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Abstract. We consider piecewise-deterministic Markov processes such as
the Bouncy Particle sampler, on target densities with polynomial tails. Using
direct drift condition methods, we provide bounds on the polynomial order
of the processes’ convergence rate to stationary, on both one-dimensional and
high-dimensional state spaces, in both total variation distance and f -norm.

1. Introduction.

Markov chain Monte Carlo (MCMC) algorithms have become an indispensable part of

statistical computation; see e.g. [7] and the many references therein. Piecewise-deterministic

Markov processes (PDMP), such as the Bouncy Particle sampler [6] and the Zig-Zag al-

gorithm [4], have emerged as a non-reversible alternative to traditional Metropolis-based

MCMC. They are of great theoretical interest and also some practical relevance; see e.g. [3]

and the references therein. An important question about PDMP is their rate of conver-

gence, i.e. how quickly they converge to their target stationary distribution. For sufficiently

lightly-tailed targets, geometric ergodicity has been established under certain conditions

[8]. However, if the target distribution has tails which are heavier than exponential, then

geometric ergodicity does not apply.

In this paper, we instead focus on polynomial convergence rates of certain PDMP. That

topic was previously approached using the concept of hypocoercivity in [1, 2], but here we

proceed using direct drift condition methods. We specifically consider the Bouncy Particle

sampler [6], for a given target density π in Rd. This PDMP has, at each time, a location

x ∈ Rd and a velocity v ∈ Rd with |v| = 1. It proceeds primarily by deterministically moving

x through Rd at the fixed velocity v. It also reflects v along π’s contour lines at hazard rate

λ(x, v) =
[
−v (log π)′(x)

]+
. In addition, it refreshes at some specified hazard rate (which
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could depend on the current position x), at which point it replaces the velocity v by an

independent draw from the uniform distribution Ψ on the unit sphere in Rd. This process

is known [6] to be irreducible with stationary density π, and to converge to π exponentially

quickly for sufficiently light-tailed target densities π.

This paper examines the polynomial convergence rate of this PDMP to target densi-

ties π which are heavy-tailed. We first consider one-dimensional heavy-tailed targets (for

which polynomial convergence rates of the Zig-Zag Process was also considered in [17]).

For targets with tails comparable to a t-distribution with r degrees of freedom, we derive

sharp bounds on polynomial convergence (Theorem 4). In particular, we prove that the

polynomial convergence order in total variation distance is precisely r, in the sense that

limt→∞ ta ‖P t(x, ·) − π(·)‖TV equals 0 for a < r and infinity for a > r. We also prove con-

vergence in the V (1−α)p-norm (see Section 3) at polynomial order approaching (1 − p)r, for

any p ∈ [0, 1). We then consider high-dimensional PDMP, and compute their infinitesimal

generator applied to an appropriate drift function (Theorem 5). We specialise this genera-

tor computation to target densities with polynomial tails proportional to (1 + |x|2)−(r+d)/2

(Corollary 7), and use this to derive specific bounds on their polynomial convergence rate

(Theorem 8) in both total variation distance and f -norm. Our theorem shows that for

r > (2π − 1)d, the process converges in total variation distance at polynomial order ap-

proaching (r + d)
√

2π/d− 1.

This paper is organised as follows. In Section 2, we present some computer simulations

to illustrate the convergence of PDMP to stationarity. In Section 3, we review general poly-

nomial convergence rate bounds for continuous-time processes as in [12], and present some

corollaries adapting those results to our needs. In Section 4, we consider one-dimensional

PDMP, and prove an exact characterisation (Theorem 4) of the polynomial convergence

order in that case. In Section 5, we prove a general result (Theorem 5) which derives the

infinitesimal generator of PDMP acting on certain choices of drift function, which we then

apply to target densities with polynomial tails (Corollary 7). In Section 6, we apply these

results to derive specific polynomial rate bounds for high-dimensional PDMP (Theorem 8).

Finally, in Section 7, we present an auxiliary computation about expected values with respect

to the refresh distribution Ψ, which is used in the proof of Theorem 8.

2. Computer Simulations of the PDMP.

We begin by performing some computer simulations. Suppose the state space X is

the one-dimensional real line R, with C1 target density π(x). In this case, the Piecewise
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Deterministic Markov Process (PDMP) enlarges the state space to X ×{−1, 1}, and expands

π to π(x, v) = 1
2
π(x) for v ∈ {−1, 1}. It then proceeds by moving with fixed constant

velocity v, except reflecting from v to −v with hazard rate λ(x, v) =
[
−v (log π)′(x)

]+
. (We

omit refreshes, i.e. take the refresh rate to be zero, since refreshes are not required in one

dimension.)

Simulating this process requires that we identify the reflection times, which arise in con-

tinuous time according to the hazard rate λ(x, v). This could be approximated by advancing

time in small discrete increments, but the errors in such approximations are difficult to con-

trol. Instead, we proceed as follows. Suppose the process is currently at some state (Xt, Vt)

at time t ≥ 0, and we wish to simulate the next T units of time. We first find some value

M for which we must have λ(Xs, Vs) ≤M for all t ≤ s ≤ t+ T .

Then, we simulate a Poisson process with constant rate M for the next T time units. We

then use “Poisson thinning” to proceed through those times points in order, with acceptance

probability λ(x, v)
/
M , until the first one is accepted and hence the next reflection time is

identified. At that point, we discard the remaining Poisson time points, and continue the

simulation anew from the identified reflection time. In this way, the reflection times are

simulated accurately, without any discretisation error. (The R script that we used for our

simulations is available for inspection at: probability.ca/Rpoly.)

We first simulate this process where π(x) = (1+x2)−3 (so, π is essentially a t-distribution

with parameter r = 5). In this case, λ(x, v) :=
[
−v (log π)′(x)

]+
= (1+r)(xv)+

1+x2
, which is

maximised at M := λ(1, 1) = (1 + r)/2. (So, in this case λ(x, v) has a constant upper bound

M , but in general M might depend on Xt and Vt and T .) A typical run of this process is

shown in Figure 1, starting with X0 = 5 and V0 = +1. We see that the process moves at

constant velocity ±1, with reflections at appropriate random times to preserve stationarity.

To illustrate the convergence of this process Xt to its stationary distribution π, we con-

sider (inspired by total variation distance, see next section) the expected values of functionals

g : X → R, specifically the difference between the expected value E[g(Xt)] at time t of our

process, compared to the stationary expected value π(g) := Eπ[g(X)]. By repeating the

simulation a large number of times, we obtain a mean value and 95% confidence interval

for E[g(Xt)] at various times t, for three different functionals g1(x) = x, g2(x) = 1x>0, and

g3(x) = x2. In each case, we compare E[g(Xt)] to the corresponding stationary expectation

π(g) (equal to 0 and 1/2 and 1/3, respectively), at various times t. The results are shown in

Figure 2. The mean value of each of the three functionals when running the process (blue)

converges quickly to its stationary value (red). This provides confirmation that our PDMP

process is indeed converging to the correct distribution. But how quickly?
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Figure 1: A typical piecewise-deterministic Markov process (PDMP)
run for the Student’s t-distribution π, starting with X0 = 5 and V0 =
+1, with reflections at random times to make π be stationary.

In fact, the convergence rate of this process is heavily affected by the tail behaviour of

the target distribution π(x). To illustrate this, consider a second example where the target

π̄(x) = e−x
2/2 corresponds to a standard Gaussian distribution. Then the tails of π(x) are

much heavier than those of π̄(x). Its hazard rate is equal to λ̄(x, v) :=
[
−v (log π̄)′(x)

]+
=

(xv)+ which grows much faster than λ(x, v) above. Here M := supt≤s≤t+T λ(Xs, Vs) =

|Xt| + T , which depends on Xt. In particular, the process for π̄ will return to the origin

much more quickly and consistently than for π, leading to much faster convergence. This is

illustrated in Figure 3, which shows ten runs of the process for π̄ (top) and for π (bottom)

when started with X0 = 10 and V0 = +1, with the π processes much more variable in their

return times. The difference also arises in Figure 4, which shows ten runs for each target,

but this time started with X0 = 1000 and V0 = +1, i.e. much farther out in the tails, with

the π processes even more variable in their return times.

Due to the heavy polynomial tails of the Student’s t-distribution π(x), the convergence

to π cannot be exponentially quick, i.e. “geometrically” ergodic. But it might still be poly-

nomially ergodic. To investigate that question, we next to turn our attention to the theory
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Figure 2: The mean value (blue) and 95% confidence interval (green
dotted) for E[g(Xt)] at various times t, for the three different func-
tionals g1(x) = x (top), g2(x) = 1x>0 (middle), and g3(x) = x2 (bottom),
compared to the corresponding stationary expectation (red), when
running a PDMP for the Student’s t-distribution.
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Figure 3: Ten PDMP runs for the Gaussian target π̄ (top) and for
the Student’s t-distribution target π (bottom), started with X0 = 10
and V0 = +1; the π (bottom) processes are much more variable.
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Figure 4: Ten PDMP runs for the Gaussian target π̄ (top) and for
the Student’s t-distribution target π (bottom), started with X0 = 1000
and V0 = +1; the π (bottom) processes are again more variable.
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of polynomial convergence rates of Markov processes.

3. Polynomial Convergence Rates of Markov Processes.

Quantitative convergence rates of discrete-time geometrically ergodic Markov chains have

a long history, see e.g. [16] and the many references therein. More recently, focus has turned

to polynomial ergodicity, e.g. [10, 14]. Most of these results are in discrete time, but [12]

yields the following continuous-time polynomial convergence bound. To state it, recall that

if µ and ν are two probability distributions on X , and f : X → (0,∞), then the f -norm

distance between µ and ν is defined as

‖µ(·)− ν(·)‖f := sup
g:X→R
|g|≤f

|Eµ(g)− Eν(g)| ,

and the total variation distance between µ and ν is defined as

‖µ(·)− ν(·)‖TV := sup
g:X→R
|g|≤1

|Eµ(g)− Eν(g)| .

Let P t(x,A) = P[Xt ∈ A |X0 = 0] be the time-t transition probabilities. Also, recall that

a continuous-time Markov process {Xt} has an infinitesimal generator A which acts on

appropriate functions f : X → R by

Af(x) := lim
δ↘0

E[f(Xδ) |X0 = x]− f(x)

δ

(for background about generators see e.g. [9]). Then we have:

Proposition 1. Suppose a continuous-time Markov process on state space X ⊆ Rd has

stationary distribution π, and infinitesimal generator A, and there is α ∈ (0, 1) and c > 0

and b0 <∞ and a closed petite set C ⊆ X and a drift function V ≥ 1 with supx∈C V (x) <∞
such that AV (x) ≤ −c (V (x))1−α+b0 1C(x) for all x ∈ X . Then for any p ∈ [0, 1) and x ∈ X ,

lim
t→∞

t(1−p)(1−α)/α ‖P t(x, ·)− π(·)‖V (1−α)p = 0 ,

i.e. the process converges to stationary in the V (1−α)p-norm at polynomial order (1− p)(1−
α)/α. In particular, setting p = 0,

lim
t→∞

t(1−α)/α ‖P t(x, ·)− π(·)‖TV = 0 ,

i.e. ‖P t(x, ·) − π(·)‖TV ≤ O(t−(1−α)/α), i.e. the process converges to stationarity in total

variation distance at polynomial order (1− α)/α.
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Proof. This result follows from Corollary 6 of [12] upon setting their η = 1 and cη = c and

b = 0, and using that t ≤ 1 + t. (Note that the “b” in their convergence equation is different

from the “b” in their drift equation (8), which we here refer to as “b0”.)

To continue, recall that a function V : Rd → R is norm-like if lim
|x|→∞

V (x) = ∞. Also,

a subset C ⊆ X is small if there are t0 > 0 and a non-zero σ-finite measure ν on X such

that P t0(x,A) ≥ ν(A) for all measurable A ⊆ X , or petite if that condition is replaced by∫∞
0
P t(x,A) dt ≥ ν(A). Call a process compact-small if all compact sets are small; this holds

for many processes (see e.g. [15]), and in particular it holds for Bouncy Particle samplers

with refresh rates which are bounded below on sets which are compact in the extended state

space [8, Lemma 2], or which are in just one dimension (cf. [5]), so it holds for all of our

applications here. In terms of these various definitions, we have:

Corollary 2. Suppose a continuous-time compact-small Markov process on state space

X ⊆ Rd has stationary distribution π, and infinitesimal generator A, and there is α ∈ (0, 1)

and c, c0 > 0 and ∆ < ∞ and a continuous norm-like drift function V ≥ c0 > 0 such that

AV is bounded on compact sets and AV (x) ≤ −c (V (x))1−α for all x ∈ X with V (x) ≥ ∆.

Then, again, for any p ∈ [0, 1) and x ∈ X ,

lim
t→∞

t(1−p)(1−α)/α ‖P t(x, ·)− π(·)‖V (1−α)p = 0 .

Proof. First of all, by replacing V by V/c0 and c by c/cα0 if necessary, we can assume

that c0 = 1. Then, let C = {x ∈ X : V (x) ≤ ∆}. This C is closed by continuity of

V , and is bounded since V is norm-like, so C is compact. Hence, by the compact-small

property, C is small, and hence also petite. Then b0 := supx∈C AV (x) < ∞ since AV is

bounded on compact sets. This result now follows from Proposition 1, by noting that if

AV (x) ≤ −c (V (x))1−α when V (x) ≥ ∆ then AV (x) ≤ −c (V (x))1−α + b0 1C(x) for all

x ∈ X .

Corollary 3. Suppose a continuous-time compact-small Markov process on state space

X ⊆ Rd has stationary distribution π, and infinitesimal generator A, and there is β > 1 and

c0, c1 > 0 and δ > 0 and a drift function V (x) ≥ max(c0, c1 |x|β) such that

AV (x) ≤ −δ |x|β−1 [1 + o(|x|)] , |x| → ∞ .

Then for any p ∈ [0, 1) and x ∈ X ,

lim
t→∞

t(1−p)(β−1) ‖P t(x, ·)− π(·)‖V (1−α)p = 0 ,
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and in particular

lim
t→∞

tβ−1 ‖P t(x, ·)− π(·)‖TV = 0 .

Proof. Since V (x) ≥ c1 |x|β, it follows that |x| ≤ [V (x)/c1]1/β, so for all large |x|,

AV ≤ −δ |x|β−1 [1 + o(|x|)] ≤ −δ
2
|x|β−1 ≤ −δ

2

(
[V (x)/c1]1/β

)β−1

= −c V (x)1−(1/β)

where c = δ
2
(c1)1−(1/β). Hence, we can apply Corollary 2 with α = 1/β ∈ (0, 1). The result

then follows since (1− α)/α = (1− 1
β
)
/

(1/β) = β − 1.

Remark. Although we focus here on the polynomial order of the convergence rates, using

the above general polynomial bound results, it is also possible to use a similar approach to

obtain actual quantitative (computable) bounds on the distance to stationarity of PDMP,

similar in spirit to [16] and the references therein; by using the related results of [11].

4. Convergence Rate in One Dimension.

Suppose again that the state space X is the one-dimensional real line R, with C1 target

density π(x). Again consider the algorithm which enlarges the state space to X × {−1, 1},
and expands π to π(x, v) = 1

2
π(x) for v ∈ {−1, 1}, and moves with fixed constant velocity v,

except reflecting from v to −v with hazard rate λ(x, v) =
[
−v (log π)′(x)

]+
, and with zero

refresh rate.

We know that if π has heavy tails, then this process cannot converge exponentially quickly.

However, it might still converge polynomially quickly. Polynomial convergence rates for the

related Zig-Zag process on one-dimensional heavy-tailed targets have been studied in [17].

In this section, we present a result which gives precise polynomial convergence rates for the

Bouncy Particle sampler, including a generalisation to f -norm convergence.

Consider now the specific example where π(x) = (1 + x2)−(1+r)/2 for some fixed constant

r ≥ 1, at least when |x| ≥ ∆ ≥ 1 (so, π is essentially a Student’s t-distribution). Then we

have:

Theorem 4. The above one-dimensional PDMP converges to stationarity in total variation

distance at polynomial rate equal to r. More precisely, for any x ∈ X ,

lim
t→∞

ta ‖P t(x, ·) − π(·)‖TV =

{
0, a < r

∞, a > r
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Furthermore, for any p ∈ [0, 1), for appropriate drift function V as defined in the proof,

the process converges to stationarity in the V (1−α)p-norm at polynomial order approaching

(1− p)r, i.e. for any a < r,

lim
t→∞

t(1−p)a ‖P t(x, ·)− π(·)‖V (1−α)p = 0 .

Proof. First, for the assumed form of π, we have for |x| ≥ ∆ that

λ(x, v) :=
[
−v (log π)′(x)

]+
=

(1 + r)(xv)+

1 + x2
=

{
(1+r)xv

1+x2
, xv > 0

0 , xv < 0

It follows that λ(x, v) ≥ (1 + r)/(1 + x) for v = +1 and x ≥ ∆ ≥ 1. Next, for some β > 1

and K > 1 to be determined later, let

V (x, v) =

{
K(1 + |x|)β , xv > 0

(1 + |x|)β , xv < 0

Next, note that this process has infinitesimal generator A which acts (cf. [9, 8]) on

appropriate C1 functions f : X × {−1, 1} → R by:

Af(x, v) = v
∂f

∂x
+ λ(x, v)

[
f(x,−v)− f(x, v)

]
. (1)

Hence, for v = +1 and x ≥ ∆,

AV (x, v) = βK(1 + x)β−1 − λ(x, v) (K − 1)(1 + x)β

≤ −(1 + x)β−1
[
(K − 1)(r + 1)− βK

]
.

Suppose it holds that

1 < β < 1 + r, and K > (1 + r)/(1 + r − β) . (2)

Then (K − 1)(r + 1) − βK > 0, so AV (x, v) < 0 for v = +1 and x ≥ ∆. Meanwhile, for

x ≥ ∆ and v = −1 we have λ(x, v) = 0, so we compute from (1) that

AV (x, v) = −β(1 + x)β−1 .

Combining these two calculations, it follows that if K∗ = min
[
β, (K − 1)(r + 1) − βK

]
,

then assuming (2), we have for x ≥ ∆ and either v = +1 or v = −1 that

AV (x, v) ≤ −K∗(1 + x)β−1 = −K∗
(
V (x)

)(β−1)/β
= −K∗

(
V (x)

)1−(1/β)
.

11



By symmetry, this condition also holds for x ≤ −∆, i.e. it holds whenever |x| ≥ ∆. This

shows that the assumptions of Corollary 2 hold with α = 1/β, so (1−α)/α = β− 1. Hence,

that corollary gives that

lim
t→∞

t(1−p)(β−1) ‖P t(x, ·)− π(·)‖V (1−α)p = 0 ,

and in particular with p = 0,

lim
t→∞

tβ−1 ‖P t(x, ·)− π(·)‖TV = 0 .

It remains to ensure that (2) holds. But (2) can be satisfied for any β < 1 + r by using a

sufficiently large K. It follows that the polynomial order β − 1 can be made ≥ r− ε for any

ε > 0, i.e. we can take β − 1 = a for any a < r, which gives the claimed upper bounds.

Finally, for the lower bound, note that since the process never moves faster than speed 1,

we must have P t((x,±1), (t,∞)) = 0 for x ≤ 0, and similarly that P t((x,±1), (−∞,−t)) =

0 for x ≥ 0. Hence, for any x ∈ R, by symmetry,

‖P t(x, ·) − π(·)‖TV ≥
1

2
π
(
(t,∞)

)
,

which to first order as t→∞ is∫ ∞
t

(1 + x2)−(1+r)/2 dx ≈
∫ ∞
t

(x2)−(1+r)/2 dx =

∫ ∞
t

x−(1+r) dx = t−r/(1 + r) = Ω(t−r) .

This completes the proof.

5. Multi-Dimensional Generator Bounds.

We now turn to PDMP on X = Rd. At each time, the process has position x and velocity

v with |v| = 1. The process primarily moves at fixed constant velocity v. It also reflects

along π’s contour lines at the hazard rate

λ(x, v) =
(
− (∇ log π) · v

)+

.

And it refreshes, by drawing a new v independently from the uniform distribution Ψ on the

unit sphere in Rd, with refresh rate which we take to be s/|x| for some choice of s > 0 to be

determined later, which does not depend on x (but might still depend on d). (This choice of

|x|−1 refresh rate decay helps avoid diffusive behaviour for large |x|, and makes the process

self-similar in the sense that multiplying it by a constant preserves the trajectories just at
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a slower speed, and also balances the influence of refreshes with those of the continuous

dynamics and reflections as we shall see, thus facilitating our calculations and analysis.)

To proceed, consider a drift function of the form

V (x, v) = W (Cx,v)
(
1 + |x|β

)
,

for some β > 1, where

Cx,v = (x · v)
/
|x|

is the cosine of the angle between x and v, and W (C) ≥ 1 is a function which will be

chosen later. We assume that W has right-hand first derivatives (at least), denoted W ′(C).

Let E := EΨ[W (Cx,U)] be the expected value of W (Cx,U) where U ∼ Ψ. Extending (1) to

multiple dimensions, and including the refreshes at rate s/|x|, this process has infinitesimal

generator A which acts on appropriate C1 functions f : X × {−1, 1} → R by

Af(x, v) = v · ∇xf(x) + λ(x, v)
[
f(x,−v)− f(x, v)

]
+
s(x)

|x|
[
E − f(x, v)

]
(for background see e.g. [9, 8]). Then we have:

Theorem 5. The above PDMP has infinitesimal generator satisfying

AV (x, v) = |x|β−1B(x, v)
[
1 +O

(
|x|−β

)]
, as |x| → ∞ ,

where

B(x, v) =
[
W (Cx,v) β Cx,v +W ′(Cx,v)(1− Cx,v2)

]
+
[
λ(x, v) |x| [W (−Cx,v)−W (Cx,v)]

]
+
[
s (E −W (Cx,v))

]
.

The proof of Theorem 5 requires a simple gradient lemma:

Lemma 6. For any a ∈ R, ∇x(|x|a) = a|x|a−2x.

Proof. If h(x) = |x|2 = x2, then ∇x h(x) = 2x. Hence, by the chain rule,

∇x(|x|a) = ∇x(h(x)a/2) = (a/2)[h(x)](a/2)−1(2x) = a|x|a−2x .

Proof of Theorem 5. We wish to compute the generator AV . Write this as A1V +A2V +

A3V , where A1 is the contribution from the continuous dynamics, and A2 is the contribution

from reflections, and A3 is the contribution from refreshing.
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We begin with A1V (the continuous dynamics). We compute that

A1V (x, v) =
∂V (x, v)

∂t
=

d∑
i=1

∂V (x, v)

∂xi

∂xi
∂t

=
(
∇xV (x, v)

)
· v .

Now, since ∇x(x · v) = v, Lemma 6 with a = 1 gives

∇xCx,v = ∇x

((x · v)

|x|

)
=
|x|v − (x · v)|x|−1 x

|x|2
=

v

|x|
− (x · v)x

|x|3
=

v

|x|
− Cx,v x

|x|2
.

Hence,

(∇xCx,v) · v =
v · v
|x|
− Cx,v (x · v)

|x|2
.

And, Lemma 6 with a = β gives

∇x|x|β = β|x|β−2x .

Hence, by the product rule for derivatives,

∇xV (x, v) = W (Cx,v)∇x

(
|x|β

)
+
(
1 + |x|β

)
W ′(Cx,v)∇xCx,v

= W (Cx,v) β|x|β−2x+
(
1 + |x|β

)
W ′(Cx,v)

( v

|x|
− Cx,v x

|x|2
)
.

Then since v · v = 1 and x · v = |x|Cx,v,

A1V (x, v) =
(
∇xV (x, v)

)
· v

= W (Cx,v) β|x|β−2(x · v) +
(
1 + |x|β

)
W ′(Cx,v)

( 1

|x|
− Cx,v (x · v)

|x|2
)

= W (Cx,v) β|x|β−1Cx,v +
(
1 + |x|β

)
W ′(Cx,v)

( 1

|x|
− Cx,v

2

|x|

)
= |x|β−1

[
W (Cx,v) β Cx,v +W ′(Cx,v)(1− Cx,v2)

]
[1 +O(|x|−β)] .

We next consider A2V (reflections). They occur at rate λ(x, v), and change v to −v,

hence Cx,v to −Cx,v, so they change V (x, v) from W (Cx,v)
(
1 + |x|β

)
to W (−Cx,v)

(
1 + |x|β

)
,

which is a change of [W (−Cx,v)−W (Cx,v)]
(
1 + |x|β

)
. It follows that

A2V (x, v) = λ(x, v) [W (−Cx,v)−W (Cx,v)]
(
1 + |x|β

)
= λ(x, v) |x| [W (−Cx,v)−W (Cx,v)] |x|β−1 [1 +O(|x|−β)] .

Finally, we consider A3V (x, v) (refreshing). Refreshes occur at rate s/|x|, and replace

the current velocity v with a fresh i.i.d. draw from the spherically-symmetric distribution Ψ

14



on {z ∈ Rd : |z| = 1}. This changes V (x, v) from W (Cx,v)
(
1 + |x|β

)
to W (Cx,U)

(
1 + |x|β

)
where U ∼ Ψ, which is a difference of [W (Cx,U)−W (Cx,v)]

(
1 + |x|β

)
. Hence,

A3V (x, v) =
s

|x|
[E −W (Cx,v)]

(
1 + |x|β

)
= s [E −W (Cx,v)] |x|β−1 [1 +O(|x|−β)]

where E := EΨ[W (Cx,U)].

Putting this all together, the claim follows since A = A1 +A2 +A3.

We now assume that π has polynomial tails as in a Student’s t-distribution, i.e. that

π(x) ∝ (1 + |x|2)−(r+d)/2 (3)

at least for |x| ≥ ∆. Theorem 5 then gives:

Corollary 7. If π is given by (3), then the above PDMP has infinitesimal generator

satisfying

AV (x, v) = |x|β−1M(Cx,v)
[
1 +O

(
|x|−β

)]
, as |x| → ∞

where

M(C) =
[
W (C) β C +W ′(C)(1− C2)

]
+
[
(r + d) C+ [W (−C)−W (C)]

]
+
[
s (E −W (C))

]
.

Proof. Here for |x| > ∆ we have log π(x) = −
(
(r + d)/2

)
log(1 + |x|2), so

∇ log π(x) = −r + d

2

2x

1 + |x|2
= −(r + d)

x

1 + |x|2
,

and

λ(x, v) = (r + d)
(x · v)+

1 + |x|2
= (r + d) Cx,v

+ |x|−1
[
1 +O

(
|x|−2

)]
.

The result then follows from Theorem 5.

6. Multi-Dimensional Convergence Rates.

In this section, we prove the following bound on the polynomial convergence rate of

high-dimensional PDMP:

15



Theorem 8. For the above PDMP, for all sufficiently large d ∈ N, with π as in (3) with

r > (2π − 1)d, we have for any a < (r + d)
√

2π/d− 1 and any p ∈ [0, 1) that

lim
t→∞

t(1−p)a ‖P t(x, ·)− π(·)‖V (1−α)p = 0

for appropriate choice of refresh parameter s and drift function V as defined in the proof.

In particular,

lim
t→∞

ta ‖P t(x, ·)− π(·)‖TV = 0 .

That is, the process converges to stationarity in total variation distance at polynomial order

approaching (r + d)
√

2π/d− 1. On the other hand, for any a > r,

lim
t→∞

ta ‖P t(x, ·)− π(·)‖TV = ∞ .

Proof. To obtain specific convergence rate bounds, we need to choose the function W (C)

in the drift function V (x, v) = W (Cx,v)
(
1+ |x|β

)
. After considering many possible choices,

including some complicated ones, we eventually settled on the simple piecewise-linear choice

W (C) = 1 +mC 1C<0 :=

{
1, C ≥ 0

1 +mC, C < 0
(4)

for some m ∈ (0, 1). For this W (C), let M(C) be as in Corollary 7. Note that V (x, v) :=

W (Cx,v) (1 + |x|β) ≥ (1 +m(−1))(1) = 1−m =: c0 > 0. Hence, by Corollary 3, it suffices to

find values s > 0 and m > 0 (perhaps depending on d) such that supC∈[−1,1]M(C) < 0 for

all sufficiently large d.

To proceed, let k = r/d, so k > 2π − 1. Then (k + 1)/
√

2π >
√

2π. Hence, we can

find small enough ε > 0 that ξ := (1 − ε)3(k + 1)/
√

2π >
√

2π. Then set s = ξ
√
d (so

s >
√

2πd), and m = 1/2 (so 4m2 = 1 > 1 − ε), and β = (1 − ε)2(k + 1)
√
d/2π so

β > (1− ε)3(k + 1)
√
d/2π = ξ

√
d and also

β2 = (1− ε)4(k + 1)2d/2π = (1− ε)ξ(k + 1)d/
√

2π = (1− ε)4m2ξ(k + 1)d/
√

2π . (5)

We now consider separately the cases C < 0 and C ≥ 0.

For C < 0, it follows from (4) that W (C) = 1 +mC and W ′(C) = m and C+ = 0, so

M(C) = βC +mβC2 +m−mC2 + s(E − 1−mC)

= C2m(β − 1) + C(β −ms) + (m− s(1− E)) .

Hence

M(0−) := lim
C↗0

M(C) = m− s(1− E) .

16



Next we use Lemma 9 below, which states that E = 1−m
√

1/2πd
[
1 +O

(
1
d

)]
so

1− E = m
√

1/2πd
[
1 +O

(1

d

)]
, (6)

and hence

M(0−) = m

(
1− s

√
1/2πd

[
1 +O

(1

d

)])
= m

(
1− ξ

√
1/2π

[
1 +O

(1

d

)])
,

which is < 0 for all sufficiently large d since ξ >
√

2π. Also,

M(−1) = m(β − 1)− β +ms+ (m+ s(E − 1))

= m(β − 1)− β +ms+m

(
1− s

√
1/2πd

[
1 +O

(1

d

)])
,

so for sufficiently large d (since s >
√

2πd and −m < 0),

M(−1) < (m− 1)β +ms = (m− 1)β +mξ
√
d < 0

since m = 1/2 and β > ξ
√
d. Furthermore, for C < 0, M ′′(C) = 2(mβ−m) = 2m(β−1) > 0,

i.e. M is convex. It follows that

sup
C∈[−1,0)

M(C) ≤ sup
0≤λ≤1

λM(−1) + (1− λ)M(0−) = max
[
M(−1), M(0−)

]
< 0 .

For C ≥ 0, it follows from (4) that W (C) = 1 and W ′(C) = 0 and C+ = C, and also

W (−C) = 1−mC, so

M(C) = βC − (r + d)mC2 + s(E − 1) .

Hence, M ′(C) = β − 2(r+ d)mC. So, on [0, 1], the function M is first increasing and then

decreasing, with a maximum where β − 2(r + d)mC = 0 so C = β/2(r + d)m. Hence, again

using (6),

sup
C∈[0,1]

M(C) = M
(
β
/

2(r + d)m
)

= β2
/[

2(r + d)m
]
− (r + d)β2m

/[
4(r + d)2m2

]
+ s(E − 1)

= β2
/[

4(r + d)m
]
−mξ

√
1/2π

[
1 +O

(1

d

)]
.

Then, using the bound (5) and that (k + 1)d = r + d, this is

≤ (1− ε)4m2ξ(k + 1)(d/
√

2π)
/[

4(r + d)m
]
−mξ

√
1/2π

[
1 +O

(1

d

)]
17



= (1− ε)mξ(1/
√

2π)−mξ
√

1/2π
[
1 +O

(1

d

)]
=
[
− ε+O

(1

d

)]
mξ/
√

2π ,

so it must be < 0 for all sufficiently large d.

The above results show that supC∈[−1,1]M(C) < 0. The stated convergence in V (1−α)p-

norm then follows from Corollary 3. And since this convergence holds for any choice β =

(1− ε)2(k+ 1)
√
d/2π for sufficiently small ε > 0, it holds for any β < (k+ 1)

√
d/2π. Hence,

the stated conclusion holds for any a = β − 1 < (k + 1)
√
d/2π − 1, as claimed.

For the lower bound, similar to Theorem 4 we have since |v| = 1 that

‖P t(x, ·) − π(·)‖TV ≥
1

2
π(St)

where St = {x ∈ Rd : |x| ≥ t}. But for large t, we have using polar coordinates that

π(St) ∝
∫
|x|≥t

(1 + |x|2)−(r+d)/2 dx ∝
∫ ∞
ρ=t

(1 + ρ2)−(r+d)/2 ρd−1 dρ

≥
∫ ∞
ρ=t

(ρ2)−(r+d)/2 ρd−1 dρ =

∫ ∞
ρ=t

ρ−r−1 dρ =
−ρ−r

r

∣∣∣ρ=∞

ρ=t
=

t−r

r
∝ t−r ,

so ‖P t(x, ·)− π(·)‖TV ≥ Ω(t−r), and hence limt→∞ t
a‖P t(x, ·)− π(·)‖TV =∞ for a > r.

7. An Expectation Computation.

To complete the proof of Theorem 8, we require the following computation:

Lemma 9. For W (C) as in (4), consider the expected value E := EΨ[W (Cx,U)], where

U ∼ Ψ where Ψ is the uniform distribution on the unit sphere in Rd for some d > 1, and

x 6= 0 is any fixed vector in Rd, and Cx,U is the cosine of the angle between x and U . Then

E = 1−m 1/(d− 1)
√
π Γ(d−1

2
)/Γ(d

2
)

= 1−m
√

1/2πd
[
1 +O

(1

d

)]
as d→∞ .

To prove Lemma 9, we first need another lemma giving the Cx,U density function:

Lemma 10. Let U ∼ Ψ as in Lemma 9. Then the quantity Cx,U has density function on

[−1, 1] proportional to f(c) = (1− c2)(d−3)/2.
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Proof. Let (e1, . . . , ed) be an orthonormal basis of Rd with e1 = x/|x|, and write Z =

(Z1, . . . , Zd) in this basis where {Zi} are i.i.d. N(0, 1). Then the unit vector Z / |Z| has

uniform distribution Ψ, so Cx,U has the same distribution as

x

|x|
· Z
|Z|

= (1, 0, . . . , 0) · (Z1, Z2, . . . , Zd)

|Z|
=

Z1

|Z|
.

Therefore, Cx,U
2 has the same distribution as

Z2
1

|Z|2
=

Z2
1

Z2
1 + (Z2

2 + . . .+ Z2
d)

=
χ2(1)

χ2(1) + χ2(d− 1)
∼ Beta

(
1

2
,
d− 1

2

)
,

using the general property that if X ∼ χ2(α) and Y ∼ χ2(β) are independent, then X
X+Y

∼
Beta(α

2
, β

2
). Hence, Cx,U

2 has density function on [0, 1] proportional to h(c) = c
1
2
−1(1 −

c)
d−1
2
−1 = c−1/2(1− c)(d−3)/2.

Then, |Cx,U | =
√
Cx,U

2 = g(Cx,U
2) where g(c) =

√
c and g−1(c) = c2. So, by the

change-of-variable formula, |Cx,U | has density on [0, 1] proportional to

h
(
g−1(c)

) ∣∣∣ d
dc
g−1(c)

∣∣∣ = h(c2)
∣∣∣ d
dc
c2
∣∣∣ = c−1 (1− c2)(d−3)/2 |2c| ∝ (1− c2)(d−3)/2 .

Finally, since Cx,U is symmetric about 0, the density of Cx,U on all of [−1, 1] must also be

proportional to (1− c2)(d−3)/2.

Proof of Lemma 9. We compute using Lemma 10 that

E := E[W (Cx,U)] = 1 +mE[Cx,U 1Cx,U<0] = 1 +m

∫ 0

−1
c (1− c2)(d−3)/2 dc∫ 1

−1
(1− c2)(d−3)/2 dc

.

But for d > 1, it can be computed that
∫ 0

−1
c (1− c2)(d−3)/2 = − 1

d−1
, and

∫ 1

−1
(1− c2)(d−3)/2 =

√
π Γ(d−1

2
)
/

Γ(d
2
). Hence,

E = 1−m 1/(d− 1)
√
π Γ(d−1

2
)
/

Γ(d
2
)
. (7)

Next, we use Stirling’s Approximation, which says (e.g. [13]) that for all x > 0, we have

√
2π xx−1/2e−x ≤ Γ(x) ≤

√
2π xx−1/2e−xe1/(12x) .

It follows that as x→∞,

Γ(x) =
√

2π xx−1/2e−x
[
1 +O

(1

x

)]
.
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Hence, as d→∞,

Γ(
d− 1

2
)
/

Γ(
d

2
) =

(d−1
2

)
d−2
2 e−

d−1
2

(d
2
)
d−1
2 e−

d
2

[
1 +O

(1

d

)]
=
(d− 1

d

) d−2
2
√

2e/d
[
1 +O

(1

d

)]
.

Now, as x→ 0, ex = 1 + x+O(x2), i.e. 1 + x = ex +O(x2) = ex[1 +O(x2)]. So, as d→∞,
d−1
d

= 1− 1
d

= e−1/d [1 +O(d−2)], whence(d− 1

d

)d
=
(
e−1/d [1 +O(d−2)]

)d
= e−1

[
1 +O

(1

d

)]
,

and so

(
d− 1

d
)
d−2
2 =

[(d− 1

d

)d]1/2( d

d− 1

)
= (e−1)1/2

[
1 +O

(1

d

)]
.

It follows that

Γ(
d− 1

2
)
/

Γ(
d

2
) = e−1/2

√
2e/d

[
1 +O

(1

d

)]
=
√

2/d
[
1 +O

(1

d

)]
.

Therefore, from (7),

E = 1−m 1/(d− 1)
√
π
√

2/d

[
1 +O

(1

d

)]
= 1−m

√
1/2πd

[
1 +O

(1

d

)]
,

as claimed.
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