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Abstract. We consider Markov chains {Γn} with transitions of the form
Γn = f(Xn, Yn) Γn−1 + g(Xn, Yn), where {Xn} and {Yn} are two inde-
pendent i.i.d. sequences. For two copies {Γn} and {Γ′n} of such a chain, it
is well known that L(Γn)−L(Γ′n) ⇒ 0 provided E[log(f(Xn, Yn))] < 0,
where ⇒ is weak convergence. In this paper, we consider chains for
which also ‖Γn − Γ′n‖ → 0, where ‖ · ‖ is total variation distance. We
consider in particular how to obtain sharp quantitative bounds on the
total variation distance. Our method involves a new coupling construc-
tion, one-shot coupling, which waits until time n before attempting to
couple. We apply our results to an auto-regressive Gibbs sampler, and
to a Markov chain on the means of Dirichlet processes.
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1. Introduction.

In this paper, we consider Markov chains {Γn} of the form

Γn = f(Xn, Yn) Γn−1 + g(Xn, Yn) , (1)

where {Xn} and {Yn} are two independent i.i.d. sequences. (This fits into the general

framework of a stochastic recursive sequence; see e.g. Borovkov and Foss, 1992; Propp and
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Wilson, 1996; Foss and Tweedie, 1998; Diaconis and Freedman, 1999; Jarner and Tweedie,

2000a.)

For two copies {Γn} and {Γ′n} of such a chain, it is well known that L(Γn)−L(Γ′n) ⇒

0 provided E[log(f(Xn, Yn))] < 0, where ⇒ is weak convergence (see e.g. Dubins and

Freedman, 1966; Elton, 1990; Arnold and Crauel, 1992; Diaconis and Freedman, 1999).

In this paper, we consider chains for which also ‖Γn−Γ′n‖ → 0, where ‖·‖ is total vari-

ation distance. (Of course, some conditions are necessary, otherwise e.g. one distribution

could be always absolutely continuous while the other is always discrete.) We consider in

particular how to obtain quantitative bounds on the total variation distance (in the spirit

of Meyn and Tweedie, 1994; Rosenthal, 1995; Roberts and Tweedie, 1999).

We present a new coupling construction, which we call one-shot coupling, for bounding

the total variation distance. We are sometimes able to obtain quantitative bounds on

total variation distance which are similar to corresponding quantitative bounds on weak

convergence.

We apply our results to two substantive examples. The first (Section 6) is an auto-

regressive Gibbs sampler, with updates given by

Γn = XnYnΓn−1 + Yn ,

where {Xn} and {Yn} are i.i.d. with Xn proportional to a chi-squared random variable,

and Yn an inverse gamma random variable. The second (Section 7) is a Markov chain on

the means of Dirichlet processes, given by

Γn = (1− Yn)Xn + YnΓn−1 ,

where {Xn} are i.i.d. ∼ α0 for some probability measure α0 on R, and {Yn} are i.i.d.

∼ Beta(a, 1) where a > 0. (This corresponds to a reference measure α = aα0; this process

has been studied by Feigin and Tweedie (1989) and Guglielmi and Tweedie (2000) among

others.) Each of these examples clearly fits into the framework (1).

For each of these examples, we obtain a bound of the form

‖Γn − Γ′n‖ ≤ C(Γ0,Γ′0) (E[f(X1, Y1)])
n

. (2)
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Comparing this with (1), we see that (E[f(X1, Y1)])
n is “essentially” the rate at which

|Γn − Γ′n| → 0 pointwise. That is, we see from (1) that, if we choose X ′
n = Xn and

Y ′
n = Yn, then

|Γn − Γ′n| = |Γ0 − Γ′0|
n∏

i=1

f(Xi, Yi) .

Hence, for large n, by taking logs and using the strong law of large numbers,

|Γn − Γ′n| ≈ |Γ0 − Γ′0| en E[log f(X1,Y1)] .

Now, if log were a linear function, so that E[log f(X1, Y1)] = log E[f(X1, Y1)], then we

would have |Γn − Γ′n| ≈ |Γ0 − Γ′0| (E[f(X1, Y1)])
n, which would exactly mimic the total

variation distance bound (2). We can therefore say that, bounds of the form (2) (such as

the bounds in the examples of Sections 6 and 7 below) “essentially” match the asymptotic

pointwise convergence rate, aside from the non-linearity of the log function.

Remark. In fact, in (1), it suffices to replace f(Xn, Yn) by An, and g(Xn, Yn) by

h(An, Cn), where where {An} and {Cn} are two independent i.i.d. sequences. (Alterna-

tively, we may instead replace g(Xn, Yn) by An, and f(Xn, Yn) by h(An, Cn).) Indeed, to

see this, let An = f(Xn, Yn) and Bn = g(Xn, Yn), and let Cn be i.i.d. uniform on [0,1],

independent of {Am}. Then we can replace Bn by B′
n = h(An, Cn), where h(a, c) is the

inverse c.d.f. of the conditional distribution of Bn given An = a, evaluated at the point c.

In symbols,

h(a, c) = F−1
Bn|An=a(c)

This means that B′
n|An has the same distribution as Bn|An. Therefore, the pair (An, Bn)

has the same distribution as (An, B′
n). Hence, can replace Bn by B′

n, which gives the

result. However, we do not make use of the result in this paper.
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2. A Simple Illustrative Example.

To illustrate the basic idea of one-shot coupling, we present a simple illustrative ex-

ample, in two variants.

Suppose first that a Markov chain {Γn} is defined simply by

Γn =
1
2

Γn−1 . (3)

That is, this chain involves no randomness at all. (It corresponds to a special case of (1) for

which f ≡ 1
2 and g ≡ 0.) Hence, if L(Γ0) is a point-mass, then L(Γn) will be a point-mass

for all n. Furthermore, if Γ0 = γ and Γ′0 = γ′ 6= γ, then clearly |Γ′n − Γn| = 2−n|γ′ − γ|

for all n. Hence Γ′n − Γn → 0 with probability 1, so also Γ′n − Γn ⇒ 0 where ⇒ is weak

convergence. On the other hand, ‖Γ′n − Γn‖ = 1 for all n so that ‖Γ′n − Γn‖ 6→ 0, where

‖ · · · ‖ is total variation distance.

Suppose now that we replace (3) by

Γn =
1
2

Γn−1 + Yn , (4)

where {Yn} are i.i.d. ∼ N(0, 3
4 ). (This chain is a special case of (1) in which the {Xn} are

ignored; it was discussed by Schervish and Carlin, 1992; Rosenthal, 1995.) This chain has

the stationary distribution N(0, 1), to which it converges exponentially quickly in total

variation distance. Indeed, if Γ0 = γ, then L(Γn) = N (2−nγ, 1− 4−n). Furthermore, it

follows easily from Lemma 1 below that

‖N(a, v)−N(b, v)‖ = 1− 2Φ(−1
2
|b− a| /

√
v) , (5)

where Φ(x) = 1√
2π

x∫
−∞

e−s2/2ds is the cumulative distribution function of a standard nor-

mal; hence,

‖Γ′n − Γn‖ = 1− 2Φ
(
−2−n−1|γ′ − γ|

(
1− 4−n

)−1/2
)

.

In this simple example, we therefore get an exact expression for the total variation distance

to stationarity after n steps of the Markov chain. However, if we were unable to do this

explicit computation, then how could we construct a coupling to obtain a good bound on

‖Γ′n − Γn‖?
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The one-shot coupling method would be as follows. We would simultaneously con-

struct Γn = 1
2Γn−1 + Yn and Γ′n = 1

2Γ′n−1 + Y ′
n, by (a) letting Y ′

m = Ym for m < n; and

(b) attempting to choose the pair (Yn, Y ′
n) so that Y ′

n = Yn + 1
2 (Γn−1 − Γ′n−1), to ensure

that Γ′n = Γn.

Now, we cannot do step (b) with probability 1 while simultaneously ensuring that

Yn ∼ N(0, 3
4 ) and Y ′

n ∼ N(0, 3
4 ). Indeed, by (5), step (b) can only be made to succeed

with probability 1− 2Φ(− 1
2 |Γ

′
n−1 − Γn−1| /

√
3/4). Hence, the probability of a successful

coupling is given by

p = E
[
1− 2Φ

(
−1

2
|Γ′n−1 − Γn−1| /

√
3/4

)]
,

where the expectation is taken over the joint distribution of (Γn−1,Γ′n−1). It then follows

from the standard coupling inequality (see e.g. Lindvall, 1992) that ‖Γn − Γ′n‖ ≤ 1− p.

If the joint distribution of (Γn−1,Γ′n−1) is known explicitly (as in this simple example),

then p can be computed precisely. In a more complicated example (such as those of

Sections 6 and 7 below), p would instead be bounded from below. In any case, the one-

shot coupling construction provides a method of bounding the total variation distance

‖Γn − Γ′n‖ between two copies of the Markov chain.

This one-shot coupling method appears to be more natural and more powerful for this

sort of Markov chain (in which Γ′n − Γn ⇒ 0), than is the conventional multiple-attempt

minorisation coupling considered for example in Rosenthal (1995). Indeed, in that paper,

for the chain (4), the best asymptotic convergence rate that could be obtained was 0.964,

which is far too high. One-shot coupling avoids the wastage of attempting (and perhaps

failing) to couple over and over again. For more about comparing the two methods, see

the remark at the end of the next section.

5



3. One-Shot Coupling.

Consider two different copies {Γn} and {Γ′n} of a Markov chain, with the same tran-

sition probabilities but with different starting distributions L(Γ0) and L(Γ′0). We suppose

as in (1) that Γn = f(Xn, Yn) Γn−1 + g(Xn, Yn) and Γ′n = f(X ′
n, Y ′

n) Γ′n−1 + g(X ′
n, Y ′

n),

where {Xn} and {Yn} are two independent i.i.d. sequences, and where the two collections

{Xn, Yn} and {X ′
n, Y ′

n} each have the same pre-specified distribution. However, the joint

definition of these two different collections is arbitrary, and may be chosen as convenient

to establish convergence properties.

If we simply choose X ′
n = Xn and Y ′

n = Yn for all n, and if E[log(f(Xn, Yn))] < 0,

then it is well-known (and easily seen) that |Γ′n − Γn| → 0 with probability 1, so that

L(Γn)− L(Γ′n)) ⇒ 0, where ⇒ is weak convergence (see e.g. Billingsley, 1995).

Suppose on the other hand that we wish to bound the total variation distance

‖Γn − Γ′n‖ ≡ sup
A⊆X

|P(Γn ∈ A)−P(Γ′n ∈ A)| .

The well-known coupling inequality (see e.g. Lindvall, 1992) says that

‖Γn − Γ′n‖ ≤ P(Γn 6= Γ′n) ,

for any joint distribution of Γn and Γ′n, i.e. for any joint construction of the two collections

{Xn, Yn} and {X ′
n, Y ′

n}. Hence, our goal shall be to jointly define the two collections

{Xn, Yn} and {X ′
n, Y ′

n}, in such a way as to make P(Γ′n = Γn) as large as possible (for

some particular, fixed value of n).

We shall adopt a strategy which we shall call one-shot coupling. It may be thought of

informally as “don’t shoot until you see the whites of their eyes”. That is, we shall choose

X ′
m = Xm and Y ′

m = Ym for m < n. It is only on the n’th iteration that we shall attempt

to force the two chains to become equal.

On the nth iteration, we shall adopt one of the following two strategies.

1. X-first. Choose X ′
n = Xn. Then, attempt to jointly choose Yn and Y ′

n to make

Γn = Γ′n, i.e. to solve the equation

f(Xn, Yn) Γn−1 + g(Xn, Yn) = f(Xn, Y ′
n) Γ′n−1 + g(Xn, Y ′

n) .
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2. Y-first. Choose Y ′
n = Yn. Then, attempt to jointly choose Xn and X ′

n to make

Γn = Γ′n, i.e. to solve the equation

f(Xn, Yn) Γn−1 + g(Xn, Yn) = f(X ′
n, Yn) Γ′n−1 + g(X ′

n, Yn) .

We can also express these two strategies symbolically, as follows. Let h(x, y, γ) =

f(x, y)γ + g(x, y), and let h
(X)
y,γ (x) = h(x, y, γ) and h

(Y )
x,γ (y) = h(x, y, γ). Assume for

notational convenience that h(X) and h(Y ) are invertible. For our coupling construction,

we first choose Xn and Yn from their appropriate distributions. Then, under the X-first

strategy, we set X ′
n = Xn and attempt to set Y ′

n = h
(Y )−1

Xn,Γ′
n−1

(h(Xn, Yn,Γn)). Under the

Y-first strategy, we instead set Y ′
n = Yn and attempt to set X ′

n = h
(X)−1

Yn,Γ′
n−1

(h(Xn, Yn,Γn)),

Which of the two strategies is better, and how effective it is, will depend on the

example considered. (We consider two examples below, one based on an auto-regressive

Gibbs sampler, and the other based on Dirichlet process means.) Obviously these two

strategies are formally equivalent, and amount to simply re-labeling the Xn as Yn and

vice-versa. Thus, for notational simplicity we focus on the X-first strategy below.

Remark. The one-shot coupling strategy considered in this paper is somewhat related

to coupling based on drift and minorisation conditions, as studied previously (e.g. Meyn

and Tweedie, 1993, 1994; Rosenthal, 1995; Roberts and Tweedie, 1999). However, in

conventional drift/minorisation coupling, the two processes attempt to couple every time

they have reached some fixed small set C, and if they fail they seek another opportunity

to try again. In our one-shot coupling, the processes merely try to get close to each other,

not to some fixed set (for related ideas see Jarner and Tweedie, 2000b), and furthermore

they wait until the last possible moment (i.e., the target end time n) before attempting to

couple, rather than attempting as often as possible before time n.
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4. Probability of successful coupling.

Of course, with either of these two strategies, we are required to overall jointly choose

(X ′
n, Y ′

n) from their correct joint distribution. It will not in general be possible to do this

while at the same time always assuring that Γ′n = Γn.

To control our probability of success, we use the following general (and standard)

lemmas about coupling random variables with densities.

Lemma 1. Given distributions µ and ν, with densities ξ1 and ξ2, it is possible to choose

(Z1, Z2) such that Z1 ∼ µ, Z2 ∼ ν, and P(Z2 = Z1) ≥ ε, where

ε =
∫
X

min [ξ1(z), ξ2(z)] dz .

Proof. Assume ε > 0 (otherwise the result is trivial). Let Q(·) be the probability distri-

bution having density ε−1 min [ξ1(z), ξ2(z)]. Toss an ε-coin. If it comes up heads, choose

W ∼ Q(·) and set Z1 = Z2 = ε. If it comes up tails, choose Z1 ∼ (1− ε)−1 (µ(·)− ε Q(·))

Z2 ∼ (1 − ε)−1 (ν(·)− ε Q(·)), conditionally independently. Then it is easily verified that

overall Z1 ∼ µ(·) and Z2 ∼ ν(·), and furthermore P(Z2 = Z1) ≥ ε, as claimed.

Using this lemma together with the usual change-of-variable theorem, and replacing

Z1 with ζ(Z1), we obtain

Lemma 2. Given distributions µ and ν, with densities ξ1 and ξ2, and a C1 one-to-one

function ζ, it is possible to choose (Z1, Z2) such that Z1 ∼ µ, Z2 ∼ ν, and P(Z2 = ζ(Z1)) =

ε, where

ε =
∫
X

min [ξ1(z), ξ2(ζ(z)) |ζ ′(z)|] dz .

Now, for the X-first strategy (say), suppose it is known that Xn = x and Γn−1 = γ

and Γ′n−1 = γ′. If Yn has density ξ, and φ is differentiable where φ(y) ≡ φx,γ,γ′(y) =

h(Y )−1

x,γ′ (h(x, y, γ))), then (by Lemma 2) the probability of success of the X-first strategy

at time n is equal to∫
X

min
[
ξ(y), ξ(φx,γ,γ′(y))Jx,γ,γ′(y)|φ′x,γ,γ′(y)|

]
dy .

We thus obtain
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Theorem 3. If Yn has density ξ, and φx,γ,γ′ is differentiable, then the probability of

successful coupling at time n is equal to∫
X

min
[
ξ(y), ξ(φx,γ,γ′(y)) |φ′x,γ,γ′(y))|

]
dy .

5. Delayed one-shot coupling.

For the above coupling construction (with the X-first strategy, say), it is seen that the

probability of success of the coupling when choosing Yn and Y ′
n depends on the just-chosen

value of Xn (which was chosen to be equal to X ′
n).

To deal with this, we shall sometimes use a strategy of delayed one-shot coupling as

follows. After choosing X ′
m = Xm, we shall check if a certain condition Cm is satisfied.

(Here Cm may depend on Xm,Γm,Γ′m.) If Cm is satisfied, we go ahead and attempt to

use Ym and Y ′
m to couple, as above. If it is not, then we instead choose Y ′

m = Ym, and

wait until time m + 1 to again attempt to couple.

Suppose we begin our attempted coupling at time n, and allow up to c chances to

attempt to couple. Suppose that for all m ≥ n, the probability that an attempted coupling

succeeds at time m, given that Cm has occurred, is at least ε. Suppose further that the

probability of Cm is at least δ for all m ≥ n, even conditional on any past failed coupling

attempts. Then at time m, with probability at least 1− (1− δ)c we will have a chance to

attempt to couple. Hence, there will be probability at least ε[1 − (1 − δ)c] of successfully

coupling by time n + c.

We thus obtain

Theorem 4. Let n ∈ N. Suppose P(Cm | Fm−1) ≥ δ for all m ≥ n, where Fi =

σ(Γ0,Γ′0, X0, . . . , Xi, Y0, . . . , Yi). Suppose further that

P(couple at time m |Cm,Fm−1) ≥ ε , m ≥ n .

Then with the above delayed one-shot coupling scheme,

P(couple by time n + c) ≥ ε[1− (1− δ)c] .
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6. A Gibbs Sampler Example.

Suppose that Y1, . . . , YJ ∼ N(µ, τ−1), where {Yi}J
i=1 are data (J ≥ 2) and where µ

and τ are unknown, Assume µ and τ have flat priors on R and R+, respectively. Consider

running a Gibbs sampler on the pair (µ, τ). Then the updates for µ are Normal, and the

updates for τ are Gamma.

Given a sequence of i.i.d. Gamma((J + 2)/2, 1) random variables, {Gi, i = 1, 2 . . .},

and independent i.i.d. standard normal variables {Ni, i = 1, 2, . . .}, we can implement the

algorithm according to the following recursions. Given µt and τt,

1. set µt+1 = ȳ + Ni+1/(Jτt)1/2 ∼ π(µ|τt);

2. set τt+1 = Gt+1 ×
(
S/2 + (J/2)(ȳ − µt+1)2

)−1 ∼ π(τ |µt+1) .

By combining these two updates, we see that τ−1
t is a Markov chain which iterates following

a form of random auto-regression:

τ−1
t+1 = [N2

t+1/(2Gt+1)]τ−1
t + [S/(2Gt+1)] . (6)

We can write this equation as

Γt = XtYtΓt−1 + Yt ,

where Γt = τ−1
t = σ2

t , X = N2
t /S, and Yt = S/2Gt. Here Γt ≥ 0 and Xt ≥ 0.

Now, to get Γt = Γ′t, we need

X ′
tY

′
t Γ′t−1 + Y ′

t = XtYtΓt−1 + Yt .

We adopt the X-first strategy of Section 3. That is, we choose X ′
t = Xt, and attempt to

choose Yt and Y ′
t to make Γ′t = Γt.

To proceed, we set Rt = Y ′
t /Yt and Dt = |Γ′t−1 − Γt−1|, so we need

XtRtΓ′t−1 + Rt = XtΓt−1 + 1 ,

or

Rt =
XtΓt−1 + 1
XtΓ′t−1 + 1

.
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It follows that

|Rt − 1| =
Xt|Γ′t−1 − Γt−1|

1 + XtΓ′t−1

≤ XtDt ,

where we have used that Xt ≥ 0 and Γ′t−1 ≥ 0.

Furthermore, Xt and Dt are independent. Hence, the probability of not coupling by

time t is at most

E [L(Rt − 1)] ≤ E [L∗XtDt] = L∗E[Xt]E[Dt] ,

where L(ε) is the total variation distance between Z and (1 + ε)Z when Z ∼ Γ(J
2 + 1, 1),

and L∗ = sup0<|ε|<∞ L(ε)/|ε|.

Here E[Xt] = 1 is easy to compute. Also Dt is |Γ0 − Γ′0| times a product of previous

N ’s and G’s, so it isn’t hard to compute either. Indeed, E[Dt] = E[N2]tE[ 1
2G ]t|Γ′0−Γ0| =

1t(1/J)t = J−t|Γ′0 − Γ0|.

As for L∗:

Lemma 5. L∗ ≤ J
2 + 1.

Proof. From Lemma 2, the probability of successfully coupling is equal to∫ ∞

0

min

[
xJ/2e−x

Γ(J
2 + 1)

,
((1 + ε)x)J/2e−(1+ε)x

Γ(J
2 + 1)

(1 + ε)

]
dx

=
1

Γ(J
2 + 1)

∫ ∞

0

xJ/2e−x min
[
1, (1 + ε)

J
2 +1e−εx

]
dx .

However L(ε) is simply one minus this probability, so that

L(ε) = 1 − 1
Γ(J

2 + 1)

∫ ∞

0

xJ/2e−x min
[
1, (1 + ε)

J
2 +1e−εx

]
dx

=
1

Γ(J
2 + 1)

∫ ∞

0

xJ/2e−x max
[
0, 1− (1 + ε)

J
2 +1e−εx

]
dx .

since 1
Γ( J

2 +1)

∫∞
0

xJ/2e−xdx = 1. Furthermore, for ε > 0, the above “max” changes from

equaling its first argument (i.e. 0) to equaling its second argument, precisely at the point

x = ε−1(J
2 + 1) log(1 + ε). Hence, for ε > 0,

L(ε) =
1

Γ(J
2 + 1)

∫ ∞

ε−1( J
2 +1) log(1+ε)

xJ/2e−x
(
1 − (1 + ε)

J
2 +1e−εx

)
dx . (7)
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Now, let d(s) = L(es − 1), and let β = es. By the invariance of total variation

distance under monotone transformations, the distance between Γ(J
2 +1, 1) and es times a

Γ(J
2 +1, 1) random variable, is equal to the distance between es times a Γ(J

2 +1, 1) random

variable and e2s times a Γ(J
2 + 1, 1) random variable. Since total variation distance is a

metric, it follows from the triangle inequality that d(2s) ≤ 2d(s) for all s ≥ 0. Thus

since d is differentiable at 0, for all s ≥ 0, d(s) ≤ sd′(0). Note also that d′(0) = L′(0).

Thus L(es − 1) ≤ sL′(0), that is L(ε) ≤ log(1 + ε)L′(0) which is in turn less than εL′(0).

Therefore L(ε) ≤ εL′(0) for all ε ≥ 0, and thus L∗ ≤ L′(0).

We compute the value of L′(0) explicitly, from (7). The contribution to the derivative

from the fact that the limits of integration vary with ε is 0, since the integrand converges to

0 at the limits of integration. Also L(0) = 0, and by L’Hôpital’s Rule limε→0 ε−1 log(1+ε) =

1. Hence,

L′(0) = lim
ε→0

1
Γ(J

2 + 1)

∫ ∞

ε−1( J
2 +1) log(1+ε)

xJ/2e−x
(
xe−εx(1 + ε)J/2+1 − (J/2 + 1)(1 + ε)J/2

)
dx

=
1

Γ(J
2 + 1)

∫ ∞

J
2 +1

xJ/2e−x(x− (
J

2
+ 1)) dx .

≤ 1
Γ(J

2 + 1)

∫ ∞

0

xJ/2+1e−x dx

=
Γ(J

2 + 2)
Γ(J

2 + 1)
=

J

2
+ 1 ,

which gives the result.

From this lemma, it follows that

P(not coupling by time n) ≤ (
J

2
+ 1) J−n|Γ′0 − Γ0| .

Hence, we have
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Theorem 6. For two copies {τn} and {τ ′n} of the auto-regressive Gibbs sampler algorithm

given by (6), the total variation distance between them at time n satisfies

‖τn − τ ′n‖ ≤ (
J

2
+ 1) J−n

∣∣∣∣ 1
τ0
− 1

τ ′0

∣∣∣∣ .

This theorem gives an asymptotic convergence rate of J−n. Note that in (6), we have

E[N2
t+1/(2Gt+1)] = 1/J . Hence, the asymptotic rate in the theorem is essentially (aside

from the non-linearity of the log function) the same rate that |Γ′n − Γn| goes pointwise to

0; see the discussion at the end of the Introduction.

7. An example with Dirichlet process means.

Feigin and Tweedie (1989) and Guglielmi and Tweedie (2000) consider the following

Markov chain on the means of dirichlet processes:

Γn = (1− Yn)Xn + YnΓn−1 , n = 1, 2, 3, . . . , (8)

where {Xn} are i.i.d. ∼ α0 for some probability measure α0 on R, and {Yn} are i.i.d.

∼ Beta(a, 1) where a > 0. (This corresponds to a reference measure α = aα0 for the

Dirichlet process.)

Guglielmi and Tweedie (2000) present a detailed study in which they apply the gen-

eral theory of quantitative convergence rates for Markov chains (Meyn and Tweedie, 1994;

Rosenthal, 1995; Roberts and Tweedie 1999, 2000) to obtain precise quantitative upper

bounds (their Theorems 2 and 3) on the total variation distance of this process to sta-

tionarity after n steps. These theorems are quite impressive. However, except in a very

special case (their Theorem 2(i)), the resulting bounds appear to be overly conservative

numerically.

We note that it is necessary to assume that α0 is non-degenerate. Indeed, suppose

instead that α0 is a point-mass at some a ∈ R. Suppose further that initially we choose

Γ0 < a < Γ′0. Then we will have Γn < a < Γ′n for all n. In this case, we clearly do not

get convergence at all in total variation distance. (The Guglielmi-Tweedie paper implicitly

avoids such degenerate α0, by having L < U in their equation (1), and by having δ > 0 in

their equation (15).) We thus assume from now on that α is non-degenerate.

13



We proceed here to obtain quantitative bounds for this chain which are more direct

and sharp than are those of Guglielmi and Tweedie (2000).

Iterating equation (8), we see that

Γn = (Y1 . . . Yn) Γ0 + Rn ,

where Rn is a (complicated) random variable which does not depend on Γ0. Furthermore,

recall that 0 ≤ Yi ≤ 1. It follows that, if we run two copies of the chain {Γn} and {Γ′n},

using the same values of X1, . . . , Xn, Y1, . . . , Yn for each chain, then

|Γn − Γ′n| = (Y1 . . . Yn)|Γ0 − Γ′0| → 0 , with probability 1 .

since the {Yi} are i.i.d. ∼ Beta(a, 1) which is concentrated on (0, 1).

Now let us consider the X-first strategy of Section 3. That is, we consider letting

X1, . . . , Xn and Y1, . . . , Yn−1 be the same for both processes, but attempting to choose Yn

and Y ′
n dependently so that

(1− Yn)Xn + YnΓn−1 = (1− Y ′
n)Xn + Y ′

nΓ′n−1 ,

i.e.

Y ′
n = Yn

(
Γn−1 −Xn

Γ′n−1 −Xn

)
≡ RnYn , (9)

where

Rn =
Γn−1 −Xn

Γ′n−1 −Xn
.

(If instead we used the Y-first strategy, by fixing Yn and varying Xn and X ′
n, we would

instead need

X ′
n = Xn +

Yn

1− Yn
(Γn−1 − Γ′n−1) ,

but this is difficult to work with, since Xn ∼ α0 and α0 is essentially arbitrary.)

By Lemma 2, we can jointly choose (Yn, Y ′
n) to satisfy (9), while simultaneously en-

suring that Yn, Y ′
n ∼ Beta(a, 1), with probability

ε∗ =
∫

min [f(s), Rn f(sRn)] ds ,

14



where f(s) ∝ sa−1 is the density of the Beta(a, 1) distribution.

The problem is that the “scaling factor” Rn = Γn−1−Xn

Γ′
n−1−Xn

in the above expression is

multiplicative, and furthermore depends heavily on the distribution α0(·) of Xn, so it’s

not clear how we can control this. To proceed, we let Qr be the total variation distance

between a Beta(a, 1) random variable, and r times a Beta(a, 1) random variable. We have

the following.

Lemma 7. Qr = 1− ra if r ≤ 1, and Qr = 1− r−a if r ≥ 1. In either case, Qr ≤ a|1− r|.

Proof. Let Z ∼ Beta(a, 1), and Z ′ = rZ. Let W = log Z and W ′ = log Z ′. Since log is

a one-to-one function, ‖W ′ −W‖ = ‖Z ′ − Z‖ = Q(r). Now, we compute that W and W ′

have densities aeax (x < 0) and aeax−β (x < β/a) (where β = log r), respectively. We then

compute that the total variation distance between the log variables is equal to 1− e−|β|a.

Thus, Qr = 1− ra if r ≤ 1, and Qr = 1− r−a if r ≥ 1.

The final inequality follows by noting that 1 − (1 − x)a ≤ ax for a ≥ 1, x ≥ 0, and

setting x = 1− r (and noting that 1− 1
r ≤ r − 1 if r ≥ 1).

Let kA = infg∈R P(|X − g| ≥ A) for A > 0, where X ∼ α0. We assume that

lim supA↘0 kA > 0; this certainly follows if α0 has density with respect to Lebesgue mea-

sure which is bounded by K, for then kA = infg∈R P(|X − g| ≥ A) ≥ 1− 2AK.

To proceed, we shall again adopt the X-first strategy of Section 3, but this time with

the delayed coupling modification of Section 5. That is, we first choose Y1, . . . , Yn−1 and

X1, . . . , Xn (with Y ′
i = Yi and X ′

i = Xi for all appropriate i). We then compute

Rn =
Γn−1 −Xn

Γ′n−1 −Xn
.

If |Rn − 1| ≤ δ we then attempt to choose Yn and Y ′
n to make Γ′n = Γn, as in (9). This

succeeds with probability QRn . On the other hand, if |Rn− 1| > δ, then we choose Yn and

Y ′
n independently, and proceed to time n + 1.

We now define

LBeta(ε) = (1− ‖Beta(a, 1)− [ε + Beta(a, 1)]‖) , and LBeta
∗ = sup

ε>0
ε−1LBeta(ε) .
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Lemma 8. LBeta
∗ = a.

Proof. We have that LBeta(ε) = 1− (1− ε)a at least for 0 ≤ ε ≤ 1 and a ≥ 1. Since this

function is concave,

sup
ε>0

ε−1LBeta(ε) / ε =
d

dε
LBeta(ε)

∣∣∣
ε=0

= a(1− ε)a−1
∣∣∣
ε=0

= a ,

so LBeta
∗ = a.

Theorem 9. The total variation distance ‖Γn+c − Γ′n+c‖, between two copies of the

Dirichlet process means Markov chain at time n + c, satisfies that

‖Γn+c − Γ′n+c‖ ≤ (a / A)(1− 1
a + 1

)n|Γ′0 − Γ0|+ (1− kA)c ,

for any A > 0. Furthermore, if α0 has density with respect to Lebesgue measure which is

bounded by K, then

‖Γn+c − Γ′n+c‖ ≤ (a/A)(1− 1
a + 1

)n|Γ′0 − Γ0|+ (2AK)c ,

and for any z ≥ 0,

‖Γn(1+z/ log n) − Γ′n(1+z/ log n)‖ ≤ 2Kan(1− 1
a + 1

)n|Γ′0 − Γ0|+ e−zn .

Proof. Given that |Γm−1−Xm| ≥ A, we have by Lemma 7 that the probability of failing

to couple at the mth step is

≤ QRm
≤ a|1−Rm| = a

∣∣∣∣Γm−1 − Γ′m−1

Γ′m−1 −Xm

∣∣∣∣ ≤ a

A
|Γm−1 − Γ′m−1| .

Furthermore if m ≥ n and we haven’t yet attempted to couple by time m, then

|Γ′m − Γm| ≤ |Γ′n − Γn|, so if |Γm−1 −Xm| ≥ A, then the coupling probability is at least

kA
a
A |Γ

′
n − Γn|.

Hence, the probability that we fail to couple on all c attempts is at most the probability

that we never have |Γm−1 − Xm| ≥ A for any n ≤ m ≤ n + c, plus the probability that
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kALBeta(|Γ′n − Γn| / A). (Actually it should be the conditional probability, conditional on

having |Γq−1 − Xq| < A for n ≤ q ≤ m − 1. But fortunately the differences |Γ′n − Γn|

depend only on the Yi, not the Xi, so this doesn’t matter.)

That is, if T is the time when we finally successfully couple, then

P(T ≥ n + c) ≤ E
(
LBeta(|Γ′n − Γn|) / A

)
+ (1− kA)c

≤ (LBeta
∗ / A)E (|Γ′n − Γn|)) + (1− kA)c = (a / A)(1− 1

a + 1
)n|Γ′0 − Γ0|+ (1− kA)c

(using that a product of n Beta(a, 1)’s is Gamma(a, n), and the formula for the mean of a

Gamma).

Furthermore, if α0 has density with respect to Lebesgue measure which is bounded

by K, then kA = infg∈R P(|X − g| ≥ A) ≥ 1− 2AK. Then the bound becomes

P(T ≥ n + c) ≤ (a/A)(1− 1
a + 1

)n|Γ′0 − Γ0|+ (2AK)c . (10)

One good choice is to set A = 1/2Kn, and c = zn/ log n. Then the bound (10)

becomes

P(T ≥ n + (zn/ log n)) ≤ 2Kna(1− 1
a + 1

)n|Γ′0 − Γ0|+ (1/n)zn/ log n

= 2Kan(1− 1
a + 1

)n|Γ′0 − Γ0|+ e−zn .

Choosing z large enough, this theorem gives an asymptotic convergence rate as n →∞

of (1− 1
a+1 )n.

Note that in (8), E[Yn] = (1 − 1
a+1 ). Hence, the asymptotic rate in the theorem is

essentially (aside from the non-linearity of the log function) the same rate that |Γ′n − Γn|

goes pointwise to 0; see the discussion at the end of the Introduction.

Addendum re Dirichlet process means example.

For specific numerical comparison, suppose α0 = Uniform[0, 1]. Then with Γ′0 ∼ π(·),

and with (say) Γ0 = 1/2, we have that E|Γ0 − Γ′0| ≤ 1/2. Also for 0 ≤ A ≤ 1/2, we have

kA = 1− 2A, giving that

‖L(Γk+c)− π(·)‖ ≤ (a/2A)
(

a

a + 1

)k

+ (2A)c
.
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With a = 1, this is ≤ 0.01 if A = 1/4 and k = 9 and c = 8, giving a number of iterations

of k + c = 17, comparable to the 13 iterations reported by Guglielmi and Tweedie (2000).

On the other hand, with a = 50, our bound is ≤ 0.01 if A = 1/4 and k = 467 and c = 11,

giving a number of iterations of k + c = 478, which is many orders of magnitude less

than the 6.2 × 1014 iterations reported by Guglielmi and Tweedie (2000). With a = 100

the bounds of Guglielmi and Tweedie (2000) are even larger, but our bound is ≤ 0.01 if

A = 0.26 and k = 994 and c = 13, giving a number of iterations of k + c = 1007, which is

still quite reasonable.

Similarly, suppose α0 is the standard normal distribution, with a = 10. Then with

Γ′0 ∼ π(·), and with (say) Γ0 = 0, we have (since α0 and π have the same mean) that

E|Γ0 − Γ′0| = 1. Also kA = 2Φ(−A). Hence, we obtain that

‖L(Γk+c)− π(·)‖ ≤ (a/A)
(

a

a + 1

)k

+ (1− 2 Φ(−A))c
.

This is ≤ 0.01 if A = 1, k = 75, and c = 17, giving a number of iterations of k + c = 92,

which is substantially less than the 106 iterations reported by Guglielmi and Tweedie

(2000).

We thus see that, if a is at all large, then our one-shot coupling bound on the con-

vergence rate of the Dirichlet process means Markov chain is significantly better than the

standard coupling bound of Guglielmi and Tweedie (2000).

Remark. We could instead use the theory of large deviations, and write

|Γn − Γ′n| = exp(
n∑

i=1

log Yi) = ρnenk(n)

where ρ = expE[log Yi], and k(n) is related to Large Deviations theory and satisfies that

P(k(n) > ε) ≤ e−I(ε)n

(where I is the corresponding large deviations rate function), so that P (|Γn − Γ′n| > δ) ≤

e−I(ε)n whenever n > log δ
ε+log ρ . For the Dirichlet means example considered in this section,

we can compute I(ε) explicitly. Indeed, I(ε) = L∗(y) where y = a−1 + ε, and L∗(y) =
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supλ(λy − log M(λ)) with M(λ) = E(eλ log Yi) = a
a−λ [since the log of a Beta(a, 1) is

Gamma(a, 1), i.e. Exp(a)]. The maximum occurs when λ = a − 1
y , and we compute that

L∗(y) = ay − 1 − log(ay), so that I(ε) = εa − log(1 + εa). It is possible to continue this

analysis, however it gets messy and appears to yield a slower rate of convergence than the

method presented herein.
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