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Abstract. We derive new results comparing the asymptotic variance of
diffusions, by writing them as appropriate limits of discrete-time birth-death
chains and taking limits of Peskun orderings. We then apply our results to
simulated tempering algorithms, to establish which choice of inverse temper-
atures minimises the asymptotic variance of all functionals and thus leads to
the most efficient MCMC algorithm.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are very widely used to approximately

compute expectations with respect to complicated high-dimensional distributions (see e.g.

[25, 7]). Specifically, if a Markov chain {Xn} has stationary distribution π on state space X ,

and h : X → R with π|h| <∞, then π(h) :=
∫
h(x) π(dx) can be estimated by 1

n

∑n
i=1 h(Xi)

for suitably large n. This estimator is unbiased if the chain is started in stationarity (i.e. if

X0 ∼ π), and in any case has bias only of order 1/n. Furthermore, it is consistent provided

the Markov chain is φ-irreducible. Thus, the efficiency of the estimator is often measured

in terms of the asymptotic variance Varπ(h, P ) := limn→∞
1
n
Varπ

(∑n
i=1 h(Xi)

)
(where the

subscript π indicates that {Xn} is in stationarity): the smaller the variance, the better the

estimator.

An important question in MCMC research is how to optimise it, i.e. how to choose the

Markov chain optimally (see e.g. [10, 16]). This leads to the question of how to compare

different Markov chains. Indeed, for two different φ-irreducible Markov chain kernels P1 and

P2 on X , both having the same invariant probability measure π, we say that P1 dominates

P2 in the efficiency ordering, written P1 � P2, if Varπ(h, P1) ≤ Varπ(h, P2) for all L2(π)
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functionals h : X → R, i.e. if P1 is “better” than P2 in the sense of being uniformly more

efficient for estimating expectations of functionals.

It was proved by Peskun [19] for finite state spaces, and by Tierney [26] for general state

spaces (see also [17, 16]), that if P1 and P2 are discrete-time Markov chains which are both

reversible with respect to the same stationary distribution π, then a sufficient condition for

P1 � P2 is that P1(x,A) ≥ P2(x,A) for all x ∈ X and A ∈ F with x 6∈ A, i.e. that P1

dominates P2 off the diagonal.

Meanwhile, diffusion limits have become a common way to establish asymptotic com-

parisons of MCMC algorithms [21, 22, 23, 2, 3, 4, 5]. Specifically, if P1,d and P2,d are two

different Markov kernels in dimension d (for d = 1, 2, 3, . . .), with diffusion limits P1,∗ and

P2,∗ respectively as d → ∞, then one way to show that P1,d is more efficient than P2,d for

large d is to prove that P1,∗ is more efficient that P2,∗. This leads to the question of how to

establish that one diffusion is more efficient than another. In some cases (e.g. random-walk

Metropolis [21], and Langevin algorithms [22]), this is easy since one diffusion is simply a

time-change of the other. But more general diffusion comparisons are less clear (the spectral

gaps can be ordered directly using Dirichlet forms, but this does not bound the asymptotic

variances).

In this paper, we develop (Section 2) a new comparison of asymptotic variance of dif-

fusions. Specifically, we prove (Theorem 1) that if Pi are Langevin diffusions with respect

to the same stationary distribution π, with variance functions σ2
i (for i = 1, 2), then if

σ2
1(x) ≥ σ2

2(x) for all x, then P1 � P2, i.e. P1 is more efficient than P2. (We note that that

Mira and Leisen [12, 18] extended the Peskun ordering in an interesting way to continuous-

time Markov processes on finite state spaces, and on general state spaces when the processes

have generators which can be represented as Gif(x) =
∫
f(y)Qi(x, dy) and which satisfy the

condition that Q1(x, A \ {x}) ≥ Q2(x, A \ {x}) for all x and A. However, their results do

not appear to apply in our context, since generators of diffusions involve differentiation and

thus do not admit such representation.)

We then consider (Section 3) simulated tempering algorithms [14, 10], and in particular

the question of how best to choose the intermediate temperatures. It was previously shown

in [1], generalising some results in the physics literature [11, 20], that a particular choice

of temperatures (which leads to an asymptotic temperature-swap acceptance rate of 0.234)

maximises the L2 jumping distance. (Indeed, this result has already influenced adaptive

MCMC algorithms for simulated tempering; see e.g. [9].) However, the previous papers did

not prove a diffusion limit, nor did they provide any comparisons of Markov chain variances.

In this paper, we establish (Theorem 6) diffusion limits for certain simulated tempering
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algorithms. We then apply our diffusion comparison results to prove (Theorem 7) that the

given choice of temperatures does indeed minimise the asymptotic variance of all functionals.

2 Comparison of Diffusions

Let π : X → (0,∞) be a C1 target density function, where X is either R or some finite

interval [a, b]. We shall consider non-explosive Langevin diffusions Xσ on X with stationary

density π, satisfying

dXσ
t = σ(Xσ) dBt +

(
1

2
σ2(Xσ

t ) log π′(Xσ
t ) + σ(Xσ

t )σ′(Xσ
t )
)
dt , (1)

for some C1 function σ : X → [k, k] for some fixed 0 < k < k < ∞, and with reflecting

boundaries at a and b in the case X = [a, b].

For two such diffusions Xσ1 and Xσ2 , we write (similar to the above) that Xσ1 � Xσ2 , and

say that Xσ1 dominates Xσ2 in the efficiency ordering, if for all L2(π) functionals f : X → R,

lim
T→∞

T−1/2 Var

(∫ T

0
f(Xσ1

s ) ds

)
≤ lim

T→∞
T−1/2 Var

(∫ T

0
f(Xσ2

s ) ds

)
.

We wish to argue that if σ1(x) ≥ σ2(x) for all x, then Xσ1 � Xσ2 . Intuitively, this is

because Xσ1 “moves faster” that Xσ2 , while maintaining the same stationary distribution.

Indeed, if σ1 and σ2 are constants, then this result is trivial (and implicit in earlier works

[21, 22, 23]), since then Xσ1
t has the same distribution as Xσ2

ct where c = σ1/σ2 > 1, i.e.

Xσ1 accomplishes the same sampling as Xσ2 in a shorter time so it must be more efficient.

However, if σ1 and σ2 are non-constant functions, then comparison of Xσ1 and Xσ2 is less

clear.

To make theoretical progress, we assume:

(A1) π is log-Lipschitz function on X , i.e. there is L <∞ with

| log π(y)− log π(x)| ≤ L |y − x| , x, y ∈ X . (2)

(A2) Either (a) X is a bounded interval [a, b], and the diffusions Xσ have reflecting

boundaries at a and b; or (b) X is all of R, and π has exponentially-bounded tails, i.e. there

is 0 < K <∞ and r > 0 such that

π(x+ y) ≤ π(x)e−ry , x > K, y > 0

and

π(x− y) ≤ π(x)e−ry , x < −K, y > 0 .
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In case A2(b), we can then find sufficiently large q ≥ K such that∑
i

|i/m|≥q

π(i/m) ≤ (1/4)
∑
i

π(i/m) , for all m ∈ N (3)

(where the sums in (3) must be finite due to (2)), and then set

Q = inf{π(x) : |x| ≤ q + 1} , (4)

which must be positive by continuity of π and compactness of the interval [−q − 1, q + 1].

Our main result is then the following.

Theorem 1. If Xσ1 and Xσ2 are two Langevin diffusions of the form (1) with respect to

the same density π, with variance functions σ1 and σ2 respectively, and if σ1(x) ≥ σ2(x) for

all x ∈ X , then assuming (A1) and (A2), we have Xσ1 � Xσ2 .

2.1 Proof of Theorem 1

To prove Theorem 1, we introduce auxiliary processes for each m ∈ N. Given σ : X → R,

let S = 2keL, and let Zm,σ be a discrete-time birth and death process on the discrete state

space Xm := {i/m; i ∈ Z} in case A2(b), or Xm := {i/m; i ∈ Z} ∩ [a, b] in case A2(a), with

transition probabilities given by

P (i/m, (i+ 1)/m) =
1

2S

(
σ2(i/m) +

σ2((i+ 1)/m) π((i+ 1)/m)

π(i/m)

)
,

P (i/m, (i− 1)/m) =
1

2S

(
σ2(i/m) +

σ2((i− 1)/m) π((i− 1)/m)

π(i/m)

)
,

and

P (i/m, i/m) = 1− P (i/m, (i+ 1)/m)− P (i/m, (i− 1)/m) .

(In case A2(a), any transitions which would cause the process to move out of the inter-

val [a, b] are instead given probability 0.) These transition rates are chosen to satisfy de-

tailed balance with respect to the stationary distribution πm on Xm given by πm(i/m) =

π(i/m)/
∑
x∈Xm π(x) (and S is chosen to be large enough to ensure that P (i/m, (i+1)/m)+

P (i/m, (i− 1)/m) ≤ 1).

In terms of Zm,σ, we then let {Y σ
m,t}t≥0 be the continuous-time version of Zm,σ, speeded up

by a factor of m2S/2, i.e. defined by Y σ
m,t = Zm,σ

bm2St/2c for t ≥ 0. (Here and throughout, brc is

the floor function which rounds r down to the next integer, e.g. b6.8c = 6 and b−2.1c = −3).

It then follows that Ym,t converges to Xm,σ, as stated in the following lemma (whose proof

is deferred until the end of the paper, since it uses similar ideas to those of the following

section).
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Lemma 2. Assuming (A1) and (A2), as m → ∞, the processes Y σ
m converge weakly (in

the Skorokhod topology) to Xσ.

We then apply the usual discrete-time Peskun ordering to the Zm,σ processes, as follows.

Lemma 3. Suppose that σ1(x) ≥ σ2(x) for all x ∈ R. Then Zm,σ1 � Zm,σ2 .

Proof. By inspection, the fact that σ1(x) ≥ σ2(x) implies that

P(Zm,σ1
(i+1)/m = j + 1 |Zm,σ1

i/m = j) ≥ P(Zm,σ2
(i+1)/m = j + 1 |Zm,σ2

i/m = j)

and

P(Zm,σ1
(i+1)/m = j − 1 |Zm,σ1

i/m = j) ≥ P(Zm,σ2
(i+1)/m = j − 1 |Zm,σ2

i/m = j) .

It follows that Zm,σ1 dominates Zm,σ2 off the diagonal. The usual discrete-time Peskun or-

dering [19, 26] thus implies that Zm,σ1 � Zm,σ2 .

To continue, let

V∗(f, σ) := lim
T→∞

T−1Varπ

(∫ T

0
f(Xσ

s )ds

)
,

which we assume satisfies the usual relation

V∗(f, σ) =
∫ ∞
−∞

Covπ(f(Xσ
0 ), f(Xσ

s )) ds .

Also, let

Vm(f, σ) := lim
n→∞

n−1Varπ

(
mn∑
i=1

f(Zm,σ
i )

)
,

which we assume satisfies the usual relation

Vm(f, σ) =
∞∑

i=−∞
Covπ(f(Zm,σ

0 ), f(Zm,σ
i )) .

(In both cases, the subscript π indicates that the process is assumed to be in stationarity,

all the way from time −∞ to ∞.) We then have the following.

Lemma 4. Let Gm be the spectral gap of the process Zm,σ. Assume there is some

constant g > 0 such that Gm ≥ g/m2 for all m. Then for all bounded functions f : R→ R,

limm→∞(m2S/2)Vm(f, σ) = V∗(f, σ).
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Proof. Let

Am,t = Covπ[f(Zm,σ
0 ), f(Zm,σ

bm2St/2c)] .

And, let

A∗,t = Covπ[f(Xσ
0 ), f(Xσ

t )] .

Then

V∗(f, σ) =
∫ ∞
∞

A∗,t dt ,

and (since bm2St/2c is a step-function of t, with steps of size m2S/2)

Vm(f, σ) =

∫∞
−∞Am,t dt

m2S/2
.

Now, by Lemma 2, since f is bounded,

lim
m→∞

Am,t = A∗,t .

Now, let v = Varπ[f(X)], and write F for the forward operator corresponding to the chain

Zm,σ. Then using Lemma 2.3 of [13], since F is reversible, we have for all m ∈ N and t ≥ 0

that

Am,t = Covπ[f(Zm,σ
0 ), f(Zm,σ

bm2St/2c)]

≤ sup
{
Covπ[h(Zm,σ

0 ), h(Zm,σ
bm2St/2c)] : h ∈ L2(π), Varπ[h(X)] = v

}
= v ‖F bm2St/2c‖ = v ‖F‖bm2St/2c = v (1−Gm)bm

2St/2c

≤ v (1− g/m2)bm
2St/2c ≤ v (e−g/m

2

)m
2St/2 = v e−gSt/2 .

Hence,

Vm(f, σ) =
∫ ∞
−∞

Am,t dt ≤ 2
∫ ∞
0

Am,t dt ≤ 4v/gS < ∞ .

Hence, by the Dominated Convergence Theorem,

lim
m→∞

∫ ∞
−∞

Am,t dt = lim
m→∞

∫ ∞
−∞

A∗,t dt ,

i.e.

lim
m→∞

(m2S/2) Vm(f, σ) = V∗(f, σ) ,

as claimed.

To make use of Lemma 4, we need to bound the spectral gaps of the Zm,σ processes. We

do this using a capacitance argument (see e.g. [24]). Let

κm = inf
A⊆Xm

0<π(A)≤1/2

1

πm(A)

∑
x∈A

Pm(x,AC)πm(x)

be the capacitance of Zm,σ. We prove:
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Lemma 5. The capacitance κm satisfies that

κm ≥ min
(ke−Lr

2m
,
Qke−2L/m

2m

)
,

where the quantities L and Q are defined in (2) and (4), respectively, and where the bound

reduces to simply κm ≥ ke−Lr
2m

in case A2(a).

Proof. We consider two different cases (only the second of which can occur in case A2(a)):

(i) ∃a ∈ A with |a| ≤ q. Then, since πm(A) ≤ 1/2, there is j ∈ Z with |j/m| ≤ q and j/m ∈
A and either (j + 1)/m ∈ AC or (j − 1)/m ∈ AC . Assume WOLOG that (j + 1)/m ∈ AC .

We will need the following estimate on
∑
j∈Z π(j/m). For x ∈ [i/m, (i+ 1)/m),

π(x) ≥ (π(i/m)e−L(x−i/m)

so that ∫ (i+1)/m

i/m
π(x) ≥ π(i/m)

∫ 1/m

0
e−Ludu = π(i/m)

(
1− e−L/m

L

)

= π(i/m) e−L/m
(
eL/m − 1

L

)
≥ π(i/m) e−L/m

(
L/m

L

)
=

π(i/m) e−L/m

m
.

Therefore summing both sides over all i ∈ Z,

1 =
∫ ∞
−∞

π(x) dx ≥ e−L/m

m

∑
i∈Z

π(i/m) ,

whence ∑
i∈Z

π(i/m) ≤ meL/m .

Then ∑
x∈A

Pm(x,AC) πm(x) ≥ πm(j/m)Pm(j/m, (j + 1)/m)

= πm(j/m)(1/2)σ2(j/m)e−L/m ≥ (π(j/m)/m)(k/2)e−2L/m

≥ Qke−2L/m/2m .

(ii) A ⊆ (−∞, q) ∪ (q,∞). Let a ∈ A with π(a) = max{π(x) : x ∈ A}. Assume WOLOG

that a > 0. Then ∑
x∈A

Pm(x,AC)πm(x) ≥ πm(a)Pm(a, a− (1/m))

≥ ke−L/mπ(a)/
∑
i

|i/m|≥a

π(i/m) ≥ ke−L/mπ(a)/[2
∞∑
j=0

π(a)e−rj/m]
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=
1

2
ke−L/m[1− e−r/m] ≤ 1

2
ke−L(r/m).

Thus, in either case, the conclusion of the lemma is satisfied.

Now, it is known (e.g. [24]) that the spectral gap can be bounded in terms of the capac-

itance, specifically that Gm ≥ κ2m/2. Thus, for m ≥ 1,

Gm ≥ [min(
1

2
ke−L(r/m), Qke−2L/m/2m)]2/2

≥ [min(
1

2
ke−L(r/m), Qke−2L/2m)]2/2 = g/m2 ,

where g = [min(1
2
ke−Lr, Qke−2L/2)]2/2 > 0. This together with Lemma 2 shows that

the conditions of Lemma 4 are satisfied. Hence, by Lemma 4, limm→∞(m2S/2)Vm(f, σ) =

V∗(f, σ) for all bounded functions f .

On the other hand, by Lemma 3, Zm,σ1 � Zm,σ2 , i.e. Vm(f, σ1) ≤ Vm(f, σ2). Hence, for

all bounded functions f ,

V∗(f, σ1) = lim
m→∞

(m2S/2)Vm(f, σ1) ≤ lim
m→∞

(m2S/2)Vm(f, σ2) = V∗(f, σ2) . (5)

Finally, if f is in L2 but not bounded, then letting

fm(x) =


m, f(x) > m

f(x), −m ≤ f(x) ≤ m
−m, f(x) < −m

we have by the Monotone (or Dominated) Convergence Theorem that V∗(f, σ1) = limm→∞ V∗(fm, σ1)

and V∗(f, σ2) = limm→∞ V∗(fm, σ2). Hence, it follows from (5) that V∗(f, σ1) ≤ V∗(f, σ2) for

all L2(π) functions f . That is, Xσ1 � Xσ2 , thus proving Theorem 1.

3 Simulated Tempering Diffusion Limit

We now apply our results to a version of the Simulated Tempering algorithm. Specifically,

following [1], we consider a d-dimensional target density

fd(x) = edK
d∏
i=1

f(xi) , (6)

for some unnormalised one-dimensional density function f : R → [0,∞), where K =

− log(
∫
f(x)dx) is the corresponding normalising constant. (Although (6) is a very restric-

tive assumption, it is known [21, 23] that conclusions drawn from this special case are often
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approximately applicable in much broader contexts.) We consider simulated tempering in d

dimensions, with inverse-temperatures chosen as follows: β
(d)
0 = 1, and β

(d)
i+1 = β

(d)
i −

`(β
(d)
i )

d1/2

for some fixed C1 function ` : [0, 1]→ R. (The question then becomes, what is the optimal

choice of `.) As for when to stop adding new temperature values, we fix some χ ∈ (0, 1)

and keep going until the temperatures drop below χ, i.e. we stop at temperature β
(d)
k(d) where

k(d) = sup{i : β
(d)
i ≥ χ}.

We shall consider a joint process (y(d)n , Xn), with Xn ∈ Rd, and with y(d)n ∈ Ed :=

{β(d)
i ; 0 ≤ i ≤ k(d)} defined as follows. If yn−1 = β

(d)
i (where 0 < i < k(d)), then chain

proceeds by choosing Xn−1 ∼ fβ, then proposing Zn to be βi+1 or βi−1 with probability

1/2 each, and then accepting Zn with the usual Metropolis acceptance probability. (If we

propose to move to β
(d)
−1 or β

(d)
k(d)+1, then we automatically reject.) We assume [1] that the

chain then immediately jumps to stationary at the new temperature, i.e. that mixing within

a temperature is infinitely more efficient than mixing between temperatures.

The process (y(d)n , Xn) is thus a Markov chain on the state space Ed × Rd, with joint

stationary density given by

fd(β, x) = edK(β)
d∏
i=1

fβ(xi) ,

where K(β) = − log
∫
fβ(x)dx is the normalising constant.

We now prove that the {y(d)n } process has a diffusion limit (similar to random-walk

Metropolis and Langevin algorithms, see [21, 22, 23]), and furthermore the asymptotic vari-

ance of the algorithm is minimised by choosing the function ` to leads to an asymptotic

temperature acceptance rate
.
= 0.234. Specifically, we prove the following:

Theorem 6. Under the above assumptions, the {y(d)n } inverse-temperature process, when

speeded up by a factor of d, converges in the Skorokhod topology as d → ∞ to a diffusion

limit {Xt}t≥0 satisfying

dXt =

[
2`2Φ

(
−`I1/2

2

)]1/2
dBt +

`(X)`′(X)Φ

(
−I1/2`

2

)
− `2

(
`I1/2

2

)′
φ

(
−I1/2`

2

) dt ,
(7)

for Xt in (χ, 1) with reflecting boundaries at both χ and 1. Furthermore, the speed of this

diffusion is maximised, and the asymptotic variance of all L2 functionals is minimised, when

the function ` is chosen so that the asymptotic temperature acceptance rate is equal to 0.234

(to three decimal places).

Then, combining Theorem 6 and Theorem 1, we immediately obtain:
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Theorem 7. For the above simulated tempering algorithm, for any L2 functional f , the

choice of ` which minimises the limiting asymptotic variance V∗(f) = limm→∞ Vm(f), is the

same as the choice which maximises σ(x), i.e. is the choice which leads to an asymptotic

temperature acceptance probability of 0.234 (to three decimal places).

Remark. In this context, it was proved in [1] that as d→∞, the choice of ` leading to an

asymptotic temperature acceptance rate
.
= 0.234 maximises the expected squared jumping

distance of the {y(d)n } process. However, that left open the question of whether that choice

would also minimise the asymptotic variance for any L2 function. That question is resolved

by Theorem 7.

3.1 Proof of Theorem 6

The key computation for proving Theorem 6 will be given next, but first we require

some additional notation. We let int(Ed) denote Ed \ {1, β(d)
k(d)}. We also denote by G(d) the

generator of the inverse-temperature process {y(d)n }, and set H to be the set of all functions

h ∈ C2[χ, 1] with h′(χ) = h′(1) = 0. We also let G∗ be the generator of the diffusion given

in (7), defined for all functions h ∈ H:

G∗h =
σ2(x)h′′(x)

2
+ µ(x)h′(x) , h ∈ H , (8)

where

µ(x) = `(x)`′(x)Φ

(
−I1/2`

2

)
− `2

(
`I1/2

2

)′
φ

(
−I1/2`

2

)
and

σ2(x) = 2`2Φ

(
−`I1/2

2

)
. (9)

Note that {(h,G∗h); h ∈ H} forms a core for the generator of the diffusion process described

above in (7), see for example Chapter 8 of [8].

To proceed, we apply the powerful weak convergence theory of [8]. We do this using a

technique for limiting reflecting processes similar to the arguments in Ward and Glynn [27].

Specifically, from Theorems 1.6.1 and 4.2.11 of [8], we must show that for any pair (h,G∗h)

with h ∈ H, there exists a sequence (hd, dG
(d)hd)d∈N such that

lim
d→∞

sup
x∈Ed
|h(x)− hd(x)| = 0 (10)

and

lim
d→∞

sup
x∈Ed
|G∗h(x)− dG(d)hd(x)| = 0 . (11)
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To establish this convergence on int(Ed), we can simply let hd = h (see Lemma 8 below).

However, to establish the convergence on the boundary of Ed (Lemma 9), we need to modify

h slightly (without destroying the convergence on int(Ed)). We do this as follows. First,

given any h ∈ H, we let

hd(x) = h (γd(x)) ,

where

γd(x) =
(1− χ)x+ χ− χd

1− χd
,

so that hd is just like h except “stretched” to be defined on [χd, 1] instead of just on [χ, 1].

Here we set χd = β
(d)
k(d), and χ+

d = β
(d)
k(d)−1; thus χd ≤ χ ≤ χ+

d . Notice that since χd → χ as

d→∞, hd and its first and second derivatives converge to h and its corresponding derivatives

uniformly for x ∈ [χd, 1] as d→∞.

Finally, given the function h, we let η(x) to be any smooth function: [χ, 1]→ R satisfying

η′(χ) = h′′(χ)`(χ)/2 and η′(1) = h′′(1)`(1)/2 ,

and then set

hd(x) = hd(x) + d−1/2η(γd(x)) = h(γd(x)) + d−1/2η(γd(x)) ,

so that hd(x) is similar to hd(x) except with the addition of a separate O(d−1/2) term (which

will only be relevant at the boundary points, i.e. in Lemma 9 below). In particular, (10)

certainly holds.

In light of the above discussion, Theorem 6 will follow by establishing (11), which is done

in Lemmas 8 and 9 below.

Lemma 8. For all h ∈ H,

lim
d→∞

sup
x∈int(Ed)

|dG(d)h(x)−G∗h(x)| = 0 , (12)

and

lim
d→∞

sup
x∈int(Ed)

|dG(d)hd(x)−G∗h(x)| = 0 . (13)

Proof. We begin with a Taylor series expansion for G(d). Since the computations shall

get somewhat messy, we wish to keep only higher-order terms, so for simplicity we shall use

the notation
r(d)
≈ to mean that the expansion holds up to terms of order 1/r(d), uniformly

for x ∈ Ed, as d → ∞. (For example, LHS
d≈ RHS means that limd→∞ supx∈Ed d(LHS −

11



RHS) = 0.) Then for bounded C2 functionals h, we have (combining the two h′′ terms

together) that for β
(d)
i ∈ int(Ed):

G(d)h(β
(d)
i )

d≈ h′(β
(d)
i )

2
[α+(β

(d)
i+1 − β

(d)
i ) + α−(β

(d)
i−1 − β

(d)
i )] +

h′′(β
(d)
i )

2

[
(β

(d))
i+1 − β

(d)
i )2α+

]
d≈ h′(β

(d)
i )

2
[α+(β

(d)
i+1 − β

(d)
i ) + α−(β

(d)
i−1 − β

(d)
i )] +

h′′(β
(d)
i )

2

[
(β

(d))
i+1 − β

(d)
i )2α+

]

=
h′(β

(d)
i )

2

α−`(β
(d)
i−1)− α+`(β

(d)
i )

d1/2
+
h′′(β

(d)
i )

2

`(β(d)
i )2α+

d

 ,
where α+ is the probability of accepting an upwards move, and α− is the probability of

accepting a downwards move.

To continue, we let g = log f , and

M(β) = Eβ(g) =

∫
log f(x)fβ(x)dx∫

fβ(x)dx
,

and

I(β) = Varβ(g) =

∫
(log f(x))2fβ(x)dx∫

fβ(x)dx
−M(β)2 .

It follows [1] that M ′(β) = I(β) and K ′(β) = −M(β), so K ′′(β) = −M ′(β) = −I(β). We

also define g = g −M(β).

For shorthand, we write β = β
(d)
i , and ` = `(β

(d)
i ), and ` = `(β

(d)
i−1), and ε = β

(d)
i−1− β

(d)
i =

`/d1/2, and ε = β
(d)
i − β

(d)
i+1 = `/d1/2, and I = I(β) and K ′′ = K ′′(β) and K ′′′ = K ′′′(β).

Then, with X ∼ fβ,

α− = E
[
1 ∧ f

β+ε
d (X)edK(β+ε)

fβd (X)edK(β)

]

= E
[
1 ∧ exp

(
(K(β + ε)−K(β))d+ εdM(β) + ε

d∑
i=1

g(Xi)
)]

d1/2≈ E
[
1 ∧ exp

(dε2
2
K ′′ +

dε3

6
K ′′′ +N(0, Iε2d)

)]
= E

[
1 ∧ exp

(`2
2
K ′′ +

ε`2

6
K ′′′ +N(0, I`2)

)]
= Φ

(
− I1/2`

2
+
ε`K ′′′

6I1/2

)
+ exp(ε`2K ′′′/6) Φ

(
− I1/2`

2
− ε`K ′′′

6I1/2

)
. (14)

Similarly,

α+ = E
[
1 ∧ f

β−ε
d (X)edK(β−ε)

fβd (X)edK(β)

]

12



= E
[
1 ∧ exp

(
(K(β − ε)−K(β))d− εdM(β)− ε

d∑
i=1

g(Xi)
)]

1≈ E
[
1 ∧ exp

(dε2
2
K ′′ −N(0, Iε2d)

)]
= E

[
1 ∧ exp

(`2
2
I − ε`2

6
K ′′′ −N(0, I`2)

)]
= Φ

(
− I1/2`

2
− ε`K ′′′

6I1/2

)
+ exp(−ε`2K ′′′/6) Φ

(
− I1/2`

2
− ε`K ′′′

6I1/2

)
.

So

α+(β
(d)
i )

d1/2≈ Φ
(
− I1/2(β

(d)
i )`

2
− ε`K ′′′(β

(d)
i )

6I1/2(β
(d)
i )

)

+ exp(−ε`2(β(d)
i )K ′′′(βi)/6)Φ

(
− I1/2(β

(d)
i )`

2
+
ε`K ′′′(β

(d)
i )

6I1/2(β
(d)
i )

)
.

To first order this expression can be approximated as

α+(β
(d)
i )

1≈ 2Φ
(
− I1/2(β

(d)
i )`

2

)
.

Next, we note that in the current setting, β is itself marginally a Markov chain with

uniform stationary distribution among all temperatures. In fact it is a birth and death

process, and hence reversible. So, by detailed balance,

α− = α+(β
(d)
i − `/

√
d) .

Therefore

α−(β
(d)
i ) = α+(β

(d)
i − `/

√
d)

d1/2≈ α+(β
(d)
i )− (`(β

(d)
i )I1/2(β

(d)
i ))′

2

(
−`√
d

)
φ
(
− I1/2(β

(d)
i )`

2
− ε`K ′′′(β

(d)
i )

6I1/2(β
(d)
i )

)

− exp(−ε`2(β(d)
i )K ′′′(βi)/6)

(`(β
(d)
i )I1/2(β

(d)
i ))′

2

(
−`√
d

)
φ
(
− I1/2(β

(d)
i )`

2
+
ε`K ′′′(β

(d)
i )

6I1/2(β
(d)
i )

)

Then, since `
d1/2≈ `+ ε`′

d1/2≈ `+ ε`′ = `+ ``′

d1/2
, we compute that

µ(β
(d)
i )

d1/2≈ 1

2d1/2

[
− α+`+

(
`+

``′

d1/2

)
×

(
α+(β

(d)
i )− (`(β

(d)
i )I1/2(β

(d)
i ))′

2

(
−`√
d

)
φ
(
− I1/2(β

(d)
i )`

2
− ε`K ′′′(β

(d)
i )

6I1/2(β
(d)
i )

)
−

13



exp(−ε`2(β(d)
i )K ′′′(βi)/6)

(`(β
(d)
i )I1/2(β

(d)
i ))′

2

(
−`√
d

)
φ
(
− I1/2(β

(d)
i )`

2
+
ε`K ′′′(β

(d)
i )

6I1/2(β
(d)
i )

))]
.

Hence, ignoring all lower order terms,

µ(β
(d)
i )

d1/2≈ 1

2d1/2

[
− `(`(β

(d)
i )I1/2(β

(d)
i ))′

2

(
−`√
d

)
φ
(
− I1/2(β

(d)
i )`

2
− ε`K ′′′(β

(d)
i )

6I1/2(β
(d)
i )

)

−` exp
(`(β

(d)
i )I1/2(β

(d)
i ))′

2

(
−`√
d

)
φ
(
− I1/2(β

(d)
i )`

2
+
ε`K ′′′(β

(d)
i )

6I1/2(β
(d)
i )

)
+

2Φ
(
− I1/2(β

(d)
i )`

2

)
``′

d1/2

]
d1/2≈ 1

d

[
− `2 (`(β

(d)
i )I1/2(β

(d)
i ))′

2
φ
(
− I1/2(β

(d)
i )`

2

)
+ Φ

(
− I1/2(β

(d)
i )`

2

)
``′
]
.

Similarly σ2(β
(d)
i ) is to first order

2`2

d
Φ
(
− I1/2(β

(d)
i )`

2

)
so that we can write (for 0 < β < 1)

Gdh
d≈ 1

d

(
`2Φ

(
− I1/2(β

(d)
i )`

2

)
h′′(β)

+
[
Φ
(
− I1/2(β

(d)
i )`

2

)
``′ − `2 (`(β

(d)
i )I1/2(β

(d)
i ))′

2
φ
(
− I1/2(β

(d)
i )`

2

)]
h′(β)

)
.

However this expression is just d−1G∗h, thus establishing (12).

Finally, to establish (13), we note that in this case the terms d−1/2η(γd(x)) and hd(x)−
h(x) are both lower-order and do not affect the limit. Hence, (13) follows directly from (12).

The uniformity over int(Ed) for h (as opposed to hd) in the proof of Lemma 8 does not

extend to the boundary of Ed. (If it did, then the proof of Theorem 6 would be complete

simply by setting hd = h and applying Lemma 8.) However the following lemma shows that

with the definition of hd that we have used, the extension to the boundary does hold.

Lemma 9. For all h ∈ H, for x = 1 and for x = χd,

lim
d→∞

|dG(d)hd(x)−G∗h(x)| = 0 .

Proof. We prove the case when x = χd; the case x = 1 is similar but somewhat easier

(since then x does not depend on d).

Mimicking the Taylor expansion of Lemma 8,

G(d)hd(χd)
d≈ h′d(χd)α

−(χ+
d − χd)]

2
+
h′′d(χd)

4

[
(χd − χ+

d )2α−
]

14



=
h′d(χd)

2

α−`(χ+
d )

d1/2
+
h′′d(χd)

4

[
`(χd)

2α−

d

]

d≈ α−`(χ+
d )

2d1/2

(
h′(χ) + η′(χ)d−1/2

)
+
h′′d(χd)

4

[
`(χd)

2α−

d

]
.

Thus since h′(χ) = 0, this expression equals

h′′d(χd)

2

[
`(χd)

2α−

d

]
.

Next we note from (14) that

α−
1≈ 2 Φ

(
−I

1/2`

2

)
.

Hence, the above results show that

lim
d→∞

dGdhd(χd) = `2(χ)h′′(χ) Φ

(
−I

1/2`

2

)
.

In light of the formulae (8) and (9), this completes the proof.

Finally, we provide the missing proof from the previous section.

Proof of Lemma 2. We first compute that to first order as h ↘ 0 and m → ∞, writing

x = i/m and e = 1/m, we have

E
(
Y σ
m,t+h − Y σ

m,t

∣∣∣ Y σ
m,t =

i

m

)

≈ (
m2Sh

2
)(

1

m
)(

1

2S
)×

[
σ2(

i

m
) +

π( i+1
m

)σ2( i+1
m

)

π( i
m

)
− σ2(

i

m
)−

π( i−1
m

)σ2( i−1
m

)

π( i
m

)

]

=
hm

4

[
π(x+ e)σ2(x+ e)

π(x)
− π(x− e)σ2(x− e)

π(x)

]

≈ hm

4

[
(π(x) + eπ′(x))(σ2(x) + e(σ2)′(x))− (π(x)− eπ′(x))(σ2(x)− e(σ2)′(x))

π(x)

]

=
hm

4

[
2eπ′(x)σ2(x) + 2eπ(x) (σ2)′(x)

π(x)

]

=
hm

4
(2e)

[
(log π)′(x)σ2(x) + 2σ(x)σ′(x)

]
= h

[
1

2
(log π)′(x)σ2(x) + σ(x)σ′(x)

]
,
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and also

E((Y σ
m,t+h − Y σ

m,t)
2 | Y σ

m,t =
i

m
) ≈ (

m2Sh

2
)(

1

2S
)(

1

m2
)[2σ2(x) + 2σ2(x)] = h [σ2(x)] .

A comparison with (1) then shows that Y σ
m satisfies the same first and second moment

characteristics as Xσ
t , so that Xσ

t is indeed the correct putative limit.

In light of these calculations, the formal proof of this lemma then proceeds along stan-

dard lines. Indeed, case (a) is just a simpler version of the proof of Theorem 6 above. And,

case (b) follows from standard arguments about using the uniform convergence of generators

(e.g. [8], Chapter 8) to establish the approximation of birth and death processes by diffu-

sions; see for example Theorem 4.1 of Chapter 5 on page 387 of [6].
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