 0.39301172

Figure 3. Results of the james simulation.

Once again, the parallel algorithm proceeded efficiently and gave linear speed-up (aside

from needing to discard the first 140 samples from each computer). Furthermore, because

22

each computer allowed for an appropriate theoretical burn-in period, there was very little

initialisation or burn-in bias (cf. Observation 10).

As an aside, we note that the resulting estimates depend heavily on the prior value b

chosen. For example, if b = 0 as for a flat prior, then the resulting estimate of θ1 is closer

to 0.308.

6. Conclusion.

In this paper, we have argued that many typical Monte Carlo calculations, including

i.i.d. Monte Carlo and also Markov chain Monte Carlo, can be run in parallel without great

difficulty.

In a multiple-computer environment it is sometimes necessary to surrender some con-

trol, and to deal with computers and networks which may be unreliable, or down, or heavily

used by other users. This is not an insurmountable obstacle, and we have argued that it is

possible to handle these difficulties, at least to some extent, through analysis of the parallel

computer set-up.

We believe that, as computers become more numerous, more easily available, and

better networked, parallel Monte Carlo computations will become more and more common

and more and more useful. We look forward to the exciting developments ahead.

Acknowledgements. I am very grateful to Alan J Rosenthal and to Radford Neal

for discussing these issues with me in detail. I thank Peter Glynn, Neal Madras, Duncan

Murdoch, Gareth Roberts, and Stu Whittington for helpful comments.

REFERENCES

[1] Beowulf Project. http://www.beowulf.org/

[2] S.P. Brooks and G.O. Roberts (1996), Diagnosing Convergence of Markov Chain

Monte Carlo Algorithms. Preprint.

[3] K.M. Chandy, J. Kiniry, A. Rifkin, D. Zimmerman (1998), A framework for struc-

tured distributed object computing. Parallel Computing 24, 1901–1922.

23

[4] M.K. Cowles (1998), MCMC Sampler Convergence Rates for Hierarchical Normal

Linear Models: A Simulation Approach. Technical Report, Dept. of Statistics and Actuarial

Science, University of Iowa.

[5] M.K. Cowles and B.P. Carlin (1996), Markov Chain Monte Carlo Convergence

Diagnostics: A Comparative Review. J. Amer. Stat. Assoc. 91, 883–904.

[6] M.K. Cowles, G.O. Roberts, and J.S. Rosenthal (December 1997), “Possible biases

induced by MCMC convergence diagnostics”. Preprint.

[7] M.K. Cowles and J.S. Rosenthal (1996), A simulation approach to convergence

rates for Markov chain Monte Carlo algorithms. Stat. and Comput. 8 (1998), 115–124.

[8] Cray T90 Home Page. http://www.sgi.com/t90/

[9] The d’Artagnan Cluster. http://turing.sci.yorku.ca/courseware/PHYS1010/

dartagnan.html

[10] Deschall. http://www.frii.com/∼rcv/deschall.htm

[11] L. Devroye (1986), Non-uniform random variate generation. Springer-Verlag, New

York.

[12] Distributed.net. http://distributed.net/des/

[13] B. Efron and C. Morris (1975), Data analysis using Stein’s estimator and its

generalizations. J. Amer. Stat. Assoc., Vol. 70, No. 350, 311-319.

[14] J.A. Fill (1998), An interruptible algorithm for perfect sampling via Markov

chains. Annals of Applied Probability, 8:131–162.

[15] J.A. Fill and D.B. Wilson (1997), A Note about Time-dependent Sampling.

Unpublished note.

[16] T.J. Fountain (1994), Parallel Computing: Principles and Practice. Cambridge

University Press.

[17] A.E. Gelfand and A.F.M. Smith (1990), Sampling based approaches to calculating

marginal densities. J. Amer. Stat. Assoc. 85, 398-409.

[18] A. Gelman and D.B. Rubin (1992), Inference from iterative simulation using

multiple sequences. Stat. Sci., Vol. 7, No. 4, 457-472.

[19] C.J. Geyer (1991), Markov chain Monte Carlo maximum likelihood. In Computing

Science and Statistics: Proceedings of the 23rd Symposium on the Interface, 156–163.

24

[20] C.J. Geyer (1992), Practical Markov chain Monte Carlo. Stat. Sci., Vol. 7, No.

4, 473-483.

[21] C.J. Geyer and E.A. Thompson (1995), Annealing Markov chain Monte Carlo

with applications to ancestral inference. J. Amer. Statist. Assoc. 90, 909–920.

[22] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, ed. (1996), Markov chain

Monte Carlo in practice. Chapman and Hall, London.

[23] P.W. Glynn and P. Heidelberger (1990), Bias properties of budget constrained

simulations. Operations Research 38, 801–814.

[24] P.W. Glynn and P. Heidelberger (1991), Analysis of Initial Transient Deletion

for Replicated Steady-State Simulations. Operations Research Lett. 10, 437–443.

[25] P.W. Glynn and P. Heidelberger (1991), Analysis of Parallel, Replicated Simula-

tions under a Completion Time Constraint. ACM Trans. on Modeling and Simulation 1,

3–23.

[26] P.W. Glynn and P. Heidelberger (1992), Analysis of Initial Transient Deletion

for Parallel Steady-State Simulations. SIAM J. Scientific Stat. Computing 13, 904–922.

[27] P.W. Glynn and P. Heidelberger (1992), Experiments with Initial Transient

Deletion for Parallel Replicated Steady-State Simulations. Management Science 38, 400–

418.

[28] J.M. Hammersley and D.C. Handscomb (1964), Monte Carlo methods. John

Wiley, New York.

[29] E.L. Lafferty, M.C. Michaud, M.J. Prelle, and J.B. Goethert (1993), Parallel

Computing: An Introduction. Noyes Data Corporation, Park Ridge, New Jersey.

[30] E.L. Leiss (1995), Parallel and Vector Computing: A Practical Introduction.

McGraw-Hill, New York.

[31] N. Madras (1998), Umbrella sampling and simulated tempering. In Numerical

Methods for Polymeric Systems (Springer, New York; S. Whittington, ed.), 19–32.

[32] E. Marinari and G. Parisi (1992), Simulated tempering: a new Monte Carlo

scheme. Europhys. Lett. 19, 451–458.

[33] P. Matthews (1993), A slowly mixing Markov chain with implications for Gibbs

sampling. Stat. Prob. Lett. 17, 231-236.

25

[34] S.P. Meyn and R.L. Tweedie (1994), Computable bounds for convergence rates

of Markov chains. Ann. Appl. Prob. 4, 981-1011.

[35] C. Morris (1983), Parametric empirical Bayes confidence intervals. Scientific

Inference, Data Analysis, and Robustness, 25-50.

[36] R. Motwani and P. Raghavan (1995), Randomized Algorithms. Cambridge Uni-

versity Press. (Chapter 12.)

[37] D.J. Murdoch and J.S. Rosenthal (1998), Efficient use of exact samples. Preprint.

[38] National Center for Supercomputing Applications. http://www.ncsa.uiuc.edu/

ncsa.html

[39] R.M. Neal (1996), Sampling from multimodal distributions using tempered tran-

sitions. Stat. and Comput. 6, 353–366.

[40] E. Orlandini (1998), Monte Carlo study of polymer systems by multiple Markov

chain method. In Numerical Methods for Polymeric Systems (Springer, New York; S. Whit-

tington, ed.), 33–57.

[41] Parallel Simulation Bookmarks. http://www.cpsc.ucalgary.ca/∼gomes/

HTML/sim.html

[42] Project Appleseed. http://exodus.physics.ucla.edu/appleseed/

appleseed.html

[43] J.G. Propp and D.B. Wilson (1996), Exact sampling with coupled Markov chains

and applications to statistical mechanics. Random Structures and Algorithms, 9:223–252.

[44] B.D. Ripley (1987), Stochastic simulation. Wiley, New York.

[45] G.O. Roberts and J.S. Rosenthal (1998), Markov chain Monte Carlo: Some prac-

tical implications of theoretical results (with discussion). Canadian J. Stat. 26, 5–31.

[46] J.S. Rosenthal (1995), Minorization conditions and convergence rates for Markov

chain Monte Carlo. J. Amer. Stat. Assoc. 90, 558-566.

[47] J.S. Rosenthal (1996), Analysis of the Gibbs sampler for a model related to

James-Stein estimators. Stat. and Comput. 6, 269-275.

[48] J.S. Rosenthal. Parallel computation software.

http://probability.ca/jeff/comp/

26

[49] M.J. Schervish and B.P. Carlin (1992), On the convergence of successive substi-

tution sampling. J. Comp. Graph. Stat. 1, 111–127.

[50] A. Sinclair (1992), Improved bounds for mixing rates of Markov chains and

multicommodity flow. Combinatorics, Prob., Comput. 1, 351–370.

[51] A.F.M. Smith and G.O. Roberts (1993), Bayesian computation via the Gibbs

sampler and related Markov chain Monte Carlo methods (with discussion). J. Roy. Stat.

Soc. Ser. B 55, 3-24.

[52] M.C. Tesi, D.J. Janse van Rensburg, E. Orlandini, and S.G. Whittington (1996),

Monte Carlo study of the interacting self-avoiding walk model in three dimensions. J. Stat.

Phys. 82, 155–181.

[53] L. Tierney (1994), Markov chains for exploring posterior distributions (with

discussion). Ann. Stat. 22, 1701-1762.

[54] D.B. Wilson. Annotated bibliography of perfectly random sampling with Markov

chains. http://dimacs.rutgers.edu/∼dbwilson/exact.html/

27

