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Abstract

In this paper we propose a simple adaptive Metropolis-within-
Gibbs algorithm attempting to study directions on which the
Metropolis algorithm can be ran flexibly. The algorithm avoids
the wasting moves in wrong directions by proposals from the full
dimensional adaptive Metropolis algorithm. We also prove its er-
godicity, and test it on a Gaussian Needle example and a real-life
Case-Cohort study with competing risks. For the Cohort study,
we describe an extensive version of Competing Risks Regression
model, define censor variables for competing risks, and then ap-
ply the algorithm to estimate coefficients based on the posterior
distribution.

1 Introduction

Markov Chain Monte Carlo methods (MCMC) are used to do simulations based on construct-

ing Markov Chain, and widely applied for physics, statistics, biology, genetics, cryptography

and others. One inspiring algorithm was proposed by Metropolis et al. (1953). Through

a symmetric proposal transition, the Metropolis algorithm prescribes a transition rule for

Markov Chain. Hastings (1970) later generalized it to the case that the proposal distribution

is not necessarily symmetric.

Adaptive algorithms are generally used to learn parameter information of target distribu-

tion from historical sample data. Some adaptive MCMC methods using regeneration times

and other complicated constructions had been proposed by Gilks et al. (1998); Brockwell
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and Kadane (2005), and elsewhere. Haario et al. (2001) proposed an adaptive Metropolis

algorithm attempting to improve the convergence, and proved its ergodicity. Following that,

many general results were developed, see Andrieu and Robert (2002); Atchadé and Rosenthal

(2005); Andrieu and Moulines (2006); Roberts and Rosenthal (2007); Yang (2008); Saksman

and Vihola (2008); Bai et al. (2008); Atchadé and Fort (2008); Craiu et al. (2008); Bai (2009).

In Section 2 we review Metropolis-Hastings algorithm, Metropolis-within-Gibbs sampler,

and certain adaptive Metropolis algorithm. Their common ground is based on constructing

reversible Markov Chain in each step. Although these algorithms are very successful for

many target distributions, they can not work efficiently for some cases that either many

wasting jumps are generated, or many moves with small sizes are generated by reason of the

limitation from the jumping directions. The phenomenon is very explicit for high dimensional

cases or some low dimensional extreme cases. A toy example will be presented in Section 3

for explanations.

In Section 4 we propose the adaptive algorithm: adaptive Directional Metropolis-within-

Gibbs (ADMG) algorithm which can avoid the problem. The idea is similar as that of the Hit-

and-Run algorithm. The framework of Hit-and-Run is to uniformly draw a random direction

in the unit hypersphere, and then sample a scalar from some proposal distribution on the

chosen direction, see literatures Bélisle et al. (1993); Chen and Schmeiser (1993); Gilks et al.

(1994); Roberts and Gilks (1994); Chen and Schmeiser (1996); Kaufman and Smith (1998);

Lovász (1999); Lovász and Vempala (2003, 2006); Bèdard and Fraser (2008). Metropolis with

single particle moves, Gibbs sampler, Swendsen-Wang, data augmentation, and slice sampling

have the same basic structure, see Andersen and Diaconis (2007). The ADMG algorithm

tries to find directions and corresponding jumping scalars through studying certain estimate

of empirical covariance matrix of the sample chain. Then Metropolis-within-Gibbs sampler is

ran on the seized directions with the jumping scalars as variances. The method can suppress

the proportion of wasting moves by proposals from full dimensional Metropolis algorithm.

We also compare it with Metropolis-within-Gibbs sampler and adaptive Metropolis algorithm

through analysing the toy example on 10-dimensional Euclidean space. Then we show its

ergodicity.

In Section 5 we discuss a real-life Case-Cohort study for the application, where the dataset

was from the Princess Margaret Hospital, a leading cancer centre in North America. Cohort

study is commonly based on the survival model. In practice, the likelihood function turns

to be more and more complicated as the number of observations increases. The trade-off

alternative, partial likelihood function is more interesting. Given a prior distribution, we

consider the posterior distribution, and implement our algorithm to find the estimate of the

coefficients of the interest covariates in the study.

2



2 Background

Let the state space X be an open set in Rd with Borel σ-field F and target density t :

X −→ (0,∞) with
∫
X t(x)µ(dx) < ∞ where µ is d-dimensional Lebesgue measure. Given

the Xn, the Metropolis-Hastings algorithm generates the proposal Yn+1 ∼ Q(Xn, ·) with the

measurable density function q : X × X −→ [0,∞). Let

α(x, y) := 1 ∧ t(y)q(y, x)

t(x)q(x, y)
. (2.1)

Then Xn+1 is assigned Yn+1 with the probability α(Xn, Yn+1), and is assigned Xn with the

probability 1− α(Xn, Yn+1). If q(x, y) = q(y, x), call it Metropolis algorithm.

Roberts and Rosenthal (2006b) studied the conditions under which the Metropolis-within-

Gibbs (MG) algorithm is Harris recurrent or not. Fort et al. (2003) presented some conditions

under which the random-walk-based Metropolis-within-algorithm is geometrically ergodic.

Roberts and Rosenthal (2006a) studied certain adaptive Metropolis-within-Gibbs algorithm

for the hierarchical model.

For 1 ≤ i ≤ d, let qi : X ×R −→ [0,∞) be jointly measurable with
∫∞
−∞ qi(x, z)dz = 1 for

all x ∈ X where dz is one dimensional Lebesgue measure. Let Qi(x, ·) be the Markov kernel

on Rd which replaces the ith coordinate by a draw from the density qi(x, ·), but leaves the

other coordinates unchanged. That is

Qi(x,Si,a,b) =

∫ b

a

qi(x, z)dz, (2.2)

where

Si,a,b := {y ∈ X : yj = xj for j 6= i and yi ∈ [a, b]}.
Say Qi(x, ·) is symmetric if

qi((x1, · · · , xd), z) = qi((x1, · · · , xi−1, z, xi+1, · · · , xd), xi).

For x, y ∈ Rd and 1 ≤ i ≤ d, let

αi(x, y) := 1 (t(x)qi(x, yi) 6= 0) min

[
1,

t(y)qi(y, xi)

t(x)qi(x, yi)

]
+ 1 (t(x)qi(x, yi) = 0) . (2.3)

Let Pi be the kernel which proceeds as follows. Given Xn, it generates the proposal Yn+1 ∼
Qi(Xn, ·). Then Xn+1 is assigned Yn+1 with the probability αi(Xn, Yn+1), and is assigned Xn

with the probability 1− αi(Xn, Yn+1).

Let In be a random variable on {1, · · · , d}. Two most common schemes are deterministic-

scan Metropolis-within-Gibbs sampler PDS = PIn where In = n mod d, and random-scan
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Metropolis-within-Gibbs sampler PRS = PIn where In is uniform on {1, · · · , d}. Then for

n = 0, 1, 2, · · · given Xn and In the chain Xn+1 ∼ PIn(Xn, ·). It is straightforward to verify

that the chain has stationary distribution π(·) given by

π(A) :=

∫
A

t(x)µ(dx)∫
t(x)µ(dx)

, A ∈ F .

For the above two algorithms, at each step, the proposal distribution is fixed (independent

of the time n and historical information) so the sampled chain {Xn} is a time-homogeneous

Markov Chain.

Now we describe the adaptive MCMC algorithm. Let {Pγ : γ ∈ Y} be a collection of

Markov Chain kernels on the state space X . Xn ∈ X and Γn ∈ Y are respectively the sample

point and the random kernel index at the time n. Γn is chosen according to adaptation

scheme, and actually it is a function of Xn and {(Xi, Γi) : i = 0, 1, · · · , n − 1}. Given Xn

and Γn, Xn+1 is generated from the random kernel PΓn(Xn, ·). Say the adaptive MCMC

algorithm (Xn, Γn) is ergodic if for any initial point (x0, γ0) ∈ X × Y , the distance between

P (Xn ∈ · | X0 = x0, Γ0 = γ0) and the target distribution π(·) converges to zero under the

total variation norm.

Roberts and Rosenthal (2006a) introduced an adaptive Metropolis (AM) algorithm which

is a slight variant of the algorithm of Haario et al. (2001). At the nth iteration, the proposal

distribution Qn(x, ·) = N(x, 0.121d/d) for n ≤ 2d; for n > 2d,

Qn(x, ·) =

{
(1− θ)N(x, (2.38)2Σn/d) + θN(x, (0.1)2Id/d), Σn is positive definite,

N(x, (0.1)2Id/d), Σn is not positive definite,

(2.4)

for some fixed θ ∈ (0, 1), and the empirical covariance matrix

Σn =
1

n

(
n∑

i=0

XiX
>
i − (n + 1)XnX

>
n

)
, (2.5)

where Xn = 1
n+1

∑n
i=0 Xi, is the current modified empirical estimate of the covariance struc-

ture of the target distribution based on the run so far. Commonly, the iterative form of

Equation (2.5) is more useful,

Σn =
n− 1

n
Σn−1 +

1

n + 1

(
Xn − X̄n−1

) (
Xn − X̄n−1

)>
. (2.6)
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3 A Toy Example

Let the target density

t(x) =
1

2πσ1σ2

exp


−x>

([
cos θ − sin θ

sin θ cos θ

][
σ2

1 0

0 σ2
2

][
cos θ sin θ

− sin θ cos θ

])−1

x/2


 ,

(3.7)

where θ = 45o, σ1 =
√

20 and σ2 = 0.01. The target distribution has extremely small

variance 0.0001 and large variance 20 respectively on the two directions (−√2/2,
√

2/2) and

(
√

2/2,
√

2/2). So, the target is mainly supported on a very narrow region along the 45◦

degree direction between the x1-axis and the x2-axis. The length of the needle region is

roughly 2 ∗ 4 ∗√20 = 35.78 (see the true sample data in Figure 4.2) because P (|Z| < 4) ≈ 1

where Z is standard normal. We run MG sampler and AM to generate target sample data

with the same initial point X0 ∼ N(
−→
0 , diag(1, 1)). However, the results are not satisfying.

Figure 3.1: The first plot is the sample plot by running random-scan MG sampler. The second

plot is the 100-step average of acceptance rates by random-scan MG sampler. The third plot

is the sample plot by running AM. The last plot is the 100-step average of acceptance rates

by AM algorithm.

Given the sampled data {X0, X1, · · · } and the proposal values {Y1, Y2, · · · }, the k-step

average of acceptance rates is defined as

α
(k)
i :=

1

k

k(i+1)−1∑

t=ki

α(Xt, Yt+1), (3.8)

where i = 0, 1, · · · .
We perform the random-scan MG sampler by 300, 000 iterations using the normal distri-

bution with variance 0.1 as the proposal distribution, see the left two plots of Figure 3.1. From
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the sample plot, the sample data has the needle shape with the length around 4.95 ¿ 35.78

roughly between the two points, (−2.0,−2.0) and (1.5, 1.5). The 100-step average {α(100)
n } of

acceptance rates is roughly between 0.10 to 0.3. We also tried normal proposals with different

variances 0.0001 (same as the target’s) which also gives worse results. For random-scan MG

sampler, at each step, the jumping direction of the sample chain can be just either on the

axis x1 or the axis x2 so the jumping scale is strongly limited. Moreover, the 100-step average

of acceptance rates is very sensitive to the proposal variance. When the proposal variance

is large, the proposal values are easily rejected. When the proposal variance is small, the

proposal values are easily accepted but the chain is easily stuck.

We also perform by 300, 000 iterations AM stated in Section 2. The algorithm attempts

to find a better transition kernel by learning the empirical covariance matrix Σ of the sample

chain. The sample points also span roughly the narrow stripe with the length around 4.95 ¿
35.78 between the two points, (−1.5,−1.5) and (2, 2), see the third plot in Figure 3.1. At

the same time, the 100-step of acceptance rates is quite small, see the last plot in Figure 3.1.

So the sampling method for this example also does not work well.

To find the reason of the inefficiency of AM, let us observe the estimate of empirical

covariance matrix Σn for n = 300, 000,

Σn =

[
1.449585 1.448932

1.448932 1.449020

]
.

By singular value decomposition, we have Σn = UDV where

U =

[
−0.7071758 −0.7070378

−0.7070378 0.7071758

]
,

D =

[
2.8982345593 0

0 0.0003700081

]
,

V = U>.

(3.9)

It is not difficult to find that the matrix U is approximately equal to the U matrix by singular

value decomposition on the true covariance matrix of the Gaussian density t(·). The first

diagonal element d1 of D underestimates the variance 20 on the direction (
√

2/2,
√

2/2), and

the second element d2 overestimates the variance 0.0001 on the direction (−√2/2,
√

2/2), see

Equation (3.9).

The above fact discloses that AM hardly touches the pinpoint of the needle, actually

taking too much time to wander around the middle region of the needle. Only if the jumping

direction by AM’s proposal is little off the 45◦ direction between x1 and x2, the proposal

with a little big jumping scale will be easily rejected. From the last plot in Figure 3.1, the

point can be also observed. The 100-step average {α(100)
n } of acceptance rates is very low,
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approximately below 0.10 that the adaptation finds too much wasting loads of proposal in

wrong directions. Hence the inefficiency of AM is mainly due to the jumping directions.

4 The Algorithm and Ergodicity

Drawing a proposal value in the high dimension space involves the direction choice and

the jump scale on the direction. The direction choice can be viewed as taking an unit

vector on the unit sphere. The jump scale can be viewed as the variance of the proposal

marginal distribution on the chosen direction. The aim in ADMG is to find the random

directions in which the efficient movement can be ensured. As illustrated in Section 3, the

random direction can be withdrawn from the estimate of empirical covariance matrix. After

singular value decomposition, the orthogonal transformation can be obtained. Moreover, the

diagonal matrix also approximately estimates the target extents in those directions after the

rotation. Based on the orthogonal transformation and the extents on the new coordinates,

the Metropolis-within-Gibbs sampler can be ran flexibly.

4.1 ADMG

Now we give the notations for Metropolis algorithm on any direction e ∈ Sd−1 where Sd−1

be the unit hypersphere in Rd. For the vector e, qe : X ×X −→ [0,∞) be jointly measurable

with
∫∞
−∞ qe(x, ze)dz = 1 where the integral is along the direction e from −∞ to ∞ and 〈·, ·〉

be inner product on Rd. Let Qe(x, ·) be the Markov transition kernel on Rd which update

the quantity on the direction e by draw from the density qe(x, ·e), but leaves the quantities

on other orthogonal directions unchanged. That is

Qe(x,Se,a,b) =

∫ b

a

qe(x, ze)dz, (4.10)

where

Se,a,b := {y ∈ X : 〈y, u〉 = 〈x, u〉 for u ∈ Sd−1, 〈e, u〉 = 0 and 〈y, e〉 ∈ [a, b]}.
For x, y ∈ Rd and e ∈ Sd−1, let

αe(x, y) := 1 (t(x)qe(x, 〈y, e〉 e) 6= 0) min

[
1,

t(y)qe(y, 〈x, e〉 e)
t(x)qe(x, 〈y, e〉 e)

]
+ 1 (t(x)qe(x, 〈y, e〉 e) = 0) .

(4.11)

In the paper, we assume that Qe(x, ·) is symmetric i.e., qe(x, ae) = qe(x,−ae) for a ∈ R.

Let Pe be the transition kernel as follows. Given Xn, it generates a proposal Yn+1 ∼
Qe(Xn, ·). Then with the probability αe(Xn, Yn+1), it accepts the proposal and set Xn+1 =

Yn+1; otherwise with the probability 1−αe(Xn, Yn+1) rejects the proposal and set Xn+1 = Xn.
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Step 1. Given X0, · · · , Xn, we can compute the empirical covariance matrix Σn defined in

Equation (2.5) and (2.6).

Step 2. If the Σn is singular, then perform MG and go to Step 6, otherwise run Step 3;

Step 3. Do singular value decomposition: Σn = U (n)D(n)V (n) where D(n) := diag(d
(n)
1 , · · · , d

(n)
d ),

and U (n) and V (n) =
(
U (n)

)>
are orthonormal;

Step 4. Compute the random direction E
(n)
i := U (n)ei where ei = (0, · · · , 0, 1, 0, · · · , 0)︸ ︷︷ ︸

ith

;

Step 5. Perform MG algorithm on the new coordinates
(
E

(n)
1 , · · · , E

(n)
d

)
, where on each

direction the proposal distribution is Q
E

(n)
i

(Xn, ·E(n)
i ) (its variance is equal to 0.01 plus

d
(n)
i θ(n) where α

(k)
[n/k] is the average acceptance rate and θ(n) = exp(2d(α

(k)
[n/k] − 0.3)))

where k is the number of steps used to calculate the k-step average of acceptance rates,

see Equation (3.8);

Step 6. n := n + 1 go to 1.

Remark 1. In step 3, it may takes much times to do singular value decomposition when the

state space is high dimensional. However, it is unnecessary to run the computation for each

step. The alternative is to do singular value decomposition each m steps. Another method

is to only count the accepted sample point to compute the estimate of empirical covariance

matrix.

Remark 2. In step 5, MG sampler is performed under the rotated coordinates. Either

deterministic-scan or random-scan MG sampler can be implemented here. We call the

ADMG algorithm using deterministic-scan MG at each step, adaptive directional system-scan

Metropolis-within-Gibbs algorithm (ADSSMG), and call ADMG using random-scan MG at

each step, adaptive directional random-scan Metropolis-within-Gibbs algorithm (ADRSMG).

At the nth iteration, the transition kernels for ADRSMG and ADSSMG are respectively

PDRS,Γn(Xn, ·) :=
1

d

d∑
i=1

P
E

(n)
i

(Xn, ·), and PDSS,Γn(Xn, ·) :=
d∏

i=1

P
E

(n)
i

(Xn, ·), (4.12)

where P
E

(n)
i

is the transition kernel derived from the Metropolis-Hastings proposal Q
E

(n)
i

on

the direction E
(n)
i . The direction E

(n)
i is a function of Σn depending on

(
Σn−1, X̄n−1

)
and

Xn, see Equation (2.6). So, the parameter space Y is
(
Rd×d,Rd

)
.
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Remark 3. In step 5, we give one scheme to scale the variance of proposal distribution. The

idea is that if the k-step average of acceptance rates is too large which implies that the jump

scalar is too small, the proposal variance is required to be larger for the efficiency; if α
(k)
[n/k]

is too small which implies that the jump scalar is too large, the proposal variance is required

to be smaller for the efficiency. Here, we increase the proposal variance if α
(k)
[n/k] > 0.3, and

decrease it if α
(k)
[n/k] < 0.3. Actually, the pair parameter (0.3, 0.3) can be tuned. E.g. define

θn = 1(α
(k)
[n/k] > 0.5) exp(2d(α

(k)
[n/k] − 0.5)) + 1(α

(k)
[n/k] < 0.2) exp(2d(α

(k)
[n/k] − 0.2)) + 1(0.2 ≤

α
(k)
[n/k] ≤ 0.5).

Figure 4.2: The left plot is the sample plot by running ADMG. The center plot is the 100-step

average of acceptance rates. The right plot is true sample data.

Considering again the example in Section 3, we run ADMG by 300, 000 iterations, see the

first two plots in Figure 4.2. The simulated data span roughly from (−15,−15) to (15, 15)

which ADMG detects the target fasterly than MG and AM. The 100-step average {α(100)
n }

of acceptance rates is between 0.35 to 0.52. The last plot in Figure 4.2 is a true sample data

from t(·). Comparing the first and last plot, ADMG exactly discovered the target region.

Remark 4. From the discussion of the toy example, it is not difficult to find that when the

target distribution is mainly supported on a long narrow region and it is highly correlated,

ADMG is more efficient than the MG sampler and AM. In the high dimensional space, the

phenomenon is more explicit.

4.2 High dimensional Gaussian Needle

Here, we simulate a 10-dimensional Gaussian distribution on a long needle. Consider a

10-dimensional i.i.d. multivariate normal distribution t
′
(x) ∝ exp

(−x>D−1x/2
)

where
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Figure 4.3: The top first plot is the sample plot by running MG. The top second plot is

the 300-step average of acceptance rates. The top last two plots are the ACFs of the MG

variables x1 and x2 with lag 100, 000. The bottom first plot is the sample plot by running

AM. The bottom second plot is the 300-step average of acceptance rates. The bottom last

two plots are the ACFs of the AM variables x1 and x2 with lag 100, 000.
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D = diag(20, 0.0001, · · · , 0.0001) and x ∈ R10. We rotate by 45◦ the coordinate sequen-

tially on the marginal plans x1⊥x2, · · · , x9⊥x10. The corresponding transformations are

Q1,2(45◦), · · · , Q9,10(45◦) where

Qi,j(θ) = I10 +




0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
. . .

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 · · · 0 cos θ − 1 0 · · · 0 − sin θ 0 · · · 0
0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 · · · 0 sin θ 0 · · · 0 cos θ − 1 0 · · · 0
0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0




i j

.

Thus, the interesting target density is

t(x) ∝ exp
(
−x>

(
QDQ>)−1

x/2
)

, (4.13)

where Q = Q9,10(45◦) · · ·Q1,2(45◦).

We perform by 1, 000, 000 iterations MG and AM algorithms where the initial point

X0 ∼ N(
−→
0 , diag(1, · · · , 1)). Figure 4.3 presents the sample data on the plane x1⊥x2, and

300-step average acceptances of both algorithms. Both do stick in the quite short stripe. One

is between (−1.5,−1) to (1.8, 1.3) with the length around 4.02, another is between (1.0, 0.8)

to (3.0, 2.2) with the length around 5. Their lengths of the needle are far less than 35.78.

Their estimates of autocorrelation functions (ACF) also show that the sample data have

strong correlations.

We preform 1, 000, 000 iterations using ADSSMG where the initial point has the same

distribution as that of MG and AM. Figure 4.4 shows the sample data on the plane x1⊥x2,

the 300-step average of acceptance rates and the ACFs of ADSSMG variables x1 and x2

generated from ADSSMG. From these graphs, ADSSMG broadly detect the target with the

narrow stripe roughly between (−12,−10) to (14, 10) with the length around 32.8. The

average acceptance rate is roughly between 0.27 and 0.42. The ACFs of x1 and x2 almost

tends to zero.
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Figure 4.4: The first plot is the sample plot by running ADSSMG. The second plot is the

300-step average of acceptance rates. The right two plots are the ACFs of the ADSSMG

variables x1 and x2 with lag 100, 000.

4.3 Ergodicity

In what follows, we shall write n(z) := z/ |z|, and ∇ for the usual differential (gradient)

operator.

Conditions for the target distribution and the proposal family:

A1: The target distribution π(·) on Rd is absolutely continuous w.r.t. Lebesgue measure

µd with a continuously differentiable density t bounded away from zero and infinity on

compact sets.

A2: For e ∈ Sd−1, qe,γ(x, x + ze) = qe,γ(x, x− ze) := qe,γ(z) for γ ∈ Y and z ∈ R.

A3: For γ ∈ Y and e ∈ Sd−1, there exist δe,γ > 0 and εe,γ > 0 such that qe,γ(z) ≥
εe,γ, for |z| ≤ δe,γ.

A4: There is a β > 0 and δ and ∆ such that 1
β
≤ δ < ∆ < ∞ for any (xj, γj) with

limj |xj| = ∞ and {γj} ⊂ Y , we may extract a subsequence (x̃j, γ̃j) with the property

that for all z ∈ [δ, ∆],

lim
j

sup
e∈Ã(x̃j)

π(x̃j)
π(x̃j+ze)

≤ exp(−βz)

lim
j

sup
e∈R̃(x̃j)

π(x̃j+ze)
π(x̃j)

≤ exp(−βz),
(4.14)

where

R̃(x) := {e ∈ Sd−1 : 〈n(x), e〉 ≥ 1√
d
} and Ã(x) := {e ∈ Sd−1 : 〈n(x), e〉 ≤ − 1√

d
};

(4.15)
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Moreover,

inf
γ∈Y

inf
a∈Sd−1

∫ ∆

δ

zqa,γ(z)dz >
d

β(e− 1)
. (4.16)

A5: The target density t has continuous first derivatives and satisfies lim sup
|x|7→∞

〈n(x),m(x)〉 <

0, where m(x) := ∇t(x)/ |∇t(x)|.

Remark 5. A1 and A3 are used to ensure each Metropolis-within-Gibbs sampler is irreducible

and aperiodic. A2 represents the symmetric property of the proposal family. A5 means that

the target density has the proper contour surface as |x| is sufficiently large. The condition

A4 is a little abstract. The value 1√
d

in Equation (4.15) ensures that given x ∈ Rd, for any

orthogonal normal coordinates {e1, · · · , ed}, i.e. |ei| = 1 and ei ⊥ ej for i 6= j, there exists

ei0 for i0 ∈ {1, · · · , d} such that ei0 ∈ R̃(x)∪ Ã(x). Equation (4.14) means the tails of target

density on certain hypercone dependent of the dimension d decays in the exponential rate.

Equation (4.16) implies that the first moment of the proposal family on some hypercone has

an uniformly low bound, see the explanations in Bai et al. (2008).

Remark 6. When the decaying rate of target density is lighter-than-exponential, the β in

the condition A4 can be arbitrarily large even infinity, A4 is implied by which the proposal

family has an uniformly lower density function, see Theorem 6.3 in Bai et al. (2008).

Remark 7. Those conditions required in Bai et al. (2008) for adaptive Metropolis-within-

Gibbs algorithms are weaker than A1-A5. Their conditions only require that the tails on each

axis decay in the exponential rates, because the Metropolis random walks of their algorithm

are restricted only on the coordinates. Here, the algorithm involves the rotation so that

the Metropolis random walks may be performed on any appropriate direction on which the

exponentially decaying rate is needed.

Remark 8. The condition A4 implies that lim sup|x|→∞ 〈n(x),∇ log t(x)〉 < 0 (exponentially

tailed).

Theorem 1. For the target distribution and the proposal family satisfying A1-A5, either

ADRSMG or ADSSMG is ergodic.

See the proof in Section A.

Remark 9. Bai et al. (2008) showed that adaptive random-scan Metropolis-within-Gibbs

algorithm under the original coordinates is ergodic, actually ergodicity of which is equivalent

to that of ADRSMG.
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5 A Real-life Cohort Study with the competing risks

The Cox (1972) proportional hazards model is routinely used for failure time data. Cox (1975)

studied the partial likelihood methods, also see textbook Kalbfleisch and Prentice (2002).

Accordingly, Prentice (1986) proposed the Case-Cohort design to efficiently analyze Cohort

data when most observations are censored, i.e. the interest events occur with low frequency.

For epidemiologic studies, the cohort may be very large under the previous assumption.

Self and Prentice (1988) proved the asymptotic normal properties of the estimate β̂ under

certain regularity conditions by using a pseudo-likelihood. Wacholder et al. (1989) proposed

a bootstrap estimate of the variance of β̂. Similar estimates for the variance were derived

by Lin and Ying (1993) and Barlow (1994). Pintilie et al. (2009) used a modified partial

likelihood to accommodate the modeling of the hazard of subdistribution for a Case-Cohort

study. They used the Jackknife method to find the estimate’s covariance matrix.

These frequentist methods mainly try to find the optimal coefficient estimates of covari-

ates such that the pseudo-likelihood reaches the maximum. Here we utilize the Bayesian

method through simulating the posterior distribution of the coefficients of covariates, and

compare three algorithms: MG, AM and ADSSMG.

Here we describe the model used in Pintilie et al. (2009).

5.1 The Model Description

The hazard rate is defined as

λ(t, x) = lim
h→0+

P (t ≤ T ≤ t + h | T ≥ t, x)/h = λ0(t)r(t, x),

where T is the random failure time, λ0(t) is an unspecified baseline hazard function, and

r(t, x) is the relative risk function. Here, we also assume that

λ(t, x) = λ0(t) exp(Z(t)>β) (5.17)

where Z(t) = (Z1(t), · · · , Zp(t)).

Suppose that the data consist of observations on a random vector Y with the density

function f(y | θ, β) where β is the parameter of interest and θ is the nuisance parameter of

high or infinity dimension. Suppose that Y can be transformed into a1, b1, · · · , an, bn and

a(j) = (a1, · · · , aj) and b(j) = (b1, · · · , bj). Assume that the joint density function can be

written as
n∏

j=1

f(bj | b(j−1), a(j−1), θ, β)
n∏

j=1

f(aj | b(j), a(j−1), β).
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The second term is called the partial likelihood of β. It should be noted that

L(β) =
n∏

j=1

f(aj | b(j), a(j−1), β). (5.18)

Suppose that there are a set of ordered pair times (t∗1, t1), · · · , (t∗n, tn) where t∗js are the

entry times (< tj) and tjs (t1 < · · · < tn) are the event observing times. The corresponding

censor variables are defined as

Cj =





1 when the event of interest was observed

2 when the competing risk event was observed

0 when no event was observed

. (5.19)

The set

R(t) = {i : t∗i ≤ t ≤ ti; Ci = 0 or 1} ∪ {i : t∗i ≤ t; Ci = 2}, (5.20)

is the set of items at risk of failure at time t−, just prior to time t.

Consider the instantaneous failure interval [tj, tj + dtj). The jth term in the partial

likelihood Equation (5.18) is

Lj(β) =
λ(tj, xj)dtj∑n

l=1 Yl(tj)λ(tj, xl)dtj
, (5.21)

where Yl(t) indicates that l ∈ R(t). By the assumption of Equation (5.17), the modified

partial likelihood at the time of occurrence and the competing risks events with a specific

weight for the Case-Cohort study is

L∗(β; x) =
n∏

j=1

1(Cj = 1) exp(β>xj)∑
r∈R(tj)

)wrj exp(β>xr)
, (5.22)

where the weights wrj =
Ĝ(tj)

Ĝ(tj∧tr)
, and Ĝ(tj) is the Kaplan-Meier estimator for the probability

of censoring, see Kaplan and Meier (1958). The set R(t) represents the case and time-

matched controls at the Cohort follow-up time t. The covariates xi can be time-dependent

on ti.

Here, we choose a prior µ(·) (can be flat) for the coefficient β. The target distribution

(the posterior distribution) that we want to simulate is

t(β) ∝ µ(β)L∗(β; x). (5.23)

5.2 The analysis of Hypoxia Study

In the study, 109 patients with cervical cancer were treated at a cancer center between

the year 1994 to 2000. Meanwhile two cancer marker were done in the time of diagnosis:

15



Table 5.1: Hypoxia study: 10 records are extracted from dataset
age hgb tumsize IFP HP5 pelvicln resp pelrec disrec survtime stat dftime

78 119 7 8 32.1428571 N CR N N 6.152 0 6.152

69 131 2 8.2 2.173913 N CR N N 8.008 0 8.008

55 126 10 8.6 52.3255814 N NR Y N 0.621 1 0.003

55 141 8 3.3 3.2608696 N CR Y Y 1.12 1 1.073

50 95 8 18.5 85.4304636 Y NR Y N 1.292 1 0.003

57 132 8 20 19.3548387 N CR N N 7.929 0 7.929

53 127 4 21.8 44.5783133 E CR N N 8.454 0 8.454

62 142 5 31.6 59.6774194 N CR Y Y 7.116 0 7.107

23 145 5 16.5 29.1666667 N CR N N 8.378 0 8.378

57 142 3 31.5 85.7142857 N CR N N 8.178 0 8.178

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

hgb Haemoglobin (g/l)

pelvicln Pelvic node involvment: N=Negative, E=Equivoval,Y=Positive

pelrec Pelvic disease observed: Y=Yes, N=No

disrec Distant disease observed: Y=Yes, N=No

stat Status at last follow-up: 0=Alive, 1=Dead

a hypoxia marker (HP5) and the interstitial fluid pressure (IFP). HP5 are defined as the

percentage that a tumor had the oxygen level less than 5 millimetres of mercury (mmHg).

IFP are measured at a number of locations in the tumor and a mean value per patients

was calculated. There are totally six diagnosis variables (age, hgb, tumersize, IFP, HP5,

pelvicln) and five outcome variables (resp, pelrec, disrec, survtime, stat), see Table 5.1.

The outcome variables include the information of the treatment, relapse and death. The

response to treatment has two cases: complete response (CR) when the tumor has completely

disappeared after treatment, and no response (NR) when either the disease has progressed

to other sites or the tumor has not disappeared. Under the situation that resp is NR, if

disease progressed distantly then disrec=Y; if the tumor still presents then pelrec=Y, see

other analysis about this case in textbook Pintilie (2006).

Consider the modified partial likelihood Equation (5.22). Here the number n of observa-

tions is 109. We use all the diagnosis variables as the covariates so the β is defined on R6

where the components are sequentially age, hgb, tumsize, IFP, HP5 and pelvicln. All the

entry times t∗i s are zero, and the failure times tjs are from the variable dftime. We use the

outcome variables to define the censor variables Cj for competing risks,

Cj = 1(pelrecj = Y ) + 21(pelrecj = N, statj = 1), (5.24)

which means that the competing risk here is defined as that patients are dead and the tumors

has disappeared.

Here we apply the MG, AM and ADSSMG to sample the data for the posterior distri-

bution t(·) in Equation (5.23). We compare the estimates generated by three algorithms

with the R package cmprsk - CRR. Table 5.2 shows the coefficients estimate generated by

CRR, AM, MG, and ADSSMG. The three algorithms present very well. From Table 5.3, the

standard errors of the coefficients generated by CRR and ADSSMG which show that the two
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Table 5.2: The coefficient estimates by CRR, MG, AM and ADSSMG

βage βhgb βtumsize βifp βhp5
βpelv.

CRR −0.025950 −0.013330 0.258900 0.031370 0.001198 0.497400

AM −0.026309 −0.014401 0.245710 0.031485 0.001299 0.513099

MG −0.026543 −0.013669 0.257617 0.031522 0.001398 0.506934

ADSSMG −0.026521 −0.013658 0.256224 0.031679 0.001285 0.510447

Table 5.3: The standard errors by CRR and ADSSMG

βage βhgb βtumsize βifp βhp5
βpelv.

CRR 0.01564 0.01201 0.10690 0.01705 0.00633 0.33520

ADSSMG 0.01522 0.01298 0.10591 0.01982 0.00704 0.30021

groups of data are roughly same. Figure 5.6 presents the histograms of the sample marginal

densities of HP5 and IPF where the densities by ADSSMG are more normal than the other

two. From Figure 5.5, AM’s 100-step average of acceptance rates is relatively smaller than

other two so that AM is relatively less efficient on the high dimensional space.

Figure 5.5: The left plot is the 100-step average of acceptance rates generated by AM; the

center plot is the 100-step average of acceptance rates generated by MG; the right plot is the

100-step average of acceptance rates generated by ADSSMG.
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Figure 5.6: The top left is the histogram of HP5 by AM; the top center is the histogram of

HP5 by MG; the middle right is the histogram of HP5 by ADSSMG; the bottom left is the

histogram of IPF by AM; the bottom center is the histogram of IPF by MG; the bottom

right is the histogram of IPF by ADSSMG.

A Proof of Theorem 1

Lemma 1. Suppose that the conditions A1-A4 are satisfied. Then there exists some s ∈ (0, 1)

such that

lim sup
|x|→∞

sup
γ∈Y

PDRS,γt
−s(x)/t−s(x) < 1, (A.25)

and

lim sup
|x|→∞

sup
γ∈Y

PDSS,γt
−s(x)/t−s(x) < 1. (A.26)

Proof: The proof for the case ADRSMG is omitted, because the procedure of Theorem 6.2

in Bai et al. (2008) can be adapted. We only discuss the ergodicity of ADSSMG.

Denote Vs(x) = ct−s(x) for some positive c such that Vs(x) ≥ 1. Denote by E(γ) an array of

d mutually orthogonal normal unit vectors for γ ∈ Y . The array E(γ) is from the step 5 in

the ADMG algorithm. From Equation (4.12),

PDSS,γVs(x)/Vs(x) =
d∏

i=1

P
E

(γ)
i

Vs(x),

and for each i,

P
E

(γ)
i

Vs(x) ≤ r(s)Vs(x),
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where r(s) := 1 + s(1− s)1/s−1.

Now, we assume that for any s ∈ (0, 1), lim sup|x|→∞ supγ∈Y PDSS,γVs(x)/Vs(x) ≥ 1. Then,

there exists a sequence pair {(xj, γj)} with limj→∞ |xj| → ∞ and {γj} ⊂ Y such that

limj→∞ PDSS,γj
Vs(x

j)/Vs(x
j) ≥ 1.

Under the condition A4, we may extract from the sequence (xj, γj) a subsequence (x̃j, γ̃j) such

that Equation (4.14) and (4.16) are satisfied. By the definition of R̃(x) and the orthogonality

of E(γ̃j), there exists i := i(x̃j) ∈ {1, · · · , d} with the element E
(γ̃j)
i ∈ E(γ̃j) such that

E
(γ̃j)
i ∈ R̃(x̃j) or E

(γ̃j)
i ∈ Ã(x̃j) where Ã(x̃j) and R̃(x̃j) are defined in Equation (4.15).

Without loss of generalization, we write E
(γ̃j)
i ∈ R̃(x̃j).

So,

PDSS,γjVs(x
j)/Vs(x

j) ≤ rd−1(s)P
E

(γj)
i

Vs(x
j)/Vs(x

j). (A.27)

Adapting the techniques of the proof in Theorem 6.2 in Bai et al. (2008), by Equation (4.14),

we have

P
E

(γ̃j)
i

Vs(x̃
j)/Vs(x̃

j)

≤ r(s)(1− 2Ki,γ̃j(0)) + Ki,γ̃j(βs) + Ki,γ̃j(0) + Ki,γ̃j(β(1− s))−Ki,γ̃j(β),

where Ki,γ(t) =
∫ ∆

δ∨1/β
e−tzq

E
(γ)
i ,γ

(z)dz.

Define Hi,γ(β, s) := rd−1(s) [r(s)(1− 2Ki,γ(0)) + Ki,γ(βs) + Ki,γ(0) + Ki,γ(β(1− s))−Ki,γ(β)].

Hence,

PDSS,γ̃jVs(x̃
j)/Vs(x̃

j) ≤ Hi,γ̃j(β, s). (A.28)

Thus,

Hi,γ̃j(β, 0) = 1;

∂Hi,γ̃j

∂s
(β, 0) = (d− 2Ki,γ̃j(0))r

′
(0)− β

∫ ∆

δ

zq
E

(γ̃j)
i ,γ̃j

(z)µ(dz) + β

∫ ∆

δ

ze−βzq
E

(γ̃j)
i ,γ̃j

(z)µ(dz)

≤ d/e− β(1− 1/e)

∫ ∆

δ

q
E

(γ̃j)
i ,γ̃j

(z)dz.

By Equation (4.16),

lim sup
j→∞

∂Hi,γ̃j

∂s
(β, 0) < 0.

Therefore, lim supj Hi,γ̃j(β, s) < 1 for some s ∈ (0, 1), which leads to a contradiction.

Proof of Theorem 1: By Lemma 1 and Proposition 2.3 in Bai et al. (2008), Contain-

ment holds. From Proposition 5.9 in Bai et al. (2008), by the conditions A5, Diminishing

adaptation holds. Therefore, by Theorem 13 in Roberts and Rosenthal (2007), the two

algorithms are ergodic.
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