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Abstract. We introduce a voter model in which parties’ intended policy positions are
perceived by voters with some random uncertainty. We prove that for a total of three parties,
under some mild assumptions, this model has a Nash equilibrium in which all three parties
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which asserts that only two parties will contest the election at all, consistent with some
different voter models.
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1 Introduction

In game theory, each “player” chooses certain actions, and receives a resulting payoff (see

e.g. Osborne, 2003). The collection of actions is a Nash equilibrium (Nash, 1951) if no one

player can change their action in a way which increases their expected payoff if the other

players’ actions remain unchanged.

Among many other applications, Nash equilibria are used to model strategies of political

parties in elections. In one standard model, attributed variously to Hotelling (1929) and

Downs (1957) and others, political positions are mapped to the real line, and voters’ opinions

follow some fixed probability density v on the real line, and each of n different political parties

stakes out some position xi ∈ R (or chooses not to contest the election at all, by setting

xi = OUT). Then, each voter is assumed to vote for whichever party’s position is closest to

their own. The payoff for each political party is 0 if they do not contest the election, or 1

if they receive the most votes, or 1/k if they tie for most votes with a total of k different

parties, or −1 if they contest the election and receive fewer votes than some other party. In

this way, each of the n political parties are a “player” in a game, with incentive to choose a

political position only if they can attain (or tie for) the most votes.

With just n = 2 parties, the Nash equilibrium for this model is straightforward. Namely,

each of the two parties will contest the election with political position equal to the median

of v, i.e. x1 = x2 = m where
∫ m
−∞ v(t) dt = 1/2. In this way, they each receive payoff of 1/2.
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And, if either party deviates to another position xi 6= m, then they will receive fewer votes

than the other party, and thus receive payoff of −1 < 1/2. Or, if either party deviates to

xi = OUT, then they will receive payoff of 0 < 1/2. So, neither party has anything to gain

by deviating from the position xi = m, confirming that it is a Nash equilibrium.

However, if n ≥ 3, then the situation becomes much more complicated. For example, if

the first two parties each choose the median position x1 = x2 = m, then the third party can

deviate to slightly more than m, thus winning nearly half of the votes while the other two

parties each win just over a quarter of them. Indeed, various authors (see e.g. Eaton and

Lipsey, 1975; Shaked, 1982; Osborne, 1993; and references therein) have argued that there is

no pure (i.e., non-random) Nash equilibrium for the voter model in this case. By contrast,

and somewhat similar in spirit to the present paper, Hug (1995) has shown the existence

of Nash equilibria for a different model in which parties attempt to maximise their votes

(without any negative payoff for losing), but the policy they will later enact is randomly

distributed about their intended choice, and voters attempt to minimise a quadratic loss

function based on this random distribution. Another modification (Osborne, 1996) has the

parties choose their positions sequentially, so that party i can base their position on the

already-chosen positions of parties 1, 2, . . . , i − 1. Under that assumption, it is conjectured

that just two parties will contest the election, each with position equal to the median m,

and the other n − 2 parties will all stay out. (Osborne conjectured that the first and last

parties would be the ones to enter in this case, but that has been disputed when n = 12; see

de Vries, 2015 and de Vries et al., 2016.)

These considerations are related to Duverger’s Law (Duverger, 1951; Riker, 1982; Schle-

singer and Schlesinger, 2006), which states essentially that typical single-ballot majority vote

systems favour the dualism of parties, whereby only two (major) parties will contest elec-

tions. Empirically, this law is roughly consistent with elections in the United States with

two major parties (Democratic and Republican), but less so for elections in Canada and the

United Kingdom and other countries. In terms of game theory models, this law is borne out

by the n = 2 solution above, and by Osborne’s sequential system conjecture, but it does not

follow in all models and is open to question.

In the present paper, we consider a simple modification of the above voter model, in

which each political party i attempts to stake out a position ai ∈ R, but is actually perceived

by the voters (due to the imperfections of political advertising, unanticipated events during
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the election campaign, etc.) to have a position xi ∈ R, where xi is randomly distributed

about ai. (A related “imperfect beliefs” model is considered by Ogden, 2016, but for n = 2

parties only.) We shall show (Corollary 1) that under some mild symmetry assumptions,

this model has a Nash equilibrium when n = 3 in which all three parties contest the election,

each by attempting to stake out the median position, i.e. with ai = m for all i, in contrast

to Duverger’s Law which would imply that only two parties contest the election while one

stays out. Along the way, we prove various results (Theorems 1–4) about unimodality of

the win probabilities, in clear contrast to the standard model. We also present some explicit

computations in specific cases (Section 6), and some counter-examples when our assumptions

do not hold (Section 7).

2 Formal Model

Our formal model is as follows. The voters are distributed according to some fixed

probability density v on R. Each party has some fixed uncertainty probability distribution

Gi. We shall write “Gi(dxi − ai)” for the distribution Gi shifted over by an amount ai, so

that e.g. Gi([c, d]− ai) = Gi([c− ai, d− ai]), etc. The game proceeds as follows:

• Each of n political parties simultaneously chooses an action value ai ∈ R ∪ {OUT}.

• If ai = OUT, then also xi = OUT, so party i does not contest the election, and receives

a payoff of zero.

• If ai ∈ R, then party i attempts to come in at the position ai. They are then perceived

by the voters to come in at position xi ∈ R, where xi has probability distribution given

by Gi(dxi − ai).

• Conditional on the {xi}, each party i with xi ∈ R receives a vote share wi given by

wi =

∫
t∈Ri

v(t) dt

#{j : xj = xi}
,

where Ri = {t ∈ R : |t− xi| ≤ |t− xj| for all 1 ≤ j ≤ n} is the vote region won (or tied

for winning) by Party i.

• For each Party i with xi ∈ R, their payoff is α if they have the highest vote share wi,

or α/k if they tie with a total of k parties for the highest vote share, or −1 if their vote

share is strictly less than that of some other party. (Here α > 0 is some fixed constant.

3



In the standard model, the precise value of α does not matter as long as it is positive.

But in our randomly-perceived models, we will sometimes require that α be sufficiently

large. On the other hand, our randomly-perceived models never have ties.)

3 Assumptions

We shall make the following assumptions.

(A1) The voter density v is symmetric and (weakly) unimodal about some fixed central

median value m ∈ R, i.e. v(m − z) = v(m + z) for all z ∈ R, and if m ≤ z1 ≤ z2 or if

z2 ≤ z1 ≤ m, then v(z1) ≥ v(z2).

(A2) Each uncertainty distributionGi has probability density gi which is symmetric about 0,

i.e. gi(−z) = gi(z) for all z ∈ R.

(A3) Each party’s perceived position xi is sufficiently close to their attempted posi-

tion ai. Specifically, we assume that |xi − ai| ≤ M (or equivalently gi is supported on

[−M,M ]) for each i, where the maximal uncertainty constant M > 0 is small enough that∫ m+M/2

m−M/2
v(x) dx ≤ 1/3.

For example, these assumptions are all satisfied in the case where v is the Uniform[0, 1]

density function, with m = 1/2 and n = 3 and M = 1/3.

We shall also sometimes require one of the following (increasingly strong) additional

conditions on some of the gi.

(A4) The uncertainty density gi is positive in a neighbourhood of 0, i.e. there is δ > 0 with

g(z) > 0 whenever |z| < δ.

(A4*) The uncertainty density gi is (weakly) unimodal about 0, i.e. if m ≤ z1 ≤ z2 or if

z2 ≤ z1 ≤ m, then gi(z1) ≥ gi(z2).

(A4**) The uncertainty density gi is strongly unimodal about 0, i.e. if m ≤ z1 < z2 or if

z2 ≤ z1 ≤ m, then gi(z1) > gi(z2).

Clearly (A4**) implies (A4*). Furthermore, since the gi are density functions, it is

easily seen that (A4*) implies (A4). So, the conditions (A4) and (A4*) and (A4**) are in
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increasingly strong order. For a specific example, if gi is the Uniform[−0.1, 0.1] density, then

gi satisfies (A4) and (A4*) but not (A4**).

4 Results

We have the following results (all proved in the next section).

Theorem 1 Assume (A1)–(A3), and that we have n = 3 parties. Suppose Parties 1 and 2

both attempt to take the central position, i.e. choose a1 = a2 = m. Then it is (weakly)

optimal for Party 3 to be perceived to be in the position x3 = m, i.e. for all t ∈ R,

P[Party 3 wins | a1 = a2 = m, x3 = m] ≥ P[Party 3 wins | a1 = a2 = m, x3 = t] .

Theorem 2 Assume (A1)–(A3), and that we have n = 3 parties, and that (A4*) holds for

g3. Suppose Parties 1 and 2 both attempt to take the central position, i.e. choose a1 = a2 = m.

Then it is (weakly) optimal for Party 3 to attempt to take the position a3 = m, i.e. for all

t ∈ R,

P[Party 3 wins | a1 = a2 = m, a3 = m] ≥ P[Party 3 wins | a1 = a2 = m, a3 = t] .

By applying Theorem 2 separately for each of the three parties, we obtain:

Corollary 1 Assume (A1)–(A3), and that we have n = 3 parties, that (A4*) holds for each

uncertainty measure gi, and that either OUT is not permitted or α is sufficiently large. Then

the set of actions a1 = a2 = a3 = m is a Nash equilibrium, i.e. no one party can increase

their expected payoff by changing their action while the other two actions remain fixed.

Corollary 1 contrasts with the results of Hug (1995), who obtains a Nash equilibrium for

n = 3 parties for a different model, but only upon assuming such things as unequal variances

for the different parties. Corollary 1 has no such restrictions, and applies (among others) to

the case where each uncertainty density gi is the same.

Theorems 1 and 2 give only weak optimality, i.e. they allow for the possibility that another

position is equally good. That is sufficient to prove a Nash equilibrium, as in Corollary 1.

But it is possible to get stronger results if we use the stronger assumption (A4**).
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Theorem 3 Assume (A1)–(A3), and that we have n = 3 parties, and that (A4) holds for

g1 and g2. Suppose parties 1 and 2 both attempt to take the central position, i.e. choose

a1 = a2 = m. Then it is strongly optimal for Party 3 to be perceived in the position x3 = m,

i.e. for all t 6= m,

P[Party 3 wins | a1 = a2 = m, x3 = m] > P[Party 3 wins | a1 = a2 = m, x3 = t] .

Theorem 4 Assume (A1)–(A3), and that we have n = 3 parties, and that (A4) holds for

g1 and g2, and that (A4**) holds for g3. Suppose parties 1 and 2 both attempt to take the

central position, i.e. choose a1 = a2 = m. Then it is strongly optimal for Party 3 to attempt

to take the position a3 = m, i.e. for all t 6= m,

P[Party 3 wins | a1 = a2 = m, a3 = m] > P[Party 3 wins | a1 = a2 = m, a3 = t] .

By applying Theorem 4 separately for each of the three parties, we obtain:

Corollary 2 Assume (A1)–(A3), and that we have n = 3 parties, that (A4**) holds for

each uncertainty measure gi, and that either OUT is not permitted or α is sufficiently large.

Then the set of actions a1 = a2 = a3 = m is a strict Nash equilibrium, i.e. if any one party

changes their action while the other two actions remain fixed then that will strictly decrease

their expected payoff.

5 Theorem Proofs

We now proceed to prove the theorems. Our proof involves several lemmas. Sometimes

we specify the parties’ actions ai (which are then subject to uncertain perception as per

the Gi distributions), and sometimes we specify the parties’ precisely perceived positions

xi (which are not subject to any uncertainty). Many of the lemmas have a part (a) and a

part (b); roughly speaking, each part (a) provides weak inequalities suitable for Theorems 1

and 2, while each part (b) provides strict inequalities under stronger assumptions which are

needed for Theorems 3 and 4.

We begin with two simple observations. First, (A3) together with (A1) implies that v is

positive on [m−M,m+M ] and beyond. Indeed, it follows from (A1) that∫ m+M/2

m−M/2

v(x) dx ≥
∫ m−M/2

m−M
v(x) dx+

∫ m+M

m+M/2

v(x) dx .
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If v(m + z) = 0 whenever |z| > M , then
∫ m+M

m−M v(x) dx = 1, hence
∫ m+M/2

m−M/2
v(x) dx ≥ 1/2,

contradicting (A3). Second, (A3) implies that if x1, x2, . . . , xn ∈ (m−M,m+M), then the

vote share of any party i whose position is between two other parties must be less than 1/3,

so for n ≥ 3 only the biggest or smallest position can obtain the largest vote share.

For our first lemma, write Q(r, s, t) for the probability that Party 3 wins the election

(i.e., receives the strictly highest vote share) under the assumptions that the uncertainty

distributions are given by G1{−r} = G1{r} = 1/2 and G2{−s} = G2{s} = 1/2, and the

other parties’ actions are given by a1 = a2 = m, and Party 3 comes in at the perceived

position x3 = m + t (with no uncertainty), for fixed r, s, t. Clearly Q(r, s, t) is symmetric

under sign changes, so it suffices to consider cases where r, s, t ≥ 0. We have the following

fact:

Lemma 1 Assuming (A1) and (A3), if 0 ≤ t1 < t2 ≤ M , and {t1, t2, r, s} are all dis-

tinct, then (a) if r, s ∈ (0,M), then Q(r, s, t1) ≥ Q(r, s, t2), and (b) if r, s ∈ (t1, t2), then

Q(r, s, t1) > Q(r, s, t2).

Proof. Assume that r < s; the case r > s then follows by symmetry. We wish to compute

Q(r, s, t) as a function of t, for fixed r, s. We proceed case by case.

Suppose first that t < r. Then if x1 and x2 are on the same side of m, then Party 3’s

winning region R3 contains everything on the opposite side of m plus more, so since v(z) > 0

for |z| < M , Party 3 wins more than half the votes, hence the most votes. However, if x1

and x2 are on opposite sides of m, then Party 3 is in the middle and hence loses by (A3).

Thus, in this case, Party 3 wins if and only if x1 and x2 are on the same side of m. Thus,

Q(r, s, t) = 1/2.

Next, suppose t > s. Then Party 3 cannot win if x1 > 0 or x2 > 0. If x1 = m − r and

x2 = m− s, then Party 3’s winning region R3 = (m+ (t− r)/2,∞), while Party 2’s winning

region R2 = (−∞,m−(r+s)/2). Then, Party 3 wins if and only if
∫
R3
v(x) dx >

∫
R2
v(x) dx.

Using symmetry and that v(z) > 0 for |z −m| < M , this happens if and only if (t− r)/2 <
(r + s)/2, i.e. t < s+ 2r. So, Q(r, s, t) = 1/4 if t < s+ 2r, otherwise Q(r, s, t) = 0.

Finally, suppose that r < t < s. Then if x2 = m + s, then x3 is in the middle (whether

x2 = m − r or x2 = m + r), so Party 3 loses by (A3). If x2 = m − s and x1 = m + r, then

R3 = (m + (t + r)/2,∞), while R2 = (−∞,m − (s − r)/2,∞), so by the symmetry and

positivity of v, Party 3 wins if and only if (t + r)/2 < (s − r)/2, i.e. t < s − 2r (which is
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only possible if s > 2r). If x2 = m− s and x1 = m− r, then R3 = (m+ (t− r)/2,∞), while

R2 = (−∞,m − (s + r)/2,∞), so again by symmetry and positivity of v, Party 3 wins if

and only if (t − r)/2 < (s + r)/2, i.e. t < s + 2r, which always holds since t < s. So here

Q(r, s, t) = 1/2 if t < s− 2r and s > 2r, otherwise Q(r, s, t) = 1/4.

In summary, if 0 < r < s < M and 2r < s, then

Q(r, s, t) =


1/2, 0 ≤ t < r

1/2, r < t < s

1/4, s < t < s+ 2r

0, t > s+ 2r

Or, if instead 0 < r < s < M and 2r > s, then

Q(r, s, t) =


1/2, 0 ≤ t < r

1/4, r < t < s

1/4, s < t < s+ 2r

0, t > s+ 2r

In either situation, it is easily checked directly that the values of Q(r, s, t) satisfy the stated

conclusions in both parts (a) and (b) of the lemma.

Remark. Lemma 1 assumes that {r, s, t1, t2} are all distinct, thus avoiding complications

arising from ties for highest voting share. Fortunately we can get away with this, since our

theorems assume that the uncertainty distributions have densities and are thus absolutely

continuous with respect to Lebesgue measure, so that ties have probability zero.

To continue, let Y (x1, x2, x3) = 1 if Party 3 receives the highest vote share when each

party i comes in at position xi, otherwise Y (x1, x2, x3) = 0. Then by inspection, our previous

quantity Q(r, s, t) can be expressed as

Q(r, s, t) =
1

4

[
Y (m− r,m− s,m+ t) + Y (m− r,m+ s,m+ t)

+Y (m+ r,m− s,m+ t) + Y (m+ r,m+ s,m+ t)
]
. (1)

Next, let

W (t) := P[Party 3 wins | a1 = a2 = m, x3 = m+ t]

be the probability that Party 3 wins, given that Party 3 comes in at the precise position

m+ t, while Parties 1 and 2 attempt to come in at position m. Then by symmetry,

W (−t) = W (t) , t ∈ R . (2)
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And, by definition, for any uncertainty distributions G1 and G2,

W (t) =

∫ ∫
Y (r, s,m+ t) G1(dr −m)G2(ds−m) ,

with Y as above. We then have the following.

Lemma 2 Assuming (A1)–(A3), (a) if 0 ≤ t1 < t2 < ∞, then W (t1) ≥ W (t2), and (b)

if also g1 and g2 satisfy (A4), then there is δ > 0 such that if 0 ≤ t1 < t2 < δ, then

W (t1) > W (t2).

Proof. We have that

W (t) =

∫ ∫
Y (r, s, t) G1(dr −m)G2(ds−m)

=

∫
x2

∫
x1

Y (x1, x2,m+ t) g1(x1 −m) g2(x2 −m) dx1 dx2

=

∫ ∞
s=−∞

∫ ∞
r=−∞

Y (m+ r,m+ s,m+ t) g1(r) g2(s) dr ds

=

∫ ∞
s=0

∫ ∞
r=0

[
Y (m− r,m− s,m+ t) + Y (m− r,m+ s,m+ t)

+Y (m+ r,m− s,m+ t) + Y (m+ r,m+ s,m+ t)
]
g1(r) g2(s) dr ds

= 4

∫ ∞
s=0

∫ ∞
r=0

Q(r, s, t) g1(r) g2(s) dr ds , (3)

where the last line uses (1). Now, by Lemma 1(a), if 0 ≤ t1 < t2 < ∞, then Q(r, s, t2) ≥
Q(r, s, t1) for all r 6= s, so by (3), W (t1) ≥ W (t2), as claimed.

For part (b), by (A4) we can find δ > 0 such that g1(z) > 0 and g2(z) > 0 for 0 < z < δ.

Then if 0 ≤ t1 < t2 < δ, then g1 and g2 give positive weight to values of r, s ∈ (t1, t2). Hence,

Lemma 1(b) implies that W (t1) > W (t2), as claimed.

Proof of Theorem 1. This follows from Lemma 2(a) with t1 = 0, combined with equa-

tion (2).
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Proof of Theorem 3. This follows from Lemma 2(b) with t1 = 0, combined with equa-

tion (2).

To prove Theorems 2 and 4, note that

P[Party 3 wins | a1 = a2 = m, a3 = t] =

∫
W (z)G3(dz − t) =

∫ ∞
z=−∞

W (z) g3(z − t) dz .

(4)

Now, Lemma 2(a)/(b) and (A4*)/(A4**) say thatW and g3 will generally be weakly/strongly

unimodal about 0. Hence, we need a general result about maximising integrals of products

of unimodal functions. We begin with a brief technical lemma.

Lemma 3 Let a, b > 0, let J(x) = 1|x|≤a and K(x) = 1|x|≤b, and let I(α) =
∫
J(x)K(x +

α) dx. Then (a) I(α) ≤ I(0) for all α ∈ R. Furthermore, (b) if |α| > a+ b, then I(α) = 0.

Proof. Assume without loss of generality that a ≥ b, and α ≥ 0. We compute that

J(x)K(x + α) = 1−b+α≤x≤min(a,b+α), so I(α) = max
(
0, min(a, b + α) − (−b + α)

)
=

max
(
0, min(a + b − α, 2b)

)
. This is a non-increasing function of α ≥ 0, thus giving the

result. Furthermore, if α > a+ b, then min(a+ b− α, 2b) = 0, so I(α) = 0.

We next use Lemma 3 to prove the result about integrals of products of unimodal func-

tions.

Lemma 4 Suppose f and g are two non-negative integrable functions. Assume f and g are

symmetric about a common mode m ∈ R, i.e. f(m−z) = f(m+z) and g(m−z) = g(m+z)

for all z ∈ R. Also assume f and g are (weakly) unimodal about m, i.e. for 0 ≤ t1 ≤ t2 <∞,

f(m + t1) ≥ f(m + t2) and g(m + t1) ≥ g(m + t2). Let I(α) =
∫
f(x) g(x + α) dx. Then

(a) I is (weakly) maximised at α = 0, i.e. for all α ∈ R, I(0) ≥ I(α). Also (b) if in

addition f and g are both strongly unimodal in a neighbourhood of m, i.e. for some δ > 0,

f(m+ s) < f(m+ r) and g(m+ s) < g(m+ r) whenever 0 ≤ r < s ≤ δ, then I(0) > I(α).

Proof. For each n ∈ N, approximate g from below by simple functions, as follows. For

i = 1, 2, 3, . . ., let un,i = inf{f(x) : |x − m| ≤ i2−n}, and let βn,i = un,i − un,i+1 ≥ 0. Let

Jn,i(x) = 1|x−m|≤i2−n . Then let fn(x) =
∑∞

i=1 βn,i Jn,i(x). Similarly let vn,i = inf{g(x) :

|x − m| ≤ i2−n}, and γn,i = vn,i − vn,i+1 ≥ 0, and gn(x) =
∑∞

i=1 γn,i Jn,i(x). Then by the
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Monotone Convergence Theorem, I(α) = limn→∞
∑∞

i=1

∑∞
j=1 βn,iγn,j

∫
Jn,i(x) Jn,j(x+α) dx,

where βn,iγn,j ≥ 0. Hence, part (a) follows from Lemma 3(a).

For part (b), let α > 0, and let d = f(m+ min(δ, α/2)) and e = g(m+ min(δ, α/2)), and

d′ = f(m + 1
2

min(δ, α/2)) and e′ = g(m + 1
2

min(δ, α/2)). Then by the strong unimodality,

f(m) > d′ > d and g(m) > e′ > e, but f(x) ≤ d and g(x) ≤ e whenever |x − m| ≥ α/2.

Now, for any x ∈ R, either |x − m| ≥ α/2 or |x + α − m| ≥ α/2 or both. Thus, for all

x ∈ R, either f(x) ≤ d or g(x + α) ≤ e or both, so the product f(x) g(x) can never be

more than max[d g(x), e f(x)]. It follows from Lemma 3(b) that in the above expansion,

βn,iγn,j
∫
Jn,i(x) Jn,j(x + α) dx = 0 whenever i2−n < α/2 and j2−n < α/2. Furthermore

by Lemma 3(a) again, for every term of the expansion, βn,iγn,j
∫
Jn,i(x) Jn,j(x + α) dx ≤

βn,iγn,j
∫
Jn,i(x) Jn,j(x) dx. Hence, if we let h(x) = f(x) g(x) when f(x) < d or g(x) < e

or both, and h(x) = max[d g(x), e f(x)] otherwise, then from the above expansion, I(α) ≤∫
h(x) dx. But for |x| ≤ 1

2
min(δ, α/2), we have that f(x) ≥ d and g(x) ≥ e, so h(x) =

max[d g(x), e f(x)], whence

f(x) g(x)−h(x) = f(x) g(x)−max[d g(x), e f(x)] = min[f(x) g(x)−d g(x), f(x) g(x)−e f(x)]

= min[(f(x)− d) g(x), f(x) (g(x)− e)] ≥ min[(d′ − d) e′, d′ (e′ − e)] .

We then compute that

I(0)− I(α) ≥
∫ ∞
x=−∞

f(x) g(x) dx −
∫ ∞
x=−∞

h(x) dx =

∫ ∞
x=−∞

[f(x) g(x)− h(x)] dx

≥
∫ 1

2
min(δ,α/2)

x=− 1
2
min(δ,α/2)

[f(x) g(x)− h(x)] dx ≥
∫ 1

2
min(δ,α/2)

x=− 1
2
min(δ,α/2)

min[(d′ − d) e′, d′ (e′ − e)] dx

= min(δ, α/2) min[(d′ − d) e′, d′ (e′ − e)] > 0 ,

as claimed.

Remark. If g is a C1 function, then it is tempting to try to prove Lemma 4 by differentiating

under the integral sign and using symmetry, viz.

I ′(α) =

∫ ∞
−∞

f(x) g′(x+ α) dx =

∫ m

−∞
[f(x) g′(x+ α) + f(2m− x) g′(2m− x+ α)] dx

=

∫ m

−∞
f(x) [g′(x+ α) + g′(2m− x+ α)] dx .

11



Now, if α > 0 and x ≤ m, then |m−(2m−x+α)| = |m−(x−α)| > |m−(x+α)|, i.e. x+α is

closer to the modem than 2m−x−α is. This suggests that perhaps g′(x+α)+g′(2m−x+α) <

0, which would give the result. However, in fact this inequality need not be true, and it is

not clear how to complete a proof in this manner (even assuming that g is C1).

Proof of Theorem 2. This follows by combining Lemma 2(a) and Lemma 4(a) with (4).

Proof of Theorem 4. This follows by combining Lemma 2(b) and Lemma 4(b) with (4).

Proof of Corollary 1. Suppose we begin with a1 = a2 = a3 = m. It follows from The-

orem 2 that no one party can improve their expected payoff by switching to another value

ai ∈ R. It remains only to show that no one party can improve their expected payoff by

switching to ai = OUT (having payoff 0). If OUT is not permitted then this is immedi-

ate. Otherwise, let pi be the probability that Party i receives the highest vote share when

a1 = a2 = a3 = m. Then if g1 = g2 = g3 then each pi = 1/3, and in general it follows from

(A4) that each pi > 0 (e.g. p1 > 0 since there is positive probability that m < x1 < x2 < x3).

Then if α > (1 − p)/p where p = min(p1, p2, p3) > 0, then when a1 = a2 = a3 = m each

expected payoff αpi + (−1)(1− pi) > 0, so switching to OUT would decrease their expected

payoff.

Proof of Corollary 2. This follows from Theorem 4 just as in the proof of Corollary 1.

6 Explicit Computations

To make the previous theoretical results more concrete, we now do some explicit compu-

tations. Let v be the Uniform[0,1] voter density, with m = 1/2 and M = 1/3. Let

WinProb(z) = P[Party 3 wins | a1 = a2 = m, x3 = z]

be the probability that Party 3 receives the most votes if they come in at the (definite)

position x3 = z, while Parties 1 and 2 attempt to come in at a1 = a2 = m, and are then

12



subject to an uncertainty density g1 = g2 = g for various choices of g which are supported

on [m −M,m + M ] = [1/6, 5/6], and which are symmetric and unimodal about m = 1/2.

(Thus, WinProb(z) = W (z −m) with W (t) as before.)

Theorems 1 and 3 above state in this case that, if the assumptions are satisfied, then

WinProb(z) should be symmetric and unimodal about m = 1/2. We now proceed to verify

that in various specific examples.

6.1 Preliminary Computations

Under the above circumstances, Party 3 (which comes in at z) wins if and only if one

of the following mutually exclusive situations arises (where for simplicity we write x for x1,

and y for x2, and z for x3):

1. x < y < z, and 1− y+z
2
> x+y

2
.

2. y < x < z, and 1− x+z
2
> x+y

2
.

3. z < y < x, and y+z
2
> 1− x+y

2
.

4. z < x < y, and x+z
2
> 1− x+y

2
.

For fixed x and y, let pi(z) be the probability of situation i above, for i = 1, 2, 3, 4. Then

clearly p2(z) = p1(z) and p4(z) = p3(z). Furthermore p3(z) = p1(1− z). Hence,

WinProb(z) := = p1(z) + p2(z) + p3(z) + p4(z) = 2 p1(z) + 2 p1(1− z) . (5)

So, to compute WinProb(z), it suffices to compute p1(z) for all z ∈ [1/6, 5/6].

The assumptions and conditions for situation 1 above imply that x < y < z, and y <

1− (x+ z)/2, and also x < 2− 2y − z < 2− 2x− z whence x < 2−z
3

. Hence,

p1(z) =

∫ min(z,(2−z)/3)

x=0

g(x− 1/2)

∫ min(z,1−(x+z)/2)

y=x

g(y − 1/2) dy dx (6)

Formulae (5) and (6) then give, in principle, an expression for WinProb(z). We consider

three specific cases.

6.2 Uniform Uncertainties

Suppose first that g corresponds to the Uniform[−0.1, 0.1] density, i.e. g(x) ≡ 5 12/5≤x≤3/5,

so that Parties 1 and 2 have positions which are Uniform[2/5, 3/5]. In this case, after
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considerable effort (with symbolic algebra assistance from the Mathematica computation

system, Wolfram 1988), we compute that

WinProb(z) =



0, z ≤ 1/5
1
6
(1− 5z)2, 1/5 ≤ z ≤ 2/5

5
6
(5− 26z + 35z2), 2/5 ≤ z ≤ 7/15

1
3
(−61 + 250z − 250z2), 7/15 ≤ z ≤ 8/15

5
6
(14− 44z + 35z2), 8/15 ≤ z ≤ 3/5

1
6
(4− 5z)2, 3/5 ≤ z ≤ 4/5

0, z ≥ 4/5

This function is graphed in Figure 1. As can be seen from the graph, the function is indeed

symmetric and (strongly) unimodal about m = 1/2, consistent with Theorems 1 and 3.
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6.3 Quadratic Uncertainties

Suppose instead that g(x) = 1500(0.1 − |x|)21−0.1≤x≤0.1 is a quadratic density function

on [−0.1, 0.1].

In this case, it appears quite challenging to compute WinProb(z) exactly from the for-

mulae (5) and (6). But it is more straightforward to do numerical calculations to illustrate

the values of WinProb(z). The results are shown in Figure 2. As can be seen from the figure,

the function does indeed appear to be symmetric and (strongly) unimodal about m = 1/2,

as it must be by Theorems 1 and 3.

6.4 Tent-Shaped Uncertainties

Finally, suppose that g(x) = 100(0.1−|x|)1−0.1≤x≤0.1 is a “tent-shaped” density function

on [−0.1, 0.1].

In this case, it again appears quite challenging to compute WinProb(z) exactly from (5)
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and (6). But again it is straightforward to do numerical calculations of WinProb(z). The

results are shown in Figure 3. As can be seen from the figure, the function again appears to

be symmetric and (strongly) unimodal about m = 1/2, as per Theorems 1 and 3.

7 Counter-Examples

We next consider a few simple counter-examples if our assumptions are violated.

7.1 Asymmetric Counter-Examples

We first illustrate that if the uncertainty densities gi are not required to be symmetric,

then our results may be false (even if each gi has mean zero). We again assume that v is the

Uniform[0,1] density, with median m = 1/2 = 0.5.

For a first illustration, suppose the uncertainty is such that voters perceive each party’s
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position as 0.01 lower with probability 9/10, or 0.09 higher with probability 1/10 (so the

uncertainty has mean zero). Suppose Parties 1 and 2 attempt to come in at a1 = a2 =

m = 0.5, and Party 3 attempts to come in at a3 = 0.51. Then Party 3 will win if all three

parties’ perceived positions are 0.01 lower (since then Parties 1 and 2 will be perceived at

0.49, while Party 3 will be perceived at 0.50). Hence, Party 3 will win with probability at

least (9/10)3 = 0.729 > 1/3. It follows that Party 3 would prefer to attempt to come in at

0.51 than at 0.50 (where they would have probability 1/3 of winning, by symmetry). Hence,

in this case, it is not an equilibrium to have all three parties attempt to come in at 0.5.

Now, the uncertainty densities in this first illustration are not unimodal. However, they

can be modified to be unimodal, while remaining mean-zero, while still leading to essentially

the same conclusions as before. Indeed, let

g(x) =


0, x < −0.01

90, −0.01 ≤ x < 0

10/9, 0 ≤ x < 0.09

0, x ≥ 0.1

Then
∫
g(x) dx = 90(0.01) + (10/9)(0.09) = 1, and g ≥ 0, so g is a valid density function.

Also
∫
x g(x) dx = 90(0.01)(−0.005) + (10/9)(0.09)(0.045) = 0, so g has mean 0. Also, g is

(weakly) unimodal around 0 by inspection.

Suppose again that Parties 1 and 2 attempt to come in at a1 = a2 = m = 0.5, and

Party 3 attempts to come in at a3 = 0.51. Then, regarding g as a mixture of two uniform

distributions, we can say that with probability (0.9)3 = 0.729, x1 and x2 are each distributed

(independently) as Uniform[0.49, 0.5], while x3 is distributed as Uniform[0.5, 0.51]. In this

case, Party 3 receives vote share equal to 1 − (x3 + max(x1, x2))/2, while whichever of

Party 1 and 2 has a lower position receives vote share of (x1 + x2)/2. So, Party 3 wins if

1− (x3 + max(x1, x2))/2 > (x1 +x2)/2, i.e. 2−x3−max(x1, x2) > x1 +x2. This is computed

to have probability 8/9. Thus, by attempting to come in at a3 = 0.51, Party 3 wins with

probability at least (0.9)3(8/9) = 81/125 = 0.648, which is still much greater than the win

probability 1/3 that Party 3 would obtain (by symmetry) by attempting to come in at 0.5.

We conclude that if the uncertainty densities are required to be unimodal and mean zero

but not symmetric, then our theorems are false, and in general the choice ai = m might not

give the highest win probabilities.
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7.2 A Large-n Counter-Example

Suppose our assumptions hold, but n is larger than 3. Do our theorems still hold in that

case? The answer to this question is also no in general.

For example, let v again be the Uniform[0,1] density (so that (A1) is satisfied with m =

1/2), let the number of parties be n, and let the common uncertainty density g be symmetric

about 0. Suppose g has the properties that if X ∼ g, then P(−1/n2 ≤ X ≤ 0) ≥ 1/4, and

P(X ≥ 0.1) = P(X ≤ −0.1) = 1/n, and P(X ≥ 0.1 − 1/n2) ≤ 1/n + 1/n2, and that

(A2) and (A3) and (A4**) are satisfied, as can easily be arranged by adjusting the density

g appropriately.

Suppose for this example that parties 1, 2, . . . , n− 1 all attempt to come in at ai = m =

1/2. Then if Party n also attempts to come in at an = m = 1/2, then by symmetry they

will win with probability 1/n. But suppose instead that Party n attempts to come in at

an = 0.6. We claim that, for large enough n at least, this will give Party n a win probability

which is larger than 1/n.

Indeed, suppose it happens that Party n has a perceived position xn ∈ [0.6− 1/n2, 0.6],

and precisely two distinct parties i and j have actual perceived positions xi, xj ≤ 0.4, and all

the other parties’ actual perceived positions satisfy xi ∈ (0.4, 0.6−1/n2), If so, then Party n

will have a win region Rn ⊇ [0.6, 1] and hence a vote share of at least 0.4, while all other

parties’ vote shares will be < 0.4, so Party n will win.

But this event has probability ≥ (1/4)
(
n−1
2

)
(1/n)2(1− 2/n− 1/n2)n−3. This probability

equals 0.0205 when n = 4, or 0.0188 when n = 5, or 0.0181 when n = 6, etc. More impor-

tantly, as n → ∞, this probability converges to (1/8)e−2
.
= 0.0169. So, for all sufficiently

large n, this probability is greater than 1/n. This means that for large enough n, if Par-

ties 1, 2, . . . , n − 1 all attempt to come in at ai = m = 1/2, then Party n would prefer to

attempt to come in at an = 0.6 than at an = m = 1/2.

This demonstrates that our theorems about ai = m giving the highest win probabilities,

proved herein for n = 3, do not hold for sufficiently large n.
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7.3 The Necessity of the Condition (A3)

Our assumption (A3) is that the perceived positions are not too far from the attempted

positions, which seems reasonable. Nevertheless, we did wonder if it might be possible to

prove our theorems without assuming (A3). However, after much effort, we concluded that

this is impossible, as the following simple counter-examples show.

Let v be the Uniform[−1, 1] density (so m = 0), with a1 = a2 = 0. Suppose first that

the uncertainties are such that x1 = −1 or +1 with probability 1/2 each, and x2 = −0.4 or

+0.4 with probability 1/2 each. Then if x3 = 0, then Party 3 wins if and only if x1 and x2

have the same sign, thus with probability 1/2. But if x3 = 0.2, then Party 3 wins in those

cases and also if x1 = −1 and x2 = +0.4 (since in that case Party 3’s winning region is

[−0.6, 0.3] with vote share 0.45, while Party 1’s winning region is [−1,−0.6] with vote share

0.2, and Party 2’s winning region is [0.3, 1] with vote share 0.35), so Party 3’s win probability

increases from 1/2 to 3/4, contradicting the conclusions of each of Theorems 1, 2, 3, and 4

in this case.

Now, these uncertainty measures do not satisfy our other assumptions either. However,

the counter-example can be modified so they do. Specifically, let g1 be symmetric and

supported on [−1.01,−0.99]∪ [−0.01, 0.01]∪ [0.99, 1.01], let g2 be symmetric and supported

on [−0.41,−0.39] ∪ [−0.01, 0.01] ∪ [0.39, 0.41], and let g3 be symmetric and supported on

[−0.01, 0.01], and with with
∫ 0.01

−0.01 gi(x) dx ≤ 0.01 for i = 1, 2 (so the amount of mass of g1

and g2 near zero is very small). Then it is easily checked that if |x3| ≤ 0.01, then at least for

|x1| > 0.01 and |x2 > 0.01, Party 3 wins if and only if x1 and x2 have the same sign, hence

with probability within 0.02 of 1/2. But if 1.99 < x3 < 2.01, then at least for |x1| > 0.01

and |x2 > 0.01, Party 3 wins if x1 and x2 have the same sign, and also if x1 < 0 and x2 > 0,

hence with probability within 0.02 of 3/4. It follows that we still have

P[Party 3 wins | a1 = a2 = 0, x3 = 0] < P[Party 3 wins | a1 = a2 = m, x3 = 0.2] ,

and also

P[Party 3 wins | a1 = a2 = 0, a3 = 0] < P[Party 3 wins | a1 = a2 = m, a3 = 0.2] .

Now, this example certainly satisfies (A1) and (A2). Furthermore, by adjusting the forms

of the gi appropriately within their support intervals, we can ensure that g1 and g2 satisfy

(A4), and that g3 satisfies (A4**). However, g1 does not satisfy (A3) which would require
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that |xi − ai| ≤ M := 2/3. Hence, this shows that Theorems 1, 2, 3, and 4 all fail if the

single assumption (A3) is omitted.

Furthermore, this example still satisfies |xi − ai| ≤ 1, i.e. it satisfies (A3) but with

M = 2/3 replaced by the constant 1. Indeed, for any c > 0, if we adjust the counter-

example to instead let v be Uniform[−c, c], and divide each of the above position values

by c, then the counter-example still holds exactly as before, but now with |xi − ai| ≤ c,

i.e. satisfying (A3) with M replaced by c. This shows that it is not possible to replace the

uncertainty bound M in (A3) by any fixed value c > 0 which does not depend on v. Rather,

it is necessary that the bound M be specified in terms of the scale implied by v (which is,

indeed, the only meaningful scale available to us in this model).
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