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Abstract. We propose a model for disorderly streetcar routes. Through
simulations and comparisons to real data, we illustrate that such routes may
sometimes become supersaturated, in the sense that forward and backward
waiting times become positively correlated.

1. Introduction.

It has long been known [7] that public transportation routes can produce unstable pas-

senger servicing. This short paper considers the following question. Suppose a commuter

attempts to catch a streetcar, but arrives at the stop just slightly too late. How does this

near miss affect the waiting time until the next streetcar arrives?

If the streetcars arrive on a regular schedule, then clearly just missing one streetcar

increases the waiting time until the next. For example, if streetcars arrive once every ten

minutes, and the commuter arrives at a random time, then their mean wait is five minutes,

but if they arrive one minute after a streetcar passes then their wait is nine minutes. The

time since the previous streetcar is perfectly negatively correlated with the time until the

next one.

At the other extreme, if the streetcars are completely independent and random, then their

arrival times will converge to a Poisson process (see e.g. [1], [4]). In the limit, the arrival

times are then Markovian, i.e. the distribution of the future is completely independent of

the past. The time since the previous streetcar has zero correlation with the time until the

next one.

This paper considers a third case. The streetcars are assumed to move at random veloc-

ities, and thus to become more and more disorderly over time. However, as on real streetcar
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routes, the streetcars are unable to pass each other, and must slow down if they get too

close to the streetcar in front of them. Under such a model, how is the time until the next

streetcar affected by the time since the last one?

We present a model for disorderly streetcar routes in Section 2. Section 3 contains a

simulation model, while Section 4 describes real data from a real streetcar route near the

University of Toronto. Our results are presented in Section 5, and a brief conclusion is in

Section 6.

2. The Model.

We first define a non-interfering model, as follows. We assume that streetcar i has

position xi(t) ∈ R at time t, (ordered initially so that xi(0) ≤ xi+1(0) for all i), and velocities

vi(t) ∈ [0, 1]. At time t = 0, the streetcars are equally spaced (with inter-car distance I ≤ 1),

each starting with its maximal velocity vi(0) = 1. Thus,

xi(t) = xi(0) +

∫ t

0

vi(s) ds .

It remains to specify vi(t). The orderly version has vi(t) = 1 for all i and t, so the

streetcars remain equally spaced forever, and the backward and forward waiting times are

perfectly negatively correlated. In the disorderly version, the vi(t) instead form independent

scaled Brownian motions constrained to [0, 1]. That is, vi(0) = 1, and the {vi(t)}t≥0 are

independent Brownian motions each with volatility σ, reflected at 0 and at 1 to remain in

the interval [0, 1].

The interfering model is similar to the above, except we assume in addition that no

streetcar can get within ∆ of another (where ∆ < I). That is, we impose the additional

interfering restriction that:

xi(t) ≤ xi+1(t)−∆ . (1)

Specifically, vi(t) is reduced to vi+1(t) whenever xi(t) = xi+1(t) − ∆. (Intuitively, the non-

interfering model corresponds to buses which can pass each other, while the interfering

model corresponds to streetcars that cannot. In the orderly model, the interfering condition

is irrelevant.)

In either model, for those i with xi(0) < 0, let ai = inf{t > 0 : xi(t) ≥ 0} be the arrival

time of streetcar i at position 0. For t > 0, let Ft = mini{ai− t | ai ≥ t} be the time forward

from t until the next arrival, and let Bt = mini{t−ai | ai ≤ t} be the time from t back to the

previous streetcar. Let U be uniformly distributed over the interval [t0, t0+1], representing a
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commuter’s random arrival time within a specified one-hour interval (after t0 hours of “burn

in”), and let ε be a small positive quantity.

We are interested in the following quantities: E(FU), the commuter’s mean waiting time;

Corr(FU , BU), the correlation of the commuter’s forward and backward waiting times; and

PC = 100 × P[FU < ε |BU < ε] / P[FU < ε], the percentage change in the commuter’s

probability of seeing another streetcar very soon given that they just missed the previous

one.

For the orderly model (vi(t) ≡ 1), the streetcars will be equally spaced, the interfering

condition is irrelevant, and we will have Corr(FU , BU) = −1 and P[BU < ε |FU < ε] = 0 for

any ε < I/2. That is, the longer since the previous streetcar, the shorter until the next one,

corresponding to our usual intuition.

For the disorderly model without the interfering condition (1), i.e. where the {vi(t)}
are independent Brownian motions without restriction, the streetcar positions on bounded

intervals will converge (as t0 → ∞) to a Poisson process. So, for large t0, we will have

Corr(FU , BU) ≈ 0, and P[BU < ε |FU < ε] ≈ P[BU < ε]. That is, in the limit, the distance

to the previous streetcar will have no effect whatsoever on the distance to the next one in

this case.

But what about the interfering disorderly model? In this case, the streetcars will tend

to bunch up together. But will this bunching be more or less than the Poisson limit for

the non-interfering case? In particular, can Corr(FU , BU) actually be positive, so the longer

since the last streetcar means the longer until the next one. This is what we investigate

below. Most streetcar routes will be somewhere between the orderly and the Poisson states;

if a route exceeds this restriction (for example, by having Corr(FU , BU) > 0), then we will

call it supersaturated.

Remark. Our model is somewhat similar to the simple exclusion process, which is known to

exhibit clustering effects (see e.g. [5]). However, our model depends on additional parameters

like I and ∆ and σ, and it is not clear that theoretical studies of the simple exclusion process

provide insight into such quantities as Corr(FU , BU). We thus proceed to simulation studies.

3. Simulations.

To do simulations on the interfering Brownian streetcar model as above, we consider the

following corresponding discrete model. Initially, the xi(0) are equally spaced with inter-car

distance I, and vi(0) = 1 for all i. Then, for small δ > 0, and for t = 0, δ, 2δ, 3δ, . . .,

vi(t + δ) = R(vi(t) + δ1/2 Zit)
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where {Zit} are i.i.d. Normal(0, σ2), and where R(· · ·) is the reflection operator which reflects

any real number into the interval [0, 1], i.e. R(x) is defined recursively by

R(x) =


x, 0 ≤ x ≤ 1

R(2− x), x > 1
R(−x), x < 0

Then, iteratively over i,

xi(t + δ) = xi(t) + δ vi(t) . (2)

Then, in accordance with (1), whenever (2) makes xi(t+δ) > xi+1(t+δ)−∆, we immediately

“slow down” car i by setting xi(t + δ) = xi+1(t + δ) −∆ and vi(t + δ) = vi(t + δ). Finally,

to accommodate the finiteness of computers, we simulate the streetcars only over a finite

interval [−M, 0] (where M > 1), with periodic boundary (so we subtract M from streetcar

positions whenever they go positive). This corresponds to a cyclic route of length M , which

is a reasonable model for real streetcar routes, and in any case should not significantly affect

the joint distribution of Ft and Bt.

All of the arrival times between t0 and t0 + 1 are recorded, along with the last arrival

time before t0 and the first arrival time after t0 + 1. This allows us to compute FU and BU

for a particular value of U . Simulating many different values of U then allows us to estimate

Corr(FU , BU) as well as related quantities such as E(FU) and P(FU < ε |BU < ε). [The

software and data are available at probability.ca/streetcar.]

Remark. Using xi+1(t + δ) instead of xi+1(t) above corresponds to doing the iteration in

reverse order, i.e. updating xi for larger i first. This seems appropriate to allow different

streetcars to move together without being artificially pulled apart. Of course, this issue

becomes less and less relevant as δ → 0.

In our simulations, we set I = 1/28, corresponding to 28 streetcars per hour on average;

see Section 4. We also set ∆ = I/20 (i.e., no streetcar may come within 1/20 of the

mean inter-car distance of another), ε = 1/120 (corresponding a streetcar arriving within

30-seconds), and M = 3.

For the velocity volatility parameter σ, we consider both 0.01 and 0.005, as well as the

orderly model with σ = 0. For the number of hours t0 over which the system becomes

disorderly, we considered 3, 8, and 24. We considered both the interfering model and the

non-interfering model.

For each simulation, standard errors were computed by running the identical simulation

multiple independent times. The results are presented in Section 5.
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4. Real Data.

As a check of our model, we observed actual arrival times for the Spadina Avenue street-

car, adjacent to the University of Toronto campus, during the afternoon rush hour. This

streetcar route has frequent but erratic service, making it an appropriate case study for our

disorderly streetcar model.

We recorded the (northbound) arrival times between 4:00 and 5:00 p.m., as well as the

last arrival before 4:00 and the first arrival after 5:00, on each of two different weekdays

(called A and B). The number of arrivals between 4:00 and 5:00 on the two days were 28

and 29, respectively, motivating the choice of I = 1/28 in Section 3 above.

We then mapped the hour from 4:00 to 5:00 linearly onto [0, 1]. This allowed us to

compute forward and backward waiting times, Ft and Bt, for either data set, for any t ∈ [0, 1].

We were thus able to compute Corr(FU , BU) etc. for U ∼ Uniform[0, 1], and to compare the

real data to simulations from our streetcar model.

5. Results.

The results of the simulations and real data are presented in the following table:

Row # σ t0 Int. E(FU) Corr(FU , BU) PC
1 0 any any 0.017857 −1 0
2 0.01 3 Y 0.02718± 0.00050 −0.245± 0.011 64.4± 2.1
3 0.01 8 Y 0.0544± 0.0017 0.010± 0.023 172.8± 7.3
4 0.01 24 Y 0.1185± 0.0080 0.127± 0.054 262.0± 5.3
5 0.005 8 Y 0.0387± 0.0011 −0.104± 0.022 123.8± 5.1
6 0.01 8 N 0.03141± 0.00087 −0.162± 0.029 85.2± 6.6
7 0.01 24 N 0.0360± 0.0012 −0.059± 0.032 91.9± 2.6
8 Real Data A 0.02985± 0.00007 −0.0438± 0.0018 74.0± 1.3
9 Real Data B 0.02771± 0.00012 0.0109± 0.0031 84.50± 0.99
10 Poisson limit 0.03571 0 100

Table 1: Results of the simulations and data analysis. Here σ is the volatility
of the velocities, t0 is the burn-in time, and “Int.” indicates whether or not
the interfering model is assumed. All other parameters are as specified in
Section 3. The final three columns are the results: E(FU) is the mean wait
time, Corr(FU , BU) is the waiting time correlation, and PC is the percentage
change in the probability that FU < ε as above. Standard errors are also given
where appropriate.
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In Table 1, Row 1 corresponds to orderly velocities, with no randomness. In this case,

the mean waiting time E(FU) is simply I/2, the correlation of forward and backward waiting

times is −1, and PC = 0 because it is impossible to have FU < ε and BU < ε simultaneously.

By contrast, Row 10 is the Poisson process limit corresponding to buses that arrive ran-

domly completely independently of each other. In that case, as is well known, the expected

waiting time is I, twice what it would be in the orderly case. Meanwhile, the forward-

backward correlation is zero, and PC = 100, both reflecting the fact that the future is

independent of the past.

Rows 6 and 7 are simulations without the interference condition, and thus represent

gradually disordering buses. At earlier times (Row 6), the results are somewhere between

the initial orderly state (Row 1) and the limiting Poisson state (Row 10), while at later times

(Row 7) they are getting closer to the latter.

Rows 2, 3, and 4 present our main focus, disorderly interfering streetcar routes, at three

different times. At earlier times (Row 2) the results are again somewhere between the orderly

and Poisson states. But at later times (Rows 3 and 4), the results surpass the corresponding

Poisson values in all respects: the expected wait times become even longer, the forward-

backward correlations become positive, and PC significantly exceeds 100.

This illustrates that the disorderly streetcar route can lead to supersaturated states,

wherein the clumping of streetcars is greater than for the independent Poisson limit. The

result is even less efficient, in that expected wait times are even larger. More interestingly,

smaller values of BU now correspond to smaller values of FU . If a commuter just misses one

streetcar, then they will have a smaller average wait time until the next one, and a larger

probability of another streetcar arriving very soon.

Row 5 illustrates the effect of reducing the randomness factor σ. Comparing Rows 5

and 3 indicates, as expected, that if σ is smaller, then it takes longer for the route to move

away from its initial orderly state. As a result, the expected wait time remains smaller, and

the forward-backward correlations remain more negative, for a longer period of time.

Finally, Rows 8 and 9 are for the real data described in Section 4. Data A (Row 8) is again

somewhere between the orderly and Poisson states, with a forward-backward correlation that

is just slightly negative. However, Data B (Row 9) has indeed surpassed the Poisson limit, at

least in the sense of having positively correlated forward and backward waiting times. Even

Data B is not truly supersaturated, since its expected waiting time and PC value are both

still somewhere between orderly and Poisson. However, its positive correlation value does

indicate that some aspects of supersaturation are indeed possible on real streetcar routes.

Presumably, an even more disorderly and random streetcar route (if one exists) would exhibit
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this supersaturation to a greater extent.

Remark. This clumping of streetcars is somewhat analogous to the tendency of buses and

elevators to pair up once they get behind schedule due to the increasing time spent picking

up passengers; see e.g. [6], [3], [2].

6. Conclusion.

This paper has argued that because streetcars interfere with each other by disallow-

ing passing, disorderly streetcar routes can become supersaturated, in the sense that their

descriptive parameters (mean waiting time, forward-backward correlation, and percentage

change of probability of another arrival within time ε) can exceed those of the independent

Poisson limit that would apply without the interference condition.

We have supported this assertion with simulations of a mathematical model for disor-

derly streetcar routes. The simulations have confirmed that each of those three descriptive

parameters can indeed exceed the Poisson limit.

We have also compared our simulation results to real data from an actual streetcar route

near the University of Toronto. We found that while the real data did not completely support

supersaturation, it did in one case show a positive correlation between forward and backward

waiting times, which could not occur in the non-interfering model. Furthermore, while the

other descriptive parameters were somewhat less than for the Poisson limit, they were still

far closer to Poisson than to a corresponding orderly route.

Our conclusion can be stated informally as saying that on a very disorderly streetcar

route, if a commuter just misses one streetcar, then this is not necessarily bad news. Indeed,

counter to intuition, it may actually reduce their mean waiting time until the next streetcar

arrives.
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