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Abstract. We consider versions of the Metropolis algorithm which avoid the
inefficiency of rejections. We first illustrate that a natural Uniform Selection
Algorithm might not converge to the correct distribution. We then analyse the
use of Markov jump chains which avoid successive repetitions of the same state.
After exploring the properties of jump chains, we show how they can exploit
parallelism in computer hardware to produce more efficient samples. We apply
our results to the Metropolis algorithm, to Parallel Tempering, to a Bayesian
model, to a two-dimensional ferromagnetic 4×4 Ising model, and to a pseudo-
marginal MCMC algorithm.

1 Introduction

The Metropolis algorithm [15, 10] is a method of designing a Markov chain which con-

verges to a given target density π on a state space S. Such Markov chain Monte Carlo

(MCMC) algorithms have become extremely popular in statistical applications and have led

to a tremendous amount of research activity (see e.g. [3] and the many references therein).

The Metropolis algorithm produces a Markov chain X0, X1, X2, . . . on S, as follows.

Given the current state Xn, the Metropolis algorithm first proposes a new state Yn from a

symmetric proposal distribution Q(Xn, ·). It then accepts the new state (i.e., sets Xn+1 = Yn)

with probability min
(

1, π(Yn)
π(Xn)

)
, i.e. if Un <

π(Yn)
π(Xn)

where Un is an independent Uniform[0,1]

random variable. Otherwise, it rejects the proposal (i.e., sets Xn+1 = Xn). This simple

algorithm ensures that the Markov chain has π as a stationary distribution.

With this algorithm, the expected value Eπ(h) of a function h : S → R can then be

estimated by the usual estimator, êK = 1
K

∑K
n=1 h(Xn). The Strong Law of Large Numbers

1Department of Statistical Sciences, University of Toronto, Canada
2Department of Electrical and Computer Engineering, University of Toronto, Canada
3Fujitsu Laboratories Ltd., Kanagawa, Japan

1



(SLLN) for Markov chains (e.g. [16, Theorem 17.0.1]) says that assuming that Eπ(h) is

finite, and that the Markov chain is irreducible with stationary distribution π, we must have

limK→∞ êK = Eπ(h), i.e. this estimate êK is consistent. For example, if h = 1A is the

indicator function of an event A, then limK→∞ êK = P(A). Or, if h = gk is a power of some

other function g, then limK→∞ êK = Eπ(h) = Eπ(gk). Consistency is thus a useful property

which guarantees asymptotically accurate estimates of any quantity of interest.

One problem with the Metropolis algorithm is that it might reject many proposals, lead-

ing to inefficiencies in its convergence. Indeed, in certain contexts the optimal Metropolis

algorithm should reject over three quarters of its proposals [17, 18]. Each rejection involves

sampling a proposed state, computing a ratio of target probabilities, and deciding not to

accept the proposal, only to remain at the current state. These rejections are normally

considered to be a necessary evil of the Metropolis algorithm. However, recent technolog-

ical advances have allowed for exploiting parallelism in computer hardware, computing all

potential acceptance probabilities at once, thus allowing for the possibility of skipping the

rejection steps and instead accepting a move every time. Such rejection-free algorithms can

be very efficient, but they must be executed correctly or they can lead to biased estimates,

as we now explore.

2 The Uniform Selection Algorithm

A first try at a rejection-free Metropolis algorithm might be as follows. Suppose that

from a state x, one of a (large, finite) collection of states y1, y2, . . . , yk (all distinct from

x) would have been proposed uniformly at random. Then, sample U ∼ Uniform[0, 1], and

consider the sub-collection of states C := {yi : U < π(yi)/π(x)} that “would” have been

accepted, and then pick one of the states in C uniformly at random. (If C happens to be

empty, then we immediately re-sample U and try again. Technically speaking, that would be

a “rejection”, though its probability is small.) This algorithm will always move somewhere,

so there is no rejection. However, this algorithm is different from true MCMC, and might

not converge to π, as we now show.

Example 1: Suppose the state space S = {1, 2, 3}, with π(1) = 1/2, π(2) = 1/3, and

π(3) = 1/6, as in Figure 1, and suppose that from each state x, the chain proposes to move

either to x− 1 or to x+ 1 with probability 1/2 each (where proposals to 0 or to 4 are always

rejected). In this example, the Metropolis algorithm would have Markov chain transition
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Figure 1: The target distribution for Example 1.

probabilities as in Figure 2, which are easily computed to have the correct limiting stationary

distribution π = (1/2, 1/3, 1/6) as they must. However, the Uniform Selection algorithm
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Figure 2: The Metropolis chain for Example 1.

would have Markov chain transition probabilities as in Figure 3, with limiting stationary

distribution easily computed to instead be (3/5, 4/15, 2/15) which is significantly different.

For example, from state 2, the usual Metropolis algorithm would accept a proposed move

to state 1 with probability 1, and would accept a proposed move to state 3 with probability

(1/6) / (1/3) = 1/2, so it would be twice as likely to move to state 1 as to move to state 3.

But for the above Uniform Selection version, if U > 1/2 then the subset C would consist of

just the single state 1 so it would always move to state 1, or if U < 1/2 then the subset C

would consist of the two states 1 and 3 so it would move to state 1 or state 3 with probability

1/2 each, so overall it would move to state 1 with probability (1/2)(1) + (1/2)(1/2) = 3/4 or

to state 3 with probability (1/2)(0) + (1/2)(1/2) = 1/4, i.e. it would now be three times as

likely to move to state 1 as to move to state 3, not twice. This illustrates that this Uniform
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Selection algorithm will converge to the wrong distribution, i.e. it will fail to converge to the

correct target distribution.
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Figure 3: The Uniform Selection chain for Example 1.

Our second example shows that Uniform Selection can even cause a Markov chain to

become transient.

Example 2: Suppose now that the state space is the set S = {0, 1, 2, 3, . . .} of all non-

negative integers, with target distribution π defined by writing the argument x as x = 4a+ b

where 0 ≤ b ≤ 3 is the remainder upon dividing x by 4, and defining (see Figure 4)

π(x) = π(4a+ b) =
1

135
(8/9)a 2b , 0 ≤ b ≤ 3, a = 0, 1, 2, . . .

As a check,

∞∑
x=0

π(x) =
∞∑
a=0

1

135
(8/9)a (20 + 21 + 22 + 23) =

1

135

(
1

1− (8/9)

)
(15) = 1 ,

i.e. π is a valid probability distribution. The Metropolis algorithm chain for this example

is given by Figure 5, and it has the correct limiting stationary distribution π, as it must.

However, the Uniform Selection chain is instead given by Figure 6. We prove in the Appendix

that this Uniform Selection chain is transient, and in fact:

Proposition 1. If the Uniform Selection chain for Example 2 begins at state 4a for some

positive integer a ≥ 2, then the probability it will ever reach the state 3 is ≤ (8/9)a−1 < 1.

That is, the Uniform Selection chain might fail to ever reach the optimal value. For example,

if X0 = 100, then a = 25 and the probability of failure is at least 1− (8/9)24 > 0.94 = 94%.

This is also illustrated by the simulation4 in Figure 7 with initial state X0 = 100.

These examples show that the Uniform Selection algorithm may converge to the wrong

limiting distribution, and thus should not be used for sampling purposes.

4Performed using the C program available at: http://probability.ca/rejfree.c
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Figure 4: Part of the target distribution for Example 2.

Example 2 also has implications for optimisation. Any Markov chain which gives con-

sistent estimators can be used to find the mode (maximum value) of π, either by running

the chain for a long time and taking its empirical sample mode, or by keeping track of the

largest value π(x) over all samples visited. However, Example 2 shows that a Uniform Se-

lection chain could be transient and thus fail to find or converge to the maximum value at

all. Of course, if the state space S is required to be finite, then any irreducible chain will

eventually find the optimal value. However, the time to find it could be extremely large.

Indeed, the Appendix also shows that if Example 2 is instead truncated at a large value 4L,

then each attempt from 4L to reach state 3 before returning to 4L would have probability

less than (8/9)L−1 of success. Hence, the expected time to ever reach the state 3 would be

exponentially large as a function of L, and the chain would still spend nearly all of its time

very near to the state 4L, so its samples and sample mean and sample mode would all be
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Figure 5: The Metropolis chain for Example 2.

extremely far from the true optimal state 3.
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Figure 6: The Uniform Selection chain for Example 2.

3 The Jump Chain

Due to the problems with the Uniform Selection Algorithm identified above, we instead

turn attention to a more promising avenue, the Jump Chain. Our definitions are as follows.

Let {Xn} be an irreducible Markov chain on a state space S (the “original chain”).

For ease of exposition we initially assume that S is finite or countable, though we later

(Theorem 13) extend this to general Markov chains with densities. To avoid trivialities, we

assume throughout that |S| > 1.

Given a run {Xn} of the Markov chain, we define the Jump Chain {Jk} to be the same

chain except omitting any immediately repeated states, and the Multiplicity List {Mk} to

count the number of times the original chain remains at the same state. For example, if the

original chain {Xn} began

{Xn} = (a, b, b, b, a, a, c, c, c, c, d, d, a, . . .) ,

then the jump chain {Jk} would begin

{Jk} = (a, b, a, c, d, a, . . .) ,
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Figure 7: Output from the Uniform Selection chain for Example 2.

and the corresponding multiplicity list {Mk} would begin

{Mk} = (1, 3, 2, 4, 2, . . .) .

The concept of jump chains arises frequently for Markov processes, especially for continuous-

time processes where they are often defined in terms of infinitesimal generators; see e.g.

Section 4.4 of [7] or Proposition 4.4.20 of [21]. Here we develop the essential properties that

we will use below. Most of these properties are already known in the context of (reversible)

Metropolis-Hastings algorithms; see Remark 6 below.

To continue, let

P (y|x) = P[Xn+1 = y |Xn = x] , x, y ∈ S

be the transition probabilities for the original chain {Xn}. And, let

α(x) = P[Xn+1 6= x |Xn = x] =
∑
y 6=x

P (y|x) = 1− P (x|x) (1)

7



be the “escape” probability that the original chain will move away from x on the next step.

Note that since the chain is irreducible and |S| > 1, we must have α(x) > 0 for all x ∈ S.

We then verify the following properties of the jump chain.

Proposition 2. The jump chain {Jk} is itself a Markov chain, with transition probabilities

P̂ (y|x) specified by P̂ (x|x) = 0, and for y 6= x,

P̂ (y|x) := P[Jk+1 = y | Jk = x] =
P (y|x)∑
z 6=x P (z|x)

=
P (y|x)

α(x)
. (2)

Proof. It follows from the definition of {Jk} that P̂ (x|x) = 0. For x, y ∈ S with y 6= x, we

compute that

P̂ (y|x) = P[Jk+1 = y | Jk = x] = P[Xn+1 = y | Xn = x, Xn+1 6= Xn]

=
P[Xn+1 = y, Xn+1 6= Xn | Xn = x]

P[Xn+1 6= Xn | Xn = x]
=

P (y|x)∑
z 6=x P (z|x)

,

as claimed.

Proposition 3. The conditional distribution of Mk given Jk is equal to the distribution of

1 +G where G is a geometric random variable with success probability p = α(Jk), i.e.

P[Mk = m | Jk] = (1− p)m−1p = (1− α(Jk))
m−1α(Jk) , m = 1, 2, . . . , (3)

and furthermore E[Mk | Jk] = 1/p = 1/α(Jk).

Proof. If the original chain is at state x, then it has probability p = α(x) of leaving x on

the next step, or probability 1− α(x) of remaining at x. Hence, the probability that it will

remain at x for m steps total (i.e., m− 1 additional steps), and then leave at the next step,

is equal to (1− p)m−1p, as claimed.

Proposition 4. If the original chain P is irreducible, then so is the jump chain P̂ .

Proof. Let x, y ∈ S. Since P is irreducible, there is a path x = x0, x1, x2, . . . , xm = y

with P (xi+1|xi) > 0 for all i. Without loss of generality, we can assume the {xi} are all

distinct. But if P (xi+1|xi) > 0, then (2) implies that also P̂ (xi+1|xi) > 0. Hence, P̂ is also

irreducible.

Proposition 5. If the original chain P has stationary distribution π, then the jump chain

P̂ has stationary distribution π̂ given by π̂(x) = c α(x) π(x) where c =
(∑

y α(y) π(y)
)−1

.
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Proof. Recall that on a discrete space, π is stationary for P if and only if
∑

x π(x)P (y|x) =

π(y) for all y ∈ S. In that case, we compute that∑
x

π̂(x) P̂ (y|x) =
∑
x

(c α(x) π(x)) ([P (y|x)/α(x)]1y 6=x)

= c
∑
x 6=y

π(x)P (y|x) = c

(∑
x

π(x)P (y|x)

)
− c π(y)P (y|y)

= c π(y)− c π(y)P (y|y) = c π(y)[1− P (y|y)] = c π(y)α(y) = π̂(y) ,

so that π̂ is stationary for P̂ , as claimed.

Remark 6. Most of the results presented in this section are already known in the Metropolis-

Hastings (reversible) context: the geometric distribution of the holding times is noted in

Lemma 1(3) of [5] and Proposition 1(a) of [11]; the modified transition probabilities of the

jump chain are stated in Proposition 1(b) of [11]; and the relationship between the stationary

distributions of the original and jump chains is used in Lemma 1(4) of [5], Proposition 1(c)

of [11] (see also Proposition 2.1 of [14]), Lemma 1 of [6], and Section 2 of [4].

Remark 7. It is common that simple modifications of reversible chains lead to simple

modifications of their stationary distributions. For example, if a reversible chain is re-

stricted to a subset of the state space (so any moves out of the subset are rejected with

the chain staying where it is), then its stationary distribution is equal to the original sta-

tionary distribution conditional on being in that subset (since the detailed balance equation

still holds on the subset). However, that property does not hold without reversibility. For

a simple counter-example, let S = {1, 2, 3}, with P (2|1) = P (3|2) = P (1|3) = 3/4, and

P (3|1) = P (1|2) = P (2|3) = 1/4. Then if C = {1, 2}, then the stationary distribution of the

original chain is (1/3, 1/3, 1/3), but the stationary distribution of the chain restricted to C

is (1/4, 3/4). We were thus surprised that Proposition 5 holds even for non-reversible chains.

4 Using the Jump Chain for Estimation

The Jump Chain can be used for estimation, as we now discuss. This approach has also

been taken by others; see Remarks 9 and 14 below.

Theorem 8. Given an irreducible Markov chain {Xn} with transition probabilities P (y|x)

and stationary distribution π on a state space S, and a function h : S → R, suppose we

simulate the jump chain {Jk} with the transition probabilities (2), and then simulate the
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multiplicities list {Mk} from the conditional probabilities (3) where p = α(Jk) with α as

in (1), and set

ēL =

∑L
k=1Mk h(Jk)∑L

k=1Mk

. (4)

Then ēL is a consistent estimator of the expected value Eπ(h), i.e. lim
L→∞

ēL = Eπ(h) w.p. 1.

Proof. Recall (e.g. [16]) that the usual estimator êK = 1
K

∑K
n=1 h(Xn) is consistent, i.e.

limK→∞ êK = Eπ(h) w.p. 1. Then, it is seen that

ēL =

∑L
k=1Mk h(Jk)∑L

k=1Mk

= ê∑L
k=1Mk

= êK(L)

where K(L) =
∑L

k=1Mk. Since each Mk ≥ 1, limL→∞K(L) = ∞, so limL→∞ ēL =

limL→∞ êK(L) = limK→∞ êK = Eπ(h) w.p. 1, as claimed.

Remark 9. The consistency of the estimate (4), and similarly those of Theorems 12 and 13

below, is already known in the Metropolis-Hastings (reversible) context; see equation (3) of

[14], Section 2 of [5], and equation (2) of [11].

On the other hand, combining the Markov chain Law of Large Numbers with Proposi-

tions 4 and 5 immediately gives:

Proposition 10. Under the above assumptions, if we simulate the jump chain {Jk} with the

transition probabilities P̂ , then for any function g : S → R with π̂|g| <∞, we have

lim
L→∞

1

L

L∑
k=1

g(Jk) = π̂(g) :=
∑
x∈S

g(x) π̂(x) = c
∑
x∈S

g(x)α(x) π(x) w.p. 1.

Corollary 11. Under the above assumptions, if we simulate the jump chain {Jk} with the

transition probabilities P̂ , then for any function h : S → R with π|h| <∞, we have

lim
L→∞

1

c L

L∑
k=1

[h(Jk)/α(Jk)] = π(h) :=
∑
x∈S

h(x) π(x) , w.p. 1.

Proof. Let g(x) = h(x)/c α(x). Then since π|h| <∞, we have

π̂|g| =
∑
x

|g(x)| π̂(x) =
∑
x

[|h(x)|/c α(x)] c α(x) π(x) =
∑
x

|h(x)|π(x) = π|h| < ∞ .

So, the result follows upon plugging this g into Proposition 10.
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We then have:

Theorem 12. Under the above assumptions, if we simulate the jump chain {Jk} with the

transition probabilities P̂ , then for any function h : S → R with π|h| <∞, we have

lim
L→∞

∑L
k=1[h(Jk)/α(Jk)]∑L
k=1[1/α(Jk)]

= π(h) , w.p. 1. (5)

Proof. Setting h ≡ 1 in Corollary 11 gives that w.p. 1, limL→∞
1
cL

∑L
k=1[1/α(Jk)] = 1. We

then compute that

lim
L→∞

∑L
k=1[h(Jk)/α(Jk)]∑L
k=1[1/α(Jk)]

= lim
L→∞

1
cL

∑L
k=1[h(Jk)/α(Jk)]

1
cL

∑L
k=1[1/α(Jk)]

=

∑
x∈S h(x) π(x)

1
= π(h) ,

as claimed.

Comparing Theorems 8 and 12, we see that they coincide except that each multiplicity

random variable Mk has been replaced by its mean 1/α(Jk), cf. Proposition 3.

Finally, we note that although our computer hardware does not allow us to exploit it,

most of the above carries over to Markov chains with densities on general (continuous) state

spaces, as follows. (The proofs are very similar to the discrete case, and are thus omitted.)

Theorem 13. Let X be a general state space, and µ an atomless σ-finite reference measure

on X . Suppose a Markov chain on X has transition probabilities P (x, dy) = r(x) δx(dy) +

ρ(x, y)µ(dy) for some r : X → [0, 1] and ρ : X ×X → [0,∞) with r(x) +
∫
ρ(x, y)µ(dy) = 1

for each x ∈ X , where δx is a point-mass at x. Again let P̂ be the transitions for the

corresponding jump chain {Jk} with multiplicities {Mk}. Then:

(i) P̂ (x, {x}) = 0, and for x 6= y, P̂ (x, dy) = ρ(x,y)∫
ρ(x,z)µ(dz)

µ(dy).

(ii) The conditional distribution of Mk given Jk is equal to the distribution of 1 +G where G

is a geometric random variable with success probability p = α(Jk) where α(x) = P[Xn+1 6=
x |Xn = x] =

∫
ρ(x, z)µ(dz) = 1− r(x) = 1− P (x|x).

(iii) If the original chain is φ-irreducible (see e.g. [16]) for some positive σ-finite measure φ

on X , then the jump chain is also φ-irreducible for the same φ.

(iv) If the original chain has stationary distribution π(x)µ(dx), then the jump chain has

stationary distribution given by π̂(x) = c α(x) π(x)µ(dx) where c−1 =
∫
α(y) π(y)µ(dy).

(v) If h : X → R has finite expectation, then with probability 1,

lim
L→∞

∑L
k=1Mk h(Jk)∑L

k=1Mk

= lim
L→∞

∑L
k=1[h(Jk)/α(Jk)]∑L
k=1[1/α(Jk)]

= π(h) :=

∫
h(x) π(x)µ(dx) .

11



4.1 Application to the Metropolis Algorithm

Suppose now that the original chain {Xn} is a Metropolis algorithm, with proposal

probabilities Q(y|x) which are symmetric (i.e. Q(y|x) = Q(x|y)). Then for x 6= y, P (y|x) =

Q(y|x) min
(

1, π(y)
π(x)

)
. Hence, by (2), the jump chain transition probabilities have P̂ (x|x) = 0

and for x 6= y are given by

P̂ (y|x) := P[J1 = y | J0 = x] =
Q(y|x) min

(
1, π(y)

π(x)

)
∑

z 6=xQ(z|x) min
(

1, π(z)
π(x)

) . (6)

Also, here

α(x) =
∑
y 6=x

P (y|x) =
∑
y 6=x

Q(y|x) min
(

1,
π(y)

π(x)

)
. (7)

A special case is where the proposal probabilities Q(x, ·) are uniform over all “neighbours”

of x, where each state has the same number N of neighbours. We assume that x is not a

neighbour of itself, and that x is a neighbour of y if and only if y is a neighbour of x. Then

for x 6= y, P (y|x) = 1
N

min
(

1, π(y)
π(x)

)
. And, by (2), the jump chain transition probabilities

have P̂ (x|x) = 0 and for x 6= y are given by

P̂ (y|x) =
min

(
1, π(y)

π(x)

)
∑

z∼x min
(

1, π(z)
π(x)

) (8)

where the sum is over all neighbours z of x. Also, here

α(x) =
1

N

∑
y 6=x

min
(

1,
π(y)

π(x)

)
. (9)

The use of the estimators (4) and (5) in the context of uniform Metropolis algorithms can

be carried out very efficiently using special parallelised computer hardware (see e.g. Section 7

below), and was our original motivation for this investigation.

Remark 14. The “n-fold way” of Bortz et al. [2] considers the Ising model, and selects

the next site to flip proportional to its probability of flipping, by first classifying all sites in

terms of their spin and neighbour counts. This creates a rejection-free Metropolis-Hastings

algorithm in the same spirit as our approach, though specific to the Ising model. Later

authors parallelised their algorithm, still for the Ising model; see e.g. [13] and [12].

12



5 Alternating Chains

Sometimes we have two or more different Markov chains and we wish to alternate between

them in some pattern. And, we might wish to use rejection-free sampling for some or all of

the individual chains. However, if this is done naively, it can lead to bias:

Example 3: Let S = {1, 2, 3, 4}, and π = (1− ε, 3ε, 1− ε, 1− ε)/3 for some small positive

number ε (e.g. ε = 0.001). Let Q1(x, x + 1) = Q1(x, x − 1) = 1/2 and Q2(x, x + 1) =

Q2(x, x + 2) = Q2(x, x − 1) = Q2(x, x − 2) = 1/4 be two different proposal kernels, and

let P1 and P2 be usual Metropolis algorithms for π with proposals Q1 and Q2 respectively.

Then, each of P1 and P2 will converge to π, as will the algorithm of alternating between

P1 and P2 any fixed number of times. However, if we instead alternate between doing one

jump step of P1 and then one jump step of P2, then this combined chain will not converge

to the correct distribution. Indeed, the corresponding escape probabilities α1(x) and α2(x)

are all reasonably large (at least 1/4) except for α1(1) = ε/2 which is extremely small. This

means that when our algorithm uses P1 from state 1 then it will have an extremely large

multiplicity Mk which will lead to extremely large weight of the state 1. Indeed, if we use the

alternating jump chains algorithm, then the estimators ēL as in (4) will have the property

that as ε↘ 0, their limiting value converges to h(1) instead of π(h), i.e.

lim
ε↘0

lim
L→∞

ēL = h(1) .

Hence, convergence to π fails in this case.

However, this convergence problem can be fixed if we control the number of effective

repetitions of each kernel. Specifically, suppose we choose in advance some number L0 of

effective repetitions we wish to perform for the kernel P1 before switching to the kernel P2.

Then we can do this in a rejection-free manner as follows:

1. Set the number of remaining repetitions, L, equal to some fixed initial value L0.

2. Find the next jump chain value Jk and multiplicity Mk corresponding to the Markov

chain P1, as above.

3. If Mk ≥ L, then replace Mk by L, and keep Jk as it is, and include that Jk and Mk in

the estimate. Then, return to step 1 with the next kernel P2.

4. Otherwise, if Mk < L, then keep Mk and Jk as they are, and count them in the estimate,

and then replace L by L−Mk and return to step 2 with the same kernel P1.
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This modified algorithm is equivalent to applying the original (non-rejection-free) kernel

P1 a total of L0 times before switching to the next kernel P2. As such, it has no bias,

and is consistent and will converge to the correct distribution without any errors as in the

counter-example above.

6 Application to Parallel Tempering

Parallel tempering (or, replica exchange) [22, 9] proceeds by considering different versions

of the target distribution π powered by different inverse-temperatures β, of the form π(β)(x) ∝
(π(x))β. It runs separate MCMC algorithms on each target π(β), for some fixed number of

iterations, and then proposes to “swap” pairs of values X(β1) ↔ X(β2). This swap proposal

is accepted with the usual Metropolis algorithm probability

min

[
1,

π(β1)(X(β2)) π(β2)(X(β1))

π(β1)(X(β1)) π(β2)(X(β2))

]
(10)

which preserves the product target measure
∏

β π
(β).

But suppose we instead want to run parallel tempering using jump chains, i.e. using a

rejection-free algorithm within each temperature. If we run a fixed number of rejection-free

moves of each within-temperature chain, followed by one “usual” swap move, then this can

lead to bias, as the following example shows.

Example 4: Let S = {1, 2, 3}, with π(1) = π(3) = 1/4 and π(2) = 1/2. Suppose

there are just two inverse-temperature values, β0 = 1 and β1 = 5. Suppose each within-

temperature chain proceeds as a Metropolis algorithm, with proposal distribution given by

Q(y|x) = 1/2 whenever y 6= x. (That is, we can regard the three states of S as being

in a circle, and the chain proposes to move one step clockwise or counter-clockwise with

probability 1/2 each, and then accepts or rejects this move according to the usual Metropolis

procedure.) If we run a usual parallel tempering algorithm, then the within-temperature

moves will converge to the corresponding stationary distributions π(0) = π = (1/4, 1/2, 1/4)

and π(5) = (1/34, 32/34, 1/34) respectively. Then, given current chain values X(0) and X(5),

if we attempt a usual swap move, it will be accepted with probability

min

[
1,

π(0)(X(5)) π(5)(X(0))

π(0)(X(0)) π(5)(X(5))

]
. (11)

These steps will all preserve the product stationary distribution π(0) × π(5), as they should.

However, if we instead run a rejection-free within-temperature chain, then convergence fails.
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Indeed, from each state the jump chain is equally likely to move to either of the other two

states, so each jump chain will converge to the uniform distribution on S. The acceptance

probability (11) will then lead to incorrect distributional convergence, e.g. if X(0) = 2 and

X(5) = 3, then a proposal to swap X(0) and X(5) will always be accepted, leading to an

excessively large probability that X(0) = 3. Indeed, in simulations5 the fraction of time that

X(0) = 3 right after a swap proposal is about 44%, much larger than the 1/3 probability it

should be.

To get rejection-free parallel tempering to converge correctly, we recall from Proposition 5

that the rejection-free chains actually converge to the modified stationary distributions π̂,

not π. We should thus modify the acceptance probability (10) to:

min

[
1,

π̂(β1)(X(β2)) π̂(β2)(X(β1))

π̂(β1)(X(β1)) π̂(β2)(X(β2))

]

= min

[
1,

α(β1)(X(β2)) π(β1)(X(β2)) α(β2)(X(β1)) π(β2)(X(β1))

α(β1)(X(β1)) π(β1)(X(β1)) α(β2)(X(β2)) π(β2)(X(β2))

]
. (12)

Such swaps will preserve the product modified stationary distribution
∏

β π̂
(β), rather than

trying to preserve the unmodified stationary distribution
∏

β π
(β). (If necessary, the escape

probabilities α(x) can be estimated from a preliminary run.) The rejection-free parallel

tempering algorithm will thus converge to
∏

β π̂
(β), thus still allowing for valid inference as

in Theorems 8 and 12.

Example 4 (continued): In this example, α(0)(1) = α(0)(3) = α(5)(1) = α(5)(3) = 1,

α(0)(2) = 1/2, and α(5)(2) = 1/32. So, if X(0) = 2 and X(5) = 3, then according to (12), a

proposal to swap X(0) and X(5) will be accepted with probability

min

[
1,

α(0)(X(5)) π(0)(X(5)) α(5)(X(0)) π(5)(X(0))

α(0)(X(0)) π(0)(X(0)) α(5)(X(5)) π(5)(X(5))

]

= min

[
1,

(1)(1/4)(1/32)(1/2)

(1/2)(1/2)(1)(1/34)

]
= 34/64 = 17/32 ,

and such swaps will instead preserve the product stationary distribution π̂(0)× π̂(5). Indeed,

in simulations6 the fraction of time that X(0) = 3 right after a swap proposal with this

modified acceptance probability becomes about 1/3, as it should be.

5Performed using the R program available at: http://probability.ca/rejectionfreesim
6Performed using the R program available at: http://probability.ca/rejectionfreemod
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7 Numerical Examples

In this section, we introduce applications and simulations to illustrate the advantage of

Rejection-Free algorithm. We compare the efficiency of the Rejection-Free and standard

Metropolis algorithms in three different examples. The first example is a Bayesian inference

model on a real data set taken from the Education Longitudinal Study of [8]. The second

example involves sampling from a two-dimensional ferromagnetic 4 × 4 Ising model. The

third example is a pseudo-marginal [1] version of the Ising model. All three simulations

show that the introduction of the Rejection-Free method leads to significant speedup. This

provides concrete numerical evidence for the efficiency of using the rejection-free approach

to improve the convergence to stationarity of the algorithms.

7.1 A Bayesian Inference Problem with Real Data

For our first example, we consider the Education Longitudinal Study [8] real data set

consisting of final course grades of over 9,000 students. We take a random subset of 200 of

these 9,000 students, and denote their scores as x1, x2, . . . , x200. (Note that all scores in this

data set are integers between 0 and 100.)

Our parameter of interest θ is the true average value of the final grades for these 200

students, rounded to 1 decimal place (so θ ∈ {0.1, 0.2, 0.3, . . . , 99.7, 99.8, 99.9} is still discrete,

and can be studied using specialised computer hardware). The likelihood function for this

model is the binomial distribution

L(x|θ) =

(
100

x

)
θx (1− θ)100−x . (13)

For our prior distribution, we take

θ ∼ Uniform{0.1, 0.2, 0.3, . . . , 99.7, 99.8, 99.9} . (14)

The posterior distribution π(θ) is then proportional to the prior probability function (14)

times the likelihood function (13).

We ran an Independence Sampler for this posterior distribution, with fixed proposal

distribution equal to the prior (14), either with or without the Rejection-Free modification.

For each of these two algorithms, we calculated the effective sample size, defined as

ESS(θ) =
N

1 + 2
∑∞

k=1 ρk(θ)
,
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ESS per Iteration ESS per CPU Second
Metropolis 0.0074 47

Rejection-Free 0.9100 4,261

Ratio 123.0 90.7

Table 1: Median of Effective Sample Sizes from 100 Runs each of the Metropolis and
Rejection-Free algorithms

where N is the number of posterior samples, and ρk(θ) represents autocorrelation at lag k

for the posterior samples of θ. (For a chain of finite length, the sum
∑∞

k=1 ρk(θ) cannot be

taken over all k, so instead we just sum until the values of ρk(θ) become negligible.) For fair

comparison, we consider both the ESS per iteration, and the ESS per second of CPU time.

Table 1 presents the median ESS per iteration, and median ESS per second, from 100 runs

of 100, 000 iterations each, for each of the two algorithms. We see from Table 1 that Rejection-

Free outperforms the Metropolis algorithm by a factor of approximately one hundred, in

terms of both ESS per iteration and ESS per second. This clearly illustrates the efficiency

of the Rejection-Free algorithm.

7.2 Simulations of an Ising Model

We next present a simulation study of a ferromagnetic Ising model on a two-dimensional

4× 4 square latice. The energy function for this model is given by

E(S) = −
∑
i<j

Jijsisj ,

where each spin si, sj ∈ {−1, 1}, and Jij represents the interaction between the ith and

jth spins. To make only the neighbouring spins in the lattice interact with each other, we

take Jij = 1 for all neighbours i and j, and Jij = 0 otherwise. The Ising model then has

probability distribution propositional to the exponential of the energy function:

Π(S) ∝ exp[−E(S)] .

We investigate the efficiency of the samples produced in four different scenarios: Metropo-

lis algorithm and Rejection-Free, both with and without Parallel Tempering. For the Parallel

Tempering versions, we set

ΠT (S) ∝ exp[−E(S) / T ] .
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Here T = 1 is the temperature of interest (which we want to sample from). We take T = 2 as

the highest temperature, since when T = 2 the probability distribution for magnetization is

quite flat (with highest probability P[M(S) = 14] = 0.083, and lowest probability P[M(S) =

2] = 0.037). Including the one additional temperature T =
√

2 gives three temperatures

1,
√

2, 2 in geometric progression, with average swap acceptance rate 31.6% which is already

higher than the 23.4% recommended in [19], indicating that three temperatures is enough.

We study convergence of the magnetization value, where the magnetization of a given

state S of the Ising model is defined as:

M(S) =
∑
i

si

For our 4× 4 Ising model,

M(S) ∈M = {−16,−14,−12, . . . ,−2, 0, 2, . . . , 12, 14, 16} .

We measure the distance to stationarity by the total variation distance between the sampled

and the actual magnetization distributions after n iterations, defined as:

TVD(n) =
1

2

∑
m∈M

∣∣∣P[M(Xn) = m]− Π{S : M(S) = m}
∣∣∣ ,

where M(Xn) is the magnetization of the chain at iteration n, and Π{S : M(S) = m} repre-

sents the stationary probability of magnetization value m. Thus, convergence to stationarity

is described by how quickly TVD(n) decreases to 0.

Figure 8 lists the average total variation distance TVD(n) for each version, as a function of

the number of iterations n, based on 100 runs of each of the four scenarios, of 106 iterations

each. It illustrates that, with or without Parallel Tempering, the use of Rejection-Free

provides significant speedup, and TVD decreases much more rapidly with the Rejection-Free

method than without it. This provides concrete numerical evidence for the efficiency of using

Rejection-Free to improve the convergence to stationarity of the algorithm.

We next consider the issue of computational cost. The Rejection-Free method requires

computing probabilities for all neighbors of the current state. However, with specialised

computer hardware, Rejection-Free can be very efficient since the calculation of the proba-

bilities for all neighbours and selection of the next state can both be done in parallel. The

computational cost of each iteration of Rejection-Free is therefore equal to the maximum

cost used on each neighbor. Similarly, for Parallel Tempering, we can calculate all of the

different temperature chains in parallel. The average CPU time per iteration for each of the
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Figure 8: Average total variation distance TVD(n) between sampled and actual distributions
as a function of the number of iterations, for four scenarios: Metropolis versus Rejection-Free
both without (left) and with (right) Parallel Tempering.

Algorithm Average CPU Time (nanoseconds)
Metropolis w/o PT 420

Rejection-Free w/o PT 407
Metropolis w/ PT 463

Rejection-Free w/ PT 611

Table 2: Average CPU time per iteration for each of four scenarios: Metropolis and Rejection-
Free, both with and without Parallel Tempering

four different scenarios are presented in Table 2. It illustrates that the computational cost of

Rejection-Free without Parallel Tempering was comparable to that of the usual Metropolis

algorithm, though Rejection-Free with Parallel Tempering does require up to 50% more time

than the other three scenarios.

Figure 9 shows the average total variation distance as a function of the total CPU time

used for each algorithm. Figure 9 is quite similar to Figure 8, and gives the same overall

conclusion: with or without Parallel Tempering, the use of Rejection-Free provides significant

speedup, even when computational cost is taken into account.

As a final check, we also calculated the effective sample size, similar to the first example.

First, we generated 100 MCMC chains of 100, 000 iterations each, from all four algorithms.
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Figure 9: Average total variation distance TVD(n) between sampled and actual distributions
as a function of CPU time cost, for four scenarios: Metropolis versus Rejection-Free both
without (left) and with (right) Parallel Tempering.

ESS per Iteration ESS per CPU Second
Metropolis w/0 PT 0.0003 77.76

Rejection-Free w/o PT 0.0016 4,227
Metropolis w/ PT 0.0057 11,830

Rejection-Free w/ PT 0.0138 23,459

Table 3: Median of Normalized Effective Sample Sizes for four scenarios: Metropolis and
Rejection-Free, both with and without Parallel Tempering

Then, we calculated the effective sample size for each chain, and normalized the results by

either the number of iterations or the total CPU time for each algorithm. Table 3 shows the

median of ESS per iteration and ESS per CPU second. It again illustrates that Rejection-

Free can produce great speedups, increasing the ESS per CPU second by a factor of over 50

without Parallel Tempering, or a factor of 2 with Parallel Tempering.

7.3 A Pseudo-Marginal MCMC Example

If the target density itself is not available analytically, but an unbiased estimate exists,

then pseudo-marginal MCMC [1] can still be used to sample from the correct target distri-

bution. We next apply the Rejection-Free method to a pseudo-marginal algorithm to show
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that Rejection-Free can provide speedups in that case, too.

In the previous example of the 4 × 4 Ising model, the target probability distributions

were defined as

Π(S) ∝ exp{−E(S)

T
} .

We now pretend that this target density is not available, and we only have access to an

unbiased estimator given by

Π0(S) ∝ Π(S)× A = exp{E(S)

T
} × A ,

where A ∼ Gamma(α = 10, β = 10) is a random variable (which is sampled independently

every time as we try to compute the target distribution). Note that E(A) = 10/10 = 1, so

E[Π0(S)] = Π(S), and the estimator is unbiased (though A has variance 10/102 = 1/10 > 0).

Using this unbiased estimate of the target distribution as for pseudo-marginal MCMC,

we again investigated the convergence of samples produced by the same four scenarios:

Metropolis and Rejection-Free, both with and without Parallel Tempering. Figure 10 shows

the average total variation distance TVD(n) between the sampled and the actual magneti-

zation distributions, for 100 chains, as a function of the iteration n, keeping all the other

settings the same as before. This figure is quite similar to Figure 8, again showing that with

or without Parallel Tempering, the use of Rejection-Free provides significant speedup, even

in the pseudo-marginal case.

8 Summary

This paper has considered the use of parallelised computer hardware to run rejection-

free versions of the Metropolis algorithm. We showed that the Uniform Selection Algorithm

might fail to converge to the correct distribution or even visit the maximal value. However,

the Jump Chain with appropriate weightings can provide consistent estimates of expected

values in an efficient rejection-free manner. Care must be taken when alternating between

multiple rejection-free chains, or when using rejection-free chains for parallel tempering, but

appropriate adjustments allow for valid samplers in those cases as well. Simulations of our

methods on several examples illustrate the significant speedups that result from using the

Rejection-Free method to obtain more efficient samples.
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Figure 10: Average of total variation distance between sampled and actual distributions as
a function of number of iterations for probability with noise Gamma(10, 10) in four scenar-
ios: Metropolis versus Rejection-Free without Parallel Tempering (left) and with Parallel
Tempering (right)

9 Appendix: Proof of Proposition 1

Lemma 15. For the Uniform Selection chain of Figure 6, let s(x) = P(hit 4 before 0 |X0 =

x). Then s(0) = 0, s(1) = 3/7, s(2) = 4/7, s(3) = 13/21, and s(4) = 1.

Proof. Clearly s(0) = 0 and s(4) = 1. Also, by conditioning on the first step, for 1 ≤ x ≤ 3

we have s(x) = px,x−1 s(x−1)+px,x+1 s(x+1). In particular, s(1) = (1/4)s(0)+(3/4)s(2) =

(3/4)s(2), and s(2) = (1/4)s(1) + (3/4)s(3), and s(3) = (8/9)s(2) + (1/9)s(4) = (8/9)s(2) +

(1/9). We solve these equations using algebra. Substituting the first equation into the second,

s(2) = (1/4)(3/4)s(2) + (3/4)s(3), so (13/16)s(2) = (3/4)s(3), so s(3) = (13/16)(4/3)s(2) =

(13/12)s(2). Then the third equation gives (13/12)s(2) = (8/9)s(2) + (1/9), so (7/36)s(2) =

(1/9), so s(2) = (1/9)(36/7) = 4/7. Then s(1) = (3/4)s(2) = (3/4)(4/7) = 3/7, and

s(3) = (8/9)s(2) + (1/9) = (8/9)(4/7) + (1/9) = 13/21, as claimed.

Lemma 16. Suppose the Uniform Selection chain for Example 2 begins at state x = 4a for

some positive integer a. Let C be the event that the chain hits 4(a+1) before hitting 4(a−1).

Then q := P(C) = 9/17 > 1/2.
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Proof. By conditioning on the first step, we have that

q = P(C |X0 = 4a)

= P(X1 = 4a+ 1) P(C |X0 = 4a+ 1) + P(X1 = 4a− 1) P(C |X0 = 4a− 1)

= (1/2) P(C |X0 = 4a+ 1) + (1/2) P(C |X0 = 4a− 1) .

But from 4a+1, by Lemma 15, we either reach 4a+4 before returning to 4a (and “win”) with

probability 3/7, or we first return to 4a (and “start over”) with probability 4/7. Similarly,

from 4a − 1, we either return to 4a (and “start over”) with probability 13/21, or we reach

4a− 4 before returning to 4a (and “lose”) with probability 8/21. Hence,

q = (1/2) [(3/7) + (4/7)q] + (1/2) [(13/21)q + 0] .

That is, q = (3/14) + (2/7)q+ (13/42)q = (3/14) + (25/42)q. Hence, q = (3/14) / (17/42) =

9/17 > 1/2.

We then have:

Corollary 17. Suppose the Uniform Selection chain for Example 2 begins at state 4a ≥ 8 for

some positive integer a ≥ 2. Then the probability it will ever reach the state 4 is (8/9)a−1 < 1.

Proof. Consider a sub-chain {X̃n} of {Xn} which just records new multiples of 4. That is,

if the original chain is at the state 4b, then the new chain is at b. Then, we wait until the

original reaches either 4(b− 1) or 4(b+ 1) at which point the next state of the new chain is

b − 1 or b + 1 respectively. Then Lemma 16 says that this new chain is performing simple

random walk on the positive integers, with up-probability 9/17 and down-probability 8/17.

Then it follows from the Gambler’s Ruin formula (e.g. [20, equation 7.2.7]) that, starting

from state a, the probability that the new chain will ever reach the state 1 is equal to

[(8/17)/(9/17)]a−1 = (8/9)a−1 < 1, as claimed.

Since the chain starting at 4a for a ≥ 2 cannot reach state 3 without first reaching state 4,

Proposition 1 follows immediately from Corollary 17.

If we instead cut off the example at the state 4L, then the Gambler’s Ruin formula

(e.g. [20, equation 7.2.2]) says that from the state 4(L− 1), the probability of reaching the

state 4 before returning to the state 4L is [(9/8)1 − 1] / [(9/8)L−2 − 1] < (8/9)L−1 (since

[A−1] / [B−1] < A/B whenever 1 < A < B), so the expected number of attempts to reach

state 4 from state 4L is more than (9/8)L−1.
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