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Mathematics is a wonderful subject, but much of it requires years of study to fully

appreciate. When I was recently asked to design a course in quantitative reasoning for

Humanities students [8], I had to come up with mathematical ideas and examples which

were interesting, relevant, exciting, and most importantly, comprehensible without much

math background.

Now, I do have some experience communicating mathematical ideas to non-mathematicians,

including writing a bestselling general-interest book about probabilities [1], helping to un-

cover a major front-page lottery scandal [6], and writing about such diverse topics as the

mathematics of music [2], probability and justice [7], sports statistics [5], the Monty Hall

problem [3], and even family relationships [4]. But beyond that, what fundamental mathe-

matical idea could I use to begin the course, to show these Humanities students the interest

and power of mathematical thinking, without scaring them off or pushing them towards

feelings of math anxiety?

After much consideration, I decided to begin my course with the concept of scaling.

That is, how do various quantities change when an object’s size is modified?

The key to scaling is that it depends on the dimension. Consider first a one-dimensional

object like a line. If you wanted to draw a second line which was twice as long as your first

line, then how many times as much ink would it require? Why, twice as much, of course.

Indeed, in one dimension, an object’s length or size or amount of ink are all pretty much the

same thing, and there is little more to say.

In two dimensions, the situation is more interesting. Suppose you draw a square on a

page, and then later wish to draw a second square which is twice as big (in all directions).

How many times as much ink do you require now? Well, four times as much. This is because

in two dimensions, an object’s area is proportional to its length times its height, and if an

object is expanded then each of its length and height is multiplied by two, so the product is

multiplied by 2 × 2 = 4. Similarly, to draw a square three times as large (in all directions)

would require 3 × 3 = 9 times as much ink.

The importance of this observation is that it actually applies to more than just

squares. Indeed, any shape drawn on a page can be thought of as being made up of lots

and lots of tiny disjoint squares. (Formally, this is justified by calculus, upon taking the

limit of more and more smaller and smaller squares.) So, consider any shape drawn on a

page (say, a child’s drawing of a heart on a mother’s day card). If you wanted to draw a new

version which was identical except twice as large (in all directions), then it would require

2 × 2 = 4 times as much ink. This is true regardless of the chosen shape, and regardless of

its actual area (which probably couldn’t be computed precisely anyway).
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More generally, if any two-dimensional region is stretched by one factor vertically and

another factor horizontally, then the ratio of the areas is simply the product of the two

stretch factors. For example, dimes are approximately one centimeter by one centimeter.

So, about how many dimes could be taped flat against my classroom’s wall, which is about

four meters tall and twelve meters wide? Well, here the vertical scaling factor is 400, and

the horizontal factor is 1,200, so the total number of dimes is 400× 1, 200 = 480, 000, worth

a total $48,000. That’s a lot of dimes.

For another example, suppose flowers are planted about 20 centimeters apart. Then

about how many flowers are on a five meter by eight meter field? Well, roughly speaking, here

each flower occupies a disjoint “region” of about 20 centimeters by 20 centimeters. And the

entire field can be viewed as a scaled up version of one such region. So, the number of flowers

on the whole field is the product of the two scaling factors, namely (500/20) × (800/20) =

25 × 40 = 1, 000. So, there are about a thousand of them – lots of flowers!

Next, consider scaling in three dimensions. If we have a three-dimensional cube, and

then expand it to be twice as large (in all directions), then it has three different scaling

factors, so its volume is multiplied by 2 × 2 × 2 = 8. That is, it is eight times as large!

And once again, this principle applies to more than just cubes, since any volume

can be thought of as consisting of lots and lots of tiny disjoint cubes. For example, consider

a glass of beer (a very relevant example for students!). If a second glass is twice as large

in all directions, then it holds eight times as much beer – a fact which surprises many

people. Or, suppose instead that a second glass is twice as tall, but only 2/3 as wide and

deep. Most people would think the second glass holds more beer. But in fact, it holds

2× (2/3)× (2/3) = 8/9 times as much. And 8/9 < 1, so the second glass actually holds less.

Even more dramatically, consider a cone-shaped glass (like a fancy wine glass, or

certain water-cooler cups). Suppose it is filled up to 2/3 of its full height. Then what

fraction of its volume is full? Well, since it is cone-shaped, its bottom two-thirds is identical

to the entire cup, except scaled by 2/3 in all directions. So, its bottom two-thirds holds

(2/3) × (2/3) × (2/3) = 8/27
.
= 30% of its full volume. So, with a cone-shaped cup, if the

bartender fills 2/3 of its height, he is only giving you about 30% of a full glass of wine. Tell

him to fill it up!

Another interesting application is to mass. A standard reference point is that a 10 cm

× 10 cm × 10 cm cube of water equals one litre, and weighs one kilogram. So what about

a 1 m × 1 m × 1 m cube of water? Well, 1 m is ten times as long as 10 cm. So, a 1 m × 1

m × 1 m cube has volume 10 × 10 × 10 = 1, 000 litres, and weighs 1,000 kilograms (about

2,205 pounds) – much too heavy to lift! Similarly, a 160 cm × 200 cm × 20 cm waterbed has

volume 16 × 20 × 2 = 640 litres, and weighs a massive 640 kilograms (about 1,411 pounds).

This is why waterbeds can only be put into sturdy houses, and cannot be moved without

first being drained.

Another perspective comes from picturing crowds of people. If you are in a one-
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dimensional lineup of people spaced about 0.5 meters apart, then the number of people

standing within ten meters of you (in front or behind) is about 20/0.5 = 40. But if you are in a

two-dimensional crowd of people (at a concert or party or dance), all spaced about 0.5 meters

apart, then the number of people within ten meters of you is about (20/0.5) × (20/0.5) =

1, 600 – lots more! (Or, if you really want to consider just a circle of people around you, not

a square, then the answer is more like π(10/0.5)2
.
= 1, 257.) Or, if a flock of birds, flying in

three dimensions, are spaced about 0.5 meters apart, then the number of birds within ten

meters of any one (central) bird is about (20/0.5)× (20/0.5)× (20/0.5) = 64, 000, a massive

number. That’s scaling, in different dimensions.

Similarly, stars in our galaxy are approximately five light-years apart on average. So if

stars are visible up to, say, one hundred light-years away in all directions, then the number

of visible stars is roughly (200/5) × (200/5) × (100/5) = 32, 000. (Or, if you want to count

only a half-sphere of visibility, then it’s about π(100/5)3/2
.
= 12, 566.) Starry starry night,

indeed! So, scaling explains why on a clear night you can see so many stars, even though

most stars are too far away to be visible.

Comparing two different people is also fun. Suppose that Person #2 is twice (say) as

large as Person #1 in all directions, otherwise identical. Then how many times as high can

Person #2 reach? Answer: 2 (since height is one-dimensional). How many times as much

does Person #2 weigh? Answer: 8 (since weight is three-dimensional). How many times as

many blades of grass does Person #2 trample if they each take one step on a lawn? Answer:

4 (since foot area is two-dimensional). How many times as much blood does Person #2’s

arteries contain? Answer: 8 (since volume is three-dimensional). How many times as much

skin surface (e.g. for tattoos) does Person #2 have? Answer: 4 (since skin surface is two-

dimensional). And so on. Again, these answers do not depend on the precise shape of the

people or their feet or arteries, they just involve scaling. (And of course, similar answers

apply to other scaling factors besides two.)

Next, consider pressure, i.e. the amount of force per unit area on e.g. the ground un-

derneath our feet. Considering snowshoes is instructive. Snowshoes work by spreading our

mass over a larger area, to reduce the pressure on each individual spot of snow. Suppose I

am wearing snowshoes which are twice as wide, and three times as long, as my regular boot.

Then my same mass is spread over an area which is 2×3 = 6 times as large. So, the amount

of pressure I exert on any one spot of snow is only 1/6 as large. This is why I can (hopefully)

stand on the top of the snow while wearing snowshoes, even if I would have sunk down deep

in my normal boots.

Consider now a giant lizard (like Godzilla?). Suppose the giant is one thousand times

as large as a regular lizard, in all directions. Then it weighs 1, 000 × 1, 000 × 1, 000 =

1, 000, 000, 000 (one billion) times as much (!). And it has one billion times as much blood,

and so on. On the other hand, its foot area is 1, 000 × 1, 000 = 1, 000, 000 (one million)

times as large. So, the amount of pressure that it exerts on the ground is 1, 000, 000, 000
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divided by 1, 000, 000, or 1, 000 (one thousand) times as much. That is why giants tend to

crush whatever they step on. But because of scaling, the pressure is only multiplied by their

scaling factor (e.g. a thousand), not by their full weight ratio (e.g. a billion).

Finally, consider rainfall. You might have noticed that rain amounts are normally re-

ported as lengths, e.g. “downtown Toronto received 40.6 mm of rain today”. How could this

be? Well, consider two different bins left out during a rainstorm. Suppose the second bin is

twice as large as the first (in all directions). Then the area at the top of the bin is 2× 2 = 4

times as large. So, the volume of rain collected by the second bin is 4 times as much. On the

other hand, this rain is then spread over a bass area which is also 2 × 2 = 4 times as large.

This means that the height of the rain in the second bucket is 4/4 = 1 times as high, i.e.

the height of rain in the two buckets is identical! Similar considerations apply to any other

buckets of any other sizes and shapes, as long as they have straight sides (so the area of each

bucket is the same at the top and the bottom). So, when reporting an amount of rainfall as

a length, that length is equal to the height of water that would be left in any straight-sided

bucket of any size whatsoever. And that is why rainfall amounts can be reported as simple

lengths, not as “volume per unit bucket” or some other complicated standard.

So, the next time someone asks you for an easy-to-understand example of how mathe-

matical thinking applies to everyday life, tell them a tale or two about scaling!
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