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Finding Generators for Markov Chains

via Empirical Transition Matrices,

with Applications to Credit Ratings

Abstract.

In this paper we identify conditions under which a true generator does or does not exist for an empirically

observed Markov transition matrix. We show how to search for valid generators and choose the “correct”

one that is the most compatible with bond rating behaviors. We also show how to obtain an approximate

generator when a true generator does not exist. We give illustrations using credit rating transition matrices

published by Moody’s and by Standard and Poor’s.

1. Introduction.

Since the seminal work of Jarrow, Lando and Turnbull (1997), the use of credit rating transition matrices

in credit risk modeling has received increasing attention. For example, Kijima and Komoribayashi (1998)

provide an improvement on the estimation procedure in Jarrow et al. (1997); Belkin, Suchower and Forest

Jr. (1998) propose a one-factor Markov process to model credit rating transitions; Kijima (1998), from a

technical perspective, explains how a Markov chain model can lead to the known empirical regularities such

as memory in rating changes and long term reversion of ratings; and Arvanitis, Gregory and Laurent (1999)

develop a framework within which credit rating migrations can exhibit the usual empirical regularities. In

a useful note, Lando (2000) shows how a transition matrix can be used to value credit derivatives such as a

default swap.

Rating transition matrices have also received increasing attention in the financial industry. Two major

bond rating services in the U.S., Moody’s and Standard and Poor’s, now both publish annual update of

historical transition matrices, together with a wealth of other related information.

The shortest time interval within which a transition matrix is estimated is typically one year. The

number of transition observations within a shorter period would be too small for a reliable transition matrix
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to be estimated. However, for valuation purposes (e.g. valuing a default swap), we frequently need a transition

matrix for a period shorter than one year. If one can obtain a generator for a transition matrix P , meaning

a matrix Q having row-sums 0 and non-negative off-diagonal entries such that exp(Q) = P , then one can

set P (t) = exp(tQ) to obtain matrices for any time t ≥ 0. Unfortunately, there is a lack of guidance in the

finance literature as to when such a generator Q exists; or how to find such a matrix if indeed it exists.

Authors such as Lando (2000) and Arvanitis et al. (1999) simply assume the existence of such generators.

The only authors in finance who have addressed the issue of estimating a generator are Jarrow et al. (1997)

who obtain an approximate generator by assuming that the probability for one rating to make more than

one transition in one year is small. To our knowledge, no one in the finance literature has addressed the

issues of existence and identification of transition matrix generators.

The objective of this paper is to identify conditions under which a true generator does or does not exist.

We will show how to search for valid generators, and how to choose a “correct” generator which is the most

compatible with bond rating behaviors. When a true generator does not exist, we will show how to obtain

an approximate one.

Toward the later stage of our research, our attention was drawn to a study by Singer and Spilerman

(1976) who examine similar issues in the context of social sciences. As they have succinctly summarized,

to determine if an empirical transition matrix is compatible with a true generator or an underlying Markov

process is an embeddability problem; to seek for the true generator once its existence is established is an

identification problem. Some of our results turn out to be re-discoveries of those by Singer and Spilerman

(1976) and earlier authors such as Elfving (1937), Kingman (1962), Chung (1967), and Johansen (1973,

1974); others are of our own. We attempt to attribute the results to the earlier authors whenever called for.

The rest of the paper is presented in seven sections. Section 2 presents a simple method of finding a

generator and identify conditions under which this method works. Section 3 provides a “fix” to the method in

Section 2 when negative off-diagonal entries are present in a candidate generator matrix. Section 4 discusses

some examples from finance. Section 5 presents some further results on the existence and uniqueness of

generators. In Section 6, an algorithm is outlined for searching a valid generator when the simple series

method in Section 2 fails. Further discussions are given in Section 7. The paper is concluded in Section 8.
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Proofs of theorems are relegated to the appendix.

2. Finding a Candidate Generator.

Let P be a time-homogeneous Markov transition matrix, i.e. an N ×N real matrix with non-negative

entries and with row-sums 1. We are interested in finding a generator Q, i.e. an N × N real matrix with

non-negative off-diagonal entries and with row-sums 0, such that exp(Q) = P . (Here and throughout,

exp(tQ) = I + tQ + (tQ)2/2! + (tQ)3/3! + . . . ,

where I is the N ×N identity matrix. Without loss of generality, we will assume that P is for one year, i.e.

t = 1.)

Our computational starting point is given by the following theorem. To state it, let

S = max
{
(a− 1)2 + b2 ; a + bi is an eigenvalue of P, a, b ∈ R

}
.

That is, S is computed by examining all of the (possibly complex) eigenvalues of P , of the form a+ bi where

a and b are real, and computing the absolute-square of the eigenvalue minus 1, i.e. (a − 1)2 + b2, and then

taking the maximum of these absolute-squares over all of the eigenvalues of P .

Theorem 1. Let P be an N ×N Markov transition matrix, and suppose that S < 1. Then the series

Q̃ = (P − I)− (P − I)2/2 + (P − I)3/3− (P − I)4/4 + . . . (1)

converges geometrically quickly, and gives rise to an N×N matrix Q̃ having row-sums 0, such that exp(Q̃) =

P exactly.

This theorem is proved in the Appendix (as are all the other theorems). The series (1) has been

considered in this context by others. Indeed, a proof of Theorem 1 can be found in Zahl (1955, p. 96),

using a result of Wedderburn (1934, pp. 122–123), and is also discussed by Singer and Spilerman (1976,

p. 8). It provides a simple method (in terms of summing a series of matrices) for obtaining a matrix Q̃ that

automatically has most of the desired properties of a generator.
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Remark. We wish to emphasise that, even if the series (1) fails to converge, or converges to a matrix Q̃

which is not a valid generator, this does not preclude the possibility that a valid generator for P still exists;

see Section 5.

We note that in practice it is not too important to check the condition S < 1. Indeed, as long as the series

(1) converges absolutely, the conclusions that Q̃ has row-sums 0 and that exp(Q̃) = P are automatically

satisfied, so that the condition S < 1 is no longer necessary. Furthermore, for many transition matrices

arising in the credit risk literature, the condition that S < 1 is satisfied automatically via the following

result.

Theorem 2. Suppose the diagonal entries of a transition matrix P are all greater than 1
2 (i.e., pii > 0.5 for

all i). Then S < 1, i.e. the convergence of the series (1) is guaranteed.

Remark. In matrix language, the condition of Theorem 2 is equivalent to the transition matrix P being

strictly diagonally dominant (see e.g. Horn and Johnson (1985), p. 302). Furthermore, it is proved by

Cuthbert (1972, 1973) that, under this condition, P can have at most one generator, i.e. if a generator exists

then it is unique.

We emphasise that the condition is only a sufficient one, in that the series (1) may well converge, and

we may well have S < 1, even if some of the diagonal entries of P are less than 0.5.

Remark. Elfving (1937) is the first to pose the problem of identifying test criteria on the entries of a

transition matrix P so that there is a valid generator Q with exp(Q) = P . This problem became known as

the embedding problem.

Remark. In the case where P is diagonalisable with all eigenvalues real and positive, summing the series (1)

(if it converges) is equivalent to first diagonalising P , then replacing the diagonal entries by their logarithms,

and then converting back to the original basis. This is analogous to the approach of finding the nth root of

P by diagonalising and then replacing diagonal entries by their nth roots (see e.g. Chapter 11 of Press et

al., 1988). However, we note that this method does not guarantee that the resulting nth root matrix will
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have non-negative entries. Moreover, it is not clear as to which root to choose when more than one real root

exists.

3. The Non-Negativity Condition.

The main drawback of Theorem 1 is that the matrix Q̃ is not guaranteed to have non-negative off-

diagonal entries. (Several examples from finance are given in Section 4 below; for an example from sociology

see Singer and Spilerman, 1976.) This is problematic since if Q̃ has a negative off-diagonal entry, then so

will Pt = exp(tQ̃) for sufficiently small t > 0. This means that Pt will not be a proper Markov transition

matrix, which is unacceptable.

However, any negative off-diagonal entries of Q̃ will usually be quite small. Therefore, it is possible to

correct the problem simply by replacing these negative entries with 0, and adding the appropriate value back

into the corresponding diagonal entry to preserve the property of having row-sums 0. That is, once we have

obtained Q̃, we can obtain a new matrix Q by setting

qij = max(q̃ij , 0) , j 6= i ; qii = q̃ii +
∑
j 6=i

min(q̃ij , 0) . (2)

(This modification technique is also considered in Zahl, 1955.) The new matrix Q will still have row-sums

0, and will have non-negative off-diagonal entries. However, it will no longer satisfy exp(Q) = P exactly.

A different version of Q can be obtained by adding the negative values back into all the entries of the

same row (not just the diagonal one) which have the correct sign, proportional to their absolute values. That

is, we could instead let

Gi = |q̃ii| +
∑
j 6=i

max(q̃ij , 0) ; Bi =
∑
j 6=i

max(−q̃ij , 0)

be the “good” and “bad” totals for each row i, and then set

qij =



0, i 6= j and q̃ij < 0

q̃ij −Bi|q̃ij |/Gi otherwise if Gi > 0

q̃ij , otherwise if Gi = 0

(2′)

(Note that since
∑

j q̃ij = 0, we always have Gi ≥ Bi; hence, (2′) guarantees that qij ≥ 0 for i 6= j.) When

Q̃ has only slightly negative off-diagonal elements, and the values −qii are reasonably large, (2) and (2′) will

usually be fairly similar.
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Remark. It may be possible to improve still further the choice of where to add the extra back in for the

modification Q, by optimising this choice as a multivariate function. However, it appears that this further

improvement would rarely make a substantial difference to the distance of exp(Q) to P , so we do not pursue

it here.

Is it possible that a valid generator still exists even if the Q̃ computed by Theorem 1 is not a valid one?

The answer is yes. Furthermore, it may be possible that there exist more than one valid generators. for a

given matrix P . Such issues and related examples are discussed in Section 5.

Is it possible to conclude the non-existence of a generator for a given transition matrix P under certain

conditions? The answer is again yes. For example, we have the following theorem. (Part (a) below is also

stated in Kingman, 1962; part (b) below is proved as Theorem 6.1 in Goodman, 1970; and part (c) below

follows from the standard Lévy Dichotomy, see e.g. Chung, 1992 and Grimmett and Stirzaker, 1992.) To state

it, recall that a state j is accessible from a state i if there is a sequence of states k0 = i, k1, k2, . . . , km = j

such that pk` k`+1 > 0 for each `.

Theorem 3. Let P be a transition matrix, and suppose that either

(a) det(P ) ≤ 0; or

(b) det(P ) >
∏

i pii; or

(c) there are states i and j such that j is accessible from i, but pij = 0.

Then there does not exist an exact generator for P .

Remark. We note that, if pii > 0.5 for all i as in Theorem 2, then we necessarily have det(P ) > 0, so that

Theorem 3(a) never applies. To see this, we can write P = mI + (1−m)R for a stochastic matrix R, where

m = mini pii > 0.5. Hence, setting As = sP + (1− s)I, we have As = (1− s + sm)I + s(1−m)R, so that As

is invertible for all 0 ≤ s ≤ 1 (since 1− s + sm > s(1−m)). But then det(As) is a real continuous non-zero

function of s ∈ [0, 1], which is positive at s = 0, hence it is also positive at s = 1.

Some further results about the existence and uniqueness of generators are presented in Section 5. We

first pause to consider some numerical examples.
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4. Some Examples from Finance.

In finance, the finite state space Ω = {1, 2, . . . , N} covers possible bond ratings, with state 1 being the

highest rating and state N being Default. Typically, Ω = {AAA, AA, A, BBB, BB, B, CCC, Default}.

Insofar as a lower rating presents a higher credit risk, a rating transition matrix should satisfy one of the

two conditions as outlined by Jarrow et al. (1997):

Lemma 1. Let Q be a valid generator for P . Then the following two conditions are equivalent:

(a)
∑

j≥k pij is a nondecreasing function of i for every fixed k.

(b)
∑

j≥k qij ≥
∑

j≥k qi+1,j for all i and k such that k 6= i + 1.

Proof. See Jarrow et al. (1997, p. 495).

Remark. In the language of Markov chains, the above conditions are equivalent to requiring that the

underlying Markov chain be “stochastically monotonic”.

Let’s first examine the annual transition matrix considered by Jarrow et al. (1997), which is based on

empirical observations from Standard and Poor’s Credit Review (1993), for the years 1981 through 1991.

After distributing the “Not Rated” weights to the other entries via their equation (31), they obtain the

following average transition matrix (their Table 3):

P =



0.8910 0.0963 0.0078 0.0019 0.0030 0.0000 0.0000 0.0000
0.0086 0.9010 0.0747 0.0099 0.0029 0.0029 0.0000 0.0000
0.0009 0.0291 0.8894 0.0649 0.0101 0.0045 0.0000 0.0009
0.0006 0.0043 0.0656 0.8427 0.0644 0.0160 0.0018 0.0045
0.0004 0.0022 0.0079 0.0719 0.7764 0.1043 0.0127 0.0241
0.0000 0.0019 0.0031 0.0066 0.0517 0.8246 0.0435 0.0685
0.0000 0.0000 0.0116 0.0116 0.0203 0.0754 0.6493 0.2319
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000


.

Here the eight columns and rows represent, in order, the credit ratings AAA, AA, A, BBB, BB, B, CCC,

and Default.

Remark. In this paper, we are implicitly assuming (as have Jarrow et al., 1997, and other authors) that

the credit ratings process is time-homogeneous and Markovian. In reality, both assumptions are open to

debate, and likely neither one is precisely true for real credit ratings. In fact, the empirical question of
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whether time-homogeneous Markov model is suitable for bond rating transitions has yet to be addressed

in the literature. We do not consider such issues here, but rather implicitly assume a time-homogeneous

Markov model throughout.

It can be shown that condition (a) in Lemma 1 is violated for this transition matrix. For example,

when k = 4 and i = 6, we compute that
∑

j≥4 p6j = 0.9949 while
∑

j≥4 p7j = 0.9885. It turns out that

this condition (a) is also violated in the other matrices that we will examine in this section. Since whether

a transition matrix is stochastically monotonic has very little bearing on the existence of a generator, and

since any “fixing” would be necessarily guided by arbitrary, ad hoc rules, we will leave the matrices as they

are. In cases where the monotone condition is crucial (as in e.g. estimation of risk premiums), researchers

may make some adjustments of the transition matrix based on their best judgements.

By Theorem 3(c), the transition matrix P does not have an exact generator. For example, p12 > 0

and p26 > 0, but p16 = 0. Thus, it will be useful to find an approximate generator Q, such that exp(Q) is

approximately equal to P , and that a transition matrix for any time t can be approximated by exp(Qt).

Remark. It may be considered disappointing that this transition matrix P does not have an exact generator.

It is possible that an empirical matrix P estimated from many more years of data would have no zero entries

and would in fact be embeddable, though we lack sufficient data to test this. In the absence of such data, it

may be tempting to use the “trick” of simply raising the given matrix P to a high power, as a stand-in for an

empirical transition matrix for many more years. However, this trick does not help with the embeddability

problem. Indeed, clearly if P is not embeddable then neither is any power of P (and moreover, if P is

embeddable, then any power of P has the same set of valid generators as P does).

Jarrow et al. obtain an approximate generator QJLT for this P by assuming that there is never more

than one transition per year. Their method leads to the general formula

qii = log(pii) ; qij = pij log(pii)/(pii − 1) (i 6= j) . (3)

To continue the above example, their approximate generator is

QJLT =

9





−0.1154 0.1019 0.0083 0.0020 0.0031 0.0000 0.0000 0.0000
0.0091 −0.1043 0.0787 0.0105 0.0030 0.0030 0.0000 0.0000
0.0010 0.0309 −0.1172 0.0688 0.0107 0.0048 0.0000 0.0010
0.0007 0.0047 0.0713 −0.1711 0.0701 0.0174 0.0020 0.0049
0.0005 0.0025 0.0089 0.0813 −0.2530 0.1181 0.0144 0.0273
0.0000 0.0021 0.0034 0.0073 0.0568 −0.1929 0.0479 0.0753
0.0000 0.0000 0.0142 0.0142 0.0250 0.0928 −0.4318 0.2856
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000


.

This approximate generator QJLT does indeed have row-sums 0 and non-negative off-diagonal entries.

Furthermore we calculate that

exp(QJLT ) =



0.891431 0.091476 0.011075 0.002650 0.002847 0.000339 0.000025 0.000062
0.008198 0.902501 0.070932 0.011685 0.003332 0.003028 0.000093 0.000231
0.001042 0.027907 0.892718 0.060232 0.011116 0.005288 0.000231 0.001465
0.000676 0.005202 0.062348 0.847319 0.057651 0.018185 0.002246 0.006373
0.000457 0.002533 0.010214 0.066701 0.781647 0.095894 0.012458 0.030092
0.000025 0.001947 0.003751 0.008390 0.046273 0.829090 0.035518 0.074915
0.000016 0.000317 0.011507 0.012042 0.020256 0.069455 0.651072 0.235331
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000


.

We thus see that exp(QJLT ) is close to, but not exactly equal to, the original P .

Let us now instead use the series method presented in Theorem 1. By Theorem 2, we automatically

have S < 1 in this case, so that Theorem 1 does apply. Indeed, we find that the series (1) for Q̃ indeed

converges very quickly. In fact, summing just the first 16 terms of the series, we compute that the effect

of subsequent terms is less than 10−8, thus giving extremely high accuracy. Retaining six digits, we obtain

that

Q̃ =



−0.115931 0.107466 0.004208 0.001334 0.003372 −0.000409 −0.000014 −0.000025
0.009566 −0.106131 0.083233 0.008115 0.002567 0.002942 −0.000114 −0.000168
0.000831 0.032362 −0.121382 0.074626 0.009028 0.004013 −0.000274 0.000589
0.000623 0.003572 0.075556 −0.177517 0.079050 0.013991 0.001350 0.003277
0.000440 0.002181 0.005768 0.088535 −0.261178 0.129535 0.013816 0.020800
−0.000027 0.002086 0.002711 0.004655 0.063962 −0.199781 0.059016 0.067268
−0.000015 −0.000420 0.014447 0.013639 0.024547 0.101298 −0.435344 0.281980
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000


.

We then compute that

exp(Q̃) = P

exactly, to at least six decimal places (i.e., to within 10−6). Furthermore, our Q̃ has row-sums 0, as it must.
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Unfortunately, our Q̃ has some (small) negative off-diagonal entries. We thus replace Q̃ by Q as in

equation (2), to obtain

Q =

−0.116380 0.107466 0.004208 0.001334 0.003372 0.000000 0.000000 0.000000
0.009566 −0.106414 0.083233 0.008115 0.002567 0.002942 0.000000 0.000000
0.000831 0.032362 −0.121656 0.074626 0.009028 0.004013 0.000000 0.000589
0.000623 0.003572 0.075556 −0.177517 0.079050 0.013991 0.001350 0.003277
0.000440 0.002181 0.005768 0.088535 −0.261178 0.129535 0.013816 0.020800
0.000000 0.002086 0.002711 0.004655 0.063962 −0.199808 0.059016 0.067268
0.000000 0.000000 0.014447 0.013639 0.024547 0.101298 −0.435779 0.281980
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000


.

This Q now has non-negative off-diagonal entries and still has row-sums 0. However, it no longer exactly

satisfies that exp(Q) = P . In fact,

exp(Q) =



0.890600 0.096265 0.007798 0.001901 0.003010 0.000351 0.000026 0.000048
0.008597 0.900745 0.074680 0.009899 0.002901 0.002906 0.000097 0.000175
0.000900 0.029092 0.889158 0.064893 0.010102 0.004511 0.000211 0.000935
0.000600 0.004300 0.065591 0.842700 0.064400 0.016000 0.001808 0.004501
0.000401 0.002202 0.007899 0.071900 0.776400 0.104299 0.012698 0.024100
0.000024 0.001911 0.003100 0.006600 0.051699 0.824577 0.043491 0.068498
0.000014 0.000323 0.011610 0.011599 0.020296 0.075384 0.649019 0.231854
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000


,

which is very close to, but not exactly equal to, the original transition matrix P .

It is useful to know which approximation is more accurate. One method of comparison is to compute the

L1-norm (i.e., the sum of the absolute values of the 64 matrix entries) of P − exp(QJLT ) and of P − exp(Q),

to see which is smaller. We compute that

norm[P − exp(QJLT )] = 0.116900 ; norm[P − exp(Q)] = 0.002736 .

We thus see that, in terms of closeness of exp(Q) to P , the choice of Q is better than QJLT by a factor of

0.116900 / 0.002736 ≈ 42.7.

In fact, if we instead use the alternative approximation (2′), we then compute that

norm[P − exp(Q)] = 0.002686 ,

which is a slight additional improvement.

We thus tentatively conclude that, while our method requires the awkward transformation of Q̃ to Q,

it can be substantially better than the method of Jarrow et al. whereby we must assume away multiple

transitions in a single year.
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Remark. As an aside, we note that the row entries of this example matrix P do not add exactly to 1,

presumably due to round-off errors. As a check, we slightly modified the diagonal entries of P so that the

row entries sum to exactly 1; but this had negligible effect on any of the resulting matrices or distances.

We now consider some additional examples.

We first consider the average one-year transition matrix from Moody’s which covers the period of 1980–

1998 (Moody’s, 1999). After re-assigning the “Not Rated” weights to the other entries, we obtain the

following transition matrix:

P =



0.886583 0.102937 0.010169 0.000000 0.000311 0.000000 0.000000 0.000000
0.010787 0.887045 0.095530 0.003423 0.001452 0.001452 0.000000 0.000311
0.000625 0.028759 0.902053 0.059185 0.007398 0.001771 0.000104 0.000104
0.000529 0.003386 0.070680 0.852291 0.060523 0.010052 0.000846 0.001587
0.000328 0.000765 0.005571 0.056806 0.835809 0.080839 0.005353 0.014638
0.000109 0.000435 0.001738 0.006519 0.065950 0.827032 0.027597 0.070621
0.000000 0.000000 0.006600 0.010500 0.030500 0.061100 0.629700 0.261600
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000


We again see from Theorem 3(c) that there does not exist an exact generator for this transition matrix.

Hence, we search for an approximate generator.

Using the method of Jarrow et al. in equation (3) to compute the approximate generator QJLT , we can

then calculate the L1-norm as

norm[P − exp(QJLT )] = 0.100047 .

Using the series method (1), together with the modification (2), yields a different approximate generator

Q, which gives an L1 distance of exp(Q) to P of

norm[P − exp(Q)] = 0.001401 .

Once again, using the modification (2′) instead gives a slightly better approximation, with

norm[P − exp(Q)] = 0.001371 .

Compared with QJLT , the generators obtained above represent an improvement on the order of 71.4 and

73.0 respectively.

As another example, we consider the transition matrix from Standard and Poor’s which covers a longer

period than the one considered by Jarrow et al. (see Standard and Poor’s, 1999). After re-assigning the “Not
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Rated” weights, we obtain the following annual transition matrix:

P =



0.919347 0.074592 0.004829 0.000822 0.000411 0.000000 0.000000 0.000000
0.006396 0.918085 0.067575 0.005984 0.000619 0.001135 0.000310 0.000000
0.000730 0.022725 0.916814 0.051183 0.005629 0.002502 0.000104 0.000417
0.000425 0.002658 0.055609 0.878894 0.048272 0.010207 0.001701 0.002339
0.000441 0.000991 0.006058 0.077542 0.814847 0.078973 0.011125 0.010133
0.000000 0.001019 0.002830 0.004641 0.069496 0.827957 0.039615 0.054556
0.001860 0.000000 0.003720 0.007439 0.024294 0.121237 0.604557 0.237010
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000


Once again, we see by Theorem 3(c) that an exact generator for this P does not exist.

Following the same procedures as above, we compute the L1-norm for the Jarrow et al. method and the

series method (based on (2) and (2′)) as

norm[P − exp(QJLT )] = 0.103516 ; norm[P − exp(Q)] = 0.001096 (based on (2)) ;

and norm[P − exp(Q)] = 0.001088 (based on (2′)) .

It can be seen that the improvement factor is over 90 for both adjustment methods.

Remark. It is possible that our method has applications in other fields as well. For an example of

Alzheimer’s Disease therapy evaluation, see Stewart et al. (1998).

5. Further Results on the Existence and Uniqueness of Generators.

According to Kingman (1962), the embeddability problem is completely solved for the case of 2 × 2

matrices by D.G. Kendall, who proves that a 2×2 transition matrix is compatible with a continuous Markov

process if and only if the sum of the two diagonal entries is larger than 1. For matrices with higher dimensions,

it is no longer clear cut, as we have seen in Sections 2 and 3. In this section, we add some additional results

applicable to higher-dimensional transition matrices. Again, many of our results have appeared previously

in other papers (especially Singer and Spilerman, 1976), as we shall indicate.

One might hope that, if the series (1) converges to a matrix Q̃ which does not have all its off-diagonal

entries non-negative, then perhaps this proves that no generator for P can possibly exist. Unfortunately,

this is not true in general, as the following proposition shows. Intuitively, the series (1) only represents the

principal branch of log(P ); other branches of log(P ) may still provide valid generators.
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Proposition 1. For a given stochastic matrix P , the fact that a real matrix Q1 with row-sums 0 and some

negative off-diagonal entries satisfies exp(Q1) = P does not preclude the possibility that there is a valid

generator Q2 for P . This is true even if Q1 is equal to the matrix Q̃ obtained from the series (1).

Proof. We prove the proposition by citing an example. Let

P =


.284779445 .284035268 .283826586 .147358701
.284191780 .284779445 .284035268 .146993507
.283487477 .284191780 .284779445 .147541298
.284543931 .283487477 .284191780 .147776812


Then the eigenvalues of P are 1, 0.0010572 (with multiplicity two), and 7.46905 × 10−7. It follows that

S = (1− 7.46905× 10−7)2, so that S < 1.

We then compute the series (1), which converges very slowly since S is very close to 1, and obtain

Q1 ≡ Q̃ =


−6.194496074 2.807322994 1.374197570 2.012975514
3.882167062 −6.194496074 2.807322994 −.494993979
−.954631245 3.882167062 −6.194496074 3.266960260
6.300566216 −.954631245 3.882167062 −9.228102034


a matrix with some negative off-diagonal entries. (Of course, we still have exp(Q1) = P , as we must.)

However, the matrix

Q2 =


−5.642931358 5.642931358 0.000000000 0.000000000
0.000000000 −5.642931358 5.642931358 0.000000000
0.000000000 0.000000000 −5.642931358 5.642931358
61.410871840 0.000000000 0.000000000 −61.410871840


is indeed a valid generator for P , since exp(Q2) = P and Q2 has row-sums 0 and positive off-diagonal en-

tries.

This proposition shows that even if the Q̃ from Theorem 1 does not satisfy the non-negativity condition,

a valid generator for P may still exist. (Similarly, an example where the series (1) fails to converge, but

where a valid generator still exists, is given by Singer and Spilerman, 1976, Example 4.)

On the other hand, even if the existence of a generator for P is established, the generator may not

be unique, as the following example shows. (A similar example is given in Singer and Spilerman, 1976,

Example 12.)
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Proposition 2. There exist transition matrices P which have more than one valid generators.

Proof. Let b = e−4π, and let

P =

 (2 + 3b)/5 (2− 2b)/5 (1− b)/5
(2− 2b)/5 (2 + 3b)/5 (1− b)/5
(2− 2b)/5 (2− 2b)/5 (1 + 4b)/5



Q1 =

−2π 2π 0
0 −2π 2π
4π 0 −4π


and

Q2 =

−12π/5 8π/5 4π/5
8π/5 −12π/5 4π/5
8π/5 8π/5 −16π/5


It can be verified that Q1 and Q2 both qualify as generators, and exp(Q1) = exp(Q2) = P . Thus, Q1 and

Q2 are both valid generators for P .

Remark. This last result raises this question: when a transition matrix P has multiple valid generators Q,

which generator is the “best”? This question could be important, since different generators lead to different

values of Pt = exp(tQ) for most t (e.g. for all sufficiently small t). Mathematically, the notion of “desirability”

of a generator is not well defined, since any valid generator is as good as any other. However, in practice, it is

indeed meaningful to ask which valid generator will represent the empirical transition matrices the best. To

shed some light on this issue, realise that with most empirical transition matrices (such as the ones presented

in Section 4), it is generally unlikely for a rating to migrate to a remote rating in a short time period. Thus,

one method of choosing among valid generators is to take the one with the smallest value of

J =
∑
i,j

|j − i| |qij | ,

which ensures that the chance of jumping too far too quickly is minimised. In the example from the above

proposition, we have

J1 = 2π + 2π + 2(4π) = 12π
.= 37.70 ;

while

J2 = 8π/5 + 2(4π/5) + 8π/5 + 4π/5 + 2(8π/5) + 8π/5 = 52π/5 .= 32.67 ;
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we therefore might conclude that Q2 is a better choice than Q1. For discussions of somewhat related issues

in rather different contexts, see Cuthbert (1972) and Singer and Spilerman (1976, Section 4).

Despite the difficulties raised in Proposition 2, it is sometimes possible to prove the uniqueness of

generators for P , as the following result shows. (Part (c) below also appears in Cuthbert, 1972, 1973.) To

state it, we will use Log(P ) to denote the principal branch of the logarithm of P . This will be equal to

the sum of the series (1) whenever the series converges. It always satisfies exp(Log(P )) = P , and if P has

row-sums 1 then Log(P ) has row-sums 0.

Theorem 4. Let P be a transition matrix.

(a) If det(P ) > 1/2, then P has at most one generator.

(b) If det(P ) > 1/2 and ‖P − I‖ < 1/2 (using any operator norm), then the only possible generator for P

is Log(P ).

(c) If P has distinct eigenvalues and det(P ) > e−π, then the only possible generator for P is Log(P ).

In addition, we have the following result, which is also observed by Singer and Spilerman (1976, pp. 29–

30).

Theorem 5. Let P be a transition matrix which has real distinct eigenvalues.

(a) If all eigenvalues of P are positive, then Log(P ) is the only real matrix Q such that exp(Q) = P .

(b) If P has any negative eigenvalues, then there is no real matrix Q such that exp(Q) = P .

The last two theorems provide some further validity to our matrix Q̃ from Theorem 1. In particular,

they immediately show the following.

Corollary. Let P be a transition matrix such that at least one of the following three conditions hold:

(i) det(P ) > 1
2 and ‖P − I‖ < 1

2 ; or

(ii) P has distinct eigenvalues and det(P ) > e−π; or

(iii) P has distinct real eigenvalues.

Suppose further that the series (1) converges to a matrix Q̃ with negative off-diagonal entries. Then there

does not exist a valid generator for P .
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There are other known conditions on the eigenvalues of P which either preclude or establish the possi-

bility of a valid generator Q. For example, Elfving (1937) proves that if P has a (complex) eigenvalue other

than 1 of absolute value 1, or if P has a negative (real) eigenvalue of odd multiplicity, then no valid generator

exists for P . A more refined result is obtained by Runnenberg (1962), who proves that if an N ×N matrix P

has a valid generator, then each (complex) eigenvalue of P must lie within the region of the complex plane

having boundary curve{ (
exp (−s + s cos(2π/N)) cos (s sin(2π/N)) , exp (−s + s cos(2π/N)) sin (s sin(2π/N))

)
;

0 ≤ s ≤ π

sin(2π/N)

}

together with its reflection about the real axis. Each of these conditions is a further necessary condition for

P to have a valid generator, in the spirit of Theorem 3 or Theorem 5(b).

Finally, we note that it is possible to provide a more quantitative version of Theorem 3(c) (the Lévy

Dichotomy), as follows.

Theorem 6. If P does have a valid generator, then its entries must satisfy that

pik ≥ mmrr(m + r)−m−r
∑

j

(pij − bm)(pjk − br) 1pij>bm, pjk>br
,

for any positive integers m and r. Here bm =
∑∞

`=m+1 e−λλ`/`! = 1 −
∑m

`=0 e−λλ`/`! which equals the

probability that N ′ > m, where N ′ is a Poisson random variable with mean λ ≡ maxi(−Qii). Furthermore

1B is the indicator function of the boolean event B.

For example, for the first matrix in Section 4, we have from equation (A1) that

λ ≡ max
i

(−Qii) ≤ −trace(Q) = − log det(P ) .= 1.417263 , (4)

and also that, for example, p7,3 = 0.0116 and p3,2 = 0.0291. Choosing r = 5 and m = 4, we compute that

b5 ≤ 0.00339622 and b4 ≤ 0.0149457. The theorem then tells us that, for a valid generator to exist, we

would require p7,2 ≥ 44559−9(p7,3− b4)(p3,2− b5) ≥ 2.39779×10−7. (This bound could perhaps be tightened

somewhat by choosing different values of r and m, and summing over all possible intermediate states j,
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rather than just j = 3.) We thus see that this quantitative bound is not sufficiently large to rule out, say,

the possibility that P7,2 = 10−5 but only appears to be 0 because of rounding off.

Remark. An improved bound could be obtained if we had a way of bounding maxi(−Qii) better than the

one presented in (4).

Remark. We note that, even if a generator for P does not exist, it is still possible that, for example, there

is a valid transition matrix P1/2 such that
(
P1/2

)2 = P . On the other hand, it is shown by Kingman (1962,

Proposition 7) that if P is non-singular, and if for all positive integers n there is a matrix P1/n such that(
P1/n

)n = P , then there does exist a generator for P .

6. An Algorithm to Search for a Valid Generator.

If the series (1) fails to converge, or converges to a matrix which has some negative off-diagonal terms,

then the results of the previous section indicate that it is still possible that a generator exists. In theory, it

is possible to find this generator by checking all branches of the logarithm function and computing log(P )

for each one, each time checking to see if the non-negativity condition is satisfied.

If P has distinct eigenvalues, then this search is finite, as the following result shows.

Theorem 7. If P has distinct eigenvalues, and if Q is a generator for P , then each eigenvalue λ of Q satisfies

that |Im λ| ≤ | ln(det(P ))|. In particular, there are only a finite number of possible branch values of log(P )

which could possibly be generators of P . (Note that, by Theorem 3(a), if det(P ) ≤ 0 then no generator

exists.)

In light of this Theorem, whenever P has distinct eigenvalues, it is possible to construct a finite algorithm

to search for all possible generators of P , as follows.1 (Ideas which are very similar in spirit to ours, but

somewhat different in precise detail especially regarding the eigenvalue ranges considered, are discussed by

Singer and Spilerman, 1976, Section 3.3a.)

The idea is to use Lagrange interpolation. If P is n × n with distinct eigenvalues r1, r2, . . . , rn, and f

is any function that is analytic in a neighbourhood of each eigenvalue, then f(P ) = g(P ) where g is the

1 We have written a Maple program to carry out this search, available on the web at
http://www.math.ubc.ca/∼israel/irw/
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polynomial of degree n − 1 such that g(rj) = f(rj) for each j. The Lagrange interpolation formula (or,

Sylvester’s formula, cf. Singer and Spilerman, 1976, p. 18) says that

g(x) =
∑

j

∏
k 6=j

x− rk

rj − rk
f(rj) ; (5)

here the sum is over all eigenvalues rj , and the product is over all eigenvalues rk except rj . (If P has

repeated eigenvalues, this must be modified to require some derivatives to agree: g(m)(rj) = f (m)(rj) for

m < (multiplicity of rj).)

To search for generators, each of the unknown values f(rj) can be equal to any branch of the logarithm

of rj . In general rj may be a complex number, and the values f(rj) must satisfy

f(rj) = Log|rj |+ i (Arg(rj) + 2πkj) ,

for any integers kj subject to the condition of Theorem 7. (Here |r| =
√
Re(r)2 + Im(r)2 and Arg(r) =

arctan(Im(r) /Re(r)).) The search would be carried out by using Lagrange interpolation to compute f(P )

for each possible choice of k1, k2, . . . , kn, and checking the non-negative off-diagonal condition for each

possible f(P ) which arises.

We note that many symbolic calculation packages contain functions for computing such matrices g(P ),

e.g. “linalg/matfunc(P, g(z), z)” in Maple, or “(funm(P,’g’))” in Matlab.

We summarise the above algorithm as follows:

Step 1. Compute the eigenvalues r1, r2, . . . , rn of P , and verify that they are all distinct.

Step 2. For each eigenvalue rj , choose an integer kj such that λ ≡ Log|rj |+ i(Arg(rj) + 2πkj) satisfies the

restriction of Theorem 7, i.e. such that |Im λ| = |Arg(rj) + 2πkj | ≤ | ln(det(P ))|.

Step 3. For the collection of integers k1, k2, . . . , kn, set f(rj) = Log|rj |+ i(Arg(rj) + 2πkj), and let g(x) be

the function given in (5).

Step 4. For this function g(x), compute the matrix Q = g(P ), and see if it is a valid generator.

Step 5. Return to Step 2, modifying one or more of the integers kj . Continue until all allowable collections

k1, k2, . . . , kn have been considered.

In practice, the credit rating transition matrices would most likely have distinct eigenvalues, and the

above procedure is adequate. In the rare cases where repeated eigenvalues are present, the search would be
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much more involved. For some guidance in this case, please see e.g. Singer and Spilerman (1976), Section

3.3b.

7. Discussions.

As we have seen in Section 4, most of the empirical annual transition matrices are “sparse” in that

the probabilities of remote migrations are mostly zero. As a result, almost all matrices would fail the test

of Theorem 3(c), which renders a simple resolution: a true generator does not exist, i.e. the empirical

transition matrix is not compatible with a continuous Markov process. In such a case, a finance researcher

has two choices. One is to opt for the simplest way out: to compute the series in (1) (since by Theorem

2, the convergence is guaranteed for most matrices in practice) and make adjustments (when necessary) as

outlined in Section 3. The other is to make certain adjustment to the transition matrix first so that there are

no obvious violations of e.g. Lemma 1 and Theorem 3(c), and then proceed to search for a valid generator.

If multiple generators are obtained via the procedures in Section 6, then the “quick and dirty” selection rule

in Section 5 can be used to choose the “correct” generator. Based on our limited experiments in Section 3,

it appears that the series method works well for all practical purposes.

It should be pointed out that our research focuses on the compatibility of an empirical transition matrix

with a continuous Markov process. When the underlying process is discrete, the research problem becomes

identifying the one-step transition matrix given a multi-step matrix, i.e., it becomes a problem of taking

the root of a matrix. Unfortunately, as pointed out by Singer and Spilerman (1976), none of the difficulties

encountered in the continuous time setting would go away. Just as a logarithm is multi-valued, so is a

root operation. Therefore, switching the modeling framework to a discrete setting would not avoid the

fundamental difficulties.

Lastly, as pointed out by Singer and Spilerman (1976) and readily intuitive to most researchers, if we

could empirically estimate two transition matrices P (t1) and P (t2) such that t2 > t1 > 0 but t2/t1 is not

rational, then the generator can be uniquely identified if it does exist. Alternatively, one could directly

estimate the generator using transition data as outlined by Jarrow et al. (1997, p. 504). To make these

approaches empirically feasible, we need time-stamped transitions for a universe of bonds. This type of data
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does appear to be available from Moody’s or Standard and Poor’s. Our future research endeavor will be to

develop estimation procedures to directly extract a generator from such rating migration data.

8. Conclusions.

Credit risk modeling and credit derivatives pricing have become a mainstream research subject in finance.

A key building block for this line of research is the rating transition matrix. Given that empirically estimated

matrices are mostly for a one-year period, there is a need to recover a matrix generator so that one can obtain

a transition matrix for any arbitrary period of time, as often dictated by a valuation problem such as pricing

a default swap. This paper identifies conditions under which a true generator does or does not exist.

It is shown that most of the observed average annual transition matrices would not be compatible with

a continuous Markov process, i.e., they do not admit a valid generator. Therefore a researcher is left with

two options: either to obtain an approximate generator for the observed transition matrix, or to modify the

transition matrix first (to make it compatible with an underlying Markov process) and then search for true

generators. Our limited experiments point to the choice of the first option.

We have presented a collection of theorems and propositions to help determine if and when a generator

exists. The results, by their nature of generality, will have applications beyond research in finance.

Appendix: Theorem Proofs.

In this Appendix, we provide proofs of all the theorems in the text (including, for completeness, those

theorems which have been previously proved elsewhere as indicated).

We begin with some standard facts from the functional calculus, which we shall use (explicitly or

implicitly) in many of our proofs.

Standard Results. Let A be any n×n matrix. Let H(A) be the algebra of functions that are analytic in a

neighbourhood of the set σ(A) of eigenvalues of A. There is a mapping f 7→ f(A) from H to n× n complex

matrices such that
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(1) f 7→ f(A) is an algebra homomorphism.

(2) If f(z) =
∑∞

n=0 an(z − z0)n is a Taylor series converging in a neighbourhood of σ(A), then f(A) =∑∞
n=0 an(A− z0I)n. In particular, f(A) = exp(A) (as previously defined) for f = exp.

(3) σ(f(A)) = f(σ(A)).

(4) f(A) commutes with every n× n matrix that commutes with A.

(5) f(A) = g(A) if f − g is divisible (as a member of H(A)) by the characteristic polynomial of A.

(6) If g ∈ H(f(A)) then g(f(A)) = (g ◦ f)(A).

(7) If A has distinct eigenvalues then f(A) = g(A) if and only if f(r) = g(r) for each eigenvalue r of A.

(8) If A has distinct eigenvalues then every n× n matrix that commutes with A is f(A) for some f .

(9) If A is a real matrix and f(z̄) = f(z) in a neighbourhood of σ(A), then f(A) is real.

(10) If v is an eigenvector of A for eigenvalue r, then f(A)v = f(r)v.

In particular, if f is any branch of the logarithm which is analytic in a neighbourhood of σ(P ), then

by (6), exp(f(P )) = P . On the other hand, if P has distinct eigenvalues then by (4) every matrix Q such

that exp(Q) = P must commute with P , and therefore by (8) Q = g(P ) for some g ∈ H(P ). By (6),

P = exp(g(P )) = (exp ◦g)(P ), so by (7) r = exp(g(r)) for each eigenvalue r of P , i.e. g(r) is one of the

values of log r. There is a branch of the logarithm, f , which is analytic in a neighbourhood of σ(P ) with

f(r) = g(r) for each r, and so by (7) again, Q = f(P ).

Suppose P has row-sums 1, i.e. the vector 1 whose entries are all 1 is an eigenvector of P with eigenvalue

1. Then by (10), f(P ) has row-sums f(1).

Recall that we will use Log to denote the principal branch of the logarithm, i.e. for any nonzero complex

number z, Log(z) is the unique complex number w such that exp(w) = z and −π < Im w ≤ π. This is

analytic in the complex plane except for the branch cut (−∞, 0]. Thus Log(P ) is defined whenever P has

no eigenvalues in (−∞, 0], and is a real matrix.

We now proceed to the proofs of the theorems from the text.
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Proof of Theorem 1.

Note first that the quantity S is simply the square of the numerical radius of P − I. Hence, by the

spectral radius formula (see e.g. Rudin, 1991, Theorem 10.13), the norm of (P−I)k is asymptotic (as k →∞)

to Sk/2. Hence, if S < 1, then the series (1) converges geometrically quickly as claimed, and in fact converges

absolutely.

Furthermore, recall the expansion

log(x) = (x− 1)− (x− 1)2/2 + (x− 1)3/3− (x− 1)4/4 + . . .

for real numbers x, provided that the series converges absolutely. This also applies to matrices, with 1

replaced by I. It follows that the definition (1) ensures that Q̃ = log(P ), i.e. that P = exp(Q̃).

All that remains to prove is that Q̃ has row-sums 0. For this we use a lemma:

Lemma 2. Let A and B be N ×N matrices. Suppose that A has row-sums α, and B has row-sums β. Set

C = AB. Then C has row-sums αβ.

Proof of Lemma 2. We compute that

∑
j

cij =
∑

j

∑
k

aikbkj =
∑

k

aik

∑
j

bkj

 =
∑

k

aik (β) = β

(∑
k

aik

)
= β (α) ,

thus proving Lemma 2.

Now, since P−I has row-sums 0, the lemma proves that (P−I)k has row-sums 0 for all positive integers

k. Since the series (1) for Q̃ is a limit of linear combinations of different (P − I)k, it follows that Q̃ also has

row-sums 0. This completes the proof of Theorem 1.

Remark. If instead S > 1 then the series (1) will never converge. This is not surprising. For example, if

P is self-adjoint (e.g. symmetric), then S > 1 if and only if the matrix P has negative eigenvalues; and it is

well-known that in this case there does not exist a generator for P .
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Proof of Theorem 2.

Let m = min{pii}. Then m > 1
2 by assumption. Write

P = mI + (1−m)R

where R = 1
1−m (P −mI). Then R is also a Markov transition matrix. Now, we compute that

P − I = (1−m)(R− I) .

Since R is a transition matrix, we have ‖R‖ ≤ 1 (where ‖ · · · ‖ is the usual operator norm), so that ‖R−I‖ ≤ 2

by the triangle inequality, and ‖(R − I)k‖ ≤ 2k. Hence, ‖(P − I)k‖ ≤ (2− 2m)k. But then by the spectral

radius formula again,

√
S = lim

k→∞
‖(P − I)k‖1/k ≤ lim

k→∞

(
(2− 2m)k

)1/k
= 2− 2m .

Finally, since m > 1
2 , we have 2−2m < 1, so that

√
S < 1, and hence also S < 1. This completes the proof.

Proof of Theorem 3.

For part (a), we recall the well-known formula that

det (exp(Q)) = exp (trace(Q)) . (A1)

(To see this, first transform into a basis where Q is upper-triangular.) Hence, if P = exp(Q) for some matrix

Q (whether a generator or not), then we must have det(P ) = det (exp(Q)) > 0.

For part (b), suppose to the contrary that P had a generator Q. Let R(t) = exp(tQ). Then R′ii(t) ≥

QiiRii(t) and Rii(0) = 1, so Rii(t) ≥ exp(tQii). Hence, pii = Rii(1) ≥ exp(Qii). Hence, using (A1), we have

∏
i

pii ≥
∏

i

exp(Qii) = exp
(∑

i

Qii

)
= exp (trace(Q)) = det(P ) ,

contradicting condition (b). Hence, assuming condition (b), there is no such generator Q.

Part (c) follows from the Lévy Dichotomy, which states that if P has a proper generator Q, then for

each pair (i, j) of states, we must have either pij(t) > 0 for all t > 0 or pij(t) = 0 for all t > 0 (where pij(t)

is the ij entry of Pt).
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To prove the Lévy Dichotomy, suppose that P did have a generator. Then for each state k we would

have pkk(s) → 1 as s ↘ 0, so that for sufficiently small s we have pkk(s) > 0 for all states k. (In fact, it

then follows that this condition holds for all s > 0.) Hence, if pij(t) = 0 for some t > 0, then we must have

pij(t/n) = 0 for all sufficiently large integers n (otherwise we would have pij(t) ≥ pij(t/n) (pjj(t/n))n−1
> 0).

That is, the set of zeros of the function pij(s) would have a limit point (i.e. 0). But pij(s) is an analytic

function of s. Hence, it must be that pij(s) = 0 for all s > 0, contradicting our assumption that pij(t) = 0

for some t > 0. This proves the Lévy Dichotomy.

To complete the proof of Theorem 3(c), suppose that j is accessible from i. Then we have pij(m) > 0 for

appropriate positive integer m. Hence, we must have pij(t) > 0 for all t, and in particular pij(1) = pij > 0,

as claimed.

Proof of Theorem 4.

We claim that exp is one-to-one on {Q : ‖Q‖ < ln 2}. To see this, note that if ‖Q1‖ ≤ r and ‖Q2‖ ≤ r

with 0 < r < ln 2,

‖ exp(Q1)− exp(Q2)− (Q1 −Q2)‖ ≤
∞∑

n=2

‖Qn
1 −Qn

2‖/n!

≤
∞∑

n=2

n−1∑
j=0

‖Qj
2(Q1 −Q2)Q

n−1−j
1 ‖/n!

≤ ‖Q1 −Q2‖
∞∑

n=2

nrn−1/n!

= ‖Q1 −Q2‖(er − 1) < ‖Q1 −Q2‖

so ‖ exp(Q1)− exp(Q2)‖ > 0.

Since det (exp(Q)) = exp(trace Q), if Q is a generator for a transition matrix P with det(P ) > 1/2, we

have trace Q > − ln 2. Now if we use the L1-norm on vectors, ‖Q‖ ≤ maxj

∑
i |Qij |. But for a generator,

|Qij | ≤ −Qii so ‖Q‖ ≤ −
∑

i Qii = −trace Q < ln 2. Therefore there can be at most one generator. This

proves (a).

For (b), note that if ‖P − I‖ = r < 1/2 then the series (1) for Log P converges, and ‖Log P‖ ≤

− ln(1− r) < ln 2. Thus Q = LogP .

For (c), note that if Q is a generator for P and det(P ) > exp(−π), then 0 ≥ trace Q > −π. Let
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r = −trace Q. Now Q + rI is a matrix with nonnegative entries, and its maximum nonnegative eigenvalue

is r. By the Perron-Frobenius Theorem, all eigenvalues of this matrix have absolute value at most r, and in

particular the imaginary part of any eigenvalue of Q is in [−r, r]. But Q must be f(P ) for some branch of

the logarithm, and the only one whose imaginary parts are all in (−π, π) is Log.

Proof of Theorem 5.

Suppose Q is a generator for P . Since σ(exp(Q)) = exp(σ(Q)), exp must be one-to-one on σ(Q). Since

Q is a real matrix, any non-real eigenvalues come in complex-conjugate pairs. If r and r̄ form such a pair,

then exp(r) and exp(r̄) are eigenvalues of P = exp(Q). But exp(r̄) = exp(r) = exp(r) since the eigenvalues

of P are real, so exp would not be one-to-one on σ(Q). Thus Q must have all real eigenvalues. As remarked

earlier, if P has distinct eigenvalues then Q = f(P ) where f is some branch of the logarithm. Thus for each

eigenvalue r of P , f(r) is real and thus must be Log(r). Therefore Q = Log(P ). Moreover, P can’t have

any negative eigenvalues, because negative numbers have no real logarithms.

Proof of Theorem 6.

The key is to condition on the number of jumps N which the chain makes in a time interval of length 1.

Now N ≤ N ′, where N ′ is a Poisson random variable with mean λ ≡ maxi(−Qii). Let R(t) = exp(tQ) and

Ri,j(n, t) = Pr(X(t) = j|X(0) = i, N = n). Then Ri,j(n, t/2) ≥ 2−nRi,j(n, t) (as can be seen by writing the

probability of a given sequence of n transitions as an n-fold integral). So

Ri,j(s) ≥ sm
∑
n≤m

Ri,j(n, 1) ≥ sm(Pi,j −Pr(N ′ > m))

So if Pr(N ′ > m) = bm, Pi,j > bm and Pj,k > br, then we must have

Pi,k ≥ Ri,j(s)Rj,k(1− s) ≥ sm(1− s)r(Pi,j − bm)(Pj,k − br)

for any 0 < s < 1. This bound is maximised when s = m/(m + r). Summing over all j with Pi,j > bm and

Pj,k > br then gives the result.
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Proof of Theorem 7.

If P has all distinct eigenvalues, then any Q will be f(P ) where f is some branch of the logarithm, and

thus will be determined by the values f(r) for eigenvalues r of P , where f(r) = Log(r) + 2πk(r)i for some

integers k(r). If Q can’t have eigenvalues with |imaginary part| ≥ π then uniqueness is established. Now if

det(P ) > exp(−π), then trace(Q) > −π, and (for some ε > 0), Q + (π− ε)I is a matrix with all nonnegative

entries and its largest real eigenvalue is π − ε. By Perron-Frobenius, all eigenvalues of Q + (π − ε)I have

absolute value ≤ π − ε, so the imaginary part of any eigenvalue of Q has absolute value < π.

REFERENCES

A. Arvanitis, J. Gregory, and J.-P. Laurent (1999), Building models for credit spreads. Journal of Derivatives,

Spring 1999, 27–43.

B. Belkin, S. Suchower, and L. Forest Jr. (1998), A one-parameter representation of credit risk and transition

matrices. CreditMetrics Monitor, Third Quarter, 1998.

K.L. Chung (1967), Markov chains with stationary transition probabilities. Springer-Verlag, New York.

J.R. Cuthbert (1972), On uniqueness of the logarithm for Markov semi-groups. J. London Mathematical

Society 4, 623–630.

J.R. Cuthbert (1973), The logarithmic function for finite-state Markov semi-groups. J. London Mathematical

Society 6, 524–532.

G. Elfving (1937), Zur Theorie der Markoffschen Ketten. Acta Social Science Fennicae n., series A.2, no. 8,

1–17.

G.S. Goodman (1970), An intrinsic time for non-stationary finite Markov chains. Zeitschrift für Wahrschein-

lichkeitstheorie 16, 165–180.

G.R. Grimmett and D.R. Stirzaker (1992), Probability and random processes (2nd ed.). Oxford University

27



Press.

R.A. Horn and C.R. Johnson (1985), Matrix Analysis. Cambridge University Press.

R.A. Jarrow, D. Lando, and S.M. Turnbull (1997), A Markov model for the term structure of credit risk

spreads. Review of Financial Studies 10, 481–523.

S. Johansen (1973), A central limit theorem for finite semi-groups and its application to the imbedding

problem for finite-state Markov chains. Zeitschrift für Wahrscheinlichkeitstheorie 26, 171–190.

S. Johansen (1974), Some results on the imbedding problem for finite Markov chains. J. London Mathe-

matical Society 8, 345–351.

M. Kijima (1998), Monotonicities in a Markov chain model for valuing corporate bonds subject to credit

risk. Mathematical Finance, Vol. 8 (3).

M. Kijima and K. Komoribayashi (1998), A Markov chain model for valuing credit risk derivatives. Journal

of Derivatives, Fall, 1998.

J.F.C. Kingman (1962), The imbedding problem for finite Markov chains. Zeitschrift für Wahrscheinlichkeit-

stheorie 1, 14–24.

D. Lando (2000), Some Elements of Rating-Based Credit Risk Modeling. In: N. Jegadeesh and B. Tuckman

(eds): Advanced Fixed-Income Valuation Tools, Wiley, 193–215.

Moody’s Investors Services (1999), Historical default rates of corporate bond issuers, 1920–1998. Moody’s,

New York.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery (1988), Numerical recipes in C: the art of

scientific computing. Cambridge University Press.

W. Rudin (1991), Functional Analysis, 2nd ed. McGraw-Hill, New York.

J. Th. Runnenberg (1962), On Elfving’s problem of imbedding a time-discrete Markov chain in a continuous

time one for finitely many states. Proceedings, Koninklijke Nederlandse Akademie van Wetenschappen,

28



series A, Mathematical Sciences 65 (5), 536–541.

B. Singer and S. Spilerman (1976), The representation of social processes by Markov models. American

Journal of Sociology 82, 1–54.

Standard & Poor’s Credit Review (1993), Corporate default, rating transition study updated. McGraw-Hill,

New York.

Standard & Poor’s (1999), Rating performance 1998: Stability and transition. Standard and Poor’s, New

York.

A. Stewart, R. Philips, and G. Dempsey (1998), A Markov-cycle evaluation of five years’ therapy using

Donepezil. International Journal of Geriatric Psychiatry 13, 445–453.

J.H.M. Wedderburn (1934), Lectures on Matrices. American Mathematical Society Colloquium Publications

17. (Republished by Dover Publications, New York, 1964.)

S. Zahl (1955), A Markov process model for follow-up studies. Human Biology 27, 90–120.

29


