
LocalLocalLocalLocal scalescalescalescale adaptationadaptationadaptationadaptation forforforfor RandomRandomRandomRandomWalkWalkWalkWalk
MetropolisMetropolisMetropolisMetropolis

Supervisor: Prof. Jeffrey Rosenthal

Student: Xin Wang
Summer 2011

ContentsContentsContentsContents
AbstractAbstractAbstractAbstract

1.1.1.1. IntroductionIntroductionIntroductionIntroduction
1.1 introduction
1.2 Metropolis-Hastings algorithm
1.3 optimal scaling
1.4 optimal acceptance rate
1.5 adaptive MCMC
1.6 motivation

2.2.2.2. TestTestTestTest ofofofof locallocallocallocal acceptanceacceptanceacceptanceacceptance raterateraterate)(Xα

2.1 idealist adaptation algorithm

2.2 methods to test)(Xα

2.3 Example 1: normal distribution in 1R

2.3.1 Output

2.3.2 How)(xα changes with parameters

2.3.3 How to improve the algorithm speed

2.4 Example 2: mixture of two normal distributions in 1R

2.4.1 How to avoid numerical error

2.4.2 How to improve the algorithm speed

2.4.3 Output

2.4.4 How to make)5(α smaller

2.5 Example 3: mixture of three normal distributions in 1R

2.5.1 How to avoid numerical error

2.5.2 Output

2.5.3 How to choose γ

2.6 Example 4: normal distribution in 2R

2.6.1 How to learn from Example 1

2.6.2 How to improve the algorithm speed

2.6.3 Output

3.3.3.3. EfficiencyEfficiencyEfficiencyEfficiency comparisoncomparisoncomparisoncomparison ofofofof adaptiveadaptiveadaptiveadaptive andandandand non-adaptivenon-adaptivenon-adaptivenon-adaptive algorithmalgorithmalgorithmalgorithm
3.1 efficiency measures to evaluate Markov Chain

3.1.1 varfact

3.1.2 variance/ standard error

3.1.3 average squared jump distance

3.2 Example 1: normal distribution in 1R

3.2.1 varfact

3.2.2 variance/ standard error

3.2.3 average squared jump distance

3.3 Example 2: mixture of two normal distributions in 1R

3.3.1 varfact

3.3.2 variance/ standard error

3.3.3 average squared jump distance

3.4 Example 3: mixture of three normal distributions in 1R

3.4.1 varfact

3.4.2 variance/ standard error

3.4.3 average squared jump distance

3.5 Example 4: normal distribution in 2R

3.5.1 varfact

3.5.2 variance/ standard error

3.5.3 average squared jump distance

ConclusionConclusionConclusionConclusion

ReferenceReferenceReferenceReference

AppendixAppendixAppendixAppendix
1.1.1.1. CodeCodeCodeCode
1.1 C code

1.1.1 C code to implement the adaptation algorithm and generate a Markov Chain (Example 1~3)

1.1.2 C code to implement the adaptation algorithm and generate a Markov Chain (Example 4)

1.2 R code

1.2.1 R code to plot the final)(Xg and)(Xσ (Example 1~3)

1.2.2 R code to plot the final)(Xg and)(Xσ (Example 4)

1.2.3 R code to generate Markov Chain without adaption (Example 1)

1.2.4 R code to generate Markov Chain without adaption (Example 2)

1.2.5 R code to generate Markov Chain without adaption (Example 3)

1.2.6 R code to generate Markov Chain without adaption (Example 4)

1.2.7 R code to compute different efficiency measures (Example 1~3)

1.2.8 R code to compute different efficiency measures (Example 4)

1.2.9 R code to implement OLS in approximation of the final)(Xσ

2.2.2.2. OutputOutputOutputOutput

2.1 Example 1: normal distribution in 1R

2.1.1 kernel function
2

1||

)(α

αx

exK
−

=

2.1.2 kernel function 2||1
1)(
1

αα x
xK

+
=

2.1.3 kernel function
⎪
⎩

⎪
⎨

⎧

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

2.1.4 kernel function ⎩
⎨
⎧

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

2.1.5 Constant CX =)(σ

2.1.6 varfact comparison

2.1.7 variance comparison

2.1.8 comparison of average squared jump distance

2.1.9 OLS in approximation of the final)(Xσ

2.2 Example 2: mixture of two normal distributions in
1R

2.2.1 kernel function
2

1||

)(α

αx

exK
−

=

2.2.2 kernel function 2||1
1)(
1

αα x
xK

+
=

2.2.3 kernel function
⎪
⎩

⎪
⎨

⎧

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

2.2.4 kernel function ⎩
⎨
⎧

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

2.2.5 Constant CX =)(σ

2.2.6 varfact comparison

2.2.7 variance comparison

2.2.8 comparison of average squared jump distance

2.3 Example 3: mixture of three normal distributions in
1R

2.3.1 kernel function
2

1||

)(α

αx

exK
−

=

2.3.2 kernel function 2||1
1)(
1

αα x
xK

+
=

2.3.3 kernel function
⎪
⎩

⎪
⎨

⎧

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

2.3.4 kernel function ⎩
⎨
⎧

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

2.3.5 Constant CX =)(σ

2.3.6 varfact comparison

2.3.7 variance comparison

2.3.8 comparison of average squared jump distance

2.4 Example 4: normal distribution in
2R

2.4.1 kernel function
2

1||

)(α

αx

exK
−

=

2.4.2 kernel function 2||1
1)(
1

αα x
xK

+
=

2.4.3 kernel function
⎪
⎩

⎪
⎨

⎧

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

2.4.4 kernel function ⎩
⎨
⎧

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

2.4.5 Constant CX =)(σ

2.4.6 varfact comparison

2.4.7 variance comparison

2.4.8 comparison of average squared jump distance

Report Local scale adaptation for Random Walk Metropolis Page 1

Abstract

This report investigates the use of adaptation algorithm to update the parameters automatically

during a Markov Chain. The target distribution we work on include normal distribution, the mixture of

two or three normal distributions in one or two dimension space. Computer simulation shows that the

adaptation algorithm makes a little improvement to the efficiency of Random Walk Metropolis than

non-adaptation algorithm.

The report starts by an introduction to the proposed adaptation algorithm in chapter 1, followed by

the test of local acceptance rate for some specific x in chapter 2. Then we will compare the efficiency

of adaptation and non-adaptation algorithm in some different measures in Chapter 3.

1. Introduction

1.1 Introduction

Although MCMC algorithms such as the Metropolis-Hastings algorithm are widely used to sample

from complicated target distribution, it has long been recognized that the choice of the proposal

density
),(yxq

is crucial to the success of these algorithms. The most common case (which we will

focus on here) involves a symmetric random-walk Metropolis algorithm(RMW), in which the proposal

density is given by nnn ZXY
, Where the increments nZ

 are i.i.d from some fixed symmetric

distribution(e.g.
)0(2

dI，N
). In this case, it is the crucial issue that how to choose the scale .

If is too small, then the chain will move slowly; if it is too large, the proposal will always be rejected

and then the chain always gets stuck. So we need a value of between the two extremes, thus

achieving a reasonable-sized proposal moves together with a reasonable-high acceptance

probability. Thus, the main issue is to find proper values for all the parameters in .

1.2 The Metropolis-Hastings Algorithm [1]

Suppose that our target distribution has density with respect to some reference measure(usually

d-dimensional Lebesgue measure). Then, given the current state nX
, a proposal value nY

is

generated from some pre-specified density (usually
)0(*)(~ dnnn ，INXXY

) and accepted

with probability

 1,
),()(

),()(
min),(

yxqx

xyqy
yx

. If the proposed value is accepted, we set nn YX 1 ;

otherwise we set nn XX 1 .

1.3 Optimal Scaling

The determining of proposal scale is both very important and very difficult. However, it is possible to

use theory to estimate the optimal proposal scalings and/or adaptive algorithms to attempt to find

good proposals automatically with little user intervention.

Report Local scale adaptation for Random Walk Metropolis Page 2

A simple way to avoid the extremes of the scale is to monitor the acceptance rate of the algorithm,

that is, the fraction of the proposed moves which is accepted. If this fraction is very close to 1, this

suggests very small and very small movements. If this fraction is very close to 0, this suggests

large and the high probability of the chain getting stuck. But if the fraction is both far from 0 and

from 1, then we have managed to avoid both extremes.

1.4 Optimal Acceptance Rate [1]

Roberts et al.(1997) has proved that under some restrictive assumptions, as d , the optimal

acceptance rate is 234.0 . They considered RWM on
dR for very special target densities, of the

form:

d

i

id xfxx
1

1)(,......,

Where f are some one-dimensional smooth density function . This means that we has to sample

from i.i.d components.

This result are all asymptotic as d . Numerical studies (Gelman et al.,1996; Roberts and

Rosenthal,2001) indicate that the limiting results do seem to well approximate the finite-dimensional

situation for d as small as 5. Also, numeric studies on normal distribution show that when 1d , the

optimal acceptance rate is approximately 44.0 . I will try both these optimal acceptance rate in the

following simulation for comparison.

1.5 Adaptive MCMC [2]

An alternative approach is adaptive MCMC, which "learns" better parameter choice "automatically".

Suppose

A
P

 is a family of Markov Chains, each having stationary distribution . An adaptive

MCMC algorithm would randomly update the value of at each iteration, in an attempt to find the

best value.

Now see the scale as the index parameter , we can update at each iteration to make the

acceptance rate around the one we want.

It is known that adaptive MCMC will not preserve stationarity of the target distribution. That means

0)()(nXL
 , where

)()(sup)()(AAXPXL n
A

n

 . However, there are several

conditions under which they will still converge. One is like the adaptation is done under regeneration

times, others are under various technical procedures. Roberts and Rosenthal
[3]

 proved ergodicity of

adaptive MCMC under conditions which doesn't require the adaptive parameters to converge; they

state that an adaptive scheme will converge if it satisfies diminishing adaptation and bounded

convergence conditons.

Report Local scale adaptation for Random Walk Metropolis Page 3

Theorem: suppose an adaptive scheme updates nX to 1nX using the kernel
n

P , where each fixed

kernel has the stationary distribution , but where n are random indices chosen iteratively form

some collection ψ based on past output. The scheme will converge if it satisfies diminishing

adaptation and bounded convergence conditions:

(1) (diminishing adaptation) 0),(),(sup
1lim

xPxP
nn

xn

 in probability.

(2) (bounded convergence conditions)

0

),(
nnnXM is bounded in probability, 0

Where),(),(:1inf),(xxPnxM n

1.6 Motivation

Let
),(YX

 denote
)|(XisstatecurrentYproposalacceptP

, the acceptance

probability from X to Y , and
)(X

 denote
]|),([XYXE
, the local acceptance probability for X ,

then global acceptance probability is
)]([XE]]|)|([[XXYEE

 .

By ergodicity theorem, we know that n

movesaccepted

n

#
lim

 . So we can estimate the global

acceptance probability by the global acceptance rate, i.e. the fraction of accepted movements

among all the proposals. The mentioned optimal acceptance rate choice in section 1.4 is to make

the global acceptance rate around 234.0 .

If the global acceptance is around 234.0 , then the "average" of all the local acceptance rate
)(X

for the different X is 234.0 . That indicates
)(X

is sometimes higher than 234.0 for some X

and sometimes lower than 234.0 for some X . So one may wonder whether it is a "even more

optimal choice" to make the the local acceptance rate
)(X

around 234.0 for all the different X .

We are curious that: if we make this happen or during the procedure to do this, will the Markov

Chain has better efficiency, say having smaller varfact or bigger average squared jump distance?

So we will first try to achieve this goal(i.e. making
)(X

around 234.0 for all the different X) by

using adaptation algorithm in chapter 2 and then do some efficiency comparison of adaptation and

non-adaptation algorithm in chapter 3.

2. Test of Local Acceptance Rate

In this chapter, we will show some simulation results with the purpose of making
]|),([XYXE

around 234.0 for all the different X by using the adaptation algorithm. Simulation results show that

Report Local scale adaptation for Random Walk Metropolis Page 4

it is "impossible" to make
)(X

around 234.0 for all the different X by using the adaptation

algorithm proposed in 2.1. Although we cannot achieve this goal in the end, we can still check

whether the adaptation algorithm improves the efficiency of RWM during the efforts to make around

234.0 . The comparison of adaptation and non-adaptation algorithms will be shown in chapter 3.

2.1 Idealist Adaptation Algorithm

The procedure of the adaptation algorithm for a general target distribution is as follows:

In this algorithm, we will update
)(xhn in

)}(exp{)()(xgxhx nnn
as

|)|1(*)(cxCexh n

n

Where n is updated by adaptive rules:

Procedure

Step 1 set the initial value
0x
.

Step 2 given the 1th, …, nth value nxx ,...,0 , update)(xn ,

)}(exp{)()(xgxhx nnn
,

Where

nn

n

n

n

n
n

nn

n

n

n

n
n

n

yxif
b

xx
K

b
xg

yxif
b

xx
K

b
xg

xg

)
||

()(

)
||

()(

)(

1

1

.

Step 3 generate 1ny

with proposal density :))(,(~

2

1 nnnn xxNy .

Step 4 generate an independent)1,0(~1 UU n .

Set 11 nn yx if
);()(

);()(
),(

1

11
11

nnn

nnn
nnn

xyqx

yxqy
yxU

,

Otherwise set nn xx 1 .

Step 5 repeat step 2~4 M times

Report Local scale adaptation for Random Walk Metropolis Page 5

nnn

nnn

n

yxif
n

yxif
n

234.0*
5

1

)234.01(*
5

1

1

1

This suggests that if accepting the previous proposal ny
, we make n bigger and thereby

bigger n
; if rejecting the previous proposal, we make n smaller and thereby smaller n

.

In the second term of
)(xhn ,

|)|1(cxC
, the part

|| cxC
 is to modify the scale according to

how fat X is from the center 0c . The far away X from the center, the bigger n
. This comes

from the intuition that the density is very small around the center. We will try different choice of
,C

to make
)(X

around 234.0 for all different X .

We will update ng
in this way:

nn

n

n

n

n
n

nn

n

n

n

n
n

n

yxif
b

xx
K

b
xg

yxif
b

xx
K

b
xg

xg

)
||

()(

)
||

()(

)(

1

1

nb
is the bandwidth of the update. We can choose it as a fixed constant or decreasing with respect

to n . One possible choice is
5

1

1

n

bn

 . We will test which is better, fixed or decreasing.

n is the speed of adaptation. It is naturally chosen as:
]1,

2

1
(,

1
 a

nan
. In the code, we choose

it as 5

1

n
n

. We will also try other n with other
]1,

2

1
(a

 to check whether they give better

performance.

)(xK
is the kernel function, usually chosen as a polynomial or exponential function:

2||1

1
)(

1

 x
xK

2

1||

)(

x

exK

Report Local scale adaptation for Random Walk Metropolis Page 6

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

2.2 Methods to Test)(X

Suppose that we get the final scale function as
)(X

from the above adaptation algorithm. We can

estimate
]|)|([)(XXYEX

in two different ways:

This method works because it's actually computing the target expectation by Monte Carlo Method.

This method works because
)|(1 XYU ii

are independent distributed and

)()|()|()|(1 XXYEXYUPEXYUEE iiiii
. So by Strong Law of

Large Numbers

n

i ii XYU
n 1

)|(1
1

 will converge almost everywhere to

)(X
.

Another more intuitive way to prove the validation of this method is:

 XYtoXfrommovingacceptE

XXYEX

|

|)|()(

Method 1 to test)(X

step 1 generate n samples nYY ,......,1 from proposal density:))(,(~
2

XXNY n

step 2 estimate
)(X

as

n

i i XY
n 1

)|(
1

Method 2 to test)(X

 step 1 generate n samples nYY ,......,1 from proposal density:))(,(~
2

XXNY n

step 2 generate n independent nUU ,......,1 from
 1,0U

step 3 estimate
)(X

as

n

i ii XYU
n 1

)|(1
1

Report Local scale adaptation for Random Walk Metropolis Page 7

density.proposalthefromsampledarewhere

tofrommovingaccept1
1

lim

1

n

1i

n,...,

i
n

YY

YX
n

2.3 Example 1: Normal Distribution in
1R

Let's start with one easy case: standard normal distribution in
1R :

)1,0(N
with density function:

2
1

2

*)(
x

eCxf

To avoid numerical error, I will compute the logarithm of the un-normalized density and acceptance

probability instead of themselves directly.

The proposal density becomes:

)}(exp{)()(xgxhx nnn

Where

|)|1(*)(xCexh n

n

nn

n

n

n

n
n

nn

n

n

n

n
n

n

yxif
b

xx
K

b
xg

yxif
b

xx
K

b
xg

xg

)
||

()(

)
||

()(

)(

1

1

2.3.1 Output

I try different choices for parameters and kernel functions. You can refer to Appendix 2.1 for all the

66 cases I try. Appendix 2.1 includes the plot of final
)(),(xxg

, estimation of)(x for some

specific x , and some Markov Chain generated using adaptation.

For the 66 cases, they all have reasonable trace plots and final
)(),(xxg

 plot. The global

acceptance rate is around 234.0 , but none satisfies that
),0(

),2(

),5(

),10(

),20(

),30()50(
are around 234.0 .

Among them, case 30:

 Kernel function:
2||1

1
)(

1

 x
xK

 ,

，

n
n 5.0)5(

1

 2,1,1,1 21 C

with decreasing bandwidth 2.0

1

n
bn

Report Local scale adaptation for Random Walk Metropolis Page 8

gives the closest)(x to 234.0 for these specific x :

Table 1)(x for some specific x in case 30

)(x is around 0.26 when 0x , first increases to around 0.3 when 10x , and then decreases to

0 as goes to infinity.

For case 30, the final
)(),(xxg

 looks like:

-40 -20 0 20 40

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0
.0

x

g
v
a

ls

-40 -20 0 20 40

0
5

0
1

0
0

1
5

0
2

0
0

x

s
ig

v
a

ls

Figure 1 plot of
)(),(xxg

in case 30

They seem reasonable. They are symmetric around 0 .
)(x

 seems smooth and is the smallest

around 0. This is good because we want a small scale at the right mode so that the sampled random

variables will be more likely to lay around it, where the target distribution also reaches the maximum.

It is difficult to give the local acceptance rate for all x . So we will calculate)(x for just some

specific x , like 150,10050,20,10,5,2,0 ，x . The values of)(x at these discrete points can

provide us with a general idea of how)(x changes with x over the real line. I compute)(x for

only positive x for it is symmetric around 0 and takes the same value for x and x .)(x for

alpha(0.000000) is 0.269674

alpha(2.000000) is 0.249986

alpha(5.000000) is 0.293759

alpha(10.000000) is 0.307941

alpha(20.000000) is 0.279936

alpha(50.000000) is 0.176204

alpha(100.000000) is 0.109100

alpha(150.000000) is 0.075300

Report Local scale adaptation for Random Walk Metropolis Page 9

some specific x is as Table 1. In this case,)(x is around 4.0~2.0 for 5|| aroundx and always

stays around 5.0 , not 234.0 , for 5|| aroundx .

The output of all the different 66 cases suggests that however we choose the parameters, we

probably cannot make the local acceptance rate)(x for some certain x , let alone for all the

different x . But it remains to be tested that whether the adaptation algorithm with good parameter

choices (like case 57) improves the efficiency of Markov Chain compared to non-adaptation

algorithm.

2.3.2 How)(x changes with parameters

If we only change the value of one factor and keep others the same, we can get a rough idea of how

)(x changes with parameters nnbC ,,,, 1 and different choice of kernel fuctions.

2.3.2.1 How)(x changes with kernel function

If we want to make all the local acceptance rate around 0.234, then different kernel functions give

almost the same good result. For the four kernel functions, the best cases are respectively case 18,

30, 34, 53:

Case 18: kernel function:
2

1||

)(

x

exK

 ，
n

n 5.0)5(

1

 2,1.0,1,2 21 C

with decreasing bandwidth 2.0

1

n
bn

Case 30: kernel function:
2||1

1
)(

1

 x
xK

，
n

n 5.0)5(

1

 2,1,1,1 21 C

with decreasing bandwidth 2.0

1

n
bn

Case 34: kernel function:

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

，
n

n 5.0)5(

1

 2,1.0,5.0width,5.0 Cheight

with fixed bandwidth
1nb

Case 53: kernel function:

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

Report Local scale adaptation for Random Walk Metropolis Page 10

，

n
n 5.0)5(

1

 2,1.0,5.0width C

with fixed bandwidth
1nb

For these four cases, we have local acceptance rate as table 2 and final
)(Xg and)(X

as table

3:

Case 18 Case 30 Case 34 Case 53

alpha(0) is 0.205731

alpha(2) is 0.300010

alpha(5) is 0.330864

alpha(10) is 0.353506

alpha(20) is 0.317601

alpha(50) is 0.211646

alpha(100) is 0.1366

alpha(150) is 0.0894

alpha(0) is 0.269674

alpha(2) is 0.249986

alpha(5) is 0.293759

alpha(10) is 0.307941

alpha(20) is 0.279936

alpha(50) is 0.176204

alpha(100) is 0.1091

alpha(150) is 0.0753

Alpha(0) is 0.230635

alpha(2) is 0.321085

alpha(5) is 0.392833

alpha(10) is 0.407148

alpha(20) is 0.374904

alpha(50) is 0.263909

alpha(100) is 0.1645

alpha(150) is 0.11870

alpha(0) is 0.186088

alpha(2) is 0.255791

alpha(5) is 0.322271

alpha(10) is 0.361781

alpha(20) is 0.319420

alpha(50) is 0.215913

alpha(100) is 0.1306

alpha(150) is 0.0984

Table 2)(x for the best cases with different kernel functions

Case 18 Case 30

-40 -20 0 20 40

-0
.6

-0
.4

-0
.2

0
.0

x

g
v
a

ls

-40 -20 0 20 40

0
5

0
1

0
0

1
5

0

x

s
ig

v
a

ls

-40 -20 0 20 40

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0
.0

x

g
v
a

ls

-40 -20 0 20 40

0
5

0
1

0
0

1
5

0
2

0
0

x

s
ig

v
a

ls

Case 34 Case 53

-40 -20 0 20 40

-0
.1

5
-0

.1
0

-0
.0

5
0

.0
0

0
.0

5
0

.1
0

x

g
v
a

ls

-40 -20 0 20 40

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

x

s
ig

v
a

ls

-40 -20 0 20 40

-0
.1

5
-0

.1
0

-0
.0

5
0

.0
0

x

g
v
a

ls

-40 -20 0 20 40

0
5

0
1

0
0

1
5

0

x

s
ig

v
a

ls

Table 3 plot of the final)(Xg and)(X for the best cases with different kernel functions

Report Local scale adaptation for Random Walk Metropolis Page 11

From the above two tables, we can see that even the kernel function is different, but adaptation

algorithm is still trying to make the final)(X look some certain way. There is no strong support for

the choice of any kernel function. However, I prefer the first two:
2||1

1
)(

1

 x
xK

and

2

1||

)(

x

exK

, for their final)(xg and)(x are smooth and this will facilitate our further discussion,

like approximation of the final)(x .

2.3.2.2 How)(X changes With ,C

From Appendix 2.1, we can see that if 1nb , and ，
n

n 5.0)5(

1

 then,

)(X
 has the same

tendency as long as
,C

 have the same values, however we choose other parameters.

1) When
,C

are big,
)(X

peaks at 0X , and decreases to 0 as
|| X
 goes to infinity. Among

these cases are CASE 1, 2, 3, 4, 5, 6, 7, 9, 11. Parameter choices are like:
1,5.0 C

;

10,1.0 C

2) When
,C

 are small,
)(X

reaches the global minimum at 0X , and increases to 0.5 as

|| X
goes to infinity. Among these cases are CASE 10, 12, 13, 14. Parameter choices are like:

01.0,10 C ; 1,1.0 C

Although the below section 2.3.3.2.1 and 2.3.3.2.2 are based on kernel function:
2

1||

)(

x

exK

, the

similar results hold for other kernel functions, which you can check from the Appendix 2.1.

2.3.2.2.1 Why does
)(X

 decrease to 0 as
|| X
 goes to infinity when

,C
 are big?

,C
determines how big the effect the second term

 ||1 xC
has on

 |)|1()()(xCex xg

.

If they are big, then the second term has a big influence on
)(X

. Approximately, we can assume

that
 |)|1()(xCx ， so

)(X
 grows very quickly as

|| X
 increases from 0 to infinity. It

grows so quickly that it becomes the most important factor to determine the value of
)(X

. The

bigger
)(X

, the smaller acceptance rate
)(X

. So
)(X

decreases and goes to 0 as
|| X
 goes

to infinity.

Figure 2 shows the different plot sof final
)(X

when
,C

 are big and small . They are from case

11 (10,1.0,1,2 21 C with fixed bandwidth 1nb), and case 14

Report Local scale adaptation for Random Walk Metropolis Page 12

(1.0,1.0,1,2 21 C with fixed bandwidth 1nb), They have the same values for all the

parameters except .You can see how quickly
)(X

 grows in CASE 11, in which
,C

 are big.

For 50X ,
)(X

 takes the value around 10
8
 in CASE 11, much bigger than 8 in CASE 14 .

-40 -20 0 20 40

0
.0

e
+

0
0

4
.0

e
+

0
7

8
.0

e
+

0
7

1
.2

e
+

0
8

x

l1

-40 -20 0 20 40

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

x
l2

 CASE 11 (
10,1.0 C

) CASE 14(
1.0,1.0 C

)

Figure 2 the plot of final
)(X

for three different cases

2.3.2.2.2 Why does
)(X

 increase to 0.5 as
|| X
 goes to infinity when

,C
 are small?

If
,C

are both small, then the second term has a small effect on
)(X

. So approximately, we can

assume that
)()(xgex
. Unfortunately, we cannot get any conclusion about the tendency of

)(X
 as

|| X
 goes to infinity from this rough approximation because we don't know the express of

)(Xg
. We need some more precise analysis.

Let's go back to the definition of the local acceptance probability:

 1,
)()(

)()(
min)),(()(

yqx

xqy
EyxEx

x

y

Since
)(yqx is symmetric at x , the reason that

)(x
 takes the value of 0.5 for big enough x is

probably that

11,
)()(

)()(
min

yqx

xqy

x

y

 for
y

 on one side of x and

01,
)()(

)()(
min

yqx

xqy

x

y

 for
y

on the other side of x . Now let't try to check whether it is true.

Report Local scale adaptation for Random Walk Metropolis Page 13

For

2

2

)(2

)(

)(

1
)(x

xy

x e
x

yq

, we have

2

22

2

22

)(2

)(
exp)

2
exp()(

)(
)(2

)(
exp)

2
exp(

)()(

)()(

x

yxx
y

x
y

yxy

yqx

xqy

x

y

2)(2

)(

2)(2

)(
exp

)(

)(2

2

22

2

2 y

y

yxx

x

yx

y

x

 .

Since
)(X

 takes the form of recursion and the exact mathematical express of
)(X

is very

complicated, it is better to use some approximation function to reflect the tendency of
)(x

, like

exponential function or polynomial function. Below I will use CASE 14 (
1.0,1.0 C

) as an

example to explain how to approximate
)(x

and check
)(x

. Other cases of this kind of parameter

choice follow the similar idea.

Let's firstly check the plot of final
)(x

.

-40 -20 0 20 40

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

x

l2

Figure 3 the plot of final
)(X

for CASE 14

From Figure 3, we guess maybe a mixture of two exponential functions centered at 0 can be used to

approximate the final
)(x

, like

3*

3*
)(

64

31

5

2

x，CxC

x，CxC
x

C

C

. I use R and implement OLS to get

the estimation as: 572407.54.13.0 321

C，C，C , 6.773458C，0.63C，0.1C 654

. I will call

this as approximation I. We can believe this is a good approximation from Figure 4, the comparison

of the final
)(x

and its approximation
)(x

: they overlap a lot, especially when x is large.

Report Local scale adaptation for Random Walk Metropolis Page 14

-40 -20 0 20 40

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

x

l2

Figure 4 plot of the final
)(x

and the approximation
)(x

(black:

)(x
 ;red:

)(x

)

For big x, say 30,50,80,150,200,300,

1,
)()(

)()(
min

yqx

xqy

x

y

 has the tendency as Figure 5:

10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

when x=
30

y

z

30 40 50 60 70

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

when x=
50

y

z

60 70 80 90 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

when x=
80

y

z

130 140 150 160 170

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

when x=
150

y

z

170 180 190 200 210 220 230

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

when x=
200

y

z

270 280 290 300 310 320 330

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

when x=
300

y

z

Report Local scale adaptation for Random Walk Metropolis Page 15

Figure 5 plot of

1,
)()(

)()(
min

yqx

xqy

x

y

 for big x

From Figure 5, for each fixed big x ,

11,
)()(

)()(
min

yqx

xqy

x

y

 for
xy

 and

01,
)()(

)()(
min

yqx

xqy

x

y

 for
xy

 . Since
)(yqx is symmetric at x ,

5.01,
)()(

)()(
min

yqx

xqy
E

x

y

 . So 5.01,
)()(

)()(
min)),(()(

yqx

xqy
EyxEx

x

y

 .

we can also use approximation of
)(x

to see why when
,C

are between the two extremes,

01,
)()(

)()(
min

yqx

xqy
E

x

y

 for very big x, like case 16.

Comparing the local acceptance rate of the three situations, we find it better to choose
,C

between

the two extremes, like
2,1.0 C

 . Because we want
)(X

 to neither decrease quickly to 0 nor

always stay around 0.5. If we choose
,C

between the two extremes, then
)(X

 still converges to

0, but in a much slower speed; it stays around 0.2~0.4 for
50|| X

. This is the closet situation to

our goal of making all the local acceptance around 0.234. But we are not sure whether it has better

efficiency than the non-adaptation algorithm, which will be discussed in Chapter 3.

2.3.2.3 How)(X Changes With 1

If
,C

remain the same, then changes in the value of has little influence over the tendency of local

acceptance rate.

In case 1~5,
,C

are fixed
2,1 C

, bandwidth is fixed as 1nb ,and ，
n

n 5.0)5(

1

 while the

value of 1 varies from 0.1 to 10. The tendency of
)(X

 are very similar: starts from around 0.3

and then decreases to 0. Also, the plot of final
)(X

 have the same shape.

Case 1

11

Case 2

21

Case 3

101

Case 4

1.01

Case 5

5.01

alpha(0) is 0.294400 alpha(0) is 0.275100 alpha(0) is 0.287000 alpha(0) is 0.263300 alpha(0)is 0.309200

Report Local scale adaptation for Random Walk Metropolis Page 16

alpha(2) is 0.146900

alpha(5) is 0.079300

alpha(10) is 0.047600

alpha(20) is 0.022500

alpha(50) is 0.009100

alpha(100) is 0.00580

alpha(150) is 0.00260

alpha(2) is 0.123300

alpha(5) is 0.065000

alpha(10) is 0.036300

alpha(20) is 0.020400

alpha(50) is 0.008500

alpha(100) is 0.00370

alpha(150) is 0.00440

alpha(2) is 0.146700

alpha(5) is 0.067300

alpha(10) is 0.042100

alpha(20) is 0.022000

alpha(50) is 0.008600

alpha(100) is 0.0055

alpha(150) is 0.0025

alpha(2) is 0.135800

alpha(5) is 0.070300

alpha(10) is 0.041900

alpha(20) is 0.021200

alpha(50) is 0.008200

alpha(100) is 0.00560

alpha(150) is 0.00400

alpha(2) is 0.150900

alpha(5) is 0.076500

alpha(10) is 0.045300

alpha(20) is 0.022600

alpha(50) is 0.010200

alpha(100) is 0.00330

alpha(150) is 0.00340

Table 4
)(X

 for case 1~5

Case 1

11

Case 2

21

Case 3

101

Case 4

1.01

Case 5

5.01

-40 -20 0 20 40

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

x

s
ig

v
a
ls

-40 -20 0 20 40

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

x

s
ig

v
a
ls

-40 -20 0 20 40

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

x

s
ig

v
a
ls

-40 -20 0 20 40

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

x

s
ig

v
a
ls

-40 -20 0 20 40

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

x

s
ig

v
a
ls

Table 5 plot of the final
)(X

 for case 1~5

From the above two tables, we can see that the final
)(X

is quite similar for difference choice of

1 and thereby it doesn't make big changes to the tendency of
)(X

when we change 1 .

The same result holds for the different choice of kernel functions, which you can check from the first

several cases in Appendix 2.1.1~2.1.4.

2.3.2.4 How)(X Changes With bandwidth nb

Different nb
 does not change the general tendency of

)(X
; it only affects the speed in which

)(X
 goes to 0 or 0.5.

In case 37, 47, 48, 49, nb
is different and all the other parameters are the same

(
2,1.0,1,2 21 C

) kernel function is

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(. In

Report Local scale adaptation for Random Walk Metropolis Page 17

case 37 , 47 , 48, nb
 are fixed as a constant 1, 10 , 0.1 respectively, while in case 49, I choose

decreasing bandwidth
2.0

1

n
bn

. However,
)(X

 has similar tendency and plot of final
)(x

is

also similar to each other. Table 6 and 7 shows the local acceptance rate and plot of)(xg and

)(x
for these four cases.

Case 37

1nb

Case 47

10nb

Case 48

1.0nb

Case 49

2.0

1

n
bn

alpha(0) is 0.194871

alpha(2) is 0.334081

alpha(5) is 0.494616

alpha(10) is 0.501907

alpha(20) is 0.503077

alpha(50) is 0.499887

alpha(100) is 0.49540

alpha(150) is 0.49668

alpha(0) is 0.191540

alpha(2) is 0.3355

alpha(5) is 0.479633

alpha(10) is 0.498527

alpha(20) is 0.500063

alpha(50) is 0.505558

alpha(100) is 0.50062

alpha(150) is 0.49368

alpha(0) is 0.198912

alpha(2) is 0.328186

alpha(5) is 0.474185

alpha(10) is 0.494897

alpha(20) is 0.509700

alpha(50) is 0.493201

alpha(100) is 0.50840

alpha(150) is 0.49711

alpha(0) is 0.168346

alpha(2) is 0.303514

alpha(5) is 0.473132

alpha(10) is 0.508745

alpha(20) is 0.500702

alpha(50) is 0.502543

alpha(100) is 0.50144

alpha(150) is 0.50043

 Table 6
)(X

 for different nb

Case 37

1nb

Case 47

10nb

-40 -20 0 20 40

-0
.1

0
-0

.0
5

0
.0

0
0

.0
5

x

g
v
a

ls

-40 -20 0 20 40

4
.8

5
.0

5
.2

5
.4

5
.6

x

s
ig

v
a

ls

-40 -20 0 20 40

-0
.0

2
-0

.0
1

0
.0

0
0

.0
1

0
.0

2

x

g
v
a

ls

-40 -20 0 20 40

5
6

7
8

9
1

0
1

1

x

s
ig

v
a

ls

Case 48

1.0nb

Case 49

2.0

1

n
bn

Report Local scale adaptation for Random Walk Metropolis Page 18

-40 -20 0 20 40

-0
.4

-0
.2

0
.0

0
.2

0
.4

x

g
v
a

ls

-40 -20 0 20 40

4
6

8
1

0

x

s
ig

v
a

ls

-40 -20 0 20 40

-0
.2

0
.0

0
.2

0
.4

x

g
v
a
ls

-40 -20 0 20 40

4
6

8
1
0

1
2

x

s
ig

v
a
ls

Table 7 plot of)(xg and
)(x

 for different nb

For other kernel functions, you can conclude the same statement.

2.3.2.5 How)(X Changes With bandwidth n

In section 2.1, we discusses there are different choices of the power of n . We can try 0.5, and also

some real value between 0.5 and 1. So I try 0.5 and 0.8 to compare which one is better. Simulation

indicates that there is no big difference in the power choice of
powern

n)5(

1

.

Let's choose case 27 and 31 for comparison:

Case 27 :
，

n
n 5.0)5(

1

 2,1.0,1,1 21 C

with fixed bandwidth
10nb

Case 31:
，

n
n 8.0)5(

1

 2,1.0,1,1 21 C

with fixed bandwidth
01nb

 Case 27
5.0)5(

1

n
n

 Case 31
8.0)5(

1

n
n

alpha(0.000000) is 0.201310

alpha(2.000000) is 0.301568

alpha(5.000000) is 0.366086

alpha(10.000000) is 0.380836

alpha(20.000000) is 0.352299

alpha(50.000000) is 0.239894

alpha(100.000000) is 0.155501

alpha(150.000000) is 0.105800

alpha(0.000000) is 0.221199

alpha(2.000000) is 0.320933

alpha(5.000000) is 0.391188

alpha(10.000000) is 0.401987

alpha(20.000000) is 0.378950

alpha(50.000000) is 0.264811

alpha(100.000000) is 0.163500

alpha(150.000000) is 0.120201

Report Local scale adaptation for Random Walk Metropolis Page 19

Table 8
)(X

 for different n

 Case 27
5.0)5(

1

n
n

 Case 31
8.0)5(

1

n
n

-40 -20 0 20 40

-0
.0

3
5

-0
.0

3
0

-0
.0

2
5

-0
.0

2
0

-0
.0

1
5

-0
.0

1
0

x

g
v
a

ls

-40 -20 0 20 40

0
5

0
1

0
0

1
5

0

x

s
ig

v
a

ls

-40 -20 0 20 40

-0
.0

3
5

-0
.0

3
0

-0
.0

2
5

-0
.0

2
0

-0
.0

1
5

-0
.0

1
0

x

g
v
a

ls

-40 -20 0 20 40

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

x

s
ig

v
a

ls

Table 9 plot of)(xg and
)(x

 for different n

From the above tables, you can see that there is no big difference wether we choose
5.0)5(

1

n
n

or
8.0)5(

1

n
n

.

So if we want to make
)(x

close to 0.234, it is more important to find good values of ,C than

other parameters.

2.3.3 how to improve the algorithm speed

The current algorithm is running in a quite slow speed. It takes around 40 minutes to generate one

Markov Chain and around 38 minutes to test the local acceptance for eight points. This is quite time-

consuming. We need to explore some methods to improve the algorithm speed.

The reason why it runs so slow is that we use the exact value of final
)(x

every time the Markov

Chain moves to a different state x. So we need 10
4

times of iterations to compute each
)(xg

and

)(x
 for every x and needs much time. One way to improve the speed is to use approximation

instead of exact value. We know that good approximation of
)(x

can significantly improve the

algorithm speed.

We can divide the real area that the chain stays at most time (say,)30,30[x) into several

smaller intervals (say, equally 6000 intervals) , then compute and save the values of final
)(x

 for

every left point. That means we record
)(x

for)30,30[x with the separation of 0.01. For each

)30,30[x that is not the left point of any small interval, approximate
)(x

by
)(

 at the left

Report Local scale adaptation for Random Walk Metropolis Page 20

point of the small interval that x lies in. For each)30,30[x , just use their exact value of
)(x

;

this will not cost much time because for the random variable of the standard normal distribution will

seldom go to the area)30,30[x .

I will call this approximation of
)(x

 as Approximation II. Now run the algorithm with Approximation

II for case 1, and check the speed for comparison.

Without Approximation II With Approximation II

it takes 218.947 seconds to run the adaptation algorithm

it takes 95.419 seconds to compute g and sigma

it takes 2380.314 seconds to generate the first Markov Chain

it takes 2367.3 seconds to generate the second Markov Chain

it takes 2386.311 seconds to generate the third Markov Chain

it takes 2402.55 seconds to generate the fourth Markov Chain

it takes 2402.489seconds to generate the fifth Markov Chain

it takes 2144.659 seconds to test the local acceptance

it takes 233.63636 seconds to run the adaptation algorithm

it takes 95.5646 seconds to compute g and sigma

it takes 21.525 seconds to generate the first Markov Chain

it takes 25.25 seconds to generate the second Markov Chain

it takes 23.8585 seconds to generate the third Markov Chain

it takes 21.156 seconds to generate the fourth Markov Chain

it takes 26.6363 seconds to generate the fifth Markov Chain

it takes 1564.99 seconds to test the local acceptance

Table 10 running time with and without Approximation II

From table 10, we can see that the speed is significantly faster: now it takes only around 20 seconds

to generate a Markov Chain with Approximation II, while it needs around 40 minutes without

Approximation II; and it takes around 25 minutes to test the local acceptance rate for 8 different X's,

while it needs around 40 minutes without Approximation II.

The speed is good now; but will the algorithm with Approximation II give the similar result to that

without it? Table 11 and 12 show)(x and the plot of final)(xg and)(x . They are similar to each

other. So Approximation II is a good method to significantly improve the speed of the algorithm.

Without Approximation II With Approximation II

alpha(0.000000) is 0.307000

alpha(2.000000) is 0.145700

alpha(5.000000) is 0.078100

alpha(10.000000) is 0.042800

alpha(20.000000) is 0.022500

alpha(50.000000) is 0.009400

alpha(100.000000) is 0.003800000)

alpha(0.000000) is 0.294400

alpha(2.000000) is 0.146900

alpha(5.000000) is 0.079300

alpha(10.000000) is 0.047600

alpha(20.000000) is 0.022500

alpha(50.000000) is 0.009100

alpha(100.000000) is 0.0058

Report Local scale adaptation for Random Walk Metropolis Page 21

Table 11)(x for case 1 with and without Approximation II

Without Approximation II With Approximation II

-40 -20 0 20 40

-0
.1

2
-0

.1
0

-0
.0

8
-0

.0
6

-0
.0

4
-0

.0
2

0.
00

x

gv
al

s

-40 -20 0 20 40

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

x

si
gv

al
s

Table 12 plot of)(xg and)(x for case 1 with and without Approximation II

The speed to generate a Markov Chain is much faster now, about 100 times faster than without

Approximation II. But the speed to test the local acceptance rate doesn't get as much improvement

as generating. This is because when testing)(x for big x, we need to compute)(x for big x,

which isn't approximated in Approximation I. One way to improve this is to use Approximation I

instead, which gives approximation for every single x, not just a part of the real numbers.

Now run the algorithm with Approximation I for case 14, and check the speed for comparison.

With Approximation I With Approximation II

alpha(0.000000) is 0.289099

alpha(2.000000) is 0.404383

alpha(5.000000) is 0.425934

alpha(10.000000) is 0.501186

alpha(20.000000) is 0.497216

alpha(50.000000) is 0.498001

alpha(100.000000) is 0.498768

alpha(0.000000) is 0.168239

alpha(2.000000) is 0.273334

alpha(5.000000) is 0.440324

alpha(10.000000) is 0.502495

alpha(20.000000) is 0.499843

alpha(50.000000) is 0.496880

alpha(100.000000) is 0.498992

Table 13)(x for case 14 with and without Approximation I

With Approximation I With Approximation II

it takes 0.345 seconds to generate second Markov Chain

it takes 0.387 seconds to generate third Markov Chain

it takes 0.40 seconds to generate fourth Markov Chain

it takes 0.354 seconds to generate fifth Markov Chain

it takes 0.166 seconds to test the local acceptance

it takes 16.43 seconds to generate second Markov Chain

it takes 16.54 seconds to generate third Markov Chain

it takes 16.62seconds to generate fourth Markov Chain

it takes 16.72seconds to generate fifth Markov Chain

it takes 1005.606 seconds to test the local acceptance

Table 14 running time for case 14 with Approximation I and II

Report Local scale adaptation for Random Walk Metropolis Page 22

Now it is very quick to test the local acceptance rate. It takes about less than 1 second to test)(x

for 8 points, much faster than Approximate II, which needs around 1000 seonds. But from table 10,

you, it has good estimation of)(x for big x and bad estimation of)(x for small x, which is

untenable. So the advantage of Approximation I is to improve the speed of both generating Markov

Chain and testing)(x significantly, however big x is. But it doesn't give believable estimation of

)(x for small x. While Approximation II gives good estimation of)(x for every x, although it is

slow to test)(x for big x. Another disadvantage of Approximation I is that we need to estimate the

parameters in it before we can use it, like we do in section 2.3.2.2.1. While for Approximation II, we

only need to let the computer record the values of)(x for some x. In all the other cases, I will use

Approximation II.

2.4 Example 2: Mixture of Two Normal Distributions in
1R

Now consider the target distribution as mixture of two normal distributions in
1R :

)1,0(N
and

)1,10(N , so the density is

2

)10(

2
4

22

*)(
xx

eeCxf

.

Figure 6 shows the un-normalized part of this density function. It reaches the maximum at 0 and 10.

-30 -20 -10 0 10 20 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

y

Figure 6 un-normalized part of the density

The proposal density will become :

)}(exp{)()(xgxhx nnn

Where
，xCexh n

n

|)5|1(*)(

Report Local scale adaptation for Random Walk Metropolis Page 23

nn

n

n

n

n
n

nn

n

n

n

n
n

n

yxif
b

xx
K

b
xg

yxif
b

xx
K

b
xg

xg

)
||

()(

)
||

()(

)(

1

1

The same method to update parameters and test
)(x

 is conducted for this example.

2.4.1 How to Avoid Numeric Error

Numerical error may arise from he finite precision of computations. For example, to compute

 xelog for 900x .It is easy to get xex log if we calculate it by ourselves. But if we let a

computer to do this calculation, it first computes
xe for 900x and gets a value very close to 0 ,

say y, and then compute ylog . y is usually so close to 0 that the computer calculates xelog as

 0log , which is infinity. So the computer will probably return NA or -INF. The same problem exists

in our target distribution: 2

)10(

2

22

)(

xx

eex when has big absolute value.

2.4.1.1 Why does the numerical error happen?

In our C code, we usually compute the logarithm of)(x instead of itself:

)log()(log 2

)10(

2

22

xx

eex

when x is too big, say 50, then
12502

50

2

22

 eee

x

and
8002

40

2

)10(22

 eee
x

, both very small to

compute in C. C will first compute
800e as a small value very close to 0 and

1250e as a even smaller

value much closer to 0, and then sum them to a small value close to 0, whose logarithm will be

treated as 0log in C.That’s why C returns for)(log x when x is too big. It’s the same with

negative x with big absolute value.

Table 15 gives the computed value of)(log x for some y in C:

when y=-50.000000, logpi(-50.000000)=-1.#INF00

when y=-30.000000, logpi(-30.000000)=-450.000000

when y=-10.000000, logpi(-10.000000)=-50.000000

when y=10.000000, logpi(10.000000)=0.000000

when y=30.000000, logpi(30.000000)=-200.000000

when y=50.000000, logpi(50.000000)=-1.#INF00

Report Local scale adaptation for Random Walk Metropolis Page 24

Table 15
)(log x

for some y

2.4.1.2 How to approximate)(log x ?

Although for big x, 2

2x

e

and 2

)10(2

x

e are very small, 2

2x

e

is much smaller than 2

)10(2

x

e :

501022

)10(

2

)10(

2
22

2

2

 x

xx

x

x

ee

e

e
. This inspires us to ignore the term 2

2x

e

and approximate)(log x

by)(log x)log(2

)10(2

x

e
2

)10(2

x
for big x. Similarly, for negative x with big absolute value,

although 2

2x

e

and 2

)10(2

x

e are very small, 2

)10(2

x

e is much smaller than

2

2x

e

:
50102

)10(

2

2

2

)10(
22

2

2

 x

xx

x

x

ee

e

e
. Then we can ignore the term 2

)10(2

x

e and approximate

)(log x by)(log x)log(2

2x

e

2

2x
 for small x.

We can check the properness of this approximation by the table below:(the computation is in R)

 -25 -3 0 5 6 8 10 12 20

2

2x

e

1.9e-136 1.11e-2 1 3.73e-6 1.52e-8 1.7e-14 1.9e-22 5.3e-32 1.3e-87

2

)10(2

x

e
9.8e-267 2.0e-37 1.9e-22 3.73e-6 3.35e-4 1.35e-1 1 1.35e-1 1.9e-22

2

)10(

2

22

xx

ee
1.2e-136 1.11e-2 1 7.45e-6 3.35e-4 1.35e-1 1 1.35e-1 1.9e-22

)log(2

)10(

2

22

xx

ee

-312.5 -4.5 0 -11.8 -8.00 -2 0 -2 -50

2

2x
 -312.5 -4.5 0 -12.5 -

2

)10(2

x
 -12.5 -8 -2 0 -2 -50

Table 16 some values for some x

The approximation returns the exact value of)(log x computed by R directly except]6,4[x .

 The below is a plot of)(log x and its approximation for]60,50[x . From table 16 and figure

Report Local scale adaptation for Random Walk Metropolis Page 25

7, we can see that this is a good approximation of)(log x for x with big absolute value.

-40 -20 0 20 40 60

-6
0

0
-4

0
0

-2
0

0
0

xlist

y
1

li
s
t

Figure 7)(log x and its approximation (red:)(log x ; black:its approximation)

Let's see how the approximation avoid the numeric error. For case 67:

kernel function: 2

1||

)(

x

exK

，
n

n 5.0)5(

1

 2,1,1,1 21 C

with fixed bandwidth
1nb

 if we don't use approxiamtion to avoid the numeric error, then the local aceptance rate is as following:

Table 17
 x

for case 67 without approximation

while more accurate results without numeric error is:

alpha(5.000000) is 0.981800

alpha(7.000000) is 0.615156

alpha(10.000000) is 0.212396

alpha(20.000000) is 0.188700

alpha(30.000000) is 0.137032

alpha(50.000000) is 1.000000

alpha(60.000000) is 1.000000

alpha(70.000000) is 1.000000

Report Local scale adaptation for Random Walk Metropolis Page 26

Table 18
 x

for case 67 with approximation

So in order to avoid numeric error, I use approximation
2

2x
 for]0,(x ,

2

)10(2

x
 for

),10[x and compute the exact value of)(log x for)10,0(x in all the 73 cases.

2.4.2 How to Improve the Algorithm Speed

I try different parameter choice and kernel functions, which has 73 cases in total. For most cases, I

use approximation II to approximate
)(x

:

1. Equally divide)50,50[into 1000 parts, so we get 1000 small intervals:]99.49,50[,

)98.4999.49[， )5099.49[， .

2. Compute and save the values of final
)(x

 for every left point: -50, -49.99,...,49.99.

3. Approximate
)(x

by
)(
 at the left point of the small interval that x lies in.

This approximation is used to compute
)(x

 when we generate Markov Chain and test the local

acceptance rate.

2.4.3 Output

You can find the output of all the 73 cases in Appendix 2.2. Among all the cases, if we judge from

whether the local acceptance rate is close to 0.234, then the best case is probably case 74:

kernel function: 2

1||

)(

x

exK

，
n

n 5.0)5(

1

 2,1.0,1,2 21 C

with fixed bandwidth
1nb

alpha(5.000000) is 0.981209

alpha(7.000000) is 0.595073

alpha(10.000000) is 0.183040

alpha(20.000000) is 0.182034

alpha(30.000000) is 0.125577

alpha(50.000000) is 0.081246

alpha(70.000000) is 0.054118

alpha(120.000000) is 0.032300

alpha(150.000000) is 0.024200

Report Local scale adaptation for Random Walk Metropolis Page 27

Check the local acceptance rate for some specific x in case 74.

Table 19 x for case 74

)(x is about 0.99, very big for x around the center 5. Then as x goes big, it first decreases to

around 0.2 when 10x ; then increases to around 0.4 when 20x ; and decreases to 0 as x goes

to infinity.

Check the plot of final)(xg and)(x .

-40 -20 0 20 40

-0
.1

0
-0

.0
8

-0
.0

6
-0

.0
4

-0
.0

2
0

.0
0

x

g
v
a

ls

-40 -20 0 20 40

0
5

0
1

0
0

1
5

0

x

s
ig

v
a

ls

Figure 8 plot of final)(xg and)(x for case 74

it is reasonable:)(xg has similar shape for x<5 and x>5; it reaches the local minimum at 0 and 10,

where we want the sampled x to stay most frequently.)(x is symmetric around 5. It increases to

big values when x goes big. This is also good, because the target distribution is very small for big x,

and thereby we don't want the sampled variable to go very big.

alpha(5.000000) is 0.994617

alpha(7.000000) is 0.626367

alpha(10.000000) is 0.179817

alpha(20.000000) is 0.407404

alpha(30.000000) is 0.364035

alpha(50.000000) is 0.281372

alpha(70.000000) is 0.229441

alpha(120.000000) is 0.146200

alpha(150.000000) is 0.125800

Report Local scale adaptation for Random Walk Metropolis Page 28

2.4.4 How to make)5(smaller

From table 19, we can see that the adaptation algorithm gives small scale for points around the

center and thereby the acceptance rate is very high, nealy 1. So now our main problem we need to

fix here is to make
)5(

 smaller.

In order to make
)5(

smaller, we can try the below three changes:

2.4.4.1 change I

Change I:

Use

nn

n

n

n

n
n

nn

n

n

n

n
n

n

yxif
h

xx
K

h
Cxg

yxif
h

xx
K

h
Cxg

xg

)
||

(*234.0*)(

)
||

(*)234.01(*)(

)(

21

21

Originally, we subtract the same value when the proposal is rejected as we add when it is accepted.

Change I means, we subtract (1-0.234)*some value when the proposal is rejected and add

0.234*some value when it is accepted. For comparison, check the local acceptance rate for some

specific x in case 74 with change I.

Table 20)(x for case 74 with change I

The local acceptance rates for these x are almost the same as that without change I.
)5(

is still too

high. It seems that change I doesn't help a lot.

2.4.4.2 change II

Change II: Use
)()()(xgxg eeex

alpha(5.000000) is 0.999501

alpha(7.000000) is 0.648121

alpha(10.000000) is 0.191781

alpha(20.000000) is 0.443123

alpha(30.000000) is 0.419608

alpha(50.000000) is 0.338141

alpha(70.000000) is 0.278052

alpha(120.000000) is 0.177113

alpha(150.000000) is 0.158800

Report Local scale adaptation for Random Walk Metropolis Page 29

Professor J. Rosenthal suggest that maybe we can cancel the second term in the original)(x and

it becomes:
)()()(xgxg eeex . I call this as change II and implement it in case 74. Now)(xg

and)(x looks like:

-40 -20 0 20 40

-0
.3

0
-0

.2
5

-0
.2

0
-0

.1
5

-0
.1

0
-0

.0
5

0
.0

0

x

g
v
a
ls

-40 -20 0 20 40

6
.5

7
.0

7
.5

8
.0

x

s
ig

v
a
ls

Figure 9 plot of)(xg and)(x for case 74 with change II

)(xg and)(x have the same shape now since they only differ in a constant. They are symmetric

around 5, and smooth.

Check the local acceptance rate for some specific x in case 74 with change II.

Table 21)(x for case 74 with change II

Now the acceptance rate is around 0.78 for points around the center, smaller than the previous 0.99.

But it is still too high if our goal is 0.234. It seems that change II cannot help us to achieve this.

Why does
)5(

drop from around 1 to 0.8 ?)(xg

doesn't change a lot from comparison of case 74

with and without change II. Obviously, it is because that is bigger with change II. Without change

 alpha(5.000000) is 0.783000

alpha(7.000000) is 0.516100

alpha(10.000000) is 0.199000

alpha(20.000000) is 0.506500

alpha(30.000000) is 0.497500

alpha(50.000000) is 0.499700

alpha(70.000000) is 0.501400

alpha(120.000000) is 0.499400

alpha(150.000000) is 0.502400

Report Local scale adaptation for Random Walk Metropolis Page 30

II, 1.366644 ; while with change II , 2.119721 . Why does

become bigger? Let's

suppose that remains the same , then for all the points except 5)(x

will decrease since g(x)

has very small change and)(x is originally
)(|)5|1(xgexCe

 and now
)(xgee

 . So the

global acceptance rate now rises to a value bigger than 0.234. In order to ensure the global

acceptance rate is around 0.234, has to be pulled up.

2.4.4.3 change III

Although change II, which cancels the second term in
)(x

, doesn't make
)5(

 around 0.234, it

makes it smaller anyway. This inspires us to fix our current problem by making some changes to the

second term
|)|1(cxC

.

Since I guess the approximate shape of g(x) is reasonable, I want to add the second term as the one

whose shape similar to the shape of g(x) in order to keep the shape. So I guess the second term

satisfies these:

 For x=5, it reaches local maximum to make a bigger scale and therefore a smaller acceptance

rate.

 For x=0,10, it reaches local minimum to make a smaller scale and therefore a bigger

acceptance rate.

I try the second term as:

5|5|,|5|

5|5|5*2|5|
..

)5|5(|5*2)5|5(|)5|5(||5|

21

211

211

1

11

11

xifCxC

xifCCxC
ei

CxICxIxIxC

So now,

5|5|,|5|*

5|5|5*2|5|*
)(..

)5|5(|5*2)5|5(|)5|5(||5|*)(

21

)(

211

)(

211

)(

1

11

11

xifCxCe

xifCCxCe
xei

CxICxIxIxCex

xg

xg

xg

nn

nn

nn

I try several choices of 121 ，，CC and finally choose 1.11.01.0 121 ，，CC . The current

local acceptance rate is as table 22:

alpha(5.000000) is 0.550000

alpha(8.000000) is 0.302000

alpha(10.000000) is 0.176000

alpha(20.000000) is 0.411000

alpha(50.000000) is 0.379000

alpha(70.000000) is 0.389000

Report Local scale adaptation for Random Walk Metropolis Page 31

Table 22)(x for case 74 with change III

Now
)5(

 drops from 0.99 to around 0.55. Good. But it cannot make)(x all around 0.234.

The final)(xg and)(x are as figure 10:

-40 -20 0 20 40

-0
.2

5
-0

.2
0

-0
.1

5
-0

.1
0

-0
.0

5
0
.0

0

x

g
v
a
ls

-40 -20 0 20 40

2
0

4
0

6
0

8
0

x

s
ig

v
a
ls

Figure 10)(xg and)(x for case 74 with change III

)(xg have similar shape for x<5 and x>5;)(x are symmetric around 5, and smooth. It reaches

minimum at 0 and 10, where we want the sampled variable to stay most frequently. good.

The above three changes cannot make)(x all round 0.234 for different x. It indicates that this

adaptation algorithm might not achieve this goal for this target distribution, however we choose the

parameters and functions.

2.5 Example 3: mixture of three normal distributions in 1R

Let's try one more difficult target distribution:

2

)10(

22

)10(222

*3.0*4.0*3.0*)(
xxx

eeeCx

This is a mixture of three normal distributions: N(0,1), N(-10,1),N(10,1).

Figure 11 shows the un-normalized part of this density. It is symmetric around 0, reaches the

maximum at 0, and local maximum at 10 and-10.

Report Local scale adaptation for Random Walk Metropolis Page 32

-30 -20 -10 0 10 20 30

0
.0

0
.1

0
.2

0
.3

0
.4

x
y

Figure 11 un-normalized part of the density

Now the proposed scale becomes:
 |)5|*|5|*1()()(xxCex xg

Where the definition of parameters and functions are the same as the above examples.

2.5.1 How to Avoid Numerical Error

Similar to section 2.4.1, numerical error still exists if we compute)(log x directly for big x. In order

to avoid this error, I will use approximation as the previous.

I will approximate it for x with big absolute value. For big x, ，e
x

2

)10(2

*3.0

 ，e
x

2

2

*4.0

2

)10(2

*3.0

x

e will be small, and
2

)10(2

*3.0

x

e is much bigger than the other two:

50102

)10(

2

2

2

)10(

*75.0*75.0

*4.0

*3.0
22

2

2

 x

xx

x

x

ee

e

e
 and

x

xx

x

x

ee

e

e 202

)10(

2

)10(

2

)10(

2

)10(
22

2

2

*3.0

*3.0

So we can approximate it by
2

)10(
)3.0log(*3.0log

2

2

)10(2

 x

e
x

 for big x. Similarly, for

negative x with big absolute value, we can approximate it by

2

)10(
)3.0log(*3.0log

2

2

)10(2

 x

e
x

. i.e.

Report Local scale adaptation for Random Walk Metropolis Page 33

12
2

)10(
)3.0log(

1212*3.0*4.0*3.0log

12
2

)10(
)3.0log(

)(log

2

2

)10(

22

)10(

2

222

xif
x

xifeee

xif
x

x
xxx

Below is the comparison of)(log x and its approximation for]50,50[x . They overlap very well.

Good. In all the 65 cases I try, I will use this approximation to compute)(log x in order to avoid

numerical error.

-40 -20 0 20 40

-6
0
0

-4
0
0

-2
0
0

0

xlist

y
1
lis

t

Figure 12)(log x and its approximation

2.5.2 Output

Among the 65 cases, the best case to give the acceptance rate close to 0.234 is case 133:

，
n

n 5.0)5(

1

 5.0,10,1,1 21 C

with fixed bandwidth
1nb

. It has
)(x

 as table 23:

alpha(0.000000) is 0.207800

alpha(5.000000) is 0.696900

alpha(10.000000) is 0.166300

alpha(15.000000) is 0.354600

alpha(20.000000) is 0 .365400

alpha(50.000000) is 0.357700

alpha(100.000000) is 0.363600

alpha(150.000000) is 0.363200

alpha(200.000000) is 0.369300

Report Local scale adaptation for Random Walk Metropolis Page 34

Table 23
)(x

for case 133

)(x
 is around 0.2 at 0, first increases to around 0.7 when x~5, then decreases to around 0.16

when x~10， and then increases to around 0.36 when x goes to infinity.

The other 64 cases have similar tendency of
)(x

, which you check from Aappendix 2.4.1~2.4.4.

Figure 13 is the plot of the final
)(xg

and
)(x

.

-40 -20 0 20 40

-0
.2

0
-0

.1
5

-0
.1

0
-0

.0
5

0
.0

0

x

g
v
a

ls

-40 -20 0 20 40

0
2

0
4

0
6

0
8

0

x

s
ig

v
a

ls

Figure 13
)(xg

and
)(x

for case 133

)(xg
and

)(x
are symmetric around 0.

)(x
 reaches the local minimum at 0, where we want the

sampled variables to say around the most. Good.

2.5.3 How to choose

When 1 , the final)(xg and)(x

is symmetric around 0. The generated Markov Chain has a

good mixing. When 1 , the final)(xg is not symmetric around 0, bad. The generated Markov

Chain has small steps and always gets stuck at 0, or 10, or -10. Table 24 shows the plot of)(xg

and)(x

for 5.0 , 1 , 5.1 , 2 . In these four cases, Kennel

function: 2

1||

)(

x

exK

,

2,1,1,1 21 C
 ,

2,1,5.0width,5.0height C and

1nb
 .

Table 25 shows the generated Markov Chain for the four cases

5.0 1

Report Local scale adaptation for Random Walk Metropolis Page 35

-40 -20 0 20 40

-0
.0

8
-0

.0
6

-0
.0

4
-0

.0
2

0
.0

0

x

g
v
a

ls

-40 -20 0 20 40

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

x

s
ig

v
a

ls

-40 -20 0 20 40

-0
.1

4
-0

.1
0

-0
.0

6
-0

.0
2

x

g
v
a
ls

-40 -20 0 20 40

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

x

s
ig

v
a
ls

5.1

2

-40 -20 0 20 40

-0
.2

0
-0

.1
5

-0
.1

0
-0

.0
5

0
.0

0

x

g
v
a
ls

-40 -20 0 20 40

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

x

s
ig

v
a
ls

-40 -20 0 20 40

-0
.2

5
-0

.2
0

-0
.1

5
-0

.1
0

-0
.0

5
0.

00
x

gv
al

s
-40 -20 0 20 40

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

x

si
gv

al
s

Table 24 plot of)(xg

and)(x

for the four cases

5.0

 1

0 20000 40000 60000 80000

-2
0

2
4

Index

xl
is

t[
(B

 +
 1

):
M

]

0 20000 40000 60000 80000

-1
0

-5
0

5
1
0

Index

x
lis

t[
(B

 +
 1

):
M

]

 5.1

 2

0 20000 40000 60000 80000

-1
5

-1
0

-5
0

5
1
0

1
5

Index

x
lis

t[
(B

 +
 1

):
M

]

0 20000 40000 60000 80000

-1
5

-1
0

-5
0

5
1
0

1
5

Index

x
lis

t[
(B

 +
 1

):
M

]

Table 25 generated Markov Chain for the four cases

From the above two tables, we can see that we need to choose 1 to make the Markov Chain

have a good mixing.

Report Local scale adaptation for Random Walk Metropolis Page 36

2.6 Example 4: normal distribution in 2R

Now consider the target distribution as :

2222

2222

**)(
yxyx

eeeCxf

This is Standard Normal distribution in
2R and the logarithm of the density is:

22

)(log
22 yx

xf

Now the adaptation algorithm updates scale as:

 |)0,0(|1)()(XCeX Xg
,

Where X is 2 dimensional vector:

2

1

X

X
X ,)(x，g， is updated adaptively. || is the distance in

2R rather than absolute value.

2.6.1 How to learn from Example 1

Now our target distribution is Standard Normal distribution in
2R , i.e.

10

01
,

0

0
~

2

1
N

X

X
X .

This means)1,0(~),1,0(~ 21 NXNX , and they are independent. So we can learn how to choose

parameters from Example 1: Standard Normal distribution in
1R . We can first consider all the good

cases in Example 1, and then use the parameter choice in those cases to run the adaptation

algorithm for this example.

From the following discussion in Chapter 3, we will know for Example 1, the best case (in judge of

varfact, variance, and average squared jump distance) is case 57 and 65:

Kernel function :

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

Case 57:
，

n
n 5.0)5(

1

 2,01.0,5width C

with fixed bandwidth
1nb

I will try these two parameter choices . And also I will try the parameters in some other cases, which

has the smallest varfact, variance, or biggest average squared jump distance for each kernel

function.

You can check Appendix 2.4 for the output of all the 9 cases I try.

Report Local scale adaptation for Random Walk Metropolis Page 37

2.6.2 How to Improve the algorithm speed

We already see how slow C generates Markov Chain and test the local acceptance rate without

approximation II. The speed will become much worse in two-dimensional space. So in order to

improve the speed, I will use Approximation II again in this example:

1. Equally divide)30,30[*)30,30[into 810000 parts, so we get 810000 small squares:

)
15

1
30,30[*)

15

1
30,30[,)

15

2
30,30[*)

15

1
30,30[....

)
15

1
30,30[*)

15

1
30,30[,

)
15

1
30,30[*)

15

2
30

15

1
30[， ,)

15

2
30,30[*)

15

2
30

15

1
30[，

)
15

1
30,30[*)

15

2
30

15

1
30[， ,

....

)
15

1
30,30[*)30

15

1
30[， ,)

15

2
30,30[*)30

15

1
30[， )

15

1
30,30[*)30

15

1
30[， ,

2. Compute and save the values of final
)(x

 for every lower-left point:

 ，)30,30(，)
15

1
30,30(... ，)

15

1
30,30(....

，)30,
15

1
30(，)

15

1
30,

15

1
30(... ，)

15

1
30,

15

1
30(

.....

，)30,
15

1
30(，)

15

1
30,

15

1
30(...)

15

1
30,

15

1
30(.

3. Approximate
)(x

by
)(
 at the lower-left point of the small square that x lies in.

For case 194, I run the adaptation algorithm, generate Markov Chain and test
)(x

both with and

without approximation II. Table 26 shows the speed of both:

With Approximation II Without Approximation II

Report Local scale adaptation for Random Walk Metropolis Page 38

it takes 310.314 seconds to run the adaptation algorithm

it takes 9939.71 seconds to plot g and sigma

it takes 512.742 seconds to generate the first Markov Chain

it takes 471.932 seconds to generate second Markov Chain

it takes 496.096 seconds to generate third Markov Chain

it takes 514.006 seconds to generate fourth Markov Chain

it takes 468.624 seconds to generate the fifth Markov Chain

it takes 2030.625 seconds to test the local acceptance

it takes 296.75 seconds to run the adaptation algorithm

it takes 10001.9820 seconds to plot g and sigma

it takes 3674.517 seconds to generate the first Markov Chain

it takes 3806.229 seconds to generate second Markov Chain

it takes 3813.156 seconds to generate the third Markov Chain

it takes 3638.899 seconds to generate fourth Markov Chain

it takes 3640.485 seconds to generate the fifth Markov Chain

it takes 2712.386 seconds to test the local acceptance

Table 26 running time for case 194 with and without Approximation II

It takes 3600~3800 seconds to generate a Markov Chain without Approximation II, while now it only

needs around 500 seconds to do this with Approximation II, good. This approximation also improves

the speed of testing the local acceptance rate by about 700 seconds.

Approximation II is good for this example too, for it gives similar plot of final)(xg and)(x , and

local acceptance rate for some specific x, which is shown in table 27. (black: x=0; blue: x=-2; green:

x=-5; yellow: x=-10; red: x=-30). I will this approximation for the other cases.

 With Approximation II Without Approximation II

)(xg

-30 -20 -10 0 10 20 30

-0
.1

2
-0

.0
8

-0
.0

4
0
.0

0

g(x,*)

x

g

-30 -20 -10 0 10 20 30

-0
.1

0
-0

.0
6

-0
.0

2

g(x,*)

x

g

Report Local scale adaptation for Random Walk Metropolis Page 39

)(x

-30 -20 -10 0 10 20 30

0
2
0
0

4
0
0

6
0
0

8
0
0

sig(x,*)

x

s
ig

-30 -20 -10 0 10 20 30

0
2
0
0

4
0
0

6
0
0

8
0
0

sig(x,*)

x

s
ig

)(x

alpha(0.000000,0.000000) is about 0.677500

alpha(0.000000,2.000000) is about 0.137900

alpha(5.000000,5.000000) is about 0.025100

alpha(2.000000,10.000000) is about 0.011400

alpha(10.000000,10.000000) is about 0.007900

alpha(20.000000,50.000000) is about 0.000900

alpha(50.000000,50.000000) is about 0.000400

alpha(0.000000,0.000000) is about 0.758800

alpha(0.000000,2.000000) is about 0.138100

alpha(5.000000,5.000000) is about 0.024000

alpha(2.000000,10.000000) is about 0.015000

alpha(10.000000,10.000000) is about 0.007900

alpha(20.000000,50.000000) is about 0.000700

alpha(50.000000,50.000000) is about 0.000200

Table 27 output for case 194 with and without Approximation II

2.6.3 Output

if judged from whether it makes
)(x

around 0.234, then probably the best case is case 196 :

Kernel function:
2

1||

)(

x

exK

，
n

n 5.0)5(

1

 2,1.0,1,5.0 21 C

with fixed bandwidth
1nb

It gives local acceptance rate as table 28 :

Report Local scale adaptation for Random Walk Metropolis Page 40

Table 28
)(x

 for case 197

 The tendency of
)(x

is quite similar to 1-dimensional space. As the distance of x and 0 goes

bigger,
)(x

 first increases from around 0.2 to 0.3, then decreases to 0. But all the simulations until

now suggests that it may not be possible to make
)(x

 around 0.234 for different x.

The plot of final
)(xg and)(x

are as figure 14.

-30 -20 -10 0 10 20 30

-0
.1

5
-0

.1
0

-0
.0

5
0
.0

0

g(x,*)

x

g

-30 -20 -10 0 10 20 30

0
1
0

2
0

3
0

4
0

5
0

sig(x,*)

x

s
ig

Figure 14
)(xg and)(x

for case 197

(Black: x= 0;blue: x = -2; green: x = -5; yellow: x= -10;red: x=-30)

Both are symmetric around 0 and smooth, good.
)(x

is the smallest at 0 , where we want the

sampled variable to stay most frequently, good.

When x goes form 0 to -30, i.e. the black line to the red,
)(xg

is more and more flat, and
)(x

for

each fixed point is increasing. This is good, because for every single variable, we want it to go to 0

alpha(0.000000,0.000000) is about 0.215700

alpha(0.000000,2.000000) is about 0.285000

alpha(5.000000,5.000000) is about 0.328900

alpha(2.000000,10.000000) is about 0.335800

alpha(10.000000,10.000000) is about 0.319200

alpha(20.000000,50.000000) is about 0.157600

alpha(50.000000,50.000000) is about 0.124300

Report Local scale adaptation for Random Walk Metropolis Page 41

More frequently than other values.

When x goes from 0 to -30, i.e. The black line to the red,
)(xg

 is more and more flat, and for each

fixed point is increasing. This is good, because for every single variable, we want it to go to 0 more

frequently than other values.

From Example 1~4, simulation studies indicates that probably it is impossible to make
)(x

 around

0.234 for different x.

Since we cannot make the local acceptance rate)(x around 234.0 or all different x , so far we

don't get any conclusion about whether this is a better idea than the current optimal choice. It still

remains to be evaluated whether the adaptation algorithm improves the efficiency of RWM.

Now let's go one step back. Even if we cannot achieve the goal to make all)(x around 234.0 , but

during our efforts to achieve this, the efficiency still improves in comparison without adaption

algorithm. So I will use different measures to check this in Chapter 3 .

3. Efficiency Comparison of Adaptive and Non-adaptive Algorithm

3.1 Efficiency Measures to Evaluate Markov Chain

There are many different measures to evaluate the efficiency of Markov Chain. Some usual

measures are varfact, variance/ standard error, and average squared jump distance.

3.1.1 Varfact

3.1.1.1 Autocorrelation
[4]

Autocorrelation of a random process describes the correlation between values of the process at

different points in time, as a function of the two times or of the time difference. Let X be some

repeatable process, and i be some point in time after the start of that process. Then Xi is the value

(or realization) produced by a given run of the process at time i. Suppose that the process is further

known to have defined values for mean μi and variance σi
2
 for all times i. Then the definition of the

autocorrelation between times s and t is

)var(*)var(

)(*)(
),(

st

sstt

XX

XEXXEXE
tsR

If the function R is well-defined, its value must lie in the range [−1, 1], with 1 indicating perfect

correlation and −1 indicating perfect anti-correlation.

If Xt is a second-order stationary process then the mean μ and the variance σ
2
 are time-independent,

and further the autocorrelation depends only on the difference between t and s: the correlation

depends only on the time-distance between the pair of values but not on their position in time. This

further implies that the autocorrelation can be expressed as a function of the time-lag, and that this

/wiki/Random_process
/wiki/Correlation
/wiki/Realization_(probability)
/wiki/Execution_(computing)
/wiki/Mean
/wiki/Variance
/w/index.php?title=Anti-correlation&action=edit&redlink=1
/wiki/Stationary_process#Second-order_stationarity

Report Local scale adaptation for Random Walk Metropolis Page 42

would be an even function of the lag τ = s − t. This gives the more familiar form

),(

**
)(02

0

2 k
kktt XXcorr

XXEXXE
kR

3.1.1.2 Varfact
[5]

Varfact is integrated autocorrelation time, defined as:

1

0

11

),(21),0(21)(21varfact
k

k

kk

XXcorrkRkR

It is used to measure the autocorrelation of a Markov Chain. We can use it times the i.i.d variance to

estimate the variance(

BM

Xh

v

M

Bi

i

1

)(

var

), i.e. Uncertainty, where h is the function we are interested

in.

Usually, in order to compute varfact, we don't sum over all k, just, say, until 05.0),0(kR .

3.1.2 variance

Suppose P1 and P2 are two Markov Chains, each with the same stationary distribution)(x . Then

we say P1 has smaller variance than P2 if

n

Xh
n

i

i

1

)(

var
 is smaller when

 nX
 follows P1 than it

follows P2.

/wiki/Even_and_odd_functions

Report Local scale adaptation for Random Walk Metropolis Page 43

If Markov Chain nX is stationary, then for large n,)(varfact*)var(
1

)(

var 1 hh
nn

Xh
n

i

i

,

3.1.3 average squared jump distance

Markov chain is better if it allows for faster exploration of the state space. We say P1 mixes faster

than P2 if 2

1 nn XXE (average squared jump distance) is larger under P1 than P2. Of course,

 2

1 nn XXE can be estimated by
BM

XX
M

Bi

ii

1

2

1)(

.

3.1.4 Relationship between the three measures

1) Since)(varfact*)var(
1

)(

var 1 hh
nn

Xh
n

i

i

 it is obvious that the bigger the varfact, the bigger

variance

2) We can see that:

BM

XEXXEX

BM

XX

M

Bi

iiii

M

Bi

ii

2

11

1

2

1

)()(

)(

distancejumpsquaredaverage

BM

fact
tcons

BM

fact
tcons

XXcorr
BM

tcons

BM

XEXXEXXEXXEX

M

Bi

ii

M

Bi

iiiiiiii

var
tan

1var
tan

),(
2

tan

)()(2)()(

1

1

1

11

2

11

2

From this, we get the smaller varfact, the bigger average squared jump distance.

Report Local scale adaptation for Random Walk Metropolis Page 44

So for the efficiency of Markov Chain, we want smaller varfact, smaller variance, and bigger

averaged jump distance. Now I will use the three measures to compare that whether the adaptation

algorithm improves the efficiency of Markov Chain than non-adaption algorithm.

3.2 Example 1: Normal Distribution in
1R

For all the 66 different cases, I generate 5 independent Markov Chains for each case and then

compute their varfact, variance and average squared jump distance. You can refer to Appendix

2.2.6~2.2.8 for output of each case. In the below discussion, I will list the best cases, i.e. Having the

smallest varfact or variance, or having the biggest average squared jump distance.

3.2.1 varfact

For the four kernel functions, table 29 shows the best case who has smaller varfact than others with

the same kernel function.

kernel function
2

1||

)(

x

exK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

2 0.1 2
5.0)5(

1

n
1

6.533223

6.42219

6.045298

6.83526

6.91115

kernel function 2||1

1
)(

1

 x
xK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

1 0.1 1
5.0)5(

1

n
1

7.185476

6.92573

6.877931

7.298966

7.185476

kernel function

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

C

hei
ght

wi
dt
h

n
nb

First run

Second

run

Third run

Fourth run

Fifth run

0.01 10 0.5 0.

5 5.0)5(

1

n
1

5.84989

6.229419

5.915948

6.139981

6.5259

Kernel function

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

C

width

 n

nb

First run

Second

run

Third run

Fourth run

Fifth run

Report Local scale adaptation for Random Walk Metropolis Page 45

0.0

1
5 2

5.0)5(

1

n
1

5.72553 5.958359 5.350588 5.822084 5.500506

constant

Cx)(

6.032679

6.428601

6.010923

6.143806

6.654467

Table 29 varfact

Among the four best cases, the last one, case 57: kernel function:

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

，

n
n 5.0)5(

1

 2,01.0,5width C

with fixed bandwidth
1nb

has the smallest varfact, about 5.7~5.8. This is a little smaller than non-adaption algorithm, which is

around 6.0.

3.2.2 variance/ standard error

Now compare the variance. For each kernel function, I choose the best one with the smallest

variance from all the cases I try.

kernel function
2

1||

)(

x

exK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

2 0.1 2
5.0)5(

1

n
1

0.008631

0.008396

0.008139

0.008740

0.008697

kernel function 2||1

1
)(

1

 x
xK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

1 0.1 10
5.0)5(

1

n
1

0.008920

0.008758

0.00868

0.008971

0.009006

kernel function

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

C

hei
ght

wi
dt
h

n
nb

First run

Second

run

Third run

Fourth run

Fifth run

Report Local scale adaptation for Random Walk Metropolis Page 46

0.01 10 0.5 0.

5 5.0)5(

1

n
1

0.008052

0.008275

0.008178

0.008147

0.008477

Kernel function

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

C

width

 n

nb

First run

Second

run

Third run

Fourth run

Fifth run

0.0

1
5 2

5.0)5(

1

n
1

0.007925 0.008171 0.007620 0.00800 0.007780

constant

Cx)(

0.008154

0.008419

0.008097

0.008276

0.008502

Table 30 variance

Among the four best cases, case 57 still performs the best. It has the smallest variance, around

0.008, a little smaller than non-adaptation algorithm, which has the variance of about 0.0082~0.0084.

3.2.3 average squared jump distance

For each kernel function, I choose the best one with the biggest average squared jump distance

from all the cases I try.

kernel function
2

1||

)(

x

exK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

2 0.1 2
5.0)5(

1

n
1

0.545549

0.525287

0.520330

0.535221

0.530106

kernel function 2||1

1
)(

1

 x
xK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

1 0.1 0.1
5.0)5(

1

n
10

0.561479 0.54956 0.584170 0.563489 0.569779

kernel function

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

C

hei
ght

wi
dt
h

n
nb

First run

Second

run

Third run

Fourth run

Fifth run

0.01 10 0.5 0.

5 5.0)5(

1

n
1

0.57572

0.56505

0.585138

0.546282

0.555975

Report Local scale adaptation for Random Walk Metropolis Page 47

Kernel function

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

C

width

 n

nb

First run

Second

run

Third run

Fourth run

Fifth run

0.0

1
5 2

5.0)5(

1

n 2.0

1

n

0.611305

0.597235

0.604059

0.616791

0.610068

constant

Cx)(

0.553845

0.554989

0.537098

0.56998

0.547339

Table 31 average squared jump distance

From table 12, we can see that case 65:

，

n
n 5.0)5(

1

 2,01.0,5width C

with decreasing bandwidth 2.0

1

n
bn

has the biggest average squared jump distance, about 0.60~0.61,a little bigger than 0.54~0.56.

So if measured in variance and varfact, case 57 is the best; if measured in average squared jump

distance, case 65 is the best. Table 15 shows the comparison of case 57, 65 and non-adaptation

algorithm.

 varfact variance average sq. distance

Case 57 5.4~5.8 0.0077~0.0080 0.54~0.55

Case 65 7.7~7.9 0.0092~0.0095 0.60~0.61

Cx)(

6.0~6.6 0.0081~0.0085 0.54~0.56

Table 32 comparison of the best three cases

This table shows that adaptive algorithm performs a little better than non-adaptation algorithm, but

this advantage is not significant.

3.3 Example 2: Mixture of Two Normal Distributions in
1R

I try 62 kinds of parameter choice and kernel functions to implement the adaptation algorithm; and

then generate 5 Markov Chains according to the final)(x
.

You can check the varfact, variance

and average squared jump distance of them in Appendix 2.3.6~2.3.8.

3.3.1 varfact

For the four kernel functions, the below four cases have the smaller varfact than others with the

same kernel functions.

Report Local scale adaptation for Random Walk Metropolis Page 48

kernel function
2

1||

)(

x

exK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

2 0.1 2
5.0)5(

1

n
10 12.86394

 12.7031

11.99687

12.00228

 12.88139

kernel function 2||1

1
)(

1

 x
xK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

10 0.1 10
5.0)5(

1

n
1 13.58733 12.41142 12.40737 13.24543 12.94998

kernel function

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

C

hei
ght

wi
dt
h

n
nb

First run

Second

run

Third run

Fourth run

Fifth run

0.1 0.1 1 0.

1 5.0)5(

1

n 2.0

1

n

11.79056

12.93844

12.33559

12.7613

11.16328

Kernel function

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

C

width

 n

nb

First run

Second

run

Third run

Fourth run

Fifth run

0.1 0.1 0.5
5.0)5(

1

n
1 13.11484

13.85565

12.77984

13.13842

12.94547

constant

Cx)(

13.13618

13.87016

13.78088

13.15203
 13.29707

Table 33 varfact

Among the four best cases, the last one, case 116 :

kernel function

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

，
n

n 5.0)5(

1

 ,1.0width1,height,1.0,1.0 C

with decreasing bandwidth 2.0

1

n
bn

Report Local scale adaptation for Random Walk Metropolis Page 49

has the smallest varfact, about 11.2~12.9, while non-adaption algorithm has the varfact of about

13.2~13.8.

3.3.2 variance/ standard error

Now compare the variance. For each kernel function, I choose the best one with the smallest

variance from all the cases I try.

kernel function
2

1||

)(

x

exK

1
C

 n

nb First run

Second
run

Third run

Fourth run

Fifth run

2 0.1 2
5.0)5(

1

n
10 0.060903

 0.060613

 0.05894

 0.058761

0.061143

kernel function 2||1

1
)(

1

 x
xK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

10 0.1 10
5.0)5(

1

n
1 0.062730 0.059807 0.059948 0 .06195 0.061115

kernel function

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

C

hei
ght

wi
dt
h

n
nb

First run

Second

run

Third run

Fourth run

Fifth run

0.1 2 1 0.

1 5.0)5(

1

n 2.0

1

n

0.058331

0.061151

0.059702

0.060674

0.056919

Kernel function

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

C

width

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

0.1 0.2 0.1
5.0)5(

1

n
0.1 0.06208 0.062719 0.065429 0.062305 0.063206

constant

Cx)(

0.061665

0.063307

0.063017

0.061586
 0.065461

Table 34 variance

Report Local scale adaptation for Random Walk Metropolis Page 50

Among the four best cases, case 116 still performs the best. It has the smallest variance, around

0.057~0.061, a little smaller than non-adaptation algorithm, which has the variance of about

0.061~0.065.

3.3.3 average squared jump distance

For each kernel function, I choose the best one with the biggest average squared jump distance

from all the cases I try.

kernel function
2

1||

)(

x

exK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

2 0.1 2
5.0)5(

1

n
10 7.728795

7.719727

 8.015229

7.980781

7.709572

kernel function 2||1

1
)(

1

 x
xK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

10 10 0.1
5.0)5(

1

n
1 7.445668 7.493031 7.48323 7.579445 7.64341

kernel function

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

C

hei
ght

wi
dt
h

n
nb

First run

Second

run

Third run

Fourth run

Fifth run

0.01 10 0.5 0.

5 5.0)5(

1

n
1 8.03459

8.031316

7.766907

7.8188

8.158163

Kernel function

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

C

width

 n

nb

First run

Second

run

Third run

Fourth run

Fifth run

0.1 0.5 0.1
5.0)5(

1

n
1

7.522012

7.63438

7.592666

 7.63681

 7.74818

constant

Cx)(

7.204595

7.282846

7.396178

7.31972
 7.25605

Table 35 average squared jump distance

From table 35 we can see that case 116 has the biggest average squared jump distance, about

7.7~8.1,a little bigger than 7.2~7.4.

Report Local scale adaptation for Random Walk Metropolis Page 51

So among all the 62 cases I try, case 116 gives the smallest variance and varfact, and biggest

average squared jump distance, a little better than non-adaptation algorithm. You check check this

from table 36.

 varfact variance average sq. distance

Case 116 11.2~12.9 0.057~0.061 7.7~8.1

Cx)(

13.2~13.8 0.061~0.065 7.2~7.4

Table 36 comparison of the best cases

3.4 Example 3: Mixture of Three Normal Distributions in
1R

As the first two examples, I try 65 kinds of parameter choice and kernel functions to implement the

adaptation algorithm; and then generate 5 Markov Chains according to the final)(x
.

You can

check the varfact, variance and average squared jump distance of them in Appendix 3.3.6~3.3.8. I

will not include the cases that the Markov Chain has bad mixing, like cases when 2 .

3.4.1 varfact

For the four kernel functions, the below four cases have the smaller varfact than others with the

same kernel functions.

kernel function
2

1||

)(

x

exK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

1 10 0.5
5.0)5(

1

n
1 12.64651

12.96737

12.65248

 13.67789

 12.82574

kernel function 2||1

1
)(

1

 x
xK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

10 10 0.5
5.0)5(

1

n
1 13.3392

12.24885

13.38762

13.53404

13.72235

kernel function

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

C

hei
ght

wi
dt
h

n
nb

First run

Second

run

Third run

Fourth run

Fifth run

Report Local scale adaptation for Random Walk Metropolis Page 52

0.1 0.5 0.1 2
5.0)5(

1

n
10 12.76971 12.85744 12.76055 12.98399 12.9673

Kernel function

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

C

width

 n

nb

First run

Second

run

Third run

Fourth run

Fifth run

1 0.5 0.5
5.0)5(

1

n
1 12.43654

12.98527

 12.4032

 12.94385

 12.92349

constant

Cx)(

14.15845

15.31856

13.73391

15.47598

14.98496

Table 37 varfact

Among the four best cases, the last two,

case 173:

Kernel function:

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

，

n
n 5.0)5(

1

 5.0,1.0,2width,1.0height C

with fixed bandwidth
10nb

case 182 :

Kernel function:

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

，
n

n 5.0)5(

1

 5.0,1,5.0width C

with fixed bandwidth
1nb

Have close performance. They have the smallest varfact, about 12.4~12.98, while non-adaption

algorithm has the varfact of about 14~15.4.

3.4.2 variance/ standard error

Now compare the variance. For each kernel function, I choose the best one with the smallest

variance from all the cases I try.

Report Local scale adaptation for Random Walk Metropolis Page 53

kernel function
2

1||

)(

x

exK

1
C

 n

nb First run

Second
run

Third run

Fourth run

Fifth run

1 10 0.5
5.0)5(

1

n
1 0.092925

19

0.093307

61

0.092218

1

0.097322

62

0.093457

14

kernel function 2||1

1
)(

1

 x
xK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

10 10 0.5
5.0)5(

1

n
1 0.094868

4

0.090432

56

0.095753

66

0.096414

64

0.096500

97

kernel function

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

C

hei
ght

wi
dt
h

n
nb

First run

Second

run

Third run

Fourth run

Fifth run

0.1 0.5 0.1 2
5.0)5(

1

n 2.0

1

n

0.093088

3

0.093172

7
0.093848 0.091052 0.090727

Kernel function

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

C

width

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

1 0.5 0.5
5.0)5(

1

n
1 0.091608

58

0.093255

67

0.092064

86

0.093385

38

0.093535

89

constant

Cx)(

0.097670

42

0.101192

4

0.097137

88

0.098421

07

0.102212

6

Table 38 varfact

Among the four best cases, case 173 and 182 still perform the best. They have the smallest

variance, around 0.092~0.094, a little smaller than non-adaptation algorithm, which has the variance

of about 0.097~0.10.

3.2.3 average squared jump distance

For each kernel function, I choose the best one with the biggest average squared jump distance

from all the cases I try.

kernel function
2

1||

)(

x

exK

Report Local scale adaptation for Random Walk Metropolis Page 54

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

1 10 0.5 5.0)5(

1

n
1 17.64668

17.55073

 17.72917

17.68229

17.58393

kernel function 2||1

1
)(

1

 x
xK

1
C

 n nb

First run

Second

run

Third run

Fourth run

Fifth run

10 10 0.5 5.0)5(

1

n
1 17.2243

 17.46561

 17.20456

17.48782

17.49019

kernel function

widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

C

hei
ght

wi
dt
h

n
nb

First run

Second

run

Third run

Fourth run

Fifth run

0.1 0.5 0.1 2 5.0)5(

1

n
10 18.04347 18.16659 17.67161 17.90958 17.7375

Kernel function

widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

C

width

 n

nb

First run

Second

run

Third run

Fourth run

Fifth run

1 0.5 0.5 5.0)5(

1

n
1 17.93946

17.42754

17.92938

17.68764

17.78533

constant

Cx)(

15.54288

15.35994

15.284

15.54276 15.54288

Table 39 average squared jump distance

From table 39, we can see that case 173 has the biggest average squared jump distance, about

17.7~18.1,a little bigger than 15.3~15.5.

 varfact variance average sq. distance

Case 173 12.4~12.98 0.092~0.094 17.7~18.1

Cx)(

14~15.4 0.097~0.10 15.3~15.5

Table 40 comparison of the best cases

Report Local scale adaptation for Random Walk Metropolis Page 55

So among all the 65 cases I try, case 173 gives the smallest variance and varfact, and biggest

average squared jump distance, a little better than non-adaptation algorithm.

3.5 Example 4: Normal Distribution in
2R

I first learn some good parameter choices from Example 1:Normal Distribution in
2R , then try these

parameter choices to run the adaptation algorithm in this example. According to the final)(xσ
from

the adaptation algorithm, I generate 5 Markov Chain for each case. I try 9 cases in total. The

generated Markov Chain all have good mixing. Now I want to compare them with constant)(xσ
in

the above measures.

3.5.1 varfact

First compare the varfact of these cases.Table 41 list the varfact of 5 Markov Chain generated for

each case I try. The first line is the results for the list of x1, the first component of the random

variance, and the second line is for that of x2, the second component.

Kernel function : 2

1||

)(α

αx

exK
−

=

1α
C

γ

nb

nη

First run

Second

run

Third run

Fourth

run

Fifth run

0.5

0.1

2

1
 5.0)5(

1
+n

8.01143

8.12074

8.02683

8.63622

7.84477

8.39018 8.68444 8.25877 8.12773 8.08205

Kernel function :
2||1

1)(
1

αα x
xK

+
=

1α
C

γ

nb

nη

First run

Second

run

Third run

Fourth

run

Fifth run

1

0.1

1

1
 5.0)5(

1
+n

9.01875

8.05305

7.61042

8.13736

8.28670

7.95014 8.35461 8.29565 8.04215 8.34854

Kernel function :

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

hei

ght

wid

th

C

γ

nb

nη

First run

Second

run

Third run

Fourth

run

Fifth run

0.5

0.5

0.0

1

10

1
 5.0)5(

1
+n

7.74167 7.79554 8.50804 8.24295 8.0193

8.51949

7.76981

8.37399

8.40765

8.05531

Kernel function :

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

widt

h

C

γ

nb

nη

First run

Second

run

Third run

Fourth

run

Fifth run

5

0.01

2

1
 5.0)5(

1
+n

9.5072

8.8876

8.8812

8.7593

8.6037

9.2312 8.9168 9.160 9.0149 9.0498

Report Local scale adaptation for Random Walk Metropolis Page 56

constant

Cx =)(σ

8.584404

8.331632

8.68917

 8.07853

8.492082

8.08258

8.4440

8.334455

8.904434

8.6586

Table 41 varfact

For the adaptation algorithm, the best case is case 201 :

Kernel function:

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

，

nn 5.0)5(
1
+

=η 10,01.0,5.0width,5.0 ==== γCheight
with fixed bandwidth

1=nb

In case 201, the varfact is around 7.7~8.5 for x1 and 7.7~8.4 for x2. While non-adaptation algorithm

has the varfact of about 8.3~8.5 for x1 and 8.3~9.9 for x2. So adaptation algorithm works a little

better.

3.5.2 variance/ standard error

Table 42 list the standard error of 5 Markov Chain generated for each case I try. The first line is the

results for the list of x1, and the second line is for that of x2.

Kernel function : 2

1||

)(α

αx

exK
−

=

1α
C

γ

nb

nη

First run

Second

run

Third run

Fourth run

Fifth run

0.5

0.1

2

1
 5.0)5(

1
+n

0.0099647

0.0101173

0.0099771

0.0104498

0.0099363

0.0103432 0.0105912 0.0101549 0.0100481 0.0101184

Kernel function :
2||1

1)(
1

αα x
xK

+
=

1α
C

γ

nb

nη

First run

Second

run

Third run

Fourth run

Fifth run

1

0.1

1

1
 5.0)5(

1
+n

0.0105313

0.0097265

0.0096214

0.0099982

0.0099314

0.0097723 0.0099487 0.0098910 0.0098809 0.0100729

Report Local scale adaptation for Random Walk Metropolis Page 57

Kernel function :

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

heig

ht

widt

h

C

γ

nb

nη

First run

Second

run

Third run

Fourth run

Fifth run

0.5

0.5

0.01

10

1
 5.0)5(

1
+n

0.0094858 0.0095293 0.0099355 0.0098088 0.0097593

0.0100096

0.0095595

0.0099169

0.0098439

0.0099373

Kernel function :

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

widt

h

C

γ

nb

nη

First run

Second

run

Third run

Fourth run

Fifth run

5

0.01

2

1
 5.0)5(

1
+n

0.01031

0.00998

0.01007

0.00984

0.00987

0.01010 0.01016 0.01006 0.01013 0.01010

constant

Cx =)(σ

0.00972953

0.0097068

0.009780478

0.00939504

0.009631347

0.0094686

 0.009739506

0.00954663

0.009958031

0.009772716

Table 42 variance

The adaptation algorithm's standard error is quite close to non-adaptation algorithm. So if measured

in variance/standard error, it is hard to say which one is better for this example by the cases I try.

3.5.3 average squared jump distance

Table 43 list the average squared jump distance of 5 Markov Chain generated for each case I try.

The first line is the results for the list of x1, and the second line is for that of x2.

Kernel function : 2

1||

)(α

αx

exK
−

=

1α
C

γ

nb

nη

First run

Second

run

Third run

Fourth run

Fifth run

0.5

0.1

2

1
 5.0)5(

1
+n

0.506856

0.504129

0.493900

0.491895

0.491927

0.506880 0.50175 0.495962 0.480626 0.496152

Kernel function :
2||1

1)(
1

αα x
xK

+
=

1α
C

γ

nb

nη

First run

Second

run

Third run

Fourth run

Fifth run

1

0.1

1

1
 5.0)5(

1
+n

0.458961

0.461018

0.4751

0.480245

0.47135

0.466943 0.467047 0.4542 0.4680 0.45683

Kernel function :

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

Report Local scale adaptation for Random Walk Metropolis Page 58

heig

ht

widt

h

C

γ

nb

nη

First run

Second

run

Third run

Fourth run

Fifth run

0.5

0.5

0.01

10

1
 5.0)5(

1
+n

0.463001 0.46015 0.449489 0.465211 0.457632

0.461200

0.465179

0.456853

0.452455

0.461372

Kernel function :

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

width
 C

γ

nb

nη

First run

Second

run

Third run

Fourth run

Fifth run

5

0.01

2

1
 5.0)5(

1
+n

0.394871

0.406117

0.404594

0.396869

0.414291

0.40248 0.421151 0.404090 0.40975 0.413094

constant

Cx =)(σ

0.4365735

0.4408152

0.421703

 0.4340354 0.4279432

0.4396845

0.4289132

 0.4226133

0.4327815 0.4182256

Table 43 average squared jump distance

If measured in average squared jump distance, case 196 :

Kernel function : 2

1||

)(α

αx

exK
−

=

，
nn 5.0)5(

1
+

=η 2,1.0,1,5.0 21 ==== γαα C
with fixed bandwidth

1=nb

performs better than the non-adaptation algorithm and the other adaptation algorithm:

Its average squared jump distance is about 0.5, bigger than around 0.42~0.43 innon-adaptation

algorithm . So if measured in average squared jump distance, non-adaptation algorithm performs a

little better.

Conclusion

We explore the efficiency of adaptation algorithm for Random Walk Metropolis. Simulation studies

indicate that probably it is impossible to make the local acceptance rate around 0.234 for all different

x. But during the procedure to achieve this, the adaptation algorithm makes a little improvement to

the efficiency of Markov Chain, if measured in variance, varfact, and average squared jump distance.

ReferenceReferenceReferenceReference
[1] Steve Brooks, Andrew Gelman, Galin L. Jones and Xiao-Li Meng
(2011), Handbook of Markov Chain Monte Carlo, Chapman and Hall/CRC.
[2] Gareth O. Roberts and Jeffrey Rosenthal (2009), Example of Adaptive
MCMC, J. Comp. Graph. Stat. 18:349-367, 2009
[3] Gareth O. Roberts and Jeffrey Rosenthal (2007), Coupling and
Ergodicity of Adaptive MCMC, J. Appl. Prob. 44 , 458–475, 2007
[4] wikipedia: http://en.wikipedia.org/wiki/Autocorrelation
[5] MCMC notes: http://www.probability.ca/jeff/teaching/1011/sta3431/notes.pdf

AppendixAppendixAppendixAppendix

1.1.1.1. CodeCodeCodeCode

1.1 C code
1.1.1 C code to implement the adaptation algorithm and generate a Markov
Chain (Example 1~3)
1.1.2 C code to implement the adaptation algorithm and generate a Markov
Chain (Example 4)

1.2 R code

1.2.1 R code to plot the final)(Xg and)(Xσ (Example 1~3)

1.2.2 R code to plot the final)(Xg and)(Xσ (Example 4)

1.2.3 R code to generate Markov Chain without adaption (Example 1)
1.2.4 R code to generate Markov Chain without adaption (Example 2)
1.2.5 R code to generate Markov Chain without adaption (Example 3)
1.2.6 R code to generate Markov Chain without adaption (Example 4)
1.2.7 R code to compute different efficiency measures (Example 1~3)
1.2.8 R code to compute different efficiency measures (Example 4)

1.2.9 R code to implement OLS in approximation of the final)(Xσ

2.2.2.2. OutputOutputOutputOutput

2.1 Example 1: normal distribution in 1R

2.1.1 kernel function
2

1||

)(α

αx

exK
−

=

2.1.1.1 case 1 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.2 case 2 ,
nn 5.0)5(
1
+

=η 2,1,1,2 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.3 case 3 ,
nn 5.0)5(
1
+

=η 2,1,1,10 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.4 case 4 ,
nn 5.0)5(
1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.5 case 5 ,
nn 5.0)5(
1
+

=η 2,1,1,5.0 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.6 case 6 ,
nn 5.0)5(
1
+

=η 2,2,1,2 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.7 case 7 ,
nn 5.0)5(
1
+

=η 2,10,1,2 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.8 case 8 ,
nn 5.0)5(
1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.9 case 9 ,
nn 5.0)5(
1
+

=η 2,5.0,1,2 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.10 case 10 ,
nn 5.0)5(

1
+

=η 2,01.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.1.1.11 case 11 ,
nn 5.0)5(

1
+

=η 10,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.1.1.12 case 12 ,
nn 5.0)5(

1
+

=η 5.0,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.1.1.13 case 13 ,
nn 5.0)5(

1
+

=η 1,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.1.1.14 case 14 ,
nn 5.0)5(

1
+

=η 1.0,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.1.1.15 case 15 ,
nn 8.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.1.1.16 case 16 ,
nn 5.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

10=nb

2.1.1.17 case 17 ,
nn 5.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

0.1=nb

2.1.1.18 case 18 ,
nn 5.0)5(
1
+

=η 2,1.0,1,2 21 ==== γαα C with decreasing

bandwidth 2.0

1
n

bn =

2.1.2 kernel function 2||1
1)(
1

αα x
xK

+
=

2.1.2.1 case 19 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.1.2.2 case 20 ,
nn 5.0)5(
1
+

=η 2,1,1,10 21 ==== γαα C with fixed bandwidth 1=nb

2.1.2.3 case 21 ,
nn 5.0)5(

1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.1.2.4 case 22 ,
nn 5.0)5(
1
+

=η 2,10,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.1.2.5 case 23 ,
nn 5.0)5(
1
+

=η 2,1.0,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.1.2.6 case 24 ,
nn 5.0)5(
1
+

=η 2,01.0,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.1.2.7 case 25 ,
nn 5.0)5(

1
+

=η 1,1.0,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.1.2.8 case 26 ,
nn 5.0)5(
1
+

=η 10,1.0,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.1.2.9 case 27 ,
nn 5.0)5(
1
+

=η 2,1.0,1,1 21 ==== γαα C with fixed bandwidth

10=nb

2.1.2.10 case 28 ,
nn 5.0)5(
1
+

=η 2,1.0,1,1 21 ==== γαα C with fixed bandwidth

1.0=nb

2.1.2.11 case 29 ,
nn 5.0)5(

1
+

=η 1.0,1.0,1,1 21 ==== γαα C with fixed bandwidth

01=nb

2.1.2.12 case 30 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with decreasing bandwidth

2.0

1
n

bn =

2.1.2.13 case 31 ,
nn 8.0)5(

1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth

01=nb

2.1.3 kernel function
⎪
⎩

⎪
⎨

⎧

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

2.1.3.1 case 32 ,
nn 5.0)5(
1
+

=η 2,1,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.2 case 33 ,
nn 5.0)5(

1
+

=η 2,10,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.3 case 34 ,
nn 5.0)5(
1
+

=η 2,1.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.4 case 35 ,
nn 5.0)5(
1
+

=η 2,01.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.5 case 36 ,
nn 5.0)5(
1
+

=η 2,0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.6 case 37 ,
nn 5.0)5(

1
+

=η 2,001.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.7 case 38 ,
nn 5.0)5(

1
+

=η 10,001.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.8 case 39 ,
nn 5.0)5(

1
+

=η 1,001.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.9 case 40 ,
nn 5.0)5(

1
+

=η 1.0,001.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.10 case 41 ,
nn 5.0)5(

1
+

=η 2,01.0,5.0width,1 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.11 case 42 ,
nn 5.0)5(

1
+

=η 2,01.0,5.0width,10 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.12 case 43 ,
nn 5.0)5(

1
+

=η 2,01.0,5.0width,1.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.13 case 44 ,
nn 5.0)5(
1
+

=η 2,01.0,2width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.14 case 45 ,
nn 5.0)5(

1
+

=η 2,01.0,5width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.15 case 46 ,
nn 5.0)5(

1
+

=η 2,01.0,1.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.16 case 47 ,
nn 5.0)5(

1
+

=η 2,01.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 10=nb

2.1.3.17 case 48 ,
nn 5.0)5(

1
+

=η 2,01.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1.0=nb

2.1.3.18 case 49 ,
nn 5.0)5(

1
+

=η 2,01.0,5.0width,5.0 ==== γCheight with

decreasing bandwidth 2.0

1
n

bn =

2.1.3.19 case 50 ,
nn 8.0)5(

1
+

=η 2,01.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.4 kernel function ⎩
⎨
⎧

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

2.1.4.1 case 51 ,
nn 5.0)5(
1
+

=η 2,1,5.0width === γC with fixed bandwidth 1=nb

2.1.4.2 case 52 ,
nn 5.0)5(
1
+

=η 2,10,5.0width === γC with fixed bandwidth 1=nb

2.1.4.3 case 53 ,
nn 5.0)5(
1
+

=η 2,1.0,5.0width === γC with fixed bandwidth 1=nb

2.1.4.4 case 54 ,
nn 5.0)5(
1
+

=η 2,01.0,5.0width === γC with fixed bandwidth

1=nb

2.1.4.5 case 55 ,
nn 5.0)5(

1
+

=η 2,001.0,5.0width === γC with fixed bandwidth

1=nb

2.1.4.6 case 56 ,
nn 5.0)5(
1
+

=η 2,01.0,1width === γC with fixed bandwidth 1=nb

2.1.4.7 case 57 ,
nn 5.0)5(
1
+

=η 2,01.0,5width === γC with fixed bandwidth 1=nb

2.1.4.8 case 58 ,
nn 5.0)5(
1
+

=η 2,01.0,1.0width === γC with fixed bandwidth

1=nb

2.1.4.9 case 59 ,
nn 5.0)5(
1
+

=η 2,01.0,8width === γC with fixed bandwidth 1=nb

2.1.4.10 case 60 ,
nn 5.0)5(
1
+

=η 5,01.0,5width === γC with fixed bandwidth 1=nb

2.1.4.11 case 61 ,
nn 5.0)5(
1
+

=η 1,01.0,5width === γC with fixed bandwidth 1=nb

2.1.4.12 case 62 ,
nn 5.0)5(
1
+

=η 1.0,01.0,5width === γC with fixed bandwidth

1=nb

2.1.4.13 case 63 ,
nn 5.0)5(

1
+

=η 2,01.0,5width === γC with fixed bandwidth

10=nb

2.1.4.14 case 64 ,
nn 5.0)5(

1
+

=η 2,01.0,5width === γC with fixed bandwidth

1.0=nb

2.1.4.15 case 65 ,
nn 5.0)5(
1
+

=η 2,01.0,5width === γC with decreasing bandwidth

2.0

1
n

bn =

2.1.4.16 case 66 ,
nn 8.0)5(

1
+

=η 2,01.0,5width === γC with fixed bandwidth 1=nb

2.1.5 constant Cx =)(σ

2.1.6 varfact comparison
2.1.7 variance comparison
2.1.8 comparison of average squared jump distance

2.1.9 OLS in approximation of the final)(xσ

2.2 Example 2: mixture of two normal distributions in
1R

2.2.1 kernel function
2

1||

)(α

αx

exK
−

=

2.2.1.1 case 67 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.2.1.2 case 68 ,
nn 5.0)5(
1
+

=η 2,1,1,2 21 ==== γαα C with fixed bandwidth 1=nb

2.2.1.3 case 69 ,
nn 5.0)5(
1
+

=η 2,1,1,10 21 ==== γαα C with fixed bandwidth 1=nb

2.2.1.4 case 70 ,
nn 5.0)5(

1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.5 case 71 ,
nn 5.0)5(

1
+

=η 2,1,1,5.0 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.6 case 72 ,
nn 5.0)5(
1
+

=η 2,1,1,01.0 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.7 case 73 ,
nn 5.0)5(
1
+

=η 2,10,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.8 case 74 ,
nn 5.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.9 case 75 ,
nn 5.0)5(

1
+

=η 10,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.10 case 76 ,
nn 5.0)5(

1
+

=η 1,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.11 case 77 ,
nn 5.0)5(

1
+

=η 1.0,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.12 case 78 ,
nn 5.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

10=nb

2.2.1.13 case 79 ,
nn 5.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

0.1=nb

2.2.1.14 case 80 ,
nn 5.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with decreasing

bandwidth 2.0

1
n

bn =

2.2.1.15 case 81 ,
nn 8.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

10=nb

2.2.2 kernel function 2||1
1)(
1

αα x
xK

+
=

2.2.2.1 case 90 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.2.2.2 case 91 ,
nn 5.0)5(
1
+

=η 2,1,1,10 21 ==== γαα C with fixed bandwidth 1=nb

2.2.2.3 case 92 ,
nn 5.0)5(

1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.2.2.4 case 93 ,
nn 5.0)5(
1
+

=η 2,1,1,12 21 ==== γαα C with fixed bandwidth 1=nb

2.2.2.5 case 94 ,
nn 5.0)5(
1
+

=η 2,1,1,5 21 ==== γαα C with fixed bandwidth 1=nb

2.2.2.6 case 95 ,
nn 5.0)5(

1
+

=η 10,1,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.2.2.7 case 96 ,
nn 5.0)5(
1
+

=η 1.0,1,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.2.2.8 case 97 ,
nn 5.0)5(
1
+

=η 1.0,10,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.2.2.9 case 98 ,
nn 5.0)5(

1
+

=η 1.0,1.0,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.2.2.10 case 99 ,
nn 5.0)5(

1
+

=η 1.0,1.0,1,10 21 ==== γαα C with fixed bandwidth

10=nb

2.2.2.11 case 100 ,
nn 5.0)5(
1
+

=η 1.0,1.0,1,10 21 ==== γαα C with fixed bandwidth

1.0=nb

2.2.2.12 case 101 ,
nn 5.0)5(

1
+

=η 1.0,1.0,1,10 21 ==== γαα C with decreasing

bandwidth 2.0

1
n

bn =

2.2.2.13 case 102 ,
nn 8.0)5(

1
+

=η 1.0,1.0,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.2.3 kernel function
⎪
⎩

⎪
⎨

⎧

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

2.2.3.1 case 103 ,
nn 5.0)5(

1
+

=η ,5.0width0.5,height,2,1 ==== γC with fixed

bandwidth 1=nb

2.2.3.2 case 104 ,
nn 5.0)5(
1
+

=η ,5.0width0.5,height,2,10 ==== γC with fixed

bandwidth 1=nb

2.2.3.3 case 105 ,
nn 5.0)5(

1
+

=η ,5.0width0.5,height,2,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.4 case 106 ,
nn 5.0)5(

1
+

=η ,5.0width0.5,height,10,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.5 case 107 ,
nn 5.0)5(

1
+

=η ,5.0width0.5,height,1.0,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.6 case 108 ,
nn 5.0)5(
1
+

=η ,5.0width1,height,2,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.7 case 109 ,
nn 5.0)5(
1
+

=η ,5.0width5,height,2,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.8 case 110 ,
nn 5.0)5(

1
+

=η ,5.0width1,.0height,2,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.9 case 111 ,
nn 5.0)5(

1
+

=η ,1width1,height,1.0,1 ==== γC with fixed

bandwidth 1=nb

2.2.3.10 case 112 ,
nn 5.0)5(
1
+

=η ,5width1,height,1.0,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.11 case 113 ,
nn 5.0)5(

1
+

=η ,1.0width1,height,1.0,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.12 case 114 ,
nn 5.0)5(
1
+

=η ,1.0width1,height,1.0,1.0 ==== γC with fixed

bandwidth 10=nb

2.2.3.13 case 115 ,
nn 5.0)5(
1
+

=η ,1.0width1,height,1.0,1.0 ==== γC with fixed

bandwidth 1.0=nb

2.2.3.14 case 116 ,
nn 5.0)5(

1
+

=η ,1.0width1,height,1.0,1.0 ==== γC with

decreasing bandwidth 2.0

1
n

bn =

2.2.3.15 case 117 ,
nn 8.0)5(

1
+

=η ,1.0width1,height,1.0,1.0 ==== γC with

decreasing bandwidth 2.0

1
n

bn =

2.2.4 kernel function ⎩
⎨
⎧

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

2.2.4.1 case 118 ,
nn 5.0)5(
1
+

=η ,5.0width,2,1 === γC with fixed bandwidth 1=nb

2.2.4.2 case 119 ,
nn 5.0)5(

1
+

=η ,5.0width,2,1.0 === γC with fixed bandwidth

1=nb

2.2.4.3 case 120 ,
nn 5.0)5(
1
+

=η ,5.0width,2,10 === γC with fixed bandwidth

1=nb

2.2.4.4 case 121 ,
nn 5.0)5(
1
+

=η ,5.0width,10,1.0 === γC with fixed bandwidth

1=nb

2.2.4.5 case 122 ,
nn 5.0)5(

1
+

=η ,5.0width,1.0,1.0 === γC with fixed bandwidth

1=nb

2.2.4.6 case 123 ,
nn 5.0)5(
1
+

=η ,1width,1.0,1.0 === γC with fixed bandwidth

1=nb

2.2.4.7 case 124 ,
nn 5.0)5(
1
+

=η ,2width,1.0,1.0 === γC with fixed bandwidth

1=nb

2.2.4.8 case 125 ,
nn 5.0)5(
1
+

=η ,5width,1.0,1.0 === γC with fixed bandwidth

1=nb

2.2.4.9 case 126 ,
nn 5.0)5(

1
+

=η ,2.0width,1.0,1.0 === γC with fixed bandwidth

1=nb

2.2.4.10 case 127 ,
nn 5.0)5(

1
+

=η ,2.0width,1.0,1.0 === γC with fixed bandwidth

10=nb

2.2.4.11 case 128 ,
nn 5.0)5(

1
+

=η ,2.0width,1.0,1.0 === γC with fixed bandwidth

0.1=nb

2.2.4.12 case 127 ,
nn 5.0)5(

1
+

=η ,2.0width,1.0,1.0 === γC with decreasing

bandwidth 2.0

1
n

bn =

2.2.4.13 case 128 ,
nn 8.0)5(

1
+

=η ,2.0width,1.0,1.0 === γC with fixed bandwidth

1=nb

2.2.5 constant Cx =)(σ

2.2.6 varfact comparison
2.2.7 variance comparison

2.2.8 comparison of average squared jump distance

2.3 Example 3: mixture of three normal distributions in
1R

2.3.1 kernel function
2

1||

)(α

αx

exK
−

=

2.3.1.1 case 129 ,
nn 5.0)5(

1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.2 case 130 ,
nn 5.0)5(

1
+

=η 2,1,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.3 case 131 ,
nn 5.0)5(

1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.4 case 132 ,
nn 5.0)5(

1
+

=η 5.0,1,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.5 case 131 ,
nn 5.0)5(

1
+

=η 5.0,1,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.6 case 132 ,
nn 5.0)5(

1
+

=η 5.0,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.7 case 133 ,
nn 5.0)5(

1
+

=η 5.0,10,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.8 case 134 ,
nn 5.0)5(

1
+

=η 5.0,10,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.9 case 135 ,
nn 5.0)5(

1
+

=η 5.0,1.0,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.10 case 136 ,
nn 5.0)5(

1
+

=η 5.0,1.0,1,1.0 21 ==== γαα C with fixed

bandwidth 10=nb

2.3.1.11 case 137 ,
nn 5.0)5(

1
+

=η 5.0,1.0,1,1.0 21 ==== γαα C with fixed

bandwidth 0.1=nb

2.3.1.12 case 138 ,
nn 5.0)5(

1
+

=η 5.0,1,1,1.0 21 ==== γαα C with decreasing

bandwidth
2.0

1
n

bn =

2.3.1.13 case 139 ,
nn 8.0)5(

1
+

=η 5.0,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2 kernel function 2||1
1)(
1

αα x
xK

+
=

2.3.2.1 case 140 ,
nn 5.0)5(

1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.3.2.2 case 141 ,
nn 5.0)5(

1
+

=η 2,1,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.3 case 142 ,
nn 5.0)5(

1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.4 case 143 ,
nn 5.0)5(

1
+

=η 2,1.0,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.5 case 144 ,
nn 5.0)5(

1
+

=η 2,10,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.6 case 145 ,
nn 5.0)5(

1
+

=η 5.0,1,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.7 case 146 ,
nn 5.0)5(

1
+

=η 5.0,1,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.8 case 147 ,
nn 5.0)5(

1
+

=η 5.0,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.9 case 148 ,
nn 5.0)5(

1
+

=η 5.0,10,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.10 case 149 ,
nn 5.0)5(

1
+

=η 5.0,1.0,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.11 case 150 ,
nn 5.0)5(

1
+

=η 1.0,10,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.12 case 151 ,
nn 5.0)5(

1
+

=η 1,10,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.13 case 152 ,
nn 5.0)5(

1
+

=η 5.0,10,1,10 21 ==== γαα C with fixed bandwidth

10=nb

2.3.2.14 case 153 ,
nn 5.0)5(

1
+

=η 5.0,10,1,10 21 ==== γαα C with fixed bandwidth

0.1=nb

2.3.2.15 case 154 ,
nn 5.0)5(

1
+

=η 5.0,10,1,10 21 ==== γαα C withdecreasing

bandwidth
2.0

1
n

bn =

2.3.2.16 case 155 ,
nn 8.0)5(

1
+

=η 5.0,10,1,10 21 ==== γαα C fixed bandwidth

1=nb

2.3.3 kernel function
⎪
⎩

⎪
⎨

⎧

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

2.3.3.1 case 156 ,
nn 5.0)5(

1
+

=η 2,1,5.0width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.2 case 157 ,
nn 5.0)5(

1
+

=η 2,10,5.0width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.3 case 158 ,
nn 5.0)5(

1
+

=η 2,1.0,5.0width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.4 case 159 ,
nn 5.0)5(

1
+

=η 2,1.0,5.0width,2height ==== γC with fixed

bandwidth 1=nb

2.3.3.5 case 160 ,
nn 5.0)5(

1
+

=η 2,1.0,2width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.6 case 161 ,
nn 5.0)5(

1
+

=η 5.0,1,5.0width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.7 case 162 ,
nn 5.0)5(

1
+

=η 5.0,10,5.0width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.8 case 163 ,
nn 5.0)5(

1
+

=η 5.0,1.0,5.0width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.9 case 164 ,
nn 5.0)5(

1
+

=η 5.0,1.0,5.0width,2height ==== γC with fixed

bandwidth 1=nb

2.3.3.10 case 165 ,
nn 5.0)5(

1
+

=η 5.0,1.0,5.0width,5height ==== γC with fixed

bandwidth 1=nb

2.3.3.11 case 166 ,
nn 5.0)5(

1
+

=η 5.0,1.0,5.0width,10height ==== γC with fixed

bandwidth 1=nb

2.3.3.12 case 167 ,
nn 5.0)5(

1
+

=η 5.0,1.0,5.0width,1.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.13 case 168 ,
nn 5.0)5(

1
+

=η 5.0,1.0,2width,1.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.14 case 169 ,
nn 5.0)5(

1
+

=η 5.0,1.0,8width,1.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.15 case 170 ,
nn 5.0)5(

1
+

=η 5.0,1.0,15width,1.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.16 case 171 ,
nn 5.0)5(

1
+

=η 5.0,1.0,1.0width,1.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.17 case 172 ,
nn 5.0)5(

1
+

=η 1.0,1.0,2width,1.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.18 case 173 ,
nn 5.0)5(

1
+

=η 5.0,1.0,2width,1.0height ==== γC with fixed

bandwidth 10=nb

2.3.3.19 case 174 ,
nn 5.0)5(

1
+

=η 5.0,1.0,2width,1.0height ==== γC with fixed

bandwidth 0.1=nb

2.3.3.20 case 175 ,
nn 5.0)5(

1
+

=η 5.0,1.0,2width,1.0height ==== γC with

decreasing bandwidth
2.0

1
n

bn =

2.3.3.21 case 176 ,
nn 8.0)5(

1
+

=η 5.0,1.0,2width,1.0height ==== γC with fixed

bandwidth 1=nb

2.3.4 kernel function ⎩
⎨
⎧

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

2.3.4.1 case 177 ,
nn 5.0)5(

1
+

=η 2,1,5.0width === γC with fixed bandwidth 1=nb

2.3.4.2 case 178 ,
nn 5.0)5(

1
+

=η 2,10,5.0width === γC with fixed bandwidth 1=nb

2.3.4.3 case 179 ,
nn 5.0)5(

1
+

=η 2,1.0,5.0width === γC with fixed bandwidth

1=nb

2.3.4.4 case 180 ,
nn 5.0)5(

1
+

=η 2,1,2width === γC with fixed bandwidth 1=nb

2.3.4.5 case 181 ,
nn 5.0)5(

1
+

=η 2,1,1.0width === γC with fixed bandwidth 1=nb

2.3.4.6 case 182 ,
nn 5.0)5(

1
+

=η 5.0,1,5.0width === γC with fixed bandwidth

1=nb

2.3.4.7 case 183 ,
nn 5.0)5(

1
+

=η 5.0,10,5.0width === γC with fixed bandwidth

1=nb

2.3.4.8 case 184 ,
nn 5.0)5(

1
+

=η 5.0,1.0,5.0width === γC with fixed bandwidth

1=nb

2.3.4.9 case 185 ,
nn 5.0)5(

1
+

=η 5.0,1,2width === γC with fixed bandwidth 1=nb

2.3.4.10 case 186 ,
nn 5.0)5(

1
+

=η 5.0,1,8width === γC with fixed bandwidth 1=nb

2.3.4.11 case 187 ,
nn 5.0)5(

1
+

=η 5.0,1,15width === γC with fixed bandwidth

1=nb

2.3.4.12 case 189 ,
nn 5.0)5(

1
+

=η 5.0,1,1.0width === γC with fixed bandwidth

1=nb

2.3.4.13 case 190 ,
nn 5.0)5(

1
+

=η 5.0,1,5.0width === γC with fixed bandwidth

10=nb

2.3.4.14 case 191 ,
nn 5.0)5(

1
+

=η 5.0,1,5.0width === γC with fixed bandwidth

1.0=nb

2.3.4.15 case 192 ,
nn 5.0)5(

1
+

=η 5.0,1,5.0width === γC with decreasing bandwidth

2.0

1
n

bn =

2.3.4.16 case 193 ,
nn 8.0)5(

1
+

=η 5.0,1,5.0width === γC with fixed bandwidth

1=nb

2.3.5 constant Cx =)(σ

2.3.6 varfact comparison
2.3.7 variance comparison
2.3.8 comparison of average squared jump distance

2.4 Example 4: normal distribution in
2R

2.4.1 kernel function
2

1||

)(α

αx

exK
−

=

2.4.1.1 case 194 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.4.1.2 case 195 ,
nn 5.0)5(
1
+

=η 2,1,1,5.0 21 ==== γαα C with fixed bandwidth

1=nb

2.4.1.3 case 196 ,
nn 5.0)5(

1
+

=η 2,1.0,1,5.0 21 ==== γαα C with fixed bandwidth

1=nb

2.4.1.4 case 197 ,
nn 5.0)5(
1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.4.2 kernel function 2||1
1)(
1

αα x
xK

+
=

2.4.2.1 case 198 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.4.2.2 case 199 ,
nn 5.0)5(

1
+

=η 1,1.0,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.4.2.3 case 200 ,
nn 8.0)5(

1
+

=η 2,1.0,1,1 21 ==== γαα C with fixed bandwidth

10=nb

2.4.3 kernel function
⎪
⎩

⎪
⎨

⎧

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

2.4.3.1 case 201 ,
nn 5.0)5(
1
+

=η 10,01.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.4.4 kernel function ⎩
⎨
⎧

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

2.4.4.1 case 202 ,
nn 5.0)5(
1
+

=η 2,01.0,5width === γC with fixed bandwidth 1=nb

2.4.5 constant Cx =)(σ

2.4.6 varfact comparison

2.4.7 variance comparison
2.4.8 comparison of average squared jump distance

