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Note: After completing this paper, it was discovered that similar ideas
had been studied previously by others (see A.H. Hoekstra and F.W. Steu-
tel, Linear Alg. Appl. 60 (1984), 65–77; J.Th. Runnenburg and F.W. Steu-
tel, Ann. Math. Stat. 33 (1962), 1483–1484). Thus, this paper was
withdrawn at that point.

1. Introduction.

One important subject in the study of Markov chains is the question of their con-
vergence to a stationary distribution, and in particular the rate of this convergence. For
random walks on finite groups, great progress has been made in determining precise con-
vergence rates in many cases, including for ordinary “riffle” card-shuffling [BD]. See [D]
for background, examples, and references. For random walks on compact Lie groups, there
has been some recent progress; see [R1]. For more general Markov chains, the notion of
Harris recurrence (see [A], [AN], [N]) has proven useful in obtaining rates of convergence
(see e.g. [T], [R2], [R3]).

Finite state-space Markov chains remain the simplest case to study, because their
convergence can be analyzed directly in terms of the finite spectrum of their transition
kernel; see e.g. [DS]. In this paper, we identify a class of Markov chains, which we call
“pseudo-finite”, which are “essentially” finite, in the following sense. There is a finite state
space Markov chain that captures all of the important information about the pseudo-finite
chain, and convergence-rate questions about the pseudo-finite chain can be answered in
terms of the finite chain. Thus, to understand the pseudo-finite chain it is completely
sufficient to understand the finite chain, an apparently easier problem.

The definition of pseudo-finite is as follows.

Definition. A Markov chain {θk} on a general state space Θ is pseudo-finite if the
transition probabilities P (θ, ·) satisfy

P (θ, ·) =
n∑

j=1

fj(θ)Pj( · )
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for some finite n, some probability distributions P1, . . . , Pn on Θ, and some (non-random)
measurable weight functions f1, . . . , fn : Θ → [0, 1] with

∑
j

fj(θ) = 1 for all θ ∈ Θ.

We shall obtain results which reduce the question of convergence of pseudo-finite
Markov chains to a simple calculation (Corollary 2), and give a bound on the rate of
convergence in terms of an associated finite Markov chain (Proposition 1).

Of course, pseudo-finite Markov chains are a very special case of Markov chains. Thus,
this work should be seen as a small step towards understanding the convergence rate of
general state space Markov chains, but by no means the complete picture. On the other
hand, Proposition 3 below shows that a very large class of Markov chains are “almost”
pseudo-finite in a certain natural sense.

Our interest in pseudo-finiteness arose in an application [R2] to Bayesian statistics.
The Markov chains considered there were pseudo-finite, with the Pj being various beta
distributions, and the fj(θ) being related to distributions of sums of binomial distributions.
The notion of pseudo-finiteness helped the author’s analysis of these chains (though it was
not mentioned explicitly). See [R2] for details.

2. Results.

The reason for the terminology “pseudo-finite” is given by

Proposition 1. Given a pseudo-finite Markov chain {θk}∞k=0 as above, with initial dis-

tribution (at time k = 0) given by L(θ0) = ν, define the finite Markov chain {yk}∞k=1 on

Y = {1, 2, . . . , n} by

(a) The initial distribution (at time k = 1) for y1 is given by

Prob (y1 = j) = Eν(fj) ,

the expected value of fj under the distribution ν; and

(b) The transition matrix for {yk} is given by

Prob (yk+1 = j | yk = i) = Tji = EPi
(fj) ,

the expected value of fj under the distribution Pi.

Then {θk} and {yk} are equivalent in the sense that

(1) If A
(j)
k = Prob(yk = j), then for k ≥ 1,

L(θk) =
n∑

j=1

A
(j)
k Pj( · ) ;
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(2) If A =
{
A(j)

}n

j=1
is a stationary distribution for {yk} (where A(j) = Prob(y = j)),

then π(·) =
n∑

j=1

A(j)Pj(·) is stationary for {θk};

(3) If π(·) is a stationary distribution for {θk}, and the Pj( · ) are linearly independent,

then
{
A(j) = Eπ(fj)

}
is stationary for {yk};

(4) If A and π are as in (2), then for k ≥ 1,

‖L(πk)− π‖Θ ≤ ‖L(yk)−A‖Y ,

where ‖ · ‖Θ and ‖ · ‖Y are total variation distance on Θ and Y, respectively.

Proof. For (1), we proceed by induction on k. For k = 1,

L(θ1) =
∫

P (θ, ·)ν(dθ) =
∫ ∑

j

fj(θ)Pj(·)ν(dθ)

=
∑

j

Ev(fj)Pj(·) =
∑

j

A
(j)
1 Pj(·) .

Once (1) is known for k, for k + 1 we have

L(θk+1) =
∫

P (θ, ·)Prob(θk ∈ dθ) =
∫ ∑

j

fj(θ)Pj(·)
∑

i

A
(i)
k Pi(dθ)

=
∑
i,j

EPi
(fj)A

(i)
k Pj(·)

=
∑
i,j

TjiA
(i)
k Pj(·) =

∑
j

A
(j)
k+1Pj(·) .

Statement (2) follows immediately from statement (1).
For (3),

π(·) =
∫

P (θ, ·)π(dθ) =
∫ ∑

j

fj(θ)Pj(·)π(dθ)

=
∑

j

Eπ(fj)Pj(·) =
∑

j

A(j)Pj(·) .

Hence, iterating this expression once,∑
j

A(j)Pj(·) =
∫

P (θ, ·)
∑

i

A(i)Pi(dθ)

=
∫ ∑

j

fj(θ)Pj(·)
∑

i

A(i)Pi(dθ)

=
∑
i,j

EPi
(fj)A(i)Pj(·)

=
∑

j

(∑
i

TjiA
(i)

)
Pj(·) .
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By linear independence of the Pj , we must have A(j) =
∑
i

TijA
(i).

For (4), we note that for any S ⊆ Θ,

|Prob(θk ∈ S)− π(S)|

= |
∑

j

A
(j)
k Pj(S) −

∑
j

A(j)Pj(S)| using (1)

= |EAk
(φ)− EA(φ)| where φ : Y → [0, 1] by φ(j) = Pj(S)

≤ sup
φ:Y→[0,1]

|EAk
(φ)− EA(φ)| = ‖A(k) −A‖Y .

This proposition shows that convergence of pseudo-finite Markov chains can be under-
stood in terms of the theory of finite chains. For example, it is well known that a strictly
positive finite Markov chain (i.e. one with P (x, y) > 0 for all x, y) converges exponentially
quickly to a (strictly positive) unique stationary distribution. This immediately implies

Corollary 2. Let {θk} be a pseudo-finite Markov chain, with fj(θ) and Pj(·) the

associated weight functions and distributions. Suppose EPi(fj) > 0 for each i, j. Then

{θk} has a unique invariant distribution to which it converges exponentially quickly.

Proposition 1 (4) shows that to study the rate of convergence of a pseudo-finite Markov
chain {θk}, one need only consider an equivalent, finite Markov chain {yk}. We illustrate
this with a simple example.

Example. Consider a Markov chain {θk} defined on the unit interval [0,1] with θ0 = 1/3,
and with the following transition mechanism: given θk, we choose θk+1 by
(a) with probability θk/2, choosing θk+1 uniform on [0, 1

2 ];
(b) with probability (θk)2/2, choosing θk+1 uniform on [ 12 , 1];
(c) with probability 1−θk/2−(θk)2/2, choosing θk+1 from the beta distribution Beta(2, 2).
To analyze this Markov chain directly on [0,1] would be somewhat involved; however, using
the notion of pseudo-finiteness it is very easy. Using the notation in the definition, we have
n = 3, f1(θ) = θ/2, f2(θ) = θ2/2, and f3(θ) = 1− θ/2− θ2/2. Also P1 is uniform on [0, 1

2 ],
P2 is uniform on [ 12 , 1], and P3 = Beta(2, 2). Thus the matrix Tji is given by

Tji = EPi
(fj) =


1
8

3
8

1
2

1
24

7
24

3
10

5
6

1
3

1
5

 .
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Also the initial distribution of {yk} is

L(y1) = [fj(
1
3
)]j = [

1
6
,

1
18

,
7
9
] .

We work numerically for simplicity. We compute that the eigenvalues of the matrix T are

λ1 = 1; λ2 = 0.06505; λ3 = −0.44838 ,

with corresponding eigenvectors

v1 = [0.3446, 0.2092, 0.4462]; v2 = [0.3968,−1.3968, 1]; v3 = [−0.6301,−0.3699, 1]

(so v1 is the stationary distribution for {yk}). In terms of these eigenvectors,

L(y1) = v1 + 0.0302v2 + 0.3014v3 ,

so
L(yk) = v1 + 0.0302(λk−1

2 )v2 + 0.3014(λk−1
3 )v3 .

Hence,

‖L(yk)− v1‖Y =
1
2
‖0.0302(λk−1

2 )v2 + 0.3014(λk−1
3 )v3‖L1 < (0.55)(

1
2
)k (say).

We thus conclude that our original chain {θk} has a unique stationary distribution given
by

π(·) = (0.3446)P1(·) + (0.2092)P2(·) + (0.4462)P3(·) ,

and that for k ≥ 1,

‖L(θk)− π‖Θ < (0.55)(
1
2
)k .

We acknowledge that the applications of Proposition 1 will be somewhat limited,
however they do sometimes arise naturally as the work in [R2] indicates.

We conclude with the observation that a large class of Markov chains is “almost”
pseudo-finite. Indeed, we have

Proposition 3. Let {θk} be a Markov chain on a state space Θ, with transition kernel

P (θ, ·). Assume that Θ is compact, and that there is a measure ν on Θ for which P (θ, ·) <<
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ν(·) for all θ, say with density fθ(θ′). Write f(θ, θ′) for fθ(θ′). Assume further that f is

a continuous function of two variables, except for possible jump-discontinuities on a finite

rectangular grid. Then for any ε > 0, there is a pseudo-finite Markov chain Q(θ, ·) on Θ,

with

|Q(θ, S)− P (θ, S)| < ε ,

for all θ ∈ Θ and S ⊆ Θ.

Proof. Since f(θ, θ′) is a rectangularly piecewise continuous function on the compact set

Θ×Θ, given ε > 0 we can find a function f0 on Θ×Θ of the form f0(θ, θ′) =
n∑

i=1

gi(θ)hi(θ′)

for which
|f(θ, θ′)− f0(θ, θ′)| < ε for all θ, θ′ ∈ Θ .

(Indeed, we can take gi and hi to be step functions.) Define Q(·, ·) by

Q(θ, ·) =
∑

i

gi(θ) νi(·)

where dνi = hi dν. Then Q(·, ·) is pseudo-finite, and for any θ and S,

|P (θ, S)−Q(θ, S)| =

∣∣∣∣∣∣
∫
S

P (θ, dθ′) −
∑

i

∫
S

gi(θ) νi(dθ′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
S

f(θ, θ′)ν(dθ′) −
∫
S

f0(θ, θ′) ν(dθ′)

∣∣∣∣∣∣
< ε ν(S) ≤ ε ,

as required.
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