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1. Introduction. In our data-rich world, statistical analysis and education are more im-
portant than ever. I recently developed2 a new introductory statistics course, in which I
tried to give the students a broad overview of the subject: a bit of probability theory, some
discussion of P-values, calculation of confidence intervals, use of statistical software, appli-
cations to real data problems, statistical writing and communication, etc. The course was
reasonably successful3, but some students found the mathematical derivations “boring” and
the calculations “tedious”. Then, at a recent social event, I met a woman who complained
(as many do) about her own statistics course from her student days, lamenting all the equa-
tions she had to memorise – and I feared that some of my students might feel similarly. This
led me to wonder, can the basic ideas of statistics be communicated reasonably, in a way
that can actually be understood and used for applications, but with fewer equations and
formulas and calculations?

Such concerns are not new. Traditionally, statistics has been introduced with fairly
mathematical courses involving lots of formulas, but even in the simplest cases the individual
formulas can look very different especially to less quantitatively-inclined students and thus
cause confusion and negativity and despair. In recent years, statistics has sometimes instead
been taught in ways which do not use equations at all, concentrating instead on data analysis
and the use of statistical computing software, but this risks giving the impression that
statistics is a strange mystery that only computers can understand.

In the end, I decided that most simple statistical inference problems can be solved ef-
fectively using essentially just a single formula, as I now explain. My opinion now is that
we shouldn’t totally eliminate formulas, but by introducing a single common approximate
equation for confidence intervals for the simplest cases of one and two means and propor-
tions, we can provide a solid foundation of basic statistical concepts with less entanglement
in formula details.

2. Set-Up. Much of statistics involves taking a sample of measurements of some quantity,
and attempting to draw inferences about its true underlying average (or mean) in the entire
population. For example, perhaps we sample some men’s heights, and wish to infer the
average height of all men. Or perhaps we measure the effect of a new medication on the
blood pressure of a sample of patients, and wish to draw conclusions about its average effect
on everyone.

To that end, suppose we have a random sample of n different measurements of some
quantity. Then we can estimate the population average by computing the average of our
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sample. But this estimate probably won’t be exactly correct, due to the randomness of the
sample. (Just like if you flip 100 coins, you probably won’t get exactly half heads.) So,
the question becomes, how close will our sample average probably be to the true population
average? Or, to put it differently, how accurately can we estimate the true population average
based only on our sample?

3. The One Formula. The one formula that we shall use is as follows. Suppose
x1, x2, . . . , xn is a sample of n measurements of some quantity, and we estimate the pop-
ulation average by our sample average (or “point estimate”) x = 1

n

∑n
i=1 xi. Then usually,

i.e. about 95% of the time, i.e. about 19 times out of 20, x will be within the “error” of about
2
√
v/n of the true population average, where v = 1

n

∑n
i=1(xi − x)2 is the sample’s average

squared deviation from its average. Equivalently, about 95% of the time, the true average
will be somewhere within the “95% confidence interval” given by [x− 2

√
v/n, x+ 2

√
v/n].

We shall see that this one approximate formula is all that we need to make lots of fairly
accurate statistical inferences, for four basic 1- and 2-sample situations for both means and
proportions, quickly and all at once.

4. Approximation? Like most of statistics, the above formula involves some approxima-
tions, as I now discuss. (It is useful for the instructor to keep these issues in mind – though
I recommend against sharing them with the students right away as I will explain.)

First of all, v is an approximate estimate of the variance of the distribution of the xi. In
fact, statisticians usually divide by n− 1 instead of n, which makes v an unbiased estimator,
though this tends to confuse students and can actually make the estimate worse in some
ways4, and in any case it makes little difference if n is large.

Once we accept v as the variance, it then follows (with no further approximation) that
the sample average x has variance v/n. Also, the expected value of x always exactly equals
the true mean, say µ. It then follows that (x− µ)/

√
v/n has mean 0 and variance 1.

Furthermore, for sufficiently large n, it follows from the Central Limit Theorem that
(x−µ)/

√
v/n has approximately a standard normal distribution. Once we accept that, then

that quantity is 95% likely to be between about −1.96 and 1.96, and for simplicity we further
approximate this “multiplier” 1.96 by 2. Our above formula then follows from this.

As a further refinement, the (x − µ)/
√
v/n actually has (assuming the normal approx-

imation) a t distribution, not a normal distribution, which means that the multiplier 1.96
should actually be slightly larger in a way which depends on the sample size n, e.g. if n = 10
it’s 2.26, if n = 20 it’s 2.09, if n = 100 it’s 1.98, etc. Also, these multipliers all correspond to
the 95% confidence level, and should be adjusted for other levels, e.g. for a 99% confidence
level the multiplier 1.96 should instead be 2.58.

However, in my opinion, it is not necessary to discuss any of these approximation issues
with the students until later on (see Section 10). For a first introduction, I think it is
sufficient to stick to the simple formula given above with multiplier 2, without confusing and
scaring the students with these approximation and refinement issues.

4see e.g. my article at http://probability.ca/varmse
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5. Example: Baby Weights. Ten babies born in a hospital in North Carolina were
measured5 to have the following weights, in pounds: x1 = 9.88, x2 = 9.12, x3 = 8.00, x4 =
9.38, x5 = 7.44, x6 = 8.25, x7 = 8.25, x8 = 6.88, x9 = 7.94, x10 = 6.00.

For this data, n = 10, and we compute that x = 1
n

∑n
i=1 xi

.
= 8.11 pounds, and then

v = 1
n

∑n
i=1(xi − x)2

.
= 1.362. Based on this data, we can be 95% confident that the true

average baby weight in North Carolina is within 2
√

1.362/10
.
= 0.74 of 8.11, i.e. that it is

between 8.11 − 0.74 = 7.37 and 8.11 + 0.74 = 8.85 pounds. That is, our 95% confidence
interval for the true average weight (in pounds) of babies in North Carolina is [7.37, 8.85].

6. Statistical Significance. A claim based on a sample is called statistically significant
if we are 95% confident that it holds for the whole population, i.e. if it is probably a genuine
result rather than just an artifact due to the random luck of the sample. There are many
specialised ways of computing significance levels in various settings. But a simple rule in our
case is: a claim is statistically significant if it holds for all values in the confidence interval.

In the baby weight example, our sample average was 8.11 pounds, which is certainly more
than 8 pounds. However, the claim that the true average baby weight is over 8 pounds is
not statistically significant, since the confidence interval includes weights lower than that.
That is, our sample average being above 8 pounds could have been just due to luck. On the
other hand, the claim that the true average baby weight is over 7 pounds is a statistically
significant conclusion, since it holds for all values in the confidence interval.

Now, the usual assessment of statistical significance involves “hypothesis tests” and “P-
values” and “probability tables” and so on. However, for the simple inference problems
considered here, the usual statistical significance is exactly equivalent to the simple notion
of “holds for all values in the confidence interval” presented here. That is, these significance
tests are still subject to the various approximations as in Section 4, but no more: they give
exactly the same answers as the more traditional significance tests when using the same
approximations. And, just as in Section 4, different confidence levels (besides 95%) can be
achieved by adjusting the multiplier value – though again, I recommend against raising these
issues with the students right away.

7. Proportions. An important special case is when each data value xi is either 1 or 0,
corresponding to a Yes/No outcome like winning/losing a game, or agreeing/disagreeing in
a public opinion poll. In that case, x is simply the fraction (or proportion) of Yes outcomes.
Also, since the sample has nx values which equal 1, and n − nx values which equal 0,
v = 1

n
[nx(1 − x)2 + (n − nx)(0 − x)2], which reduces to simply v = x(1 − x). Hence, for

proportions, the true fraction is probably within about 2
√
x(1− x)/n of the sample fraction

x. In this context, the quantity 2
√
x(1− x)/n is often called the margin of error. (Also, it

takes its maximum when x = 1/2, so it is always ≤ 1/
√
n, a useful upper bound.)

For example, a recent poll6 claimed that “more than half” of Canadians approved of the
government. The poll actually sampled 1,500 Canadians, of whom 53% replied Yes when
asked if they approve. Since the sample was random, this doesn’t imply that the true fraction

5see http://www.math.hope.edu/swanson/data/nc200.txt
6see http://www.theglobeandmail.com/news/politics/more-than-half-of-canadians-approve-

of-trudeau-poll/article28210076/
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is exactly 53%. But does this imply that is it more than 50%? Well, here x = 0.53. So, as
above, the margin of error is 2

√
0.53(1− 0.53)/1500

.
= 0.026, so our 95% confidence interval

is [0.53 − 0.026, 0.53 + 0.026] = [0.504, 0.556]. Since all of the values in this interval are
above 0.5, we can indeed conclude that the true fraction is (probably) more than half. (On
the other hand, we could not conclude that it is more than 51%, since not all values in the
interval are above 0.51.)

Do polling companies really use this formula? Yes indeed. The above poll claimed that
“The margin of error . . . is ±2.6%, 19 times out of 20”. In fact, one leading pollster provides7

a whole table of margins of error for various different sample sizes and observed proportions,
each of which amounts to just plugging values into the above formula 2

√
x(1− x)/n. (Of

course, these margins of error all assume that the sample was truly random, and was not
biased due to non-responses, misleading questions, dishonest answers, etc. – all complicated
issues that we do not address here.)

It is instructive to apply this formula to familiar situations. For example, suppose you
flip n coins. How close to 0.5 will your proportion of heads be? Well, here x is near to 0.5,
so the margin of error is about 1/

√
n. If n = 10 this is about 0.3, so your fraction of heads

will probably be somewhere in the interval [0.2, 0.8]. If n = 100, the interval becomes about
[0.4, 0.6]. (Try it and see!) If n = 400 it’s about [0.45, 0.55], while if n = 1000 it’s about
[0.47, 0.53], and if n = 10, 000 it’s about [0.49, 0.51]. So, the interval is indeed narrowing
around 0.5, but rather slowly, due to the

√
n factor in the denominator.

8. Comparison of Means. Some of the most interesting statistical questions involve
comparing two different average values, especially of the same quantity for different groups
or at different times. Suppose our first sample is x1, . . . , xn, with sample mean x and squared
deviation v, and our second sample is y1, . . . , ym, with sample mean y and squared deviation
w. We are interested in the difference of the second true mean minus the first true mean.
We can estimate this by the sample difference y−x. But how much uncertainty do we have?

We can answer this again using our one formula, but with a slight modification. Our
formula says that the first true mean is (probably) within 2

√
v/n of x, and the second

true mean is (probably) within 2
√
w/m of y. For the difference of means, we add the two

uncertainty quantities v/n and w/m together. That is, the difference of the true means
is (probability) within 2

√
v/n+ w/m of the sample difference y − x. With this one slight

modification, our one formula applies to differences of means as well.
For example, I had my students measure8 the circumference of their wrists. The n = 39

female students had sample mean x = 14.49 (in cm) with squared deviation v = 0.622, while
the m = 41 male students had sample mean y = 16.74 with squared deviation w = 0.947. So,
on average the males were larger, but was this significant? Here the sample mean difference
is 16.74 − 14.49 = 2.25, with uncertainty 2

√
v/n+ w/m = 2

√
0.622/39 + 0.947/41

.
= 0.40.

So, the 95% confidence interval for the true mean difference is [2.25 − 0.40, 2.25 + 0.40] =
[1.85, 2.65] cm. These values are all positive, so yes, the data do indicate that male students
have statistically significantly larger wrists than female students on average.

7see http://www.forumresearch.com/tools-margin-of-error.asp
8see http://probability.ca/sta130/studentdata.txt
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9. Comparison of Proportions. In the special case where each xi and yi is either 1 or

0, the above uncertainty value becomes 2
√
x(1− x)/n+ y(1− y)/m, and similar consider-

ations apply.
For example, CBS News conducted a series of polls asking Americans if they supported

the legalization of marijuana. In 2012 they sampled9 1100 adults and found that 47% said
yes. In 2014 they sampled10 1018 adults and found that 51% said yes. In 2015 they sampled11

1012 adults and found that 53% said yes. So, does this indicate that support for legalizing
marijuana was growing? That is, are these increases statistically significant?

Let’s first compare 2012 and 2014. There, n = 1100 and x = 0.47, while m = 1018 and
y = 0.51. Hence, the true fraction of Americans who support legalization in 2014, minus the
true fraction in 2012, is probably within 2

√
x(1− x)/n+ y(1− y)/m of y − x, i.e. within

2
√

0.47(1− 0.47)/1100 + 0.51(1− 0.51)/1018
.
= 0.043 of y − x = 0.51− 0.47 = 0.04. Thus,

the 95% confidence interval for this difference is [−0.003, 0.083]. So, the difference could be
as high as 8.3%, but it could also be (barely) negative. Thus, we cannot (quite) conclude a
statistically significant difference between the years 2012 and 2014.

So, let’s instead compare 2012 and 2015. So, still n = 1100 and x = 0.47, but now m =
1012 and y = 0.53. Hence, the true fraction of Americans who support legalization in 2015,
minus the true fraction in 2012, is probably within 2

√
0.47(1− 0.47)/1100 + 0.53(1− 0.53)/1012

.
=

0.043 of y − x = 0.53 − 0.47 = 0.06. Thus, the 95% confidence interval for this difference
is [0.017, 0.103]. So, the difference could be as high as 10.3%, or as low as 1.7%, but all of
these values are positive. Thus, this time, we can conclude a statistically significant increase
in support for legalizing marijuana between the years 2012 and 2015.

10. What Next? The above approach provides useful tools for many elementary statisti-
cal analyses, including confidence intervals and significance tests for one and two means and
proportions, all essentially using just one formula. Introductory statistics classes can begin
with this material, and then apply it to lots and lots of interesting examples and applications
and real-world data, all without bogging down the students with a multitude of confusing
equations.

Once this basic material is mastered and widely applied, then there are many options for
follow-up material.

One possible follow-up is to study the approximations summarised in Section 4 above,
such as the Central Limit Theorem and t distribution and multiplier adjustments, to gain a
more mathematical understanding of their derivations and assumptions and limitations, and
to see how the approximations can be improved and refined in a variety of different settings
as in standard mathematical statistics classes.

Another is to re-consider statistical significance from a probability point of view, by
computing actual P-values as the probability of observing an equally or greater deviation
through pure chance alone under the null hypothesis of no actual effect. This can be done
first for simple discrete examples, like the probability of winning five games in a row if

9see http://www.cbsnews.com/news/poll-nearly-half-support-legalization-of-marijuana/
10see http://www.cbsnews.com/news/majority-of-americans-now-support-legal-pot-poll-says/
11see http://www.cbsnews.com/news/poll-support-for-legal-marijuana-use-reaches-all-time-

high/
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you “really” have equal chance of winning or losing each time. It can then be done for
continuous examples using normal approximations as in Section 4. This can then be used
to demonstrate, as discussed in Section 6, that a result is significant at the 95% level from a
probability point of view (i.e. has P-value less than 0.05) if and only if the statement holds
for all values in the corresponding 95% confidence interval – that is, traditional statistical
significance is exactly equivalent to the “holds for all values in the confidence interval” notion
presented herein.

Another recommended topic is correlation, which measures the relation between two
continuous quantities: when one quantity increases, does the other quantity tend to also
increase, or to decrease, or is it unaffected? Unfortunately correlation does not quite fit
into our one-formula approach, since it requires a separate formula r = 1

(n−1)
√
vw

∑n
i=1(xi −

x)(yi − y) for samples x1, . . . , xn and y1, . . . , yn, though that quantity can (and usually is)
computed automatically by statistical software such as the free12 package “R”. Correlations
are always between −1 and 1, with 0 indicating no (linear) relationship, and ±1 the strongest
relationships. For example, the percentage of adults who smoke13 and the average income
per capita14 for each of the 50 U.S. states have correlation about −0.42, which is negative
and suggests states with higher smoking rates tend to have smaller incomes and vice versa.
Our one formula then approximately applies with v = 1 to give a 95% confidence interval
[−0.42 − 2/

√
50, −0.42 + 2/

√
50]

.
= [−0.70, −0.14]. Since the values in this interval are

all negative, we conclude that there is indeed a statistically significant negative correlation
between smoking rates and average income. (One might wonder why this is so. That question
is subtle, since “correlation does not imply causation”. In this case, it appears that the
negative correlation is explained by the fact that people with less education tend to both
smoke more and earn less.)

In a different direction, due to the very large data sets involved, much of modern statistical
analysis is performed using a statistical software package such as the free15 package “R”. So,
statistical software and applications should surely be included in any modern introductory
statistics course, as well, together with (as noted) lots of interesting real-world examples.

Of course, many other refinements and improvements, together with theoretical justifi-
cations and applications to many different areas, can be found in more advanced statistics
courses. Hopefully the simple approach herein will in turn inspire students to later study
this important subject more deeply from more subtle perspectives.

In any case, I feel that the approach described herein provides a reasonable solution to
most simple statistical inference problems, using essentially just a single formula as opposed
to the multitude of formulas which arise in typical statistics classes. Indeed, if I were to
design an introductory statistics class again, I might well use this “one formula” approach,
and other statistics instructors might want to consider it too. Then that woman at the social
event might finally stop complaining!

12see https://cran.r-project.org/
13see https://www.tobaccofreekids.org/research/factsheets/pdf/0176.pdf
14see http://www.infoplease.com/ipa/A0104652.html
15see https://cran.r-project.org/
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