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MATHEMATICS IS A WONDERFUL SUBJECT, 
but much of it requires years of study to fully 

appreciate. When I was recently asked to design a 
course in quantitative reasoning for Humanities 
students [8], I had to come up with mathematical 
ideas and examples which were interesting, relevant, 
exciting, and most importantly, comprehensible 
without much math background.
 
Now I do have some experience communicating 
mathematical ideas to non-mathematicians, 
including writing a bestselling general-interest book 
about probabilities [1], helping to uncover a major 
front-page lottery scandal [6], and writing about 
such diverse topics as the mathematics of music 
[2], probability and justice [7], sports statistics 
[5], the Monty Hall problem [3], and even family 
relationships [4]. But beyond that, what fundamental 
mathematical idea could I use to begin the course, 
to show these Humanities students the interest and 
power of mathematical thinking, without scaring 
them off or pushing them towards feelings of math 
anxiety?

After much consideration, I decided to begin my 
course with the concept of scaling. That is, how do 
various quantities change when an object’s size is 
modified?

The key to scaling is that it depends on the dimension. 
Consider first a one-dimensional object like a line. If 
you wanted to draw a second line which was twice as 
long as your first line, then how many times as much 
ink would it require? Why, twice as much, of course. 
Indeed, in one dimension, an object’s length or size or 
amount of ink are all pretty much the same thing, and 
there is little more to say.

In two dimensions, the situation is more interesting. 
Suppose you draw a square on a page, and then later 
wish to draw a second square which is twice as big 
(in all directions). How many times as much ink do 
you require now? Well, four times as much. 

This is because in two dimensions, an object’s area is 
proportional to its length times its height, and if an 
object is expanded then each of its length and height 
is  multiplied by two,  so the product is  2 × 2 = 4. 
Similarly, to draw a square three times as large (in all 
directions) requires 3 × 3 = 9 times as much ink.

The importance of this observation is that it actually 
applies to more than just squares. Indeed, any 
shape drawn on a page can be thought of as being  
made up of lots and lots of tiny disjoint squares. 
(Formally, this is justified by calculus, upon taking 
the limit of more and more smaller and smaller 
squares.) So, consider any shape drawn on a page 
(say, a child’s drawing of a heart on a mother’s day 
card). If you wanted to draw a new version which 
was identical except twice as large (in all directions), 
then it would require 2 × 2 = 4 times as much ink. 
This is true regardless of the chosen shape, and 
regardless of its actual area (which probably couldn’t 
be computed precisely anyway). 

More generally, if any two-dimensional region is 
stretched by one factor vertically and another factor 
horizontally, then the ratio of the area is simply the 
product of both stretch factors. For example, dimes 
are approximately one centimeter by one centimeter. 
So, how many dimes could be taped flat against my 
classroom’s wall, which is about four meters tall and 
twelve meters wide? Well, here the vertical scaling 
factor is 400, and the horizontal factor is 1,200, so 
the total number of dimes is 400 × 1,200 = 480,000, 
worth a total $48,000. That’s a lot of dimes.

For another example, suppose flowers are planted 
about 20 centimeters apart. Then about how many 
flowers are on a five meter by eight meter field? 
Well, roughly speaking, here each flower occupies 
a disjoint “region” of about 20 centimeters by 20 
centimeters. And the entire field can be viewed as a 
scaled up version of one such region. So, the number 
of flowers on the whole field is the product of the 
two scaling factors, namely (500/20) × (800/20) = 25 
× 40 = 1, 000. So, there are about a thousand of them 
- lots of flowers!

MATHEMATICS TO SCALE
BY JEFFREY S. ROSENTHAL

Professor in the Department of Statistical Sciences at the University of Toronto. 



4

Issue 20 - Fall 2017

Next, consider scaling in three dimensions. If we 
have a three-dimensional cube, and then expand 
it to be twice as large (in all directions), then it 
has three different scaling factors, so its volume is 
multiplied by 2 × 2 × 2 = 8. That is, it is eight times 
as large!

And once again, this principle applies to more than 
just cubes, since any volume can be thought of as 
consisting of lots and lots of tiny disjoint cubes. For 
example, consider a glass of beer (a very relevant 
example for students!). If a second glass is twice as 
large in all directions, then it holds eight times as 
much beer – a fact which surprises many people. Or, 
suppose instead that a second glass is twice as tall, 
but only 2/3 as wide and deep. Most people would 
think the second glass holds more beer. But in fact, it 
holds 2 × (2/3) × (2/3) = 8/9 times as much. And 8/9 
< 1, so the second glass actually holds less.

Even more dramatically, consider a cone-shaped 
glass (like a fancy wine glass, or certain water-cooler 
cups). Suppose it is filled up to 2/3 of its full height. 
Then what fraction of its volume is full? Well, since it 
is cone-shaped, its bottom two-thirds is identical to 
the entire cup, except scaled by 2/3 in all directions. 
So, its bottom two-thirds holds (2/3) × (2/3) × (2/3) 
= 8/27 ≈ 30% of its full volume. So, with a cone-
shaped cup, if  the bartender fills 2/3 of its height, he 
is only giving you about 30% of a full glass of wine. 
Tell him to fill it up!

Another interesting application is to mass. A 
standard reference point is that a 10 cm × 10 cm × 
10 cm cube of water equals one litre, and weighs one 
kg. So what about a 1 m × 1 m × 1 m cube of water? 
Well, 1 m is ten times as long as 10 cm. So, a 1 m × 1 
m × 1 m cube has volume 10 × 10 × 10 = 1, 000 litres, 
and weighs 1,000 kgs (about 2,205 lbs) – much too 
heavy to lift! Similarly, a 160 cm × 200 cm × 20 cm 
waterbed has volume 16 × 20 × 2 = 640 litres, and 
weighs a massive 640 kgs (about 1,411 lbs). This is 
why waterbeds can only be put into sturdy houses, 
and cannot be moved without first being drained.

Another perspective comes from picturing crowds 
of people. If you are in a one-dimensional lineup 
of people spaced about 0.5 meters apart, then the 
number of people standing within ten meters of you 
(in front or behind) is about 20/0.5 = 40. 

But if you are in a two-dimensional crowd of people 
(at a concert or party or dance), all spaced about 0.5 
meters apart, then the number of people within ten 
meters of you is about (20/0.5) × (20/0.5) = 1,600 – 
lots more! (Or, if you really want to consider just a 
circle of people around you, not a square, then the 
answer is more like π(10/0.5)2 ≈ 1,257.) Or, if a flock 
of birds, flying in three dimensions, are spaced about 
0.5 meters apart, then the number of birds within 
ten meters of any one (central) bird is about (20/0.5) 
× (20/0.5) × (20/0.5) = 64,000, a massive number. 
That’s scaling, in different dimensions.

Similarly, stars in our galaxy are approximately 
five light-years apart on average. So if stars are 
visible up to, say, one hundred light-years away in 
all directions, then the number of visible stars is 
roughly (200/5) × (200/5) × (100/5) = 32,000. (Or, 
if you want to count only a half-sphere of visibility, 
then it’s about π(100/5)3/2 ≈ 12, 566.)  Starry starry 
night, indeed! So, scaling explains why on a clear 
night you can see so many stars, even though most 
stars are too far away to be visible.

Comparing two different people is also fun. Suppose 
that Person #2 is twice (say) as large as Person #1 
in all directions, otherwise identical. Then how 
many times as high can Person #2 reach? Answer: 2 
(since height is one-dimensional). How many times 
as much does Person #2 weigh? Answer: 8 (since 
weight is three-dimensional). How many times as 
many blades of grass does Person #2 trample if they 
each take one step on a lawn? Answer:  4 (since foot 
area is two-dimensional). How many times as much 
blood does Person #2’s arteries contain? Answer: 
8 (since volume is three-dimensional). How many 
times as much skin surface (e.g. for tattoos) does 
Person #2 have? Answer: 4 (since skin surface is 
two- dimensional). And so on. Again, these answers 
do not depend on the precise shape of the people or 
their feet or arteries, they just involve scaling. (And 
of course, similar answers apply to other scaling 
factors besides two.)

Next, consider pressure, i.e. the amount of force per 
unit area on e.g. the ground underneath our feet. 
Considering snowshoes is instructive. Snowshoes 
work by spreading our mass over a larger area, to 
reduce the pressure on each individual spot of snow. 
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Suppose I am wearing snowshoes which are twice 
as wide, and three times as long, as my regular boot. 
Then my same mass is spread over an area which is 
2 × 3 = 6 times as large. So, the amount of pressure 
I exert on any one spot of snow is only 1/6 as large. 
This is why I can (hopefully) stand on the top of the 
snow while wearing snowshoes, even if I would have 
sunk down deep in my normal  boots.

Consider now a giant lizard (like Godzilla). Suppose 
the giant is one thousand times as large as a regular 
lizard, in all directions. Then it weighs 1,000 × 
1,000 × 1,000 = 1,000,000,000 (one billion) times as 
much(!). And it has one billion times as much blood, 
and so on. On the other hand, its foot area is 1,000 
× 1,000 = 1,000,000 (one million) times as large.  So, 
the amount of pressure that it exerts on the ground 
is 1,000,000,000 divided by 1,000,000, or 1,000 (one 
thousand) times as much. That is why giants tend to 
crush whatever they step on. But because of scaling, 
the pressure is only multiplied by their scaling factor 
(e.g. a thousand), not by their full weight ratio (e.g. a 
billion).

Finally, consider rainfall. You might have noticed 
that rain amounts are normally re- ported as lengths, 
e.g. “downtown Toronto received 40.6 mm of rain 
today”. How could this be?  Well, consider two 
different bins left out during a rainstorm.  Suppose 
the second bin  is twice as large as the first (in all 
directions). Then the area at the top of the bin is 2 × 
2 = 4 times as large. So, the volume of rain collected 
by the second bin is 4 times as much. On the other 
hand, this rain is then spread over a base area which 
is also 2 × 2 = 4 times as large. This means that 
the height of the rain in the second bucket is 4/4 
= 1 times as high, i.e. the height of rain in the two 
buckets is identical! Similar considerations apply to 
any other buckets of any other sizes and shapes, as 
long as they have straight sides (so the area of each 
bucket is the same at the top and the bottom).  So, 
when reporting an amount of rainfall as a length, 
that length is equal to the height of water that would 
be left in any straight-sided bucket of any size 
whatsoever. And that is why rainfall amounts can be 
reported as simple lengths, not as “volume per unit 
bucket” or some other complicated standard.

So, the next time someone asks you for an easy-to-
understand example of how mathematical thinking 
applies to everyday life, tell them a tale or two about 
scaling!
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