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1. Introduction.

Markov chain Monte Carlo algorithms – such as Gibbs sampler and Metropolis-

Hastings – are now widely used in statistics (Gelfand and Smith, 1990; Smith and Roberts,

1993), physical chemistry (Sokal, 1989), and computer science (Sinclair, 1992; Neal, 1993).

To explore a complicated probability distribution π(·), a Markov chain P (x, ·) is defined

such that π(·) is stationary for the Markov chain. Hopefully, the Markov chain will con-

verge in distribution to π(·), allowing for inferences to be drawn.

One potential shortcoming is that the Markov chain is not run analytically but rather

by computer simulation. This creates several potential limitations: computers have finite

precision and finite range; they use pseudo-randomness rather than true randomness; and

they sometimes use algorithms which involve approximations. Thus, rather than running

the original chain P (x, ·), the computer is in fact running a slightly perturbed chain P̃ (x, ·).

This difference is potentially serious, as it might alter the chain’s convergence properties,

convergence rate, and stationary distribution. It is reasonable to ask whether these changes
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will be significant. To the best of our knowledge, these questions are largely unexplored

(though see Glynn and Meyn, 1996, Section 4.2, for interesting perturbation-type results

concerning continuity of solutions to Poisson’s equation).

In this paper we begin an analysis of these questions. We are motivated largely

by problems associated with finite precision computation (i.e. “roundoff error”). We shall

often concentrate on the following model. Let P (x, ·) be a family of transition probabilities

for a Markov chain on X , where X is a measurable separable metric space, with metric

dist(·, ·). Let h : X → X be a roundoff function, so that h(x) is close to x for each x ∈ X .

Let P̃ (x, ·) be a rounded off chain defined by

P̃ (x,A) = P (x, h−1(A)) . (1)

Intuitively, P̃ proceeds by running the original chain P correctly for one iteration, but

then rounding off the result according to the function h.

(The main example to keep in mind is where X = Rd, and where h is the function

which rounds each coordinate of x ∈ Rd down to the nearest smaller multiple of δ. That

is, h(x)i = δbxi/δc, where δ > 0; perhaps δ = 2−31.)

We begin with an example (Proposition 1) to show that even if the original chain

is geometrically ergodic, the new chain defined by (1) may be transient (and hence not

converge at all), no matter how small sup
x∈X

dist (h(x), x) is. Thus, geometric ergodicity is

not preserved in general under small roundoff error.

We then begin proving positive results. We largely concentrate on the case in which

P is geometrically ergodic, with stationary distribution π(·), which (for an aperiodic, φ-

irreducible Markov chain) is equivalent (cf. Meyn and Tweedie, 1993, Theorems 15.0.1,

5.2.2, and 5.5.7) to V -uniform ergodicity, i.e. to the existence of a π-a.e.-finite function

V : X → [1,∞], a subset C ⊆ X , and finite positive numbers β and b, such that the

(geometric) drift condition

∆V (x) ≤ −βV (x) + b1C(x) , x ∈ X (2)

holds, where

∆V (x) ≡ PV (x)− V (x) ≡
∫

V (y)P (x, dy)− V (x) ,
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and where C is small for P , i.e. there is a non-zero measure ν on X , and a positive

integer n0, such that Pn0(x,A) ≥ ν(A), for all x ∈ C and A ⊆ X . (Recall that a

Markov operator P is φ-irreducible for some non-zero σ-finite measure φ if for each x ∈ X ,

we have
∑
n

Pn(x,A) > 0 whenever φ(A) > 0.) Furthermore, it follows from Meyn and

Tweedie (1993, Theorems 15.0.1 and 15.2.4) that we may always choose C and V so that

supx∈C V (x) < ∞.

We show that if P̃ is a perturbation which is close to P in a certain V -related sense,

then P̃ will also be geometrically ergodic, with a stationary distribution and convergence

rate bounds close to those for P . Thus, many important convergence properties are pre-

served in this case.

We also prove that if the drift function V above can be chosen so that log V is uni-

formly continuous (which will often be the case in practice, but is not the case for the

example of Proposition 1), then for sufficiently small roundoff errors of the form (1), we

will again have many important convergence properties preserved. Specifically, P̃ will

again be geometrically ergodic, and will have similar convergence rate bounds to those for

P .

Finally, we consider (Section 5) the question of proximity of the stationary distribution

for P̃ to that of P . We show that under suitable uniformity conditions, the two stationary

distributions may be made arbitrarily close in total variation norm. For roundoff pertur-

bations this is not the case, however we still show that if log V is uniformly continuous,

then the stationary distributions may be made arbitrarily close in the Prohorov metric

(i.e. in the sense of weak convergence).

Many of the results in this paper concern perturbations arising from sufficiently small

roundoff error; such results thus depend on an underlying metric on the state space. Other

results we give are metric free, relating perturbations which are small in total variation

distance to total variation distance proximity of stationary distributions. These results are

stronger, but require more restricted conditions on the perturbation being considered.

This paper is organized as follows. Section 2 contains our cautionary example. Section

3 contains convergence results for V -specific perturbations. Section 4 contains convergence

results related to roundoff errors, and also extends previous convergence rate bounds to

3



rounded off chains. Finally, Section 5 considers closeness of the stationary distributions

of P̃ and P , using (among other techniques) the notion of regeneration times of the two

chains.

2. An example of what can go wrong.

We begin with an example of a Markov chain with many nice properties, including

geometric convergence, but for which arbitrarily small roundoff errors can lead to transient

chains.

Proposition 1. There exists a Feller continuous, geometrically ergodic Markov chain

P (x, ·) on the positive real numbers X = R>0, such that for any δ > 0, there is a one-to-

one, onto, continuous function h : X → X with sup
x∈X

|h(x)− x| = δ, such that for the chain

P̃ (x, ·) on X defined by (1), every point x ∈ X is transient.

Proof. Let the Markov chain transition probabilities be defined as follows. For x ∈ X ,

let P (x, ·) = U [ax, bx] be the uniform distribution on the interval [ax, bx], where ax =

max(0, x− 4
x ) and bx = x + min( 1

2 , 1
x ). Then P is easily seen to be λ-irreducible (where λ

is Lebesgue measure), aperiodic, and strong Feller continuous, hence (Meyn and Tweedie,

1993, Theorems 6.2.5 (ii) and 5.5.7) every compact set is small. Furthermore, if we set

V (x) = xex2
, then it is computed that, for x > 2,

PV (x) ≡
∫
X

V (y)P (x, dy) = V (x)

(
e2+x−2 − e−8+16x−2

10

)
.

Now, for x > 2 (say), this is less than 0.95 V (x). It follows that P satisfies (2) with

C = [0, 2]. Hence (Meyn and Tweedie, 1993), since P is aperiodic, it has a stationary

distribution π and is geometrically ergodic.

On the other hand, given δ > 0, set h(x) = x + δ min(x, 1). Then h is one-to-one,

onto, and continuous, with sup
x∈X

|h(x) − x| = δ. However, if we define P̃ by (1), then for

x > max(2, 5
δ ) we will have P̃ (x, ·) supported entirely on [x + δ

5 ,∞). It follows that such

x are transient for P̃ . Furthermore, it is easily seen that from any point x ∈ X , it is

possible to reach the set [max(2, 5
δ ),∞] in a finite number of steps. Hence, every point x
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is transient.

Remark. In the above example, the perturbed chain P̃ is not even φ-irreducible. On

the other hand, if we modify h so that h(x) = x + 2
x for large x, then we will have P̃

φ-irreducible but still transient. This shows that the φ-irreducibility of P̃ is not itself

sufficient to ensure the ergodicity of P̃ .

This proposition is significant in that it shows that arbitrarily small changes to a well-

behaved, ergodic Markov chain may result in a perturbed Markov chain which is transient,

and hence does not converge to any distribution at all (much less to a distribution close to

the target stationarity distribution π of the original ergodic chain). This poses important

questions for the standard computer-simulated use of Markov chain Monte Carlo, and

suggests that we seek conditions under which small perturbations to a Markov chain will

not alter its properties so drastically. Such is the subject of the remainder of this paper.

Indeed, we shall show that the “problem” in the above example is that log V is not a

uniformly continuous function on X .

3. Robustness of geometric ergodicity under perturbations.

We begin with the following elementary V -specific criterion for robustness of the drift

condition (2).

Lemma 2. Suppose a Markov chain P on X satisfies (2) for some V , C, β, and b. Let

P̃ be a second Markov chain, with |PV − P̃ V | ≤ δV for some δ < β. Then P̃ also satisfies

(2), for the same V , C, and b, but with β replaced by β − δ.

Proof. We have that P̃ V ≤ PV + δV ≤ (1− β + δ)V + b1C . The result follows.

This lemma shows that perturbations of P , which have a sufficiently small effect on

PV , preserve the drift condition (2) (with suitable modification of β). To study preser-

vation of geometric ergodicity, one must also worry about preservation of φ-irreducibility,

aperiodicity, and the smallness of C (Meyn and Tweedie, 1993). We have no control over
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these items in general. However for rounded off chains as given by (1), this is more feasible.

Indeed we have

Lemma 3. If P is a Markov chain on X , and if P̃ is defined by (1) for some function

h : X → X , then

(a) if P is aperiodic, then P̃ is also aperiodic.

(b) if a subset C ⊆ X is small for P , then it is also small for P̃ .

(c) if P̃ satisfies (2), for some β > 0, where C is small for P , then P̃ is φ-irreducible.

Proof. For (a), we note that if P̃ were periodic, then we could partition X as X =
d⋃

i=1

Xi,

where P̃ (x,Xi+1) = 1 for all x ∈ Xi (where d ≥ 2, and where we identify Xd+1 with X1).

But then the partition X =
d⋃

i=1

Yi, where Yi = h−1(Xi), would satisfy that P (x,Yi+1) = 1

for all x ∈ Yi. Hence P would also be periodic (with at least as large a period).

For (b), choose a non-zero measure ν on X , and a positive integer n0, such that

Pn0(x,A) ≥ ν(A), for all x ∈ C and A ⊆ X . Then P̃n0(x, A) ≥ ν̃(A), where ν̃(A) =

ν(h−1(A)). Hence C is small for P̃ .

For (c), note that by (b), C is also small for P̃ , say P̃n0(x,A) ≥ ν(A), for all x ∈ C

and A ⊆ X .. Also, from (2) it follows that Px(τC < ∞) = 1 for all x ∈ X , i.e. that from

any point we will eventually hit C with probability 1. These two facts together imply that

P̃ is φ-irreducible for the choice φ = ν.

Note that in general, preservation of φ-irreducibility, is not automatic. Indeed, the

example of Proposition 1 above shows that arbitrarily small roundoff error may result in

a chain P̃ which is not φ-irreducible. However, part (c) above says that if the roundoff

chain still satisfies (2), then it will also be φ-irreducible.

Combining the above two lemmas, we have

Theorem 4. Let P be a geometrically ergodic Markov chain on X , and let V and β > 0

satisfy (2) for P , for some small set C and 0 < b < ∞. Let P̃ be a second Markov chain on

X , given by (1) for some roundoff function h : X → X , and assume that |P̃ V −PV | < δ V

for some δ < β. Then P̃ is geometrically ergodic.
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This theorem says, essentially, that the property of geometric ergodicity is robust

under perturbations which are small in a certain V -related sense. This is a satisfying

result, in that it suggests that approximate simulation of geometrically ergodic Markov

chains will again be geometrically ergodic. However, the condition that the perturbation

be small in the V -related sense is rather unnatural. It would be much preferred to have

conditions saying that the roundoff error be small geometrically, in the sense that the

motion of the function h, defined by

Mh = sup
x∈X

dist(x, h(x)) ,

be sufficiently small. We consider this topic in the next section.

We close this section by making a connection to certain standard norms on Markov

chains. Following Meyn and Tweedie (1993), we define the V -norm between two probability

measures µ and ν on X , by

‖µ− ν‖V = sup
f:X→R
|f|≤V

∣∣∣∣∫ f(y)µ(dy) −
∫

f(y)ν(dy)
∣∣∣∣ .

We further define the V -norm distance between the Markov chains P and P̃ on X , by

|||P − P̃ |||V = sup
x∈X

‖P (x, ·)− P̃ (x, ·)‖V

V (x)
.

Since |P̃ V (x)− PV (x)| ≤ |||P̃ − P |||V V (x), we immediately obtain

Corollary 5. Let P be a geometrically ergodic on X , and let V and β > 0 satisfy (2)

for P , for some small set C and 0 < b < ∞. Let P̃ be defined by (1), and assume that

|||P̃ − P |||V < β. Then P̃ is geometrically ergodic.
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4. Robustness of geometric ergodicity under roundoff error.

In general, there need be no connection between the topology of the state space X

(as given by the metric dist(·, ·)), and the Markov chain P acting on that space. However,

under certain additional continuity assumptions about P , it is possible that being close in

a topological sense (e.g. requiring that Mh < δ in equation (1)) will imply being close in a

probabilistic sense (e.g. that P̃ is also geometrically ergodic). We consider some of these

issues in this and the following sections.

We begin by noting that if V is uniformly continuous on X , then it is easily verified that

given ε > 0, there exists δ > 0, such that if Mh < δ, then |P̃ V − PV | < ε ≤ ε V . However,

the assumption of uniform continuity of V is quite strong, and will not be satisfied if V is

exponential or even quadratic on an unbounded subset of Rd. The following proposition

shows that, for our purposes, it suffices to have the weaker (and much more commonly

satisfied) condition that log V is uniformly continuous. (Since | log x− log y| ≤ |x− y| for

x, y ≥ 1, it follows that log V is uniformly continuous whenever V is; but the converse

obviously does not hold.)

Proposition 6. Suppose that a Markov chain P satisfies (2) for some small set C ⊆ X ,

β > 0, and b < ∞, and some function V for which log V is uniformly continuous on X .

Then given ε > 0, there is δ > 0 such that, if P̃ is given by (1), with Mh < δ, then P̃ also

satisfies (2), for the same V and C, but with suitably modified values β̃ and b̃ satisfying

β̃ > 0, |β̃ − β| < ε and |̃b− b| < ε.

Proof. Given the value of β for P , choose α > 0 with α < log
(

1
1−β

)
and with

eα − 1 < min
(

ε
1−β , ε

b

)
. Then find δ > 0 such that dist(x, y) < δ implies that | log V (y)−

log V (x)| < α. Then if Mh < δ, we have that

P̃ V (x)− PV (x) =
∫
X

(V (h(y))− V (y)) P (x, dy)

=
∫
X

(
elog V (h(y)) − elog V (y)

)
P (x, dy)

8



≤
∫
X

(
e(log V (y))+α − elog V (y)

)
P (x, dy)

= (eα − 1) PV (x) .

Hence,

P̃ V (x) ≤ eα PV (x) .

But by assumption, PV ≤ (1− β)V + b1C . Hence,

P̃ V ≤ (1− β̃)V + b̃1C ,

where β̃ = 1 − eα(1 − β) and b̃ = eαb. Since α < log
(

1
1−β

)
, it follows that β̃ > 0.

Furthermore, we compute that |β̃ − β| = (eα − 1)(1− β) < ε and |̃b− b| = (eα − 1)b < ε,

completing the proof.

Combining the above propositions with Theorem 4, we obtain our desired result. To

state it in the strongest possible form, we make the following definition. We say that a class

of Markov chain kernels {Pc, c ∈ C} is simultaneously geometrically ergodic if there exists

a class of probability measures {νc, c ∈ C}, a measurable subset C ⊆ X , a real-valued

measurable function V ≥ 1, a positive integer n0, and positive constants η, β, and b, such

that for each c ∈ C:

(i) C is small for Pc, with Pn0
c (x, ·) ≥ η νc(·) for all x ∈ C;

(ii) the chain Pc satisfies the drift condition (2), with drift function V and small set C.

We then have

Theorem 7. Let P be geometrically ergodic on X , and let it satisfy (2) for some small

set C and continuous function V , such that log V (or V ) is uniformly continuous on X .

Then there is δ > 0 such that, if P̃ is given by (1) with Mh < δ, then P̃ is geometrically

ergodic. Furthermore, the class of all such P̃ is simultaneously geometrically ergodic.

This theorem provides a useful criterion under which geometric ergodicity will be

insensitive to small roundoff error. However, the theorem does require that log V be

uniformly continuous, and while that condition usually holds in practice, it is not clear

when this is guaranteed.
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Often one can explicitly construct a function V together with a drift condition (2),

such that log V is uniformly continuous; see for example Rosenthal (1994). Also, in Roberts

and Tweedie (1994, Theorem 3.3), it is shown that one can sometimes use the function

V (x) = fπ(x)−1/2, where fπ is a density function for π; in such cases one will often have

log V uniformly continuous.

In general, Meyn and Tweedie (1993, Theorem 15.2.4) show that the function

V (x) = Ex

(
σC∑
k=0

rk

)

will satisfy (2), where σC = inf{n ≥ 0 ; Xn ∈ C}, and where r > 1 is chosen to satisfy

that sup
x∈C

Ex(rτC ) < ∞ with τC = inf{n ≥ 1 ; Xn ∈ C}. Furthermore we may then take

β = 1 − r−1. They show (Meyn and Tweedie, 1993, Proposition 6.1.1 (ii)) that if the

Markov chain is weak Feller continuous, then the above function V will at least be lower

semicontinuous. However, no uniformity is provided, and it is not clear for such V when

log V would be uniformly continuous on X .

To end this section, we recall that a number of results (e.g. Meyn and Tweedie, 1994;

Rosenthal, 1995) are available which provide bounds on the distance to stationarity of a

Markov chain after k steps, using minorization and drift conditions. Such results consider

the exact Markov chain P , and it is reasonable to ask if the results will apply to a slightly

perturbed chain P̃ as simulated by computer.

Our results above provide some reassuring answers to such questions. For example, a

result of Rosenthal (1995, Theorem 12) gives bounds on total variation distance in terms

of drift and minorization conditions. By the results of this section, a roundoff chain P̃ with

a sufficiently small corresponding value of Mh will not change these drift and minorization

conditions very much. Thus, we immediately obtain the following “ε-version” of the result

in Rosenthal.

Theorem 8. Let P (x, ·) be the transition probabilities for a Markov chain on a state

space X , with stationary distribution π, such that there exist η > 0, 0 < β < 1, 0 < Λ < ∞,

d > 2Λ
β , a non-negative function f : X → R, and a probability measure Q(·) on X , with

Pf(x) ≤ (1− β)f(x) + Λ for x ∈ fd, and P (x, ·) ≥ η Q(·) for x ∈ X . Assume that log f is
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uniformly continuous on X . Then for any ε > 0 such that d > 2(Λ+ε)
β−ε , there is δ > 0, such

that if P̃ is defined by (1), and if Mh < δ, then

‖µ0P̃
k − π‖var ≤ (1− η + ε)rk +

(
α̃−(1−r)γ̃r

)k
(

1 +
Λ + ε

β − ε
+ Eµ0 (f(X0))

)
,

where

α̃−1 =
1 + 2(Λ + ε) + (1− β + ε)d

1 + d
; γ̃ = 1 + 2

(
(1− β + ε)d + Λ + ε

)
.

Other similar convergence rate bounds (e.g. Meyn and Tweedie, 1994) can be similarly

modified. The main point is that, if the logarithm of the drift function is uniformly contin-

uous, then rate bounds will be robust under small roundoff errors or other perturbations.

Remark. Many of the roundoff results we give in this paper are given with respect

to a particular metric. For instance, the crucial log-Lipshitz property is clearly metric-

dependent. At first sight this may seem unsatisfactory, since geometric convergence is a

metric-free property. However if we consider a sequence of perturbations with round-off

functions hk, k ≥ 1, then it is often the case that the metric with respect to which V

is required to be log-Lipshitz is actually intrinsically defined by the sequence hk, k ≥ 1.

Specifically, suppose that we set Mρ
h = supx∈X ρ(x, h(x)) for a given metric ρ(·, ·) on

X . Let M be the class of all metrics ρ on X such that lim
k→∞

Mρ
h = 0. The conclusions of

Theorems 7 and 9 therefore hold if there exists ρ ∈M with respect to which V is uniformly

log-Lipshitz.

5. Robustness of the stationary distributions

In this section we consider the issue of whether the stationary distribution π̃ of the

perturbed chain P̃ will be close to the stationary distribution π of the original chain P .

For sufficiently small perturbations in total variation distance or in the roundoff metric

Mh, we shall show that π̃ and π may be made arbitrarily close in an appropriate metric.

In the roundoff error case (Theorem 11), since the range of the roundoff function h (and

hence the support of π̃) might, say, be discrete, it will not be true in general that π and

π̃ are close in total variation distance. Thus, for this case we shall instead consider weak
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convergence, written ⇒, and metrized by the Prohorov metric (Ethier and Kurtz, 1986,

Section 3.1), defined by

d(µ, ν) = inf{ε ; P (dist(X, Y ) ≥ ε) ≤ ε for some (X, Y ) ∈ Dµ,ν} ,

where Dµ,ν is the collection of all random variable pairs (X, Y ) taking values in X with

laws given by L(X) = µ and L(Y ) = ν. Recall also that µk ⇒ µ is equivalent to saying

that
∫

fdµk →
∫

fdµ, for each uniformly continuous bounded function f : X → R (Ethier

and Kurtz, 1986, p. 108). Finally, it is easily seen that

d(µ, ν) ≤ ‖µ− ν‖var , (3)

where ‖µ− ν‖var = sup
A⊆X

|µ(A)− ν(A)| = inf
(X,Y )∈Dµ,ν

P(X 6= Y ) is total variation distance.

Theorem 9. Suppose that there exists a sequence of Markov chain kernels P1, P2, . . .

and P∞ on a state space X , satisfying the following conditions.

(i) The kernels {Pk} are simultaneously geometrically ergodic, as defined just before

Theorem 7, with small set C and drift function V satisfying that sup
x∈C

V (x) < ∞.

(ii) For all x ∈ X ,

lim
k→∞

‖Pk(x, ·)− P∞(x, ·)‖var = 0.

Then the stationary distributions of the Pk, πk(·) say, satisfy that

lim
k→∞

‖πk(·)− π∞(·)‖var = 0.

Remark. (i) and (ii) are implied by convergence of the kernels in the V -norm discussed

in Section 4 under the log-Lipshitz condition on V .

Proof. For simplicity we assume there is a0 > 0 such that νk(C) ≥ a0 for all k; this

eliminates periodicity concerns. The general case follows by replacing P i by 1
i

i−1∑
j=0

P j below.

The essence of the proof is that, by the triangle inequality, for any x ∈ X ,

‖πk(·)−π∞(·)‖var ≤ ‖πk(·)−P i
k(x, ·)‖var +‖P i

k(x, ·)−P i
∞(x, ·)‖var +‖P i

∞(x, ·)−π∞(·)‖var .

The result will thus follow by showing that (a) for fixed x ∈ X , lim
i→∞

sup
k
‖P i

k(x, ·) −

πk(·)‖var = 0, and (b) for fixed x ∈ X and i ∈ N, lim
k→∞

‖P i
k(x, ·)− P i

∞(x, ·)‖var = 0.
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For (a), we use the simultaneous geometric ergodicity. The standard splitting tech-

nique allows us to define random regeneration times (cf. Athreya and Ney, 1978; Nummelin,

1984; Asmussen, 1987; Meyn and Tweedie, 1993) at which the processes will be in their

minorization measures νk. The total variation distance to stationarity of the kth process

on X is then bounded by the total variation distance to stationarity of the correspond-

ing renewal processes. The simultaneous geometric ergodicity, together with the bounds

νk(C) ≥ a0 and sup
x∈C

V (x) < ∞, allows us to uniformly bound the convergence of the

renewal processes, thus giving the result.

For (b), we use induction on i. For i ≥ 2 and any A ⊆ X , we have that

P i
k(x, A)− P i

∞(x,A)

=
∫

P i−1
k (y, A) [Pk(x, dy)− P∞(x, dy)] +

∫ [
P i−1

k (y, A)− P i−1
∞ (y, A)

]
P∞(x, dy)

≤ ‖Pk(x, ·)− P∞(x, ·)‖var +
∫
‖P i−1

k (y, ·)− P i−1
∞ (y, ·)‖var P∞(x, dy) .

This bound is uniform in A. As k → ∞, the first term goes to 0 by assumption, and the

second term goes to 0 by the induction hypothesis and the bounded convergence theorem.

In order to consider the roundoff case, it is necessary to impose some continuity

structure on the Markov chains under consideration. Therefore recall the Feller properties.

P (·, ·) is weak Feller continuous if Pf is continuous for all continuous bounded functions

f . (It is strong Feller continuous if Pf is continuous for all bounded functions f .)

The following lemma is essentially standard; see e.g. Kushner (1984, Theorem 6,

p. 157) for a related result about diffusion processes. In any case, it follows easily by

induction on n, by writing

Pn
k f − Pn

∞f = Pn−1
k (Pkf − P∞f) + (Pn−1

k − Pn−1
∞ )P∞f ,

and by observing that weak convergence implies tightness. Thus, we omit the proof.
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Lemma 10. Suppose that Pk(·, ·), k ∈ N ∪ {∞} are transition functions such that P∞

is weak Feller continuous, and such that for all x ∈ X ,

Pk(x, ·) ⇒ P∞(x, ·) , k →∞ (4)

Suppose also that convergence in (4) holds uniformly over compacts, in the sense that for

each uniformly continuous bounded function f : X → R, and for each compact subset

A ⊆ X ,

lim
k→∞

sup
x∈A

|Pkf(x)− P∞f(x)| = 0 . (5)

Then, for all x ∈ X and n ∈ N, we have Pn
k (x, ·) ⇒ Pn

∞(x, ·), i.e. the higher-order iterates

converge weakly.

Theorem 11. Suppose that hk, k ∈ N is a sequence of roundoff functions with

lim
k→∞

Mhk
= 0. Let P be weak Feller continuous, and let Pk denote the successive pertur-

bations Pk(x, ·) = P (x, h−1
k (·)). Suppose P is geometrically ergodic and satisfies (2), for

a log-Lipschitz function V and small set C satisfying supx∈C V (x) < ∞. Suppose further

that Pk is φk-irreducible for each k. Then for all large enough k, Pk are simultaneously

geometrically ergodic and the corresponding sequence of invariant measures, πk, satisfy

πk ⇒ π∞ , i.e. {πk} converge weakly to π∞, where π∞ is the invariant distribution of P .

Proof. The simultaneous geometric ergodicity follows directly from Theorem 7. By using

regeneration times as in Theorem 9, and taking νk(C) ≥ a0 > 0 for simplicity (otherwise

we replace Pn0 by 1
n0

n0−1∑
j=0

P j below), this implies that for some positive integer K, for any

ε > 0 there exists a positive integer n0 such that

‖Pn0
k (x0, ·)− πk(·)‖var ≤ ε

for all k ≥ K or k = ∞.

Now, set

rk(x) = |Pkf(x)− Pf(x)| =
∣∣∣∣∫ (f(hk(y))− f(y))P (x, dy)

∣∣∣∣ .

By uniform continuity of f , we have lim
k→∞

sup
x∈X

rk(x) = 0; hence, the uniform convergence

property (5) of Lemma 10 is satisfied (without even requiring that A be compact). We may

14



thus apply Lemma 10. Hence, for sufficiently large k we will have d(Pn0
k (x0, ·), Pn0

∞ (x0, ·)) ≤

ε.

Therefore, by the triangle inequality and by (3), for all sufficiently large k, the quantity

d(πk, π∞) is bounded above by

‖πk(·)− Pn0
k (x0, ·)‖var + d (Pn0

k (x0, ·), Pn0
∞ (x0, ·)) + ‖Pn0

∞ (x0, ·)− π∞(·)‖var ≤ 3ε .

The result follows.

Remark. Theorems 9 and 11 have analogues for non-geometrically ergodic chains.

Specifically, we require that the perturbations Ph all simultaneously satisfy the drift con-

dition PhV ≤ V − δ + b1C , for suitable drift function V and small set C . We omit the

details here except to remark that for the perturbations to preserve the drift condition, we

will require a uniformly Lipshitz condition on the drift function V .
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