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Preface

This report is an overview and summary of the supervised reading course I took under the
supervision of Professor Rosenthal at Unversity of Toronto in fall 2014.

The first part of this report summarizes my study about the Markov chains on gen-
eral state space. I focused on papers by Rosenthal [5], [7] and the textbook by Meyn and
Tweeide [3]. The second part discusses the Markov Chain Monte Carlo(MCMC) algorithms.
With the background from the first part, the way the MCMC algorithm works on general
state space can be better understood. The third part is about the comparison of two theo-
rems on Markov chain’s ergodicity. One theorem is from Rosenthal[5] and the other is from
Rosenthal[9]. Two examples of MCMC from [9] are developed for the comparison, and I
used the software Mathematica for computing the numerical results in the examples. In the
Appendices, I also included some essential theorems about probability theory that I studied
from Rosenthal[2].

Many theorems, propositions and their proofs from [5] were included in this report.
I also added some details and remaks to the original proofs in this report after I carefully
studied them. Some examples from [5] were also used to demonstrate the notions introduced
in this report.

Throughout this semester I had regular meetings with Professor Rosenthal. I would
like to thank him for his careful guidance. He gave me inspiring advice and encouraged me
to develop the topics in MCMC that I am interested in. My thanks also goes to Department
of Statistics at Univeristy of Toronto who provided me the computing facilities.

Yihui Tian
December, 2014
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1 General State Space Markov Chains

A Markov chain is a common stochastic process with the property that the next state
depends only on the current state. It has been applied as a statistical model for many
real-world processes. The uses of Markov chain often cover cases where the process follows
a continuous state space. In this section, we will dicuss the concepts of the Markov chain
on general (non-countable) state spaces, with emphasis on its asymptotic convergence and
its ergodicity.

1.1 Fundementals

Definition 1. General State Space
The state space χ is called general if it is equipped with a (countably generated) σ-algebra
σ(χ).

Throughout this report, we only focus on time-homogeneous Markov chains.

Definition 2. Time-Homogeneity
A Markov chain {Xn} is called time-homogeneous if

P (Xk ∈ A|Xk−1 = x) = P (X1 ∈ A|X0 = x), ∀x ∈ χ,A ⊆ χ, k ∈ N+

Definition 3. Transition Probability Kernel
If a function P = {P (x,A), x ∈ χ,A ∈ σ(χ)} is called a Markov chain kernel, it satisfies
(1) for each A ∈ σ(χ), P (·, A) is a non-negative measurable function on χ.
(2) for each x ∈ χ, P (x, ·) is a probability measure on σ(χ).

For convenience, we denote n- step transitional kernel as Pn such that

Pn(x, ·) =

∫
y1∈χ

∫
y2∈χ

· · ·
∫
yn−1∈χ

P (x, dy0)P (y0, dy1) · · ·P (yn−1, ·), ∀x ∈ χ.

Theorem 1.1. Chapman-Kolomogorv Equation

Pn+m(x, ·) =

∫
y∈χ

Pn(x, dy)Pm(y, ·), ∀n,m ∈ N ∪ {0}

Definition 4. Stationary Measure(Distribution)
A probability measure π(·) on (χ, σ(χ)) is a stationary measure(distribution) for a
Markov chain with transition probability P if

π(A) =

∫
x∈χ

P (x,A)π(dx) ∀x ∈ χ, ∀A ⊆ χ

The notion of “irreducibility” from discrete Markov chain is impossible when χ is un-
countable, since often P (x, {y}) = 0 for all x and y. Therefore we introduce a weaker
condition of irreducibility for general state space:

Definition 5. φ-irreducibility
A chain is φ-irreducible if there exists a non-zero σ-finite measure1, such that for all A ⊆ χ
with φ(A) > 0, and for all x ∈ χ, there exists a positive integer n = n(x,A) such that
Pn(x,A) > 0.

1see Appendices
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Note that when χ is countable, φ-irreducibility does not necessarily imply irreducibility.
For instance, let χ = N. If φ(A) = δx∗(A) and P (x, x∗) = 1, then it is φ-irreducible: If
φ(A) > 0, then A must contain x∗; so for any x ∈ χ, P (x,A) ≥ P (x, x∗) = 1. However, this
chain is not irreducible.

Unlike discrete Markov chains with individual state having its own period, we need to
examine the period of a subset of the general state space.

Definition 6. Periodicity
A Markov chain with stationary distribution π(·) is aperiodic if there do not exist d ≥ 2
and disjoint subsets χ1, χ2, . . . , χd ⊆ χ with P (x, χi+1) = 1 for all x ∈ χi(1 ≤ i ≤ d−1), and
P (x, χ1) = 1 for all x ∈ χd, such that π(χ1) > 0(and hence π(χi) > 0 for all i). Otherwise,
the chain is periodic with period d, and period decomposition χ1, . . . , χd.

Definition 7. First Hitting Time and First Return Time
For any set A ⊆ χ, if the variable τA is defined as:

min{n ≥ 0, Xn ∈ A},

it is interpreted as the first hitting time. If τA is defined as:

min{n ≥ 1, Xn ∈ A},

it is interpreted as the first return time.

Definition 8. Reversibility
A Markov chain on a state space χ is reversible with respect to a probability distribution
π(·) on χ, if

π(dx)P (x, dy) = π(dy)P (y, dx), x, y ∈ χ.

A very important property of reversibiity is the following:

Proposition 1.1. If Markov chain is reversible with respect to π(·), then π(·) is stationary
for the chain.

Proof.
∫
χ
π(dx)P (x, dy) =

∫
χ
π(dy)P (y, dx) = π(dy).

Suppose ν(·) is a probability measure on χ, P is a transition kernel on χ and h is any
measurable function χ→ R, then for any A ⊆ χ,

(νP )(A) :=

∫
χ

ν(dx)P (x,A)

(Ph)(x) :=

∫
χ

P (x, dy)h(y).

Thus, (νP )(A) is the expectation of P (X,A), where X ∼ ν(·) and (Ph)(x) is the conditional
expected value of h(Xn+1), given Xn = x.
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1.2 Convergence of Markov Chains

We measure the “distance” between to two probability measures in terms of total variation
distance, which is defined as the following:

Definition 9. Total Variation Distance
The total variation distance between two probability measures ν1(·) and ν2(·) is

||ν1(·)− ν2(·)|| = sup
A
|ν1(A)− ν2(A)| A ⊆ χ.

The following properties of total variation distance are useful in the proofs of the con-
vergence theorems later.

Proposition 1.2. Properties of Total Variation Distance
Suppose ν1(·) and ν2(·) are two probability measures. Then

(a) ||ν1(·)− ν2(·)|| = sup
f :χ→[0,1]

|
∫
fdν1 −

∫
fdν2|.

(b) For any a < b,

||ν1(·)− ν2(·)|| = 1

(b− a)
sup

f :χ→[a,b]

|
∫
fdν1 −

∫
fdν2|.

In particular,

||ν1(·)− ν2(·)|| = 1

2
sup

f :χ→[−1,1]

|
∫
fdν1 −

∫
fdν2|.

(c) If π(·) is stationary for a Markov chain kernel P , then ||Pn(x, ·)−π(·)|| is non-increasing
in n, i.e. ||Pn(x, ·)− π(·)|| ≤ ||Pn−1(x, ·)− π(·)|| for n ∈ N.
(d) More generally, we always have

||(ν1P )(·)− (ν2P )(·)|| ≤ ||ν1(·)− ν2(·)||.

(e) Let tn = 2sup
x∈χ
||Pn(x, ·) − π(·)||, where π(·) is stationary. Then t is sub-multipicative,

i.e.
t(m+ n) ≤ t(m)t(n) ∀m,n ∈ N.

(f) If µ(·) and ν(·) have densities g and h, respectively, with respect to some σ-finite measure
ρ(·), and M = max(g, h) and m = min(g, h), then

||µ(·)− ν(·)|| = 1

2

∫
χ

(M −m)dρ = 1−
∫
χ

mdρ.

(g) Given probability measures µ(·) and ν(·), there are jointly defined random variables X
and Y such that X ∼ µ(·), Y ∼ ν(·), and P (X = Y ) = 1− ||µ(·)− ν(·)||.

Proof. (a) and (b)
Note that (b) This part is a generalized version of (a), so we show proof for (b) first.
According to Radon-Nikodym theorem2, we can let ρ(·) be any σ-finite measure such that

2See Appendices.
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ν1 � ρ and ν2 � ρ. Let g = dν1
dρ and h = dν2

dρ , then they are the Radon-Nikodym derivatives

of ν1 and ν2 with respect to ρ. For any function f : χ→ [a, b], we have

|
∫
fdν1 −

∫
fdν2| = |

∫
f(g − h)dρ| = |

∫
{g≤h}

f(g − h)dρ+

∫
{g>h}

f(g − h)dρ|

Since g − h ≥ 0 on {g > h} and a ≤ f(x) ≤ b, it follows that

a

∫
{g>h}

(g − h)dρ ≤
∫
{g>h}

f(g − h)dρ ≤ b
∫
{g>h}

(g − h)dρ. (1)

Similarly, since h− g ≤ 0 on {g ≤ h},

b

∫
{g≤h}

(g − h)dρ ≤
∫
{g≤h}

f(g − h)dρ ≤ a
∫
{g≤h}

(g − h)dρ. (2)

From (1) and (2), we have

(b− a)

∫
{g≤h}

(g − h)dρ+ a

∫
χ

(g − h)dρ = b

∫
{g≤h}

(g − h)dρ+ a

∫
{g>h}

(g − h)dρ

≤
∫
χ

f(g − h)dρ ≤ b
∫
{g>h}

(g − h)dρ+ a

∫
{g≤h}

(g − h)dρ

= (b− a)

∫
{g>h}

(g − h)dρ+ a

∫
χ

(g − h)dρ = (b− a)

∫
{g>h}

(g − h)dρ,

where the last equality comes from the fact
∫
χ
(g − h)dρ = ν1(χ)− ν2(χ) = 0.

So since (b− a)
∫
{g≤h}(g − h)dρ ≤

∫
χ
f(g − h)dρ ≤ (b− a)

∫
{g>h}(g − h)dρ, we have

1

(b− a)
sup

f :χ→[a,b]

|
∫
χ

f(g − h)dρ| = max{
∫
{g>h}

(g − h)dρ, |
∫
{g≤h}

(g − h)dρ|},

On the other hand, for any A ⊆ χ we have
|ν1(A)−ν2(A)| = |

∫
A

(g−h)dρ| = |
∫
A∩{g>h}(g−h)dρ+

∫
A∩{g≤h}(g−h)dρ|. Hence |ν1(A)−

ν2(A)| might be maximized either when A = {g > h} or A = {g ≤ h}. Thus

||ν1(·)− ν2(·)|| = max{
∫
{g>h}

(g − h)dρ, |
∫
{g≤h}

(g − h)dρ|}

=
1

b− a
sup

f :χ→[a,b]

|
∫
χ

f(g − h)dρ|,

which verifies (b). When f : χ→ [0, 1], we have (a).

Proof. (c) and (d)
For any n ∈ N and A ⊆ χ, we let f(y) = P (y,A), then

|Pn+1(x,A)− π(A)| = |
∫
y∈χ

Pn(x, dy)P (y,A)−
∫
y∈χ

π(dy)P (y,A)|

= |
∫
y∈χ

Pn(x, dy)f(y)−
∫
y∈χ

π(dy)f(y)|

≤ ||Pn(x, ·)− π(·)||,
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where the last inequality comes from (a). Thus

||Pn+1(x, ·)− π(·)|| = sup
A
|Pn+1(x,A)− π(A)| ≤ ||Pn(x, ·)− π(·)||.

Very similarly, for (d), we have

|(ν1P )(A)− (ν2P )(A)| = |
∫
ν1(dx)P (x,A)−

∫
ν2(dx)P (x,A)|

= |
∫
f(x)ν1(dx)−

∫
f(x)ν2(dx)|

≤ ||ν1(·)− ν2(·)||.

Proof. (e)
Let P̂ (x, ·) = Pn(x, ·)− π(·) and Q̂(x, ·) = Pm(x, ·)− π(·), then

(P̂ Q̂f)(x) ≡
∫
y∈χ

f(y)

∫
z∈χ

[Pn(x, dz)− π(dz)][Pm(z, dy)− π(dy)]

=

∫
y∈χ

f(y)[

∫
z∈χ

Pn(x, dz)Pm(z, dy)−
∫
z∈χ

π(dz)Pm(z, dy)− π(dy)

∫
z∈χ

Pn(x, dz)− π(dy)

∫
z∈χ

π(dz)]

=

∫
y∈χ

f(y)[Pn+m(x, dy)− π(dy)− π(dy) + π(dy)] (since π stationary)

=

∫
y∈χ

f(y)[Pn+m(x, dy)− π(dy)]

Let f : χ→ [0, 1] and g(x) = (Q̂f)(x) ≡
∫
y∈χ Q̂(x, dy)f(y). Let g∗ = sup

x∈χ
|g(x)|, then

g∗ = sup
x∈χ
|
∫
y∈χ

(Pm(x, dy)− π(dy))f(y)|

≤ sup
x∈χ

sup
f :χ→[0,1]

|
∫
y∈χ

(Pm(x, dy)− π(dy))f(y)|

= sup
x∈χ
||Pm(x, ·)− π(·)|| (by (a))

=
1

2
t(m).

If g∗ = 0, then for almost every x ∈ χ,
∫
y∈χ f(y)(Pm(x, dy)− π(dy)) = 0, thus

(P̂ Q̂f)(x) =

∫
z∈χ

[Pn(x, dz)− π(dz)]

∫
y∈χ

f(y)[Pm(z, dy)− π(dy)] = 0.

If g∗ 6= 0,

2sup
x∈χ
|(P̂ Q̂f)(x)| = 2g∗sup

x∈χ
|(P̂ [

g

g∗
])(x)| ≤ t(m)sup

x∈χ
|(P̂ [

g

g∗
])(x)| (3)
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Since −1 ≤ g
g∗ ≤ 1, we have (P̂ [ gg∗ ])(x) ≤ 2||Pn(x, ·)−π(·)|| by (b), so sup

x∈χ
(P̂ [ gg∗ ])(x) ≤ t(n).

Then

t(n+m) = 2sup
x∈χ
||Pn+m(x, ·)− π(·)||

= 2sup
x∈χ

sup
f :χ→[0,1]

|
∫

(fdPm+n −
∫
fdπ)| (by (b))

= 2sup
x∈χ

sup
f :χ→[0,1]

|(P̂ Q̂f)(x)|
(
since (P̂ Q̂f)(x) =

∫
y∈χ

f(y)[Pn+m(x, dy)− π(dy)]
)

= 2 sup
f :χ→[0,1]

sup
x∈χ
|(P̂ Q̂f)(x)|

≤ t(m) sup
f :χ→[0,1]

sup
x∈χ

(P̂ [
g

g∗
])(x) (by (3))

≤ t(m)t(n)

Proof. (f)
The first equality follows since as in proof of (b) with a = −1 and b = 1, for either f = 1 on
{g − h > 0} and f = −1 on {g − h ≤ 0} or vice versa, we both have

||µ(·)− ν(·)|| = 1

2
(

∫
{g>h}

(g − h)dρ+

∫
{g≤h}

(g − h)dρ) =
1

2

∫
χ

(M −m)dρ.

The second equality follows since M +m = g + h, so that
∫
χ
(M +m)dρ = 2, and hence

1

2

∫
χ

(M −m)dρ = 1− 1

2
(2−

∫
χ

(M −m)dρ) = 1− 1

2

∫
χ

(M +m− (M −m))dρ

= 1−
∫
χ

mdρ.

Proof. (g)
Let a =

∫
χ
mdρ, b =

∫
χ
(g − m)dρ, and c =

∫
χ
(h − m)dρ. First assume a, b, c are all

positive. We jointly construct random variables Z,U, V, I such that Z has density m
a , U has

density (g−m)
b , V has density (h−m)

b , and I is independent of Z,U, V with P (I = 1) = a and
P (I = 0) = 1− a. We then let X = Y = Z if I = 1, and X = U and Y = V if I = 0. For
any A ⊆ χ,

P (X ∈ A) = P (U ∈ A, I = 0) + P (Z ∈ A, I = 1)

= P (U ∈ A)P (I = 0) + P (Z ∈ A)P (I = 1) =
1− a
b

∫
A

(g −m)dρ+

∫
A

mdρ

=
1−

∫
χ
mdρ∫

χ
gdρ−

∫
χ
mdρ

∫
A

(g −m)dρ+

∫
A

mdρ

=

∫
A

(g −m)dρ+

∫
A

mdρ =

∫
A

gdρ,
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thus X ∼ µ(·). Similarly, Y ∼ ν(·) because

P (Y ∈ A) = P (V ∈ A, I = 0) + P (Z ∈ A, I = 1) = P (V ∈ A)P (I = 0) + P (Z ∈ A)P (I = 1)

=
1− a
b

∫
A

(h−m)dρ+

∫
A

mdρ =

∫
A

hdρ.

Furthermore, U has support {g−h < 0} and V has support {g−h ≥ 0}, thus P (U = V ) = 0.
By the first equality of (f), P (X = Y ) = P (I = 1) = a = 1− ||µ(·)− ν(·)||.

If any of b or c equals 0, without loss of generality, we assume b = 0. In this case, we
have g = min(g, h) almost everywhere; but since

∫
χ
gdρ =

∫
χ
hdρ = 1, indeed g = h almost

everywhere. Then a = 1, X = Y = Z ∼ µ(·), ||µ(·) − ν(·)|| = 0 and P (X = Y ) = 1 =
1− ||µ(·)− ν(·)||; if a = 0, then X = U , Y = V and the rest of the proof follows the same
as the above paragraph. Therefore, the statement also holds true if any of a, b, c equals
zero.

Definition 10. Small Set and Minorisation Condition
A subset C ⊆ χ is small (or (n0, ε, ν)-small) if there exists a positive integer n0, ε > 0, and
a probability measure ν(·) on χ such that the following minorisation condition holds:

Pn0(x, ·) ≥ εν(·) x ∈ C,

i.e. Pn0(x,A) ≥ εν(A) for all x ∈ C and A ∈ σ(χ).

Since the proofs of the Markov chain convergence theorem and the theorems about
the Markov chain’s ergodicity(we will present) use direct coupling constructions, we first
introduce the notion of coupling:

Theorem 1.2. The Coupling Inequality
Suppose we have two random variables X and Y , defined jointly on some state space χ. Let
L(X) and L(Y ) for their respective probability distributions, then ||L(X)−L(Y )|| ≤ P (X 6=
Y ).

Proof.

||L(X)− L(Y )|| = sup
A
|P (X ∈ A)− P (Y ∈ A)|

= sup
A
|P (X ∈ A,X = Y ) + P (X ∈ A,X 6= Y )

− P (Y ∈ A,X = Y )− P (Y ∈ A,X 6= Y )|
= sup

A
|P (X ∈ A,X 6= Y )− P (Y ∈ A,X 6= Y )|

≤ P (X 6= Y ),

where the last inequality follows since both P (X ∈ A,X 6= Y ) and P (Y ∈ A,X 6= Y ) are
nonnegative and ≤ P (X 6= Y ).

The Coupling Construction:
Suppose we run two copies {Xn} and {X ′n} of the Markov chains on χ following the instruc-
tions below, and C is a small set((n0, ε, ν)-small). We start with X0 = x and X ′0 ∼ π(·),
and repeat the following loop forever:
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Beginning of Loop Given Xn and X ′n:
1. If Xn = X ′n, choose Xn = X ′n+1 ∼ P (Xn, ·), and replace n by n+ 1.
2. Else, if (Xn, X

′
n) ∈ C × C, then:

(a)with probability ε, choose Xn+n0
= X ′n+n0

∼ ν(·);
(b)else, with probability 1− ε, conditionally independently choose
Xn+n0 ∼ 1

1−ε [P
n0(Xn, ·)− εν(·)] and X ′n+n0

∼ 1
1−ε [P

n0(X ′n, ·)− εν(·)].
Replace n with n0 + n

3. Else, conditionally independently choose Xn+1 ∼ P (Xn, ·) and X ′n+1 ∼ P (X ′n, ·), and
replace n by n+ 1.
Return to Beginning of Loop.

Note that from such construction, the two chains marginally follows the updating rules
P (x, ·): It is obvious for condition 1 and condition 3; when (Xn, X

′
n) ∈ C × C, we have

Xn+n0
∼ εν(·) + 1−ε

1−ε [P
n0(Xn, ·) − εν(·)] = Pn0(Xn, ·). Thus, it follows that P (Xn ∈ A) =

Pn(x,A) and P (X ′n ∈ A) = π(A)(since π is stationary). Moreover, their joint construc-
tion(using small set C) gives them a high probability of becoming equal to each other.
In the case of n0 > 1, if (Xn, X

′
n) ∈ C × Cf, or completeness we go back and construct

Xn+1, · · · , Xn+n0−1 from their conditional distributions given Xn and Xn+n0 . Specifically,
suppose n0 = 3 and we know X8 = 8 and X11 = 11. P (X9 ∈ A|X8 = 8, X11 = 11) =∫
z∈χ

∫
y∈A P (8, dy)P (y, dz)P (z, 11); once X9 is generated, say X9 is a, we then have P (X10 ∈

A|X8 = 8, X9 = a,X11 = 11) = P (X10 ∈ A|X9 = a,X11 = 11) =
∫
y∈A P (a, dy)P (y, 11).

In the same way we construct X ′n+1, . . . , X
′
n+n0−1 from their conditional distribution given

X ′n and X ′n+n0
.

Theorem 1.3. Markov Chain Convergence Theorem
If a Markov chain on a state space with countably generated σ-algebra is φ-irreducible and
aperiodic, and has a stationary distribution π(·), then for π-a.e. 3x ∈ χ,

lim
n→∞

||Pn(x, ·)− π(·)|| = 0.

In particular, lim
n→∞

Pn(x,A) = π(A) for all measurable A ⊆ χ.

In fact, if h:χ → R with π(|h|) < ∞, then a “strong law of large numbers” also holds as
follows:

lim
n→∞

1

n

n∑
i=1

h(Xi) = π(h) w.p. 1.4

The coupling approach requires a small set existing in the state space but we are not
sure about its existence in the Markov chain described in Theorem (1.3). However, it was
proved by Jain and Jameson[1] that

Theorem 1.4. 5 Every φ-irreducible Markov chain, on a state space with countably gener-
ated σ-algebra, contains a small set C ⊆ χ with φ(C) > 0; furthermore, the minorisation
measure ν(·) may be taken to satisfy ν(C) > 0.

3“a.e.” stands for almost everywhere.
4“w.p.1” stands for with probability 1
5The proof can be found in [1].

10



Our plan for proving Theorem (1.3) is to show that the pair (Xn, X
′
n) will hit C ×

C infinitely often, then they will have probability ≥ ε > 0 of coupling each time, then
P(x,y)(τC×C < ∞) = 1 − P(x,y)(τC×C = ∞) ≥ 1 − limn→∞(1 − ε)n = 1, i.e. they will
eventually couple with probability 1, and we finish the proof. In proving the assumption
that the chain will hit C × C infinitely often, we first prove the following claim:

Claim 1. Consider a Markov chain on a stae space χ, having stationary distribution π(·).
Suppose that for some A ⊆ χ, we have Px(τA < ∞) > 0 for all x ∈ χ. Then for π-a.e.
x ∈ χ, Px(τA <∞) = 1.

Proof. We prove the claim with a contradiction. Suppose the conclusion in the claim does
not hold, i.e.

π{x ∈ χ : Px(τA =∞) > 0} > 0. (4)

Then we have the following results:

Result 1. There are constants l, l0 ∈ N, δ > 0 and B ⊆ χ with π(B) > 0, such that

Px(τA =∞, sup{k ≥ 1;Xkl0 ∈ B} < l) ≥ δ, ∀x ∈ B. (5)

Proof. Result 1
From (4), there must exist δ1 > 0 such that π{x ∈ χ : Px(τA =∞) ≥ δ1)} > 0. Let
B1 = {x ∈ χ : Px(τA =∞) > δ1}, then for all x ∈ B1, Px(τA < ∞) ≤ 1 − δ1. By the
assumption that Px(τA < ∞) > 0 for all x ∈ χ, we can find l0 ∈ N and δ2 > 0 and
B2 ⊆ B1, with π(B2) > 0 and with P l0(x,A) ≥ δ2 for all x ∈ B2. Indeed, B1 can be written
as B1 =

⋃∞
m=1

⋃∞
j=1Bmj , where Bmj = {x ∈ B1|Pm(x,A) ≥ 1

j }. Since π(B1) > 0, by

sub-additivity of π, there must exist mj such that π(Bmj) > 0, and thus m is the l0 and 1
j

is the δ2 we are looking for. Set η = #{k ≥ 1;Xkl0 ∈ B2}. Then for any r ∈ N and x ∈ χ,
Px(τA =∞, η = r) ≤ (1− δ2)r. Thus,

Px(τA =∞, η =∞) = Px(τA =∞,
∞⋃
r=1

{η = r}) = lim
r→∞

Px(τA =∞, η = r) = 0.

Hence for x ∈ B2, we have

Px(τA =∞, η <∞) = 1− Px(τA =∞, η =∞)− Px(τA <∞) ≥ δ1.

then there exist l ∈ N, δ > 0, and B ⊆ B2 with π(B) > 0, such that for any x ∈ B,

Px(τA =∞, sup{k ≥ 1;Xkl0 ∈ B2} < l) ≥ δ.

Since B ⊆ B2, we have sup{k ≥ 1;Xkl0 ∈ B2} ≥ sup{k ≥ 1;Xkl0 ∈ B}, we thus have

Px(τA =∞, sup{k ≥ 1;Xkl0 ∈ B} < l) ≥ Px(τA =∞, sup{k ≥ 1;Xkl0 ∈ B2} < l) ≥ δ.

Result 2. Let B, l, l0, and δ be as in Result (1). Let L = ll0, and let S = sup{k ≥ 1;XkL ∈
B}, using the convention that S = −∞ if the set {k ≥ 1;XkL ∈ B} is empty. Then for all
integers 1 ≤ r ≤ j, ∫

x∈χ
π(dx)Px[S = r,XjL /∈ A] ≥ π(B)δ.

11



Proof. By Result (1) and π is a stationary distribution, we have∫
x∈χ

π(dx)Px(S = r,XjL /∈ A) =

∫
x∈χ

π(dx)

∫
y∈B

P rL(x, dy)Py[S = −∞, X(j−r)L/∈A]

=

∫
y∈B

∫
x∈χ

π(dx)P rL(x, dy)Py[S = −∞, X(j−r)L/∈A]

=

∫
y∈B

π(dy)Py[S = −∞, X(j−r)L/∈A]

≥
∫
B

π(dy)δ

= π(B)δ.

With all the above two results, we now complete the proof for the claim. For any j ∈ N,

π(Ac) =

∫
x∈χ

π(dx)P jL(x,Ac) =

∫
x∈χ

π(dx)Px(XjL /∈ A)

≥
j∑
r=1

∫
x∈χ

π(dx)Px[S = r,XjL /∈ A]

≥
j∑
r=1

π(B)δ = jπ(B)δ,

when j > 1
π(B)δ , this gives π(Ac) > 1,which is impossible, therefore we reach a contradiction.

So we finish the proof of Claim (1).

Lemma 1.5. Consider an aperiodic Markov chain on a state space χ, with stationary
distribution π(·). Let ν(·) be any probability measure on χ. Assume that ν(·) � π(·), and
that for all x ∈ χ, there is n = n(x) ∈ N and δ = δ(x) > 0 such that Pn(x, ·) ≥ δν(·). Let
T = {n ≥ 1;∃δn > 0 s.t.

∫
ν(dx)Pn(x, ·) ≥ δnν(·)}, and assume that T is non-empty. Then

there is n∗ ∈ N with {n∗, n∗ + 1, n∗ + 2, . . . } ⊆ T .

Proof. Since for all x ∈ χ, P (n(x))(x, ·) ≥ δ(x)ν(·), then
∫
ν(dx)P (n(x))(x, ·) ≥

(∫
ν(dx)δ(x)

)
ν(·),

so T is nonempty.
If n,m ∈ T , then∫

x∈χ
ν(dx)Pn+m(x, ·) =

∫
x∈χ

∫
y∈χ

ν(dx)Pn(x, dy)Pm(y, ·)

=

∫
y∈χ

∫
x∈χ

ν(dx)Pn(x, dy)Pm(y, ·)

≥
∫
y∈χ

δnν(dy)Pm(y, ·) ≥ δnδmν(·).

Thus if n,m ∈ T , then n+m ∈ T .
We now show that gcd(T ) = 1. Suppose gcd(T ) = d > 1, then for 1 ≤ i ≤ d, let

χi = {x ∈ χ; ∃l ∈ N and δ > 0 s.t. P ld−i(x, ·) ≥ δν(·)}.

12



Then by the assumption,
⋃d
i=1 χi = χ. Let S =

⋃
i 6=j(χi ∩ χj) and let

S̄ = S ∪ {x ∈ χ;∃m ∈ N s.t. Pm(x, S) > 0}.

Let χ′i = χi\S̄. Then since removing S, we have χ′1, χ
′
2, · · · , χ′d disjoint to each other. If x ∈

χ′i, then P (x, S̄) = 0, and since
⋃d
j=1 χ

′
j = χ\S̄, we have P (x,

⋃d
j=1 χ

′
j) = 1. Furthermore,

we must have P (x, χ′i+1) = 1 in the case i < d and P (x, χ′1) = 1 for i = d (Suppose y is in
χ′1. if y moves to x after one step and x is some state other than χ′2, then y would not be in
χ′1). For all m ≥ 0, we next show that νPm(χi ∩ χj) = 0 whenever i 6= j. Assume not, i.e.
there exists i and j such that νPm(χi ∩χj) > 0, i.e.

∫
χ
ν(dx)Pm(x, χi ∩χj) > 0, then there

would be S′ ⊆ χ, and l1, l2 ∈ N, and δ > 0 such that for all x ∈ S′, P l1d+i(x, ·) ≥ δν(·)
and P l2d+j(x, ·) ≥ δν(·), implying that l1d+ i+m ∈ T and l2d+ j +m ∈ T , contradict the
assumption that gcd(T ) = d. Thus νPm(χi∩χj) = 0 for all i 6= j and m ≥ 0. Thus let m =
0, we then have ν(χi∩χj) = 0. By sub-additivity of measures we ν(S̄) ≤

⋃
i6=j ν(χi∩χj) = 0.

Therefore, ν(
⋃d
i=1 χ

′
i) = ν(

⋃d
i=1 χ

′
i) + ν(S̄) = ν(

⋃d
i=1 χi) = ν(χ) = 1. There exist some i

such that ν(χ′i) > 0. Since ν � π, we have π(∪di=1χ
′
i) =

∑d
i=1 π(χ′i) > 0. On the other

hand, π(χ′2) = (πP )(χ′2) =
∫
χ
π(dx)P (x, χ′2) =

∫
χ′1
π(dx) = π(χ′1), and similarly we have

π(χ′i) = π(χ′j) for any i and j, thus χ′1, . . . , χ
′
d are subsets of positive π-measure and the

Markov chain is periodic of period d, contradicting the assumption of aperiodicity of the
chain, so gcd(T ) = 1. Since T is non-empty, additive and gcd(T ) = 1, by the fact(see [2], p.
92), there is n∗ ∈ N such that {n∗, n∗ + 1, n∗ + 2, . . . } ⊆ T .

Let C be the small set found in Theorem (1.4). In the context of the coupling construction
of {Xn, Yn}, let G ⊆ χ × χ be the set of (x, y) such that P(x,y)(∃n ≥ 1;Xn = Yn) = 1. If
(X0, X

′
0) ≡ (x,X ′0) ∈ G, then limn→∞ P [Xn = X ′n] = 1, since once they are coupled, they

will be equal forever from the coupling construction, so that limn→∞ ||Pn(x, ·)− π(·)|| = 0.
Therefore it suffices to show P [(x,X ′0) ∈ G] = 1. Let Gx = {y ∈ χ; (x, y) ∈ G} for x ∈ χ,
and let Ḡ = {x ∈ χ;π(Gx) = 1}. With the results from Claim (1) and Lemma (1.5), we can
now finish the proof of Theorem (1.3) by proving the following claim:

Claim 2. π(Ḡ = 1).

Proof. First we prove that (π × π)(G) = 1. From the way of finding C in Theorem (1.4),
ν(C) > 0. From Lemma (1.5), we know for any x ∈ χ, there exist n(x) s.t. Pn(x)(x,C) > 0.
Thus for any x ∈ χ, the chain has positive probability of eventually hitting C, i.e. Px(τC <
∞) ≥ Pn(x,C) > 0. Since when (x, y) /∈ C × C, the chains are updated either according
to the same distribution, or being updated independently, we can apply the result from
Claim (1) for a single chain. Thus for (π × π)-a.e.(x, y) /∈ C × C, the joint chain will reach
C ×C with probability 1. Once the chain reaches C ×C, then conditional on not coupling,
the joint chain will update from 1

(1−ε)2 [Pn0(Xn, ·) − εν(·)][Pn0(X ′n, ·) − εν(·)] which must

be absolutely continuous with respect to π × π. Again by Claim (1), the chain will return
to C × C with probability 1. Hence the joint chain will repeatedly return to C × C with
probability 1, until such time Xn = X ′n(since within C × C, the probability of coupling is
positive ≥ ε). Hence eventually we will have Xn = X ′n, thus proving that (π × π)(G) = 1.
If π(Ḡ) < 1, then

(π × π)(Gc) =

∫
χ

π(dx)π(Gx
c) ≥

∫
Ḡc
π(dx)[1− π(Gx)] > 0,
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where the last inequality comes from the fact that a positive function (1−π(Gx) is positive
on Ḡc ) integrated over a set of positive measure (π(Ḡc)) is positive. This result contradicts
the fact that (π × π)(G) = 1.

Since periodic chains sometimes occur in MCMC, the following corollary is another
version of Theorem (1.3) with periodicity.

Corollary 1. If a Markov chain is φ-irreducible, with period d ≥ 2, and has a stationary
distribution π(·), then for π a.e. x ∈ χ,

lim
n→∞

||1
d

n+d−1∑
i=n

P i(x, ·)− π(·)|| = 0,

Proof. Suppose the chain has periodic decomposition χ1, . . . , χd ⊆ χ, let P ′ = P d, then
P ′ is φ-irreducible on χ1: Suppose A ⊆ χ1 with φ(A) > 0, then there exists n ∈ N such
that for any x ∈ χ1, Pn(x,A) > 0; periodicity implies that n = dm for some m ∈ N, and
(P ′)

m
(x,A) > 0. Suppose that the stationary distribution on χ1 is π′(·), then again by

periodicity, the stationary distribution on χi is π′P i−1(·) for 1 ≤ i ≤ d, and the stationary
distribution on χ is therefore

π(·) =
1

d

d−1∑
j=0

(π′P j)(·), ∀π a.e. x ∈ χ.

From Proposition 1.2 (c), it suffices to prove when n = md with m → ∞. Without loss of
generality we assume x ∈ χ1. From Proposition 1.2 (d), we have ||Pmd+j(x, ·)−(π′P j)(·)|| ≤
||Pmd(x, ·)− π′(·)|| for j ∈ N. Then by the triangle inequality of total variation norm,

||1
d

md+d−1∑
i=md

P i(x, ·)− π(·)|| = ||1
d

d−1∑
j=0

Pmd+j(x, ·)− 1

d

d−1∑
j=0

(π′P j)(·)||

≤ 1

d

d−1∑
j=0

||Pmd+j(x, ·)− (π′P j)(·)||

≤ 1

d

d−1∑
j=0

||Pmd(x, ·)− π′(·)||.

Applying Theorem 1.3 to P ′, we have limm→∞ ||Pmd(x, ·) − π′(·)|| = 0 for π′ a.e. x ∈ χ1.
Moreover, since

∀A ⊆ χi, (π′P i−1)(A) =

∫
{x∈χ1}

π′(dx)P i−1(x,A) & π(·) =
1

d

d−1∑
j=0

(π′P j)(·),

the union of null sets in χ1, . . . , χd is also a null set with respect to π, thus proving the
result for π′-a.e. x ∈ χ1 is equivalent to proving for π-a.e. x ∈ χ.

Note that since Theorem (1.3) might not hold for a null set of χ with respect to π(·),
it is worth exploring the behavior of such set in terms of convergence. The following is an
example illustrating the failure of convergence of the null set.
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Example 1. Let χ = {1, 2, . . . }. Let P (1, {1}) = 1, and for x ≥ 2, P (x, {1}) = 1
x2 and

P (x, {x+ 1}) = 1− 1
x2 . Then the chain has stationary distribution π(·) = δ1(·), and it is π-

irreducible and aperiodic. if X0 = x ≥ 2, then P [Xn = x+n for all n] = Π∞j=x(1− ( 1
j2 )2) >

0, so that ||Pn(x, ·)− π(·)|| 6→ 0. Hence Theorem 1.3 holds only for the set {1}, which is π
a.e.

Claim 3. If a Markov chain satisfies the assumptions in Theorem (1.3), the chain still has
postive probability of escaping the null set.

Proof. We prove the claim with a contradiction. If the probability were zero of escaping
the null set, then the state space would break up into two pieces, the null set S and its
complement Sc with respect to π(·), and neither of which could reach the other. Indeed, let
M = {x ∈ Sc : P (x, S) > 0}. Then

∫
x∈M π(dx)P (x, S) = 0 since

∫
x∈M π(dx)P (x, S) ≤ π(S)

as π is stationary; then π(x)P (x, S) = 0 for almost every x ∈M , thus π(M) = 0. Therefore
P (x, S) = 0 for any x ∈ Sc except for possbily a null set. Moving that possible null set from
Sc to S, we form Sc′ and S′ that could not reach each other. One of S′ and Sc′ must have
positive φ measure, but there is no n such that Pn(x, Sc′) > 0 for x ∈ S′ nor m such that
Pm(x, S′) > 0 for x ∈ Sc′, which contradicts with the assumption of φ-irreducibility of the
chain.

Following the proof of Claim (3), for x ∈ S′, P (x, Sc′) > 0. Moreover, if inf
x∈S′

P (x, Sc′) =

r > 0, for any x ∈ S′, we have

Px(τSc′ <∞) = 1− Px(τSc′ =∞) = 1− Px(Xn ∈ S′ ∀n) ≥ 1− lim
n→∞

(1− r)n = 1,

thus with probability 1 the chain would eventually exit the null set, and would thus con-
verge to π(·) from the null set after all. However, if inf

x∈S′
P (x, Sc′) = 0, the probability

that the chain may not eventually exit the null set. For example, in Example (1), we have
inf

x∈N\{0}
P (x, {1}) = 0 and we may fail to converge to the stationary distribution π(·) = δ1(·)

from the null set.

Here is an example that Theorem (1.3) holds for all x ∈ χ:

Example 2. If the transition kernels P (x, ·) are absolutely continuous with respect to
π(·)(i.e. P (x, dy) = p(x, y)π(dy) for some function p : χ × χ → [0,∞)), then Theorem
(1.3) holds true for all x ∈ χ. Indeed, let S is the complement of the π a.e. set in Theorem
1.3. Since π(S) = P (x, S) = 0, P (x, Sc) = 1. Hence the chain will enter the π a.e. set
within at most one step.

More generally, Theorem (1.3) holds for all x ∈ χ when the chain is Harris recurrent:

Definition 11. Harris Recurrent
A Markov chain is Harris recurrent if for all B ⊆ χ with π(B) > 0, and all x ∈ χ, the
chain will eventually reach B from x with probability 1, i.e. Px(τB <∞) = 1.

Theorem 1.6. For a φ-irreducible Markov chain with stationary probability distribution
π(·), if the chain is Harris recurrent, then Theorem (1.3) holds for all x ∈ χ.

Proof. Suppose that there is some A ⊆ χ with π(A) > 0, and x ∈ χ and N ∈ N, such that
Px(Xn /∈ A ∀n ≥ N) > 0. Integrating over choices of Xi, where 0 ≤ i ≤ N , this implies
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there is some y ∈ χ, with Py(τA =∞) > 0, contradicting the defintion of Harris recurrent.
Thus for all A ⊆ χ with π(A) > 0, and all x ∈ χ, we have Px(Xn ∈ A i.o.6) = 1. Let the
π-a.e. set in Theorem (1.3) be G. Then once the chain reaches G, conditional on the first
hitting time τG and the corresponding chain value of XτG . Then the chain will converge
and Theorem (1.3) follows.

Note that the chain in Example 1 is not Harris recurrent, since Px(∃n : Xn ∈ {1}) < 1
for x ≥ 2.

1.3 Ergodicity of Markov Chains

In practice, we always concern how fast the chain converges if it converges to its stationary
distribution, thus we introduce several notions about the rate of convergence for Markov
chains here:

Definition 12. Uniform Ergodicity
A Markov chain having stationary distribution π(·) is uniformly ergodic if

||Pn(x, ·)− π(·)|| ≤Mρn, n = 1, 2, 3, . . .

for some ρ < 1 and M <∞.

One equivalence of uniform ergodicity is

Proposition 1.3. A Markov chain with stationary distribution π(·) is uniformly ergodic if
and only if supx∈χ ||Pn(x, ·)− π(·)|| < 1

2 for some n ∈ N.

Proof. If the chain is uniformly ergodic, then

lim
n→∞

sup
x∈χ
||Pn(x, ·)− π(·)|| ≤ lim

n→∞
Mρn = 0,

thus for n that is sufficiently large, sup
x∈χ
||Pn(x, ·)−π(·)|| < 1

2 . Conversely, suppose sup
x∈χ
||Pn(x, ·)−

π(·)|| < 1
2 for some n ∈ N, then by Proposition (1.2) (e), we have t(n) ≡ β < 1, such tht

for all j ∈ N, we have t(jn) ≤ (t(n))j = βj . By Proposition (1.2) (c),

||Pm(x, ·)− π(·)|| ≤ ||P b
m
n cn(x, ·)− π(·)|| ≤ 1

2
t(
⌊m
n

⌋
n) ≤ 1

2
βb

m
n c ≤ 1

2
β−1(β

1
n )m.

Thus the chain is uniformly ergodic with M = 1
2β
−1 and ρ = β

1
n .

One significant condition for ergodicity of Markov chains is Doeblin’s Condition.

Definition 13. Doeblin’s Condition
Suppose there exists a probability measure ν(·) with the property that for some m ∈ N, ε <
1, δ > 0

ν(A) > ε⇒ Pm(x,A) ≥ δ

for every x ∈ χ and A ∈ σ(χ), it satisfies Doeblin’s Condition.

6“i.o.” stands for infinitely often
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We present a theorem showing the equivalence of uniform ergodicity and Doeblin’s Con-
dition. The proof can be found in Meyn and Tweedie(pg. 395)[3]

Theorem 1.7. An aperiodic φ-irreducible chain satisfies Doeblin’s condition if and only if
it is uniformly ergodic.

Note that When the state space is finite, if a chain is φ-irreducible and aperiodic, we
can show it automatically satisfies Doeblin’s condition. Accordingly, the chain is uniformly
ergodic.

Proposition 1.4. If the state space χ is finite, then an irreducible and aperiodic Markov
chain is uniformly ergodic.

Proof. Suppose χ is finite and the chain {Xn} is irreducible and aperiodic. If a Markov
chain is irreducible and aperiodic, then for each pair (i, j) of the states, there is a number
N = N(i, j) such that Pn(i, j) > 0 for all n ≥ N(see pg. 92 [2]). Since the state is finite,
among each pair of possible states, we can take M = max{N(i, j)|(i, j) ∈ χ× χ} such that
PM (i, j) ≥ δ > 0 for all i, j ∈ χ, where δ is min{PM (i, j)|(i, j) ∈ χ × χ}, thus Doeblin’s
condition is satisfied.

Note that from the fact that if a Markov chain satisfies Doeblin’s condition, then it
possesses a stationary distribution. (see pg.110 [4]), we know {Xn} has a stationary dis-
tribution. Since the state is finite, limn→∞ Pn(i, j) = 0 for all i, j ∈ χ is impossible, thus
all states are positive recurrent (see pg. 96 [2]). Thus the existence and uniqueness of the
chain’s stationary distribution is ensured(see pg. 97[2]). It guarantees that the stationary
distribution from Doeblin’s condition is unique in the circumstance of Proposition (1.4).

Definition 14. Geometric Ergodicity
A Markov chain having stationary distribution π(·) is geometrically ergodic if

||Pn(x, ·)− π(·)|| ≤M(x)ρn, n = 1, 2, 3, . . .

for some ρ < 1 and M(x) <∞ for π-a.e. x ∈ χ.

Definition 15. Drift Condition
A Markov chain satisfies a drift condition(univariate drift condition) if there are constants
0 < λ < 1 and b <∞, and a function V : χ→ [1,∞] such that for some C ⊆ χ,

PV ≤ λV + bIC ,

i.e. such that
∫
χ
P (x, dy)V (y) ≤ λV (x) + bIC(x) for all x ∈ χ.

The following three theorems(Theorem (1.8), Theorem (1.9) and Theorem (1.12)) guar-
antee the uniform ergodicity and the geometric ergodicity of a Markov chain, respectively:

Theorem 1.8. Consider a Markov chain with invariant probability distribution π(·). Sup-
pose the minorisation condition is satisfied for some n0 ∈ N and ε > 0 and probability
measure ν(·), in the special case C = χ(i.e. the entire state space is small). Then the chain
is uniformly ergodic, and in fact

||Pn(x, ·)− π(·)|| ≤ (1− ε)
⌊
n
n0

⌋
∀ x ∈ χ.
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Proof. Consider the coupling construction. Since C = χ, every n0 iterations we have prob-
ability of at least ε of making Xn = X ′n, thus if n = n0m, we have P (Xn 6= X ′n) ≤ (1− ε)m.

From the coupling inequality, ||Pn(x, ·)− π(·)|| ≤ (1− ε)m = (1− ε)
n
n0 . Then from Propo-

sition 1.2(c), we can find the greatest n′ ∈ N such that n′ ≤ n and n′ = n0k for some k,
then

||Pn(x, ·)− π(·)|| ≤ ||Pn
′
(x, ·)− π(·)|| ≤ (1− ε)

n′
n0 = (1− ε)

⌊
n
n0

⌋
.

Note that Theorem (1.8) is a refinement of Theorem 16.2.4 in Meyn and Tweedie[3] for
the case that m > 1. From the expression of the quantitative bound in Theorem (1.8), we
want ε large and n0 small the minorisation condition.

Definition 16. Bivariate Drift Condition
Two indenpendent copies of a Markov chain on χ satisfies a bivariate drift condition if

P̄ h(x, y) ≤ h(x, y)

α
, (x, y) /∈ C × C

for some function h : χ× χ→ [1,∞), C ⊆ χ and some α > 1, where

P̄ h(x, y) ≡
∫
χ

∫
χ

h(z, w)P (x, dz)P (y, dw).

On the other hand, suppose the bavariate drift condition is satiesfied. For (x, y) ∈ C×C,
define

R̄h(x, y) ≡
∫
χ

∫
χ

(1− ε)−2h(z, w)(Pn0(x, dz)− εν(dz))(Pn0(y, dw)− εν(dw)).

The next theorem about geometric ergodicity which deals with a quantitative bound on
convergence rate, has the form ||Pn(x, ·)−π(·)|| ≤ g(x, n) for some explicit function g(x, n).
Such quantitative bound helps us better understand how fast the chain converges to the
stationary distribution from any initial values, if the chain satisfies certain conditions:

Theorem 1.9. For a Markov chain on χ with transition kernel P , suppose there is C ⊆ χ,
h : χ×χ→ [1,∞), a probability distribution ν(·) on χ, α > 1, n0 ∈ N , and ε > 0, such that
the minorisation and the bivariate drift condition are satisfied on C. Define

Bn0
≡ max[1, αn0(1− ε) sup

C×C
R̄h]. (6)

Then for any joint initial distribution L(X0, X
′
0), and any integers 1 ≤ j ≤ k, if {Xn} and

{X ′n} are two copies of Markov chain started in the joint initial distribution L(X0, X
′
0), then

||L(Xk)− L(X ′k)|| ≤ (1− ε)j + α−k(Bn0)j−1E[h(X0, X
′
0)].

In particular, by choosing j = brkc for sufficiently small r > 0, we obtain an explicit,
quantitive convergence bound wich goes to 0 exponentially quickly as k →∞.

Proof. First assume n0 = 1 in the minorisation condition. Denote Bn0 as B. Let

Nk = #{m : 0 ≤ m ≤ k, (Xm, X
′
m) ∈ C × C},
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and let τ1, τ2, . . . be the times of the successive visits of {(Xn, X
′
n)} to C × C. For any

integer j such that 1 ≤ j ≤ k,

P (Xk 6= X ′k) = P (Xk 6= X ′k, Nk−1 ≥ j) + P (Xk 6= X ′k, Nk−1 < j). (7)

The event {Xk 6= X ′k, Nk−1 ≥ j} implies that for the first j times that (Xn, X
′
n) ∈

C×C, the chains are updated through (b) of condition 2 in the coupling construction. Thus
P (Xk 6= X ′k, Nk−1 ≥ j) ≤ (1− ε)j , which bounds the first term in (7).
For the second term in (7), we first define

Mk = αkB−Nk−1h(Xk, X
′
k)I(Xk 6= X ′k), (N−1 = 0)

where k ∈ N ∪ {0}. We are now going to prove {Mk} is a supermartingale.
If (Xk, X

′
k) /∈ C × C, then Nk = Nk−1, so

E[Mk+1|Xk, X
′
k] = αk+1B−Nk−1E[h(Xk+1, X

′
k+1)I(Xk+1 6= X ′k+1)|Xk, X

′
k]

≤ αk+1B−Nk−1E[h(Xk+1, X
′
k+1)|Xk, X

′
k]

= MkαE[h(Xk+1, X
′
k+1)|Xk, Xk]/h(Xk, X

′
k)

≤Mk

Similarly, if ((Xk, X
′
k) ∈ C × C), then Nk = Nk−1 + 1, assuming Xk 6= X ′k ( Xk = X ′kis a

trivial case), we have

E[Mk+1|Xk, X
′
k] = αk+1B−Nk−1−1E[h(Xk+1, X

′
k+1)I(Xk+1 6= X ′k+1)|Xk, X

′
k]

= αk+1B−Nk−1−1(1− ε)(R̄h)(Xk, X
′
k)

= MkαB
−1(1− ε)(R̄h)(Xk, X

′
k)/h(Xk, X

′
k)

≤Mk,

where the last inequality comes from the definition of B and h.
Combining the two cases, we conclude {Mk} is a supermartingle. Next since B ≥ 1,

P (Xk 6= X ′k, Nk−1 < j) = P (Xk 6= X ′k, Nk−1 ≤ j − 1)

≤ P (Xk 6= X ′k, B
−Nk−1 ≤ B−(j−1))

= P (I(Xk 6= X ′k)B−Nk−1 ≤ B−(j−1))

≤ B(j−1)E[(I(Xk 6= X ′k)B−Nk−1 ] (by Markov′s inequality)

≤ B(j−1)E[(I(Xk 6= X ′k)B−Nk−1h(Xk, X
′
k)]

= α−kB(j−1)E[Mk] ≤ α−kB(j−1)E[M0] ({Mk} is supermartingale)
= α−kB(j−1)E[h0].

When n0 > 1, suppose (Xn, X
′
n) ∈ C×C, we do not count the visits to C×C for “filling in”

times (Xn+1, X
′
n+1), . . . , (Xn+n0−1, X

′
n+n0−1) in condition 2 of the coupling construction.

Accordingly, Nk and {τi} only records the times to C × C that are not “filling in” visits.
In addition, Nk−1 becomes Nk−n0 in (7) and the definition of {Mk}. And {Mt(k)} is a
supermartingale (t(k) means the latest time ≤ k such that Xt(k) is not a “filling in” time),
not {Mk}. With such modifications, the proof follows in the same way as before.
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Lemma 1.10. Given a small set C and drift function V satisfying the minorisation con-
dition and the univariate drift condition , we can find a small set C0 ⊆ C such that the
minorisation condition and the univariate drift condition still hold true (with the same n0

and ε and b, but with λ replaced by some λ0 < 1), and such that the following inequality
holds:

sup
x∈C0

V (x) <∞ (8)

Proof. Let λ and b be as in PV ≤ λV + bIc. We can choose δ with 0 < δ < 1 − λ. Let
λ0 = 1− δ, let K = b

1−λ−δ , which is positive, and set

C0 = C ∩ {x ∈ χ : V (x) ≤ K}.

Then the minorisation condition Pn0(x, ·) ≥ εν(·) still holds for C0, which is a subset of C,
thus C0 is a small set. For x ∈ C0, we have (PV )(x) ≤ λV (x) + b = (1− δ)V (x)− (1− λ−
δ)V (x) + b ≤ (1 − δ)V (x) + b = λ0V (x) + b; and for x /∈ C, we have(PV )(x) ≤ λV (x) =
(1− δ)V (x)− (1− λ− δ)V (x) ≤ (1− δ)V (x) = λ0V (x). For x ∈ C\C0, we have V (x) ≥ K,
so we have

(PV )(x) ≤ λV (x) + bIc(x) = (1− δ)V (x)− (1− λ− δ)V (x) + b

≤ (1− δ)V (x)− (1− λ− δ)K + b

= (1− δ)V (x)

= λ0V (x),

thus the univariate drift condition holds true with C replaced by C0 and λ replaced by λ0.
By the construction of C0, we have supx∈C0

V (x) <∞.

Definition 17. A subset C ⊆ χ is petite(or, (n0, ε, ν)-petite) if there exists a positive integer
n0, ε > 0, and a probability measure ν(·) on χ such that

n0∑
i=1

P i(x, ·) ≥ εν(·), x ∈ C.

Lemma 1.11. For an aperiodic φ-irreducible Markov chain, all petite sets are small sets.

The proof can be found in the appendix of [5]

Proposition 1.5. Suppose the univariate drift condition is satisfied for some V : χ →
[1,∞], C ⊆ χ, λ < 1 and b < ∞. Let d = infx∈Cc V (x). If d > b

1−λ − 1, then the

bivariate drift condition is satisfied for the same C, with h(x, y) = 1
2 [V (x) + V (y)] and

α−1 = λ+ b
d+1 < 1.

Proof. When (x, y) /∈ C × C, then either x /∈ C or y /∈ C or both. Without loss of
generality, we can assume x /∈ C, then V (x) ≥ d and V (y) ≥ 1 for all y ∈ χ, thus h(x, y) =

20



1
2 (V (x) + V (y)) ≥ 1

2 (1 + d) and PV (x) + PV (y) ≤ λV (x) + λV (y) + b. Then

P̄ h(x, y) =

∫
χ

∫
χ

1

2
(V (z) + V (w))P (x, dz)P (y, dw)

=
1

2

∫
χ

∫
χ

V (z)P (x, dz)P (y, dw) +
1

2

∫
χ

∫
χ

V (w)P (x, dz)P (y, dw)

=
1

2

∫
χ

V (z)P (x, dz) +
1

2

∫
χ

V (w)P (y, dw)

=
1

2
[PV (x) + PV (y)]

≤ 1

2
[λV (x) + λV (y) + b]

= λh(x, y) +
b

2
≤ λh(x, y) + (

b

2
)
h(x, y)

(1 + d)/2

= [λ+
b

1 + d
]h(x, y)

Furthermore, d > b
1−λ − 1 implies that λ+ b

1+d = α−1 < 1.

Theorem 1.12. Consider a φ-irreducible, aperiodic Markov chain with stationary distri-
bution π(·). Suppose the minorisation condition is satisfied for some C ⊆ χ and ε > 0
and probability measure ν(·). Suppose further that the drift condition is satisfed for some
constants, 0 < λ < 1 and b <∞, and a function V : χ→ [1,∞] with V (x) <∞ for at least
one x ∈ χ. Then the chain is geometrically ergodic.

Proof. We set h(x, y) = 1
2 (V (x) + V (y)). From the above Lemma (1.10), we can shrink C

so that (8) holds. By the univariate drift condition and the definition of h, we have

sup
C×C

R̄h(x, y) <∞,

and thus Bn0 in (6) is finite. Let d = infCc V . If further assuming d > b
(1−λ) − 1 holds,

then Proposition (1.5) holds, and all the conditions of Theorem (1.9) are satisfied, and
therefore we have geometric ergodicity by specifying the initial distribution of Xn and X ′n
and updating with the coupling approach. Suppose insdead, d ≤ b

(1−λ) − 1, we then cannot

directly apply Proposition (1.5), but we can still enlarge C so that the new value of d
satisfies d > b

(1−λ) −1, and use aperiodicity to show that C remains a small set. Specifically,

we choose any d′ > b
(1−λ) − 1, and let S = {x ∈ χ;V (x) ≤ d′}, and set C ′ = C ∪ S.

Then infx∈C′c V (x) ≥ d′ > b
(1−λ) − 1, so the bivariate drift condition holds with C ′. By

construction of S, supx∈C′ V (x) <∞, thus Bn0
<∞ when replacing C with C ′. Next if we

can show that C ′ is a small set, then with Proposition (1.5) and Theorem (1.9) we can still
get geometric ergodicity of the chain. By Lemma (1.11), we just need to show that C ′ is a
petite set. We choose N large enough that r ≡ 1− λNd > 0. Let τC = inf{n ≥ 1;Xn ∈ C}
be the first return time to C. Let Zn = λ−nV (Xn), and let Wn = Zmin(n,τC). Then the
univariate drift condition implies that Wn is a supermartingale. Indeed if τC ≤ n, then

E[Wn+1|X0, X1, . . . , Xn] = E[Zτc |X0, X1, . . . , Xn] = ZτC = Wn.
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If τC > n, then Xn /∈ C, so using the univariate drift condition,

E[Wn+1|X0, X1, · · ·Xn] = λ−(n+1)(PV )(Xn)

≤ λ−(n+1)λV (Xn)

= λ−nV (Xn)

= Wn.

For x ∈ S, we have

P [τC ≥ N |X0 = x] = P [λ−τC ≥ λN |X0 = x]

≤ λNE[λ−τC |X0 = x] (by Markov′s inequality)

≤ λNE[λ−τCV (XτC )|X0 = x] (by V ≥ 1)

= λNE[ZτC |X0 = x]

≤ λNE[Z0|X0 = x] (by {Wn} is supermartingale)
= λNE[V (X0)|X0 = x]

= λNV (x)

≤ λNd,

thus P [τc < N |X0 = x] ≥ 1 − λNd = r. On the other hand, since C is small, so that
Pn0(x, ·) ≥ εν(·) for x ∈ C. For x ∈ S,

N+n0∑
i=1+n0

P i(x, ·) ≥
N∑
i=1

∫
C

P i(x, dy)Pn0(y, ·)

=

N∑
i=1

Px(Xi ∈ C)εν(·)

≥ Px[

N⋃
i=1

{Xi ∈ C}])εν(·)

= Px(τc ≤ N)εν(·)
≥ rεν(·).

Also recall when x ∈ C, Pn0(x, ·) ≥ εν(·) ≥ rεν(·). Therefore, for x ∈ S∪C,
∑N+n0

i=1 P i(x, ·) ≥∑N+n0

i=n0
P i(x, ·) ≥ rεν(·). Thus C ′ is petite thus small.
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2 Markov Chains Monte Carlo Algorithms

Markov chain Monte Carlo(MCMC) algorithm is a popular way of approximately sampling
from complicated probability distributions in high dimensions. The following is a case where
MCMC algorithms are considered to be applied.

2.1 Motivations

Given a density function πu with respect to Lebesgue measure, on some state space χ, which
is possibly unnormalised but at least satisfies 0 <

∫
χ
πu <∞. Then the probability measure

π(·) derived from this density is

π(A) =

∫
A
πu(x)dx∫

χ
πu(x)dx

.

We want to estimate expectations of a function f : χ→ R with respect to π(·), i.e.

π(f) = Eπ[f(X)] =

∫
χ
f(x)πu(x)dx∫
χ
πu(x)dx

.

In the context of Bayesian statistical inference, this problem can be described as:
Let L(y|θ) be the likelihood function (i.e., density of data y given unknown parameters

θ) of a statistical model, for θ ∈ χ. Let the prior density of θ be p(θ), then the posterior
distribution of θ given y is the density

πu(θ) ∝ L(y|θ)p(θ),

and we want the posterior mean of any functional f , i.e.

π(f) =

∫
χ
f(x)πu(x)dx∫
χ
πu(x)dx

.

A usual way of solving the above problem is the classical Monte Carlo method: We
simulate i.i.d random variables Z1, Z2, . . . , ZN ∼ π(·), and then estimate π(f) by

π̂1(f) =
1

N

N∑
i=1

f(Zi).

π̂1(f) is an unbiased estimate of π(f), which has V ar (π̂1(f)− π(f)) =
σf

2

N , where σf
2 =

V arπ(f). Then by classical Central Limit Theorem, we have the error π̂1(f) − π(f) con-
verges to a normal distribution. However, if πu is complicated or χ is high-dimensional,
then direct integration for the normalising constant is very difficult. Thus, it is infeasible to
directly simulate i.i.d random variables from π(·).

The difficulty in the practice of the direct approach can be avoided by MCMC algo-
rithm. The MCMC solution construct a Markov chain on χ which can be easily run on a
computer, and which has π(·) as a stationary distribution. More Specifically, we define a
easily-simulated Markov chain transition probability kernel P (x, y) for x, y ∈ χ, such that∫
x∈χ π(dx)P (x, dy) = π(dy). Suppose the chain satisfies certain conditions (for example,
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the conditions in Theorem (1.3)), if we run the Markov chain for a long time (started from
anywhere on χ), then for a large n, the distribution of Xn will be approximately stationary:
Pn(x, ·) ≈ π(·). We can then set Z1 = Xn, and then restart and return the Markov chain
to obtain Z2, Z3, etc., and then do estimates as in the direct approach. In practice, by the
‘strong law of large numbers” described in Theorem (1.3)), we can also estimate π(f) by

π̂2(f) = (N −B)−1
N∑

i=B+1

f(Xi).

where B is the “burn-in” time such that PB(x, ·) ≈ π(·). π̂2(f) can be computed more
efficiently than π̂1(f), but finding an appropriate “burn-in” time is difficult(for example,
pseudo-convergence).

2.2 Metropolis Hastings Algorithm

Suppose again there is π(·) having a density πu with respect to Lebesgue measure defined
χ,

Definition 18. Metropolis Hastings Algorithm

Let Q(x, ·) be an easily-simulated Markov chain, whose transition kernel also has a den-
sity with respect to Lebesgue measure, i.e.

Q(x, dy) ∝ q(x, y)dy.

Suppose π(·) is not concentrated at a single state, then Metropolis-Hastings algorithm pro-
ceeds as follows:

1. Choose some X0(by an initial distribution defined on χ or just any point on χ)
2. Given Xn, generate a proposal Yn+1 from Q(Xn, ·).
3. Flip an independent coin, whose probability of heads equals α(Xn, Yn+1), where

α(x, y) = min[1,
πu(y)q(y, x)

πu(x)q(x, y)
].

To avoid ambiguity, we set α(x, y) = 1 whenever πu(x)q(x, y) = 0.
4. If the coin is a head, we accept the proposal by setting Xn+1 = Yn+1; if the coin is tail,
we then reject the proposal by setting Xn+1 = Xn.
5. Replace n by n+ 1 and repeat.

Note that in practice, one can never toss a coin with probability α defined above; instead,
we replace the above Step 3 and Step 4 as the following:

3’. Choose Un+1 ∼ Uniform[0, 1]
4’. If Un+1 < α, then set Xn+1 = Yn+1(accept). Otherwise set Xn+1 = Xn(reject).

Since P (U < α) = α, this replacement has the same effect as the theoretical approach
of tossing the special coin.

It is worth taking a closer look at α(x, y): If πu(x)q(x, y) = 0, since the proposal y must
satisfy q(x, y) > 0 w.p.1, because q(x, ·) is the conditional density of y given x, we must

24



have πu(x) = 0 w.p.1. In this case, since α = 1, the updating rule automatically almost
surely rejects the “bad” x ( since πu(x) = 0w.p.1) and accepts the new proposal. However,
to avoid the situation that the new proposal y gets stuck in the set {x ∈ χ : πu(x) = 0}
too long, Tierney [6] set E+ = {x : πu(x) > 0} and regulated that Q(x,E+) = 1 for all
x ∈ E+c. Such restriction makes sure that the chain will enter E+ after at most one step.
Furthermore, if πu(x)q(x, y) > 0 and πu(y) = 0, then α(x, y) = 0. Thus once the chain
is in set E+, then almost surely it will not leave the set. Another property of E+ is that
π(E+c) = 0, since πu(x) = 0 for all x in E+c.

The Metropolis transition kernel is

P (x,A) =

∫
y∈A

α(x, y)q(x, dy) + δx(A)

∫
u∈χ

(1− α(x, u))q(x, du), x ∈ χ, A ⊆ χ, (9)

or equivalently,

P (x,A) = (1− r(x))M(x,A) + r(x)δx(A), x ∈ χ, A ⊆ χ, (10)

where δx(·) is a point-mass at x,
∫
χ
(1−α(x, u))q(x, du) is the probability of rejecting when

starting at Xn = x and M(x, ·) is the kernel conditional on moving.
Such Metropolis procedure ensures that the transition kernel we construct has π(·) as a

stationary distribution and its reason is the following:

Proposition 2.1. The Metropolis-Hastings algorithm produces a Markov chain {Xn} which
has stationary distribution π(·).

Proof. By Proposition (1.1), it suffices to show π(dx)P (x, dy) = π(dy)P (y, dx). Assume
x 6= y and set c =

∫
χ
πu(x)dx,

π(dx)P (x, dy) = [c−1πu(x)dx][q(x, y)α(x, y)dy]

= c−1πu(x)q(x, y) min[1,
πu(y)q(y, x)

πu(x)q(x, y)
]dxdy

= c−1 min[πu(x)q(x, y), πu(y)q(y, x)]dxdy

which is symmetric in x and y. If x = y, automatically π(dx)P (x, dy) = π(dy)P (y, dx).

Therefore, if the Markov chain from Metropolis-Hastings algorithm converges to π(·) in
the end, one obvious advantage of MCMC is that we only need to compute the ratios of

densities, i.e. πu(y)
πu(x) , so we do not need to compute the normalising constants c =

∫
χ
πu(x)dx.

The common classes of proposal densities with respect to Lebesgue measure are the fol-
lowing:
• Symmetric Metropolis Algorithm. q(x, y) = q(y, x)
• Random Walk Metropolis-Hastings. q(x, y) = q(y − x)
• Independence Sampler q(x, y) = q(y), i.e. Q(x, ·) does not depend on x.

Yet, not every Markov chain we build can converge to the desired π(·), certain proper-
ties of the chains are required. For instance, if the Markov chain from Metropolis Hastings
algorithm satisfies the conditions(φ-irreducibility and aperiodicity) in Theorem (1.3), then
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it will converges to π(·). We now present an example with common context of running a
Metropolis-Hastings algorithm.

Example 3. Suppose that π(·) is a probability measure having unnormalised density func-
tion πu with respect to d-dimension Lebesgue measure. Consider the Metropolis-Hastings
algorithm for πu with proposal density q(x, ·) with respect to d-dimensional Lebesgue mea-
sure. Then if q(·, ·) is positive and continuous on Rd × Rd, and πu is finite everywhere,
then the algorithm is π-irreducible and aperiodic.

Proof. Pick a set A such that π(A) > 0. Then there exists R > 0 such that π(AR) > 0,
where AR = A ∩ BR(0), and BR(0) is the ball of radius R centered at 0. For any x ∈ Rd,
since BR is compact and q(·, ·) is continuous and positive, we have

inf
y∈AR

min{q(x, y), q(y, x)} ≥ inf
y∈BR

min{q(x, y), q(y, x)} = min
y∈BR

{q(x, y), q(y, x)},

thus inf
y∈AR

min{q(x, y), q(y, x)} ≥ ε for some ε > 0. Also, by (9) we have

P (x,A) ≥ P (x,AR) ≥
∫
AR

q(x, y) min[1,
πu(y)q(x, y)

πu(x)q(x, y)
]dy,

∫
AR

q(x, y) min[1,
πu(y)q(y, x)

πu(x)q(x, y)
]dy =

∫
AR

1

πu(x)
min[πu(x)q(x, y), πu(y)q(y, x)]dy

≥ ε

πu(x)

∫
AR

min[πu(x), πu(y)]dy.

When πu(y) ≥ πu(x),

ε

πu(x)

∫
AR∩{y:πu(y)≥πu(x)}

πu(x)dy = εLeb({y ∈ AR : πu(y) ≥ πu(x)}).

When πu(y) < πu(x), let K =
∫
χ
πu(x)dx > 0,

ε

πu(x)

∫
AR∩{y∈AR:πu(y)<πu(x)}

πu(y)dy =
εK

πu(x)

∫
{y∈AR:πu(y)<πu(x)} πu(dy)∫

χ
πu(x)dx

=
εK

πu(x)
π({y ∈ AR : πu(y) < πu(x)})

Combining the two cases, we get
∫
AR

q(x, y) min[1, πu(y)q(y,x)
πu(x)q(x,y) ]dy ≥

εLeb({y ∈ AR : πu(y) ≥ πu(x)}) +
εK

πu(x)
π({y ∈ AR : πu(y) < πu(x)}), (11)

Since π(·) is absolutely continuous with respect to Lebesgue measure, π(AR) > 0 implies
Leb(AR) > 0. Assume Leb({y ∈ AR : πu(y) ≥ πu(x)}) = 0. Then if π({y ∈ AR : πu(y) <
πu(x)}) = 0, we have π({y ∈ AR : πu(y) ≥ πu(x)}) > 0 and Leb({y ∈ AR : πu(y) ≥
πu(x)}) = 0, contradiction. Similarly, assume π({y ∈ AR : πu(y) < πu(x)}) = 0. Then
if Leb({y ∈ AR : πu(y) ≥ πu(x)}) = 0, then we have π({y ∈ AR : πu(y) ≥ πu(x)}) = 0
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and π({y ∈ AR : πu(y) < πu(x)}) > 0, thus Leb({y ∈ AR : πu(y) < πu(x)}) > 0, again
contradiction. So it follows that the two terms in (11) cannot be both 0, so we must have
P (x,A) > 0, and thus the chain is thus π-irreducible.

We now show the Markov chain in this example is aperiodic. We prove it by contradic-
tion. Suppose that χ1 and χ2 are disjoint subsets of χ both of positive π measure, with
P (x, χ2) = 1 for all x ∈ χ1. But for any x ∈ χ1, by (9), we have

P (x, χ1) ≥
∫
y∈χ1

q(x, y)α(x, y)dy > 0,

which is a contradiction.

Note that Theorem (1.3) does not require a specifitc choice φ. As long as the chain is
φ-irreducible for some non zero σ finite measure φ. For instance, in the above example, we
have π-irreducible.
Here is another example of the Metropolis-Hasting algorithm whose Markov chain is Harris
recurrent:

Example 4. If any φ-irreducible Metropolis-Hastings algorithm whose propsal distributions
Q(x, ·) are absolutely continuous with respect to π(·), then its Markov chain is Harris recur-
rent.

Proof. Indeed, since the chain is φ-irreducible and π({x}) < 1 for all x ∈ χ , we have the
probability of rejecting r(x) < 1 when starting at Xn = x for any x ∈ χ. Suppose π(A) = 1.
By absolute continuity

∫
Ac
q(x, y)α(x, y)π(dy) ≤ π(Ac) = 0, thus

∫
A
q(x, y)α(x, y)π(dy) = 1.

Since r(x) < 1, limn→∞ r(x)
n

= 0, this means that the chain will eventually move according
to Q(x, ·) and at which point it will necessarily enters A. Thus Px(τA < ∞) = 1. By the
equivalence statement of Harris recurrence in Roberts and Rosenthal(Theorem (6) [7]), the
Markov chain is Harris recurrent. Moreover, by Theorem (1.6), thus Theorem (1.3) holds
for all x ∈ χ.

Note that the proof used in the Example 4 applies the proof in Roberts and Rosen-
thal(Theorem (8),[7]). The difference between the assumptions in Example 4 and Theorem
(8)[7] is that, instead of directly stating Q(x, ·) � π(·) as in the example, Theorem (8)[7]
proposed some reference measure ν(·) that π(·) is absolutely continuous to, such that for a
function f : χ→ R∫

χ

f(x)ν(dx) <∞ and π(A) =

∫
A
f(x)ν(dx)∫

χ
f(x)ν(dx)

, ∀A ⊆ χ.

Furthermore,Theorem (8)[7] assumed that f > 0 on χ. If π(A) = 0, since f > 0 then
ν(A) = 0, thus ν � π. Then If Q(x, ·) � ν(·), then Q(x, ·) � π(·) by the transitive prop-
erty of absolute continuity.

2.3 Gibbs Sampler

Another MCMC method is Gibbs sampler. Suppose that πu(·) is d-dimensional density
with χ an open subset of Rd, and x = (x1, . . . , xd). The ith component of Gibbs sampler
is defined such that Pi leaves all components besides i unchanged, and replaces the ith

27



component by a draw from the full conditional distribution of π(·) conditional on all the
other components. Specifically, let

Sx,i,a,b = {y ∈ χ; yj = xj for j 6= i, and a ≤ yi ≤ b}

Then

Pi(x, Sx,i,a,b) =

∫ b
a
πu(x1, . . . , xi−1, t, xi+1, . . . , xn)dt∫∞

−∞ πu(x1, . . . , xi−1, t, xi+1, . . . , xn)dt
.

Pi has π(·) as a stationary distribution for any i ∈ {1, . . . , d}, since

Proposition 2.2. Pi is reversible with respect to π(·),

Proof.

π(dx)Pi(x, dy) =
πu(x1, · · · , xi−1, x, xi+1, · · · , xn)dx∫

χ
πu(x)dx

πu(x1, · · · , xi−1, y, xi+1, · · · , xn)dy
∞∫
−∞

πu(x1, · · · , xi−1, t, xi+1, · · · , xn)dt

(12)

π(dy)Pi(y, dx) =
πu(x1, · · · , xi−1, y, xi+1, · · · , xn)dy∫

χ
πu(x)dx

πu(x1, · · · , xi−1, x, xi+1, · · · , xn)dx
∞∫
−∞

πu(x1, · · · , xi−1, t, xi+1, · · · , xn)dt

,

(13)

thus π(dx)Pi(x, dy) = π(dy)Pi(y, dx).

The full Gibbs sampler is constructed out of the various Pi, by combining them in one
of the following two ways:

• The Deterministic-scan Gibbs Sampler: P = P1P2, . . . , Pd, i.e. the algorithm applies
first the chain P1, then P2, until Pd, then goes back to P1 and start the loop again.
• The Random-scan Gibbs Sampler: P = 1

d

∑d
i=1 Pi, i.e. the algorithm does one of the d

different Gibbs sampler components, chosen uniformly at random.
In both above two methods, the combined chains P also has π as a stationary distribution.

Gibbs sampler is usually called a special case of the Metropolis-Hastings algorithm in
the sense that Pi as the proposal distribution for Metropolis algorithm, has α(x, y) = 1.

From equations (12) and (13), πu(y)q(y,x)
πu(x)q(x,y) = 1.

Note that it may not always hold true that if all Pis are reversible with resepct to π,
then P is also reversible with respect to π. Yet this is not a serious problem, since as long
as P and Pis have stationary distribution π(·), we can check if the assumptions in Theorem
(1.3) are satiesfied to examine if the Markov chain in Gibbs sampler converges to π(·). The
following is an example 7of Gibbs sampler that satisfies φ-irreducibility and aperiodicity in
its Markov chain.

Example 5. Y1, · · · , Ym are iid N(µ, θ) and the prior for (µ, θ) is proportional to 1√
θ

. The

goal is to find, π(·, ·), the joint posterior distribution of µ and θ.

7This example comes from Jones and Hobert[8]
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We first find each component of the Gibbs sampler in our circumstance. Since the
posterior density is proportional to the product of the prior distribution and likelihood
function,

π(µ, θ|y) ∝ θ−
(m+1)

2 exp

− 1

2θ

m∑
j=1

(yj − µ)2

 , y = (y1, . . . , ym)
T
.

The Gibbs sampling requires conditional distribution: π(µ|θ,y) and π(θ|µ,y). We calculate
them as the following:

π(µ|θ,y) ∝ exp

− 1

2θ

m∑
j=1

(yj − µ)2

 ∝ exp(−m
θ

(µ2 − 2µȳ)
)
,

thus π(µ|θ,y) ∼ N(ȳ, θm ).

π(θ|µ,y) ∝ θ−
(m+1)

2 exp

− 1

2θ

m∑
j=1

(yj − µ)2

 = θ−
(m+1)

2 exp

(∑m
j=1(yj − ȳ)2 +m(ȳ − µ)2

2

)
,

thus π(θ|µ,y) ∼ IG(m−1
2 ,

∑m
j=1(yj−ȳ)2+m(ȳ−µ)2

2 ).8

We regulate that we update θ first, i.e. if (θ′, µ′) denote the the current state and
(θ, µ) denote the next state, then (θ′, µ′)→ (θ, µ′)→ (θ, µ). In this case, the state space is
χ = R+ ×R and the transition kernel is

P(θ′,µ′) (θ, µ) = π(θ|µ′,y)π(µ|θ,y).

By such construction we have the desired distribution π as a stationary distribution of the
transition kernel, which is verified as the following:∫

R+

∫
R

P(θ′,µ′)(θ, µ)π(θ′, µ′|y)dµ′dθ′

=

∫
R+

∫
R

π(θ|µ′,y)π(µ|θ,y)π(θ′, µ′|y)dµ′dθ′

= π(µ|θ,y)

∫
R+

∫
R

π(θ|µ′,y)π(θ′, µ′|y)dµ′dθ′

= π(µ|θ,y)π(θ|y)

= π(µ, θ|y)

Suppose set A ⊆ χ such that π(A) > 0. Since π is assumed to be absolutely continuous
with respect to Lebesgue measure, Leb(A) > 0. Thus for any (θ′, µ′) ∈ χ, since P is strictly
positive on χ, we have

P ((θ′, µ′), A) =

∫
A

P(θ′,µ′)(θ, µ)dµdθ > 0.

Therefore, the probability of moving from any point in the state space to any set with pos-
itive π-measure in one step is positive, thus the chain is π-irreducible and aperiodic.

8W ∼ IG(α, β) if its density is proportional to w−(α+1)e−
β
w I(w > 0).
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3 Applications

3.1 Another Quantitative Convergence Rate Theorem

Before presenting Theorem (1.9) in 2002, Rosenthal presented another theorem about quan-
titative convergence rate in 1993(see [9]), which was published in 1995.

Theorem 3.1. Suppose Markov chain P (x, dy) on χ satisfies the minorisation condition
on C ⊆ χ(R is (k0, ε, Q)-small), i.e. P k0(x, ·) ≥ εQ(·) for all x ∈ C. Under the context of
the coupling approach, there is α > 1 and a function h : χ× χ→ C such that h ≥ 1 and

E[h(X(1), Y (1))|X(0) = x, Y (0) = y] = P̄ h(x, y) ≤ h(x, y)

α
,

for all (x, y) /∈ C × C, i.e. it satisfies the bivariate drift condition. Set

A ≡ sup
(x,y)∈C×C

E(h(Xk0 , Y k0)|X(0) = x, Y (0) = y) = sup
(x,y)∈C×C

P̄ h(x, y).

Then if ν = L(X(0)) is the initial distribution and π is a stationary distribution, then for
any j > 0, the total variational distance of π after k steps satisfies

||L(X(k) − π)|| ≤ (1− ε)
⌊
j
k0

⌋
+ α−k+jk0−1Aj−1Eν×π(h(X(0), Y (0))).

Proof. Let

t1 = inf{m : (X(m), Y (m)) ∈ C×C}; ti = inf{m : m ≥ ti−1+k0, (X
(m), Y (m)) ∈ C×C} (i > 1).

Nk = max{i : ti < k}. ri = ti − ti−1 (r1 = t1).

Then for any α > 1,

P (Nk < j) = P (r1 + · · ·+ rj > k) = P (αr1+···+rj > αk) ≤ α−kE
(

Πj
i=1α

r
i

)
,

where the last inequality uses Markov’s inequality. Define gi(k){
αkh(X(k), Y (k)) k ≤ ti
0 k > ti.

Then for ti−1 + k0 ≤ k ≤ ti,

E[gi(k)] = αkE[h(X(k), Y (k))] = αkE[E[h(X(k), Y (k)|X(k−1), Y (k−1))]]

≤ αk−1E[h(X(k−1), Y (k−1))]

= E[gi(k − 1)],

where the inequality comes from the assumption of the theorem. Thus gi(k) has non-
increasing expectation as a function of k, at least for k ≥ ti−1 + k0. Since r1 = t1 ≥ t0 + k0

and h ≥ 1, we then have
E[αr1 ] ≤ E[g1(r1)] ≤ E[g1(0)],
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and

E
(
αri |X(ti−1), Y (ti−1)

)
= E

(
αti−ti−1 |X(ti−1), Y (ti−1)

)
≤ E

(
αtigi(ti)|X(ti−1), Y (ti−1)

)
(by h ≥ 1)

≤ E
(
αtigi(ti + k0)|X(ti−1), Y (ti−1)

)
(by ti ≥ ti−1 + k0)

= αk0E
(
h(X(ti−1+k0), Y (ti−1+k0))|X(ti−1), Y (ti−1)

)
≤ αk0 sup

(x,y)∈C×C
E
(
h(X(1), Y (1))|X(0) = x, Y (0) = y

)
.

Then based on the result of Theorem (1) of Rosenthal[9], we have

||L(X(k))− L(Y (k))|| ≤ (1− ε)
⌊
j
k0

⌋
+ P (Nk−k0+1 < j).

With the above results, we have

P (Nk−k0+1 < j) ≤ α−k+k0−1E
(

Πj
i=1α

r
i

)
= α−k+k0−1E(αr1)Πj

i=2E(αri |r1, . . . , ri−1)

≤ α−k+k0−1α(j−1)k0E
(
h(X(0), Y (0))

)
Aj−1

= α−k+jk0−1Aj−1E
(
h(X(0), Y (0))

)
.

Note that the assumptions in Theorem (1.9) and Theorem (3.1) are the same with their
upper bound of convergence in different expressions. It is interesting to investigate which
bound behaves better. Thus the goals of the following two examples are to demonstrate how
Theorem (1.9) and Theorem (3.1) can be applied and to compare the two upper bounds
from the two theorems.

Before presenting the two examples, we first introduce two lemmas that are applied in
our examples.

Lemma 3.2. Given a positive integer k0 and a subset R ⊆ χ, then there exists a probability
measure Q(·), so that P k0(x, ·) ≥ εQ(·) for all x ∈ R, where ε =

∫
χ

(
infx∈R P

k0(x, dy)
)
.

Proof. Define Q′(·) on χ by

Q′(A) =

∫
y∈A

(
inf
x∈R

P k0(x, dy)

)
, A ∈ χ.

Obviously, Q′ is a measure on χ. For any A ∈ χ, for x ∈ R,

P k0(x,A) =

∫
y∈A

P k0(x, dy) ≥
∫
y∈A

inf
x∈R

P k0(x, dy) = Q′(A).

Assuming Q′(χ) > 0, we set Q(·) = Q′(·)
Q′(χ) and set ε = Q′(χ), so that P k0(x, ·) ≥ εQ(·). If

Q′(χ) = 0, the result is trivially true.
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Lemma 3.3. Consider a sequentially-updated Gibbs sampler with n components and the
state space is χ = χ1 × · · · × χn. Suppose that for some d, conditional on values for

X
(k)
1 , . . . , X

(k)
d , the random variables X

(k)
d+1, . . . , X

(k)
n are independent of all X

(k′)
i for all

k′ < k. Suppose further that there is R ⊆ χ, ε′ > 0 and a probability measure Q′(·) on
χ1 × · · · × χd such that

L(X1
(k0), . . . , Xd

(k0)|(X1
(0), . . . , Xn

(0)) = x) ≥ ε′Q′(·), ∀x ∈ R,

then there is a probability measure Q(·) on χ such that P k0(x, ·) ≥ ε′Q(·) for x ∈ R.

Proof. Define measure Q(·) as follows. Marginally on the first d coordinates, Q(·) agrees
with Q′(·). Conditional on the first d coordinates, Q(·) is defined by

Q(Xd+1, . . . , Xn|X1, . . . , Xd) = L(Xd+1, . . . , Xn|X1, . . . , Xd).

Then by the independence hypothesis, we have

L
(

(X1
(k0), . . . , Xn

(k0))|(X1
(0), . . . , Xn

(0)) = x
)

= L
(

(X1
(k0), . . . , Xd

(k0))|(X1
(0), . . . , Xn

(0)) = x
)
L
(

(Xd+1
(k0), . . . , Xn

(k0)|X1
(k0), . . . , Xd

(k0)
)

≥ ε′Q(X1
(k0), . . . , Xd

(k0))Q(Xd+1
(k0), . . . , Xn

(k0)|X1
(k0), . . . , Xd

(k0))

= ε′Q(X1
(k0), . . . , Xn

(k0))

3.2 Bivariate Normal Model

Suppose we have bivariate normal model (X1, X2) ∼ N
(( µ

µ

)
,
(

2 1
1 1

))
. Then the conditional

distribution is

L(X1|X2 = x) = N(x, 1),

L(X2|X1 = x) = N(
x+ µ

2
,

1

2
)

When running the Gibbs sampler, we regulate updating the first component first. We now
start to build function h such that all the assumptions in the theorems can be satisfied.
First, notice that

E[(X
(1)
2 − µ)2|X(0)

2 = x2] = E[E
(

(X
(1)
2 − µ)2|X(1)

1

)
|X(0)

2 = x2]

= E

(
(
X

(1)
1 − µ

2
)2 +

1

2
|X(0)

2 = x2

)

=
1

4
(x2 − µ)2 +

3

4
.

Also, since at each iteration the old value X
(k)
1 is discarded, our small set C and function h

should only refer to the second component. Suppose the two chains we have in the coupling
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construction are {Xn} and {Yn}. We can let h(x,y) = 1 + (x2 − µ)2 + (y2 − µ)2.
Then we have

E[h(X(1), Y (1))|X(0)
2 = x2, Y

(0)
2 = y2] = 1 + E[(Y

(1)
2 − µ)2|Y (0)

2 = y2] + E[(X
(1)
2 − µ)2|X(0)

2 = x2]

=
1

4
(x2 − µ)2 +

1

4
(y2 − µ)2 +

10

4

=
1

4
h(x, y) +

9

4
.

Let C = {x ∈ R2|(x2 − µ)2 ≤ b} where b is a constant. Then if (x, y) /∈ C × C, we have
h(x, y) ≥ 1 + b and Thus by multiplying both sides with 9

4(1+b) , we get

9

4(1 + b)
h(x, y) ≥ 9

4

Adding 1
4h(x, y) on both sides,

E[h(X(1), Y (1))|X(0) = x, Y (0) = y] ≤ 10 + b

4 + 4b
h(x, y)

Thus α = 4+4b
10+b . Since we need α > 1, we have b > 2. According to Lemma (3.2), we find a

way to find the ε in the minorisation condition. Assume k0 = 1, we have

P (x2, x
′
2) =

∫
y∈R

P (x2, dy)P (y, x′2)

= N(
x2 + µ

2
,

3

4
;x′2),

where N(a, b; y) = 1√
2πb

e
−(y−a)2

2b is the density function of N(a, b) evaluated at y. Thus

since x2 ∈ [µ−
√
b, µ+

√
b], let w = x2+µ

2 ∈ [ 2µ−
√
b

2 , 2µ+
√
b

2 ]

ε =

∫ ∞
−∞

( inf
x∈C

N(
x2 + µ

2
,

3

4
; y))dy

=

∫ ∞
−∞

(
inf

w∈[ 2µ−
√
b

2 , 2µ+
√
b

2 ]

N(w,
3

4
; y)

)
dy

=

∫ µ

−∞
N(µ+

√
b

2
,

3

4
; y)dy +

∫ ∞
µ

N(µ−
√
b

2
,

3

4
; y)dy

=

∫ 0

−∞
N(

√
b

2
,

3

4
; y)dy +

∫ ∞
0

N(−
√
b

2
,

3

4
; y)dy,
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which is independent of µ. Since the stationary distribution for Y2 is N(µ, 1), we have
Eπ(Y2 − µ)2 = 1, so Eν×π(h(X(0), Y 0)) = 2 + Eν(X2 − µ)2.

A = sup
(x,y)∈C×C

E(h(X(1), Y (1))|X(0) = x, Y (0) = y)

= sup
(x,y)∈C×C

1

4
h(x, y) +

9

4

=
1 + 2b

4
+

9

4

=
5 + b

2

Therefore, from the theorem, we can obtain the quantitative bound for this model, with
ε, α and A all depending only on b. Futhermore, to make Eν(X2 − µ)2 small, we can let
ν ∼ N(µ, 0), so Eν(X2 − µ)2 = 0. The quantitative bound is then

||L(X(k))− π|| ≤ (1− ε(b))j + 2

(
4 + 4b

10 + b

)−k+j−1(
5 + b

2

)j−1

, (14)

Note that in Rosenthal(1993)[9], only one example of set C is given, it is worth finding the
optimal subset C(or b) so that the upper bound can be as small as possible. In order to get
the minimum quantitative upper bound in Theorem (3.1) in equation (14), we optimize the
quantitative bound function f over b and j with given steps k, which is

f(j, b) = (1− ε(b))j + 2

(
4 + 4b

10 + b

)−k+j−1(
5 + b

2

)j−1

,

with the restrictions: j ∈ N, 0 < j ≤ k and b > 2.
In this example we are actually able calculate the total variation distance between the

Markov chain and the target distribution. Since

P (x2, x
′
2) = N(

x2 + µ

2
,

3

4
;x′2),

we have X
(1)
2 =

X
(0)
2 +µ

2 + Z1 where Z1 ∼ N(0, 3
4 ). Then

X
(2)
2 =

X
(1)
2 + µ

2
+ Z2

=
(X

(0)
2 + µ)/2 + Z1

2
+
µ

2
+ Z2

=
X

(0)
2

4
+

3µ

4
+
Z1

2
+ Z2,

where Z1 and Z2 are i.i.d N(0, 3
4 ). By induction, we have

X
(k)
2 =

X
(0)
2

2k
+

(
1− 1

2k

)
µ+

k∑
i=1

Zi
2k−i

,
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where Zis are all i.i.d N(0, 3
4 ). Since we set X

(0)
2 = µ, the k-th step transition kernel

P (k)(x2, x
′
2) is N(µ, 1 − 1

4k
;x′2). By Proposition (1.2)(f), the total variation distance for

each component after k steps of our problem is

||L(X(k))− π|| = 1−
∫ ∞
−∞

min(N(µ, 1− 1

4k
; y), N(µ, 1; y))dy

= 1−
∫ ∞
−∞

min(N(0, 1− 1

4k
; y), N(0, 1; y))dy

which is equivalent to

||L(X(k))−π|| = 1−
∫ ∞
−∞

1

2

[
N(0, 1− 1

4k
; y) +N(0, 1; y)−

∣∣∣∣N(0, 1− 1

4k
; y)−N(0, 1; y)

∣∣∣∣] dy.
Since the assumptions in Theorem (3.1) and Theorem (1.9) are the same, for obtaining

the related constants of the bound in Theorem 1.9, we keep our function h the same as
before, and thus ε and α are unchanged. For computing R̄h(x, y), we need

εν(A) =

∫
y∈A

(
inf
x∈C

N(
x2 + µ

2
,

3

4
; y)

)
dy

=

∫
y∈A

N(µ+

√
b

2
,

3

4
; y)I[−∞,µ] +N(µ−

√
b

2
,

3

4
; y)I[µ,∞]dy

=

∫
y∈A

N(

√
b

2
,

3

4
; y)I[−∞,0] +N(−

√
b

2
,

3

4
; y)I[0,∞]dy

Thus

εν(dy) =

(
N(

√
b

2
,

3

4
; y)I[−∞,0] +N(−

√
b

2
,

3

4
; y)I[0,∞]

)
dy.

The following table shows the total variation distance, the bound from Rosenthal(1993),
the optimized bound in Theorem (3.1) and the optimized bound in Theorem (1.9) when
k = 10, 50, 100, 200, 500, 750, 1000 and 2000, computed with the software Mathematica:

k 1 2 3 4
10 4.7283× 10−4 0.9408 7.7892× 10−1 7.4540× 10−1

50 6.1062× 10−16 1.928× 10−1 1.1813× 10−1 8.1953× 10−2

100 3.8176× 10−31 2.7724× 10−2 1.0978× 10−2 5.0490× 10−3

200 3.0116× 10−61 6.2458× 10−4 9.5793× 10−5 1.9074× 10−5

500 0 8.7726× 10−9 6.3404× 10−11 1.0246× 10−12

750 0 8.1983× 10−13 4.4933× 10−16 8.9543× 10−19

1000 0 7.6721× 10−17 3.1829× 10−21 7.8249× 10−25

2000 0 5.8860× 10−33 8.0255× 10−42 4.5620× 10−49

1. represents the total variation distance;
2. represents the bound from Rosenthal (1993);
3. represents the optimal bound from Theorem (3.1);
4. represents the optimal bound from Theorem (1.9).
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From the table, we can see that the bound from Theorem (1.9) decreases faster than
the bound from Theorem (3.1). In terms of the minimum steps such that the corresponded
value to be ≤ 0.01, it takes 6 steps for the total variation distance, 130 steps for the bound
from Rosenthal(1993), 102 steps for the optimal bound from Theorem (3.1) and 88 steps
for the optimal bound from Theorem (1.9).

In many other problems, numerically computing R̄h in Theorem (1.9) is expensive. Since
R̄h ≤ (1− ε)−2P̄ h and P̄ h is relatively easier to compute, we replace Bn0 in Theorem (1.9)
with

Bn0
= max[1,

αn0

(1− ε)
sup
C×C

P̄ h],

and keep the other components of the bound in Theorem (1.9) unchanged. Thus expression
for this proposed new(weaker) bound from Theorem (1.9) is

||L(X(k))− π|| ≤ (1− ε)j + 2α−k(max[1,
α

(1− ε)
A])j−1. (15)

The following table shows how well this new(weaker) bound performs compared to the
original bound in Theorem (1.9)(the values from the third column of the table below are
copied from the fifth column of the table on the last page).

k 1 2
10 8.0722× 10−1 7.4540× 10−1

50 1.4522× 10−1 8.1953× 10−2

100 1.7672× 10−2 5.0490× 10−3

200 2.6126× 10−4 1.9074× 10−5

500 8.4312× 10−10 1.0246× 10−12

750 2.2378× 10−14 8.9543× 10−19

1000 5.9393× 10−19 7.8249× 10−25

2000 2.9467× 10−37 4.5620× 10−49

1. represents the optimal new (weaker) bound from Theorem (1.9).
2. represents the optimal originalbound from Theorem (1.9).
This new(weaker) bound takes at least 114 steps to have its value ≤ 0.01.

3.3 Hierarchical Possion Model

The Gibbs sampler for this model is a Markov chain (β(k), θ
(k)
1 , . . . , θ

(k)
10 ) on χ = (R≥0)11,

with updating scheme given by

L(β(k+1)|{θ(k)
j }) = G

γ + 10α0, δ +

10∑
j=1

θ
(k)
j

 ,

L(θ
(k+1)
i |β(k+1), {θ(k+1)

j }j<i, {θ(k)
j }j>i) = G

(
α0 + si, ti + β(k+1)

)
, (1 ≤ i ≤ 10)

where G(a, b) denotes the gamma distribution with density baxa−1e(−bx)/Γ(a), where α0 =
1.802, γ = 0.01 and δ = 1, with the data si and ti as in Gelfand and Smith (1990, Table 3).

Let S(k) respresent
∑
i θ

(k)
i . Then

S(k)|β(k) =

10∑
i=1

Zi, Zi ∼ G
(
α0 + si, ti + β(k+1)

)
, Zis are i.i.d.
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Since the tis are distinct from each other, the scale parameters in the distribution of Zis
are different, and thus the density function for the sum of Zis is complicated, which can be
found in P.G. Moschopoulos[10], which is hard to compute numerically. Thus the transition
kernel for S(k) becomes too expensive to compute, so we do not discuss the total variation
distance in this example. Since the transition kernel for S(k) is also required in computing
R̄h in Theorem (1.9), we only apply the new(weaker) bound from Theorem (1.9), which is
introduced in the bivariate normal model example.

We first construct function h. Since at each iteration the old value β(k) is discarded ,

our subset C and function h should only refer to the remaining components θ
(k)
1 , . . . , θ

(k)
10 .

Indeed from the expression of the conditional distributions, it is sufficient to refer only to
their sum S(k). Since

E
(
S(k+1)|βk

)
=
∑
i

α0 + si
ti + β(k)

,

A cursory numerical examination of the conditional mean of S(k)|β(k) suggests that the

value of S(k) roughly approches the value 6.5. Thus, let X(k) = (β(k), θ
(k)
1 , . . . , θ

(k)
10 ), Y (k) =

(β′
(k)
, θ′1

(k)
, . . . , θ′

(k)
10 ), S(k) =

∑
i θ

(k)
i and S′

(k)
=
∑
i θ
′
i
(k)

. Set

h(X(k), Y (k)) = 1 + (S(k) − 6.5)2 + (S′(k) − 6.5)2.

Accordingly, define function e(w) by

e(w) = E((S(1) − 6.5)2|S(0) = w)

=

∫ ∞
0

E
(

(S(1) − 6.5)2|β(1) = x
)
P (β(1) = x|S(0) = w)dx

=

∫ ∞
0

[

(∑
i

(
α0 + si
ti + x

)− 6.5

)2

+
∑
i

(
α+ si

(ti + x)2
)]G(γ + 10α0, δ + w;x)dx,

where the last equality uses the fact V ar
(
S(k+1)|βk

)
=
∑
i

α0+si
(ti+β(k))2

.

Let C = {X(k) : 6.5− r ≤ S(k) ≤ 6.5 + r}, where r is a constant with r ≥ 6.5(since w ≥ 0).
Define

φ(r) = sup
w/∈[6.5−r,6.5+r]

(
1 + e(w)

1 + (w − 6.5)2

)
.

The following plot is w vs.
(

1+e(w)
1+(w−6.5)2

)
:

The plot suggests if r ≥ 2.69, then supw/∈[6.5−r,6.5+r]

(
1+e(w)

1+(w−6.5)2

)
= 1+e(0)

1+(0−6.5)2 = 0.4093; if
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r < 2.69, the supremum is either obtained on w = 6.5−r or w = 6.5+r. For finding α, since

sup
(x,y)/∈C×C

(
E[h(X(1), Y (1)|X(0) = x, Y (0) = y)]

h(x, y)

)
= sup
{(w1,w2)|w1 /∈[6.5−r,6.5+r])}

(
1 + e(w1) + e(w2)

1 + (w1 − 6.5)2 + (w2 − 6.5)2

)

≤ sup
w2

 sup
w1 /∈[6.5−r,6.5+r]

1+e(w1)
1+(w1−6.5)2

1 + (w2 − 6.5)2/(r2 + 1)
+

e(w2)

r2 + 1 + (w2 − 6.5)2


= sup

w2

(
φ(r)

1 + (w2 − 6.5)2/(r2 + 1)
+

e(w2)

r2 + 1 + (w2 − 6.5)2

)
.

Thus

α = 1/sup
w

(
φ(r)

1 + (w − 6.5)2/(r2 + 1)
+

e(w)

r2 + 1 + (w − 6.5)2

)
.

For ε, by using Lemma (3.2) and Lemma (3.3)(with d = 1), we have

ε =

∫ ∞
0

(
inf

w∈[6.5−r,6.5+r]
G(γ + 10α0, δ + w;x)

)
dx

=

∫ ∞
0

min (G(γ + 10α0, δ + 6.5− r;x), G(γ + 10α0, δ + 6.5 + r;x)) dx

A = 1 + 2 supw∈[6.5−r,6.5+r] e(w). Furthermore, set V (X) = 1 + (S − 6.5)2. Since

1 + e(w) ≤ (1 + (w − 6.5)2) sup
w/∈[6.5−r,6.5+r]

(
1 + e(w)

1 + (w − 6.5)2

)
+ sup
w∈[6.5−r,6.5+r]

(1 + e(w)),

by setting

λ = sup
w/∈[6.5−r,6.5+r]

(
1 + e(w)

1 + (w − 6.5)2

)
, b = sup

w∈[6.5−r,6.5+r]

(1 + e(w)).

Since b ≥ 1, if λ < 1(this may not be true if r is very small), then the chain satisfies

E[V (X(1)|X(0) = x)] ≤ λV (x) + b. (16)

By taking expectations of both sides of (16) with respect to π, we have Eπ(S′−6.5)2 ≤ b
1−λ .

Setting S(0) = 6.5, we have

Eν×π[h(X(0), Y (0))] <
b

1− λ
.

Note that ε, α,A, λ and b all depend on r, so the bound from Theorem (3.1) is indeed a
function j, k and r. Because of the difficulty of computation in minimizing the bound over
r and j for given k, we instead minimize j given k for a set of different values of r. The
following table shows the values of ε, α,A, λ and b corresponding to the chosen values of r.

38



r ε α A λ b
0.5 7.7782×10−1 3.1938×10−1 4.0182 2.0073 2.5091
1 5.7090×10−1 7.5284×10−1 4.3131 1.3283 2.6566
1.5 3.9205×10−1 7.6547×10−1 4.6752 8.7311×10−1 2.8376
2 2.4906×10−1 1.1217 5.0925 6.0925×10−1 3.0462
2.5 1.4429×10−1 1.5450 5.555 4.5208×10−1 3.2776
3 7.4778×10−2 1.8147 6.0552 4.0930×10−1 3.5276
3.5 3.3756×10−2 1.9365 6.8438 4.0930×10−1 3.9219
4 1.2775×10−2 2.0291 8.5478 4.0930×10−1 4.0704
4.5 3.8269×10−3 2.1002 10.8882 4.0930×10−1 5.9441
5 8.2839×10−4 2.1554 14.1012 4.0930×10−1 7.5506
5.5 1.1075×10−4 2.1988 18.5608 4.0930×10−1 9.7804
6 6.7580×10−6 2.2335 24.9110 4.0930×10−1 12.9555
6.5 9.3370×10−8 2.2615 34.4040 4.0930×10−1 17.7020

Note that when r = 0.5 and r = 1, λ > 1 thus (16), thus we do not consider the bounds for
these two r values.
The following table provides the optimal bound from Theorem (3.1) for chosen values of r,
and k = 10, 50, 100, 200, 500, 750, 1000, and 2000.

k r=2 r=2.5 r=3 r=3.5 r=4
10 3.2223 9.3291× 10−1 9.4065× 10−1 9.7520× 10−1 9.9406× 10−1

50 7.0650× 10−1 2.9484× 10−1 4.4291× 10−1 6.9036× 10−1 8.7670× 10−1

100 3.2390× 10−1 6.6223× 10−2 1.7363× 10−1 4.4719× 10−1 7.4675× 10−1

200 6.2331× 10−2 3.5347× 10−3 2.6709× 10−2 1.8784× 10−1 5.4435× 10−1

500 4.7989× 10−4 5.2487× 10−7 9.7836× 10−5 1.3973× 10−2 2.0990× 10−1

750 8.4974× 10−6 3.4285×10−10 9.1713× 10−7 1.5984× 10−3 9.5191× 10−2

1000 1.5029× 10−7 2.1711×10−13 8.5033× 10−9 1.8303× 10−4 4.2945× 10−2

2000 1.2995×10−14 3.7002×10−26 6.3437×10−17 3.1681× 10−8 1.7951× 10−3

k r=4.5 r=5 r=5.5 r=6 r=6.5
10 1.0022 1.0051 1.0062 1.0071 1.0086
50 9.6371× 10−1 9.9277× 10−1 9.9930× 10−1 1 1
100 9.2120× 10−1 9.8365× 10−1 9.9800× 10−1 1 1
200 8.4175× 10−1 9.6547× 10−1 9.9562× 10−1 1 1
500 6.4113× 10−1 9.1296× 10−1 9.8866× 10−1 1 1
750 5.1127× 10−1 8.7152× 10−1 9.8283× 10−1 1 1
1000 4.0678× 10−1 8.3185× 10−1 9.7706× 10−1 1 1
2000 1.6418× 10−1 6.9045× 10−1 9.9562× 10−1 1 1

Since when r = 1.5, the bound increases to infinity as k increases, so we do not present the
results of r = 1.5 in the tables. In terms of the minimum steps such that the corresponded
value ≤ 0.01, it takes 314 steps when r = 2, 165 steps when r = 2.5, 253 steps when r = 3,
540 steps when r = 3.5, 1460 steps when r = 4, 5083 steps when r = 4.5,24780 steps when
r = 5, about 196423 steps when r = 5.5, about 263170000 steps for r = 6.5. For r = 6, the
requires more than 1 billion steps or even more to be ≤ 0.01.
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To apply the new(weaker) bound from Theorem (1.9), we use the bound

||L(X(k))− π|| ≤ (1− ε)j +
b

1− λ
α−k(max[1,

α

(1− ε)
A])j−1.

We minimize this bound in the same way as we do for the bound from Theorem (3.1). The
following table provides the new(weaker) bound from Theorem (1.9) for chosen values of r,
and k = 10, 50, 100, 200, 500, 750, 1000, and 2000.

k r=2 r=2.5 r=3 r=3.5 r=4
10 3.2223 9.3291× 10−1 9.4065× 10−1 9.7520× 10−1 9.9406× 10−1

50 7.5379× 10−1 3.0935× 10−1 4.6291× 10−1 6.9239× 10−1 8.7788× 10−1

100 3.5318× 10−1 7.8764× 10−2 1.8381× 10−1 4.5532× 10−1 7.4764× 10−1

200 8.5124× 10−2 5.1103× 10−3 3.0395× 10−2 1.9312× 10−1 5.4698× 10−1

500 1.1977× 10−3 1.3224× 10−6 1.3074× 10−4 1.4758× 10−2 2.1146× 10−1

750 3.5320× 10−4 1.3470× 10−9 1.3788× 10−6 1.7485× 10−3 9.6031× 10−2

1000 1.0016× 10−6 1.3496×10−12 1.4931× 10−8 2.0519× 10−4 4.3527× 10−2

2000 6.8329×10−13 1.5355×10−24 1.9463×10−16 3.94377×10−8 1.8458× 10−3

k r=4.5 r=5 r=5.5 r=6 r=6.5
10 1.0022 1.0051 1.0062 1.0071 1.0086
50 9.6376× 10−1 9.9277× 10−1 9.9934× 10−1 1 1
100 9.2138× 10−1 9.8365× 10−1 9.9800× 10−1 1 1
200 8.4179× 10−1 9.6549× 10−1 9.9562× 10−1 1 1
500 6.4121× 10−1 9.1297× 10−1 9.8866× 10−1 1 1
750 5.1133× 10−1 8.7152× 10−1 9.8284× 10−1 1 1
1000 4.0771× 10−1 8.3196× 10−1 9.7706× 10−1 1 1
2000 1.6445× 10−1 6.9046× 10−1 9.9545× 10−1 1 1

The result suggests that the convergence rate of the optimal new(weaker) bound from Theo-
rem (1.9) behaves very similar(a little bit slower) to that of the optimal bound from Theorem
(3.1). In terms of the minimum steps such that the corresponded value to be ≤ 0.01, it
takes 354 steps when r = 2, 175 steps when r = 2.5, 262 steps when r = 3, 547 steps when
r = 3.5, 1466 steps when r = 4, 5089 steps when r = 4.5, 24785 steps when r = 5, 196423
steps when r = 5.5, about 263170000 steps for r = 6.5. For r = 6, it requires more than 1
billion steps or even more to be ≤ 0.01.
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4 Appendices

Definition 19. σ-finite A measure space (χ, σ(χ), µ) is called finite if µ(χ) is a finite real
number (rather than ∞), and µ is thus called a σ-finite measure.

Note that every probability measure is σ-finite.φ on (χ, σ(χ)).

Theorem 4.1. (Radon-Nikodym Theorem) if µ and ν are two σ-finite measures on some
measurable space (χ, σ(χ)), then µ� ν if and only if µ is absolutely continuous with respect
to ν.

Besides studying papers and relavent materials about Markov chains and MCMC, I also
learnt the first two chapers of A First Look at Rigorous Probability Theory by Rosenthal[2],
which focuses on explaining the construction of probability triples. The main theorems are
as the following. The proofs can be found in [2], and we omit them here.

Theorem 4.2. (The Extension Theorem) Let τ be a semialgebra of subsets of sample space
Ω. Let P : τ → [0, 1] with P (∅) = 0 and P (Ω) = 1, satisfying the finite superadditivity
property

P (

k⋃
i=1

Ai) ≥
k∑
i=1

P (Ai), whenever A1 . . . , Ak ∈ τ and
k⋃
i=1

Ai ∈ τ, and {Ai} are disjoint,

(17)
and also the countable monotonicity property that

P (A) ≤
∑
n

P (An) for A,A1, · · · ∈ τ with A ⊆
⋃
n

An.

Then there is a σ-algebra M s.t.τ ⊆M , and a countably additive probability measure P ∗ on
M , such that P ∗(A) = P (A) for all A ∈ τ .

Although Theorem (4.2) is the main tool for proving the existence of probability triples,
verying its assumptions is challenging. Thus the following two corollaries provide alternative
formulas for the assumptions in Theorem (4.2), which are easier to check.

Corollary 2. Let τ be a semialgebra of subsets of sample space Ω. Let P : τ → [0, 1] with
P (∅) = 0 and P (Ω) = 1, satisfying (17) in Theorem (4.2), and

P (A) ≤ P (B) whenever A,B ∈ τ with A ⊆ B,

and also the “countable subadditivity on τ”, i.e.

P (
⋃
n

Bn) ≤
∑
n

P (Bn), whenever B1, B2, · · · ∈ τ and
⋃
n

Bn ∈ τ.

Then there is a σ-algebra M s.t. τ ⊆ M , and a countably additive probability measure P ∗

on M , such that P ∗(A) = P (A) for all A ∈ τ .

Corollary 3. Let τ be a semialgebra of subsets of sample space Ω. Let P : τ → [0, 1] with
P (∅) = 0 and P (Ω) = 1,satisfying the countable additivity property that

P (
⋃
n

Dn) ≤
∑
n

P (Dn) for D1, D2 · · · ∈ τ disjoint with
⋃
n

Dn ∈ τ.

Then there is a σ-algebra M s.t.τ ⊆M , and a countably additive probability measure P ∗ on
M , such that P ∗(A) = P (A) for all A ∈ τ .
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5 Codes

5.1 Codes for Bivariate Normal Model

total variation distance when k=10, 50, 100, 200, 500, 750, 1000, 2000

1/2∗ I n t e g r a t e [ Abs [PDF[ NormalDistr ibut ion [0 ,1− Sqrt [ 1 / ( 4 ˆ 1 0 ) ] ] , x ]
−PDF[ NormalDistr ibut ion [ 0 , 1 ] , x ] ] , { x,− I n f i n i t y , I n f i n i t y } ]
1/2∗ I n t e g r a t e [ Abs [PDF[ NormalDistr ibut ion [0 ,1− Sqrt [ 1 / ( 4 ˆ 5 0 ) ] ] , x ]
−PDF[ NormalDistr ibut ion [ 0 , 1 ] , x ] ] , { x,− I n f i n i t y , I n f i n i t y } ]
1/2∗ I n t e g r a t e [ Abs [PDF[ NormalDistr ibut ion [0 ,1− Sqrt [ 1 / ( 4 ˆ 1 0 0 ) ] ] , x ]
−PDF[ NormalDistr ibut ion [ 0 , 1 ] , x ] ] , { x,− I n f i n i t y , I n f i n i t y } ]
1/2∗ I n t e g r a t e [ Abs [PDF[ NormalDistr ibut ion [0 ,1− Sqrt [ 1 / ( 4 ˆ 5 0 0 ) ] ] , x ]
−PDF[ NormalDistr ibut ion [ 0 , 1 ] , x ] ] , { x,− I n f i n i t y , I n f i n i t y } ]
1/2∗ I n t e g r a t e [ Abs [PDF[ NormalDistr ibut ion [0 ,1− Sqrt [ 1 / ( 4 ˆ 7 5 0 ) ] ] , x ]
−PDF[ NormalDistr ibut ion [ 0 , 1 ] , x ] ] , { x,− I n f i n i t y , I n f i n i t y } ]
1/2∗ I n t e g r a t e [ Abs [PDF[ NormalDistr ibut ion [0 ,1− Sqrt [ 1 / ( 4 ˆ 1 0 0 0 ) ] ] , x ]
−PDF[ NormalDistr ibut ion [ 0 , 1 ] , x ] ] , { x,− I n f i n i t y , I n f i n i t y } ]
1/2∗ I n t e g r a t e [ Abs [PDF[ NormalDistr ibut ion [0 ,1− Sqrt [ 1 / ( 4 ˆ 2 0 0 0 ) ] ] , x ]
−PDF[ NormalDistr ibut ion [ 0 , 1 ] , x ] ] , { x,− I n f i n i t y , I n f i n i t y } ]

optimal quantitative bound from Rosenthal(1993)

f [ b ]=1/2− I n t e g r a t e [PDF[ NormalDistr ibut ion [ Sqrt [ b ] / 2 , Sqrt [ 3 / 4 ] ] , x ] ,{ x , 0 , Sqrt [ b ] / 2 } ]
+1/2− I n t e g r a t e [PDF[ NormalDistr ibut ion [−Sqrt [ b ] / 2 , Sqrt [ 3 / 4 ] ] , x ] ,{ x,−Sqrt [ b ] / 2 , 0 } ]

NMinimize [{(1− f [ b ] ) ˆ j +2∗(((4+4∗b)/(10+b))ˆ(−10+ j −1)∗((5+b )/2 )ˆ ( j −1)) ,
b>=2&&0<j<=10&&j \ [ Element ] I n t e g e r s } ,{b , j } ]
NMinimize [{(1− f [ b ] ) ˆ j +2∗(((4+4∗b)/(10+b))ˆ(−50+ j −1)∗((5+b )/2 )ˆ ( j −1)) ,
b>=2&&0<j<=50&&j \ [ Element ] I n t e g e r s } ,{b , j } ]
NMinimize [{(1− f [ b ] ) ˆ j +2∗(((4+4∗b)/(10+b))ˆ(−100+ j −1)∗((5+b )/2 )ˆ ( j −1)) ,
b>=2&&0<j<=100&&j \ [ Element ] I n t e g e r s } ,{b , j } ]
NMinimize [{(1− f [ b ] ) ˆ j +2∗(((4+4∗b)/(10+b))ˆ(−200+ j −1)∗((5+b )/2 )ˆ ( j −1)) ,
b>=2&&0<j<=200&&j \ [ Element ] I n t e g e r s } ,{b , j } ,
MaxIterat ions \ [ Rule ] 10000 ]
NMinimize [{(1− f [ b ] ) ˆ j +2∗(((4+4∗b)/(10+b))ˆ(−500+ j −1)∗((5+b )/2 )ˆ ( j −1)) ,
b>=2&&0<j<=500&&j \ [ Element ] I n t e g e r s } ,{b , j } ,
MaxIterat ions \ [ Rule ] 50000 ]
NMinimize [{(1− f [ b ] ) ˆ j +2∗(((4+4∗b)/(10+b))ˆ(−750+ j −1)∗((5+b )/2 )ˆ ( j −1)) ,
b>=2&&0<j<=750&&j \ [ Element ] I n t e g e r s } ,{b , j } ,
MaxIterat ions \ [ Rule ] 50000 ]
NMinimize [{(1− f [ b ] ) ˆ j +2∗(((4+4∗b)/(10+b))ˆ(−1000+ j −1)∗((5+b )/2 )ˆ ( j −1)) ,
b>=]2&&0<j<=1000&&j \ [ Element ] I n t e g e r s } ,{b , j } ,
MaxIterat ions \ [ Rule ] 50000 ]
NMinimize [{(1− f [ b ] ) ˆ j +2∗(((4+4∗b)/(10+b))ˆ(−2000+ j −1)∗((5+b )/2 )ˆ ( j −1)) ,
b>=2&&0<j<=2000&&j \ [ Element ] I n t e g e r s } ,{b , j } ,
MaxIterat ions \ [ Rule ] 60000 ]

optimal quantitative bound from Roberts and Rosenthal(2004)

h [ x , y ]:=1+xˆ2+yˆ2
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f [ b ]:=1/2− I n t e g r a t e [PDF[ NormalDistr ibut ion [ Sqrt [ b ] / 2 , Sqrt [ 3 / 4 ] ] , x ]
,{x , 0 , Sqrt [ b]/2}]+1/2− I n t e g r a t e [PDF[ NormalDistr ibut ion [−Sqrt [ b ] / 2 ,
Sqrt [ 3 / 4 ] ] , x ] ,{ x,−Sqrt [ b ] / 2 , 0 } ]
g [ x , z ] :=PDF[ NormalDistr ibut ion [−Sqrt [ z ] / 2 , Sqrt [ 3 / 4 ] ] , x ]∗ Boole
[ x \ [ GreaterEqual ]0 ]+PDF[ NormalDistr ibut ion [ Sqrt [ z ] / 2 , Sqrt [ 3 / 4 ] ] , x ]∗ Boole [ x<0]
Clear [K]
K[ v ?NumericQ , d ?NumericQ , p ?NumericQ ] := NIntegrate [(1− f [ p ])ˆ(−2)
∗h [ r , u ] ∗ (PDF[ NormalDistr ibut ion [ v /2 , Sqrt [ 3 / 4 ] ] , r ]−g [ r , p ] ) ∗
(PDF[ NormalDistr ibut ion [ d/2 , Sqrt [ 3 / 4 ] ] , u]−g [ u , p ] ) , { r ,−100 ,100} ,{u ,−100 ,100} ]
zz [ p ] := NMaximize [{K[ v , d , p] ,− Sqrt [ p]<=v<=Sqrt [ p ]
&&−Sqrt [ p]<=d<=Sqrt [ p ]} ,{ v , d } ]
B[ r ] :=Max[1 ,(1− f [ r ] )∗(4+4 r )/(10+ r )∗ zz [ r ] [ [ 1 ] ] ]
f f f [ s , t , u ]:=(1− f [ s ] ) ˆ t +2∗((4+4∗ s )/(10+ s ))ˆ(−u)∗B[ s ] ˆ ( t−1)

NMinimize [{ f f f [ v ,w, 1 0 ] , v>=2&&0<w<=10&&
w\ [ Element ] I n t e g e r s } ,{v ,w} , MaxIterat ions \ [ Rule ] 60000 ]
NMinimize [{ f f f [ v ,w, 5 0 ] , v>=2&&0<w<=50&&
w\ [ Element ] I n t e g e r s } ,{v ,w} , MaxIterat ions \ [ Rule ] 60000 ]
NMinimize [{ f f f [ v ,w, 1 0 0 ] , v>=2&&0<w<=100&&
w\ [ Element ] I n t e g e r s } ,{v ,w} , MaxIterat ions \ [ Rule ] 60000 ]
NMinimize [{ f f f [ v ,w, 2 0 0 ] , v>=2&&0<w<=200&&
w\ [ Element ] I n t e g e r s } ,{v ,w} , MaxIterat ions \ [ Rule ] 60000 ]
NMinimize [{ f f f [ v ,w, 5 0 0 ] , v>=2&&0<w<=500&&
w\ [ Element ] I n t e g e r s } ,{v ,w} , MaxIterat ions \ [ Rule ] 60000 ]
NMinimize [{ f f f [ v ,w, 7 5 0 ] , v>=2&&0<w<=750&&
w\ [ Element ] I n t e g e r s } ,{v ,w} , MaxIterat ions \ [ Rule ] 60000 ]
NMinimize [{ f f f [ v ,w, 1 0 0 0 ] , v>=2&&0<w<=1000&&
w\ [ Element ] I n t e g e r s } ,{v ,w} , MaxIterat ions \ [ Rule ] 60000 ]
NMinimize [{ f f f [ v ,w, 2 0 0 0 ] , v>=2&&0<w<=2000&&
w\ [ Element ] I n t e g e r s } ,{v ,w} , MaxIterat ions \ [ Rule ] 60000 ]

optimal new(weaker) bound from Roberts and Rosenthal(2004)

Z [ r ] :=Max[1 ,1/(1− f [ r ] )∗(4+4 r )/(10+ r )∗(5+ r ) / 2 ]
t t t [ s , t , u ]:=(1− f [ s ] ) ˆ t +2∗((4+4∗ s )/(10+ s ))ˆ(−u)∗Z [ s ] ˆ ( t−1)

NMinimize [{ t t t [ v ,w, 1 0 ] , v>=2&&0<w<=10&&w\ [ Element ] I n t e g e r s } ,{v ,w} ,
MaxIterat ions −> 6000 ]
NMinimize [{ t t t [ v ,w, 5 0 ] , v>=2&&0<w<=50&&w\ [ Element ] I n t e g e r s } ,{v ,w} ,
MaxIterat ions −> 6000 ]
NMinimize [{ t t t [ v ,w, 1 0 0 ] , v>=2&&0<w<=100&&w\ [ Element ] I n t e g e r s } ,{v ,w} ,
MaxIterat ions −> 6000 ]
NMinimize [{ t t t [ v ,w, 2 0 0 ] , v>=2&&0<w<=200&&w\ [ Element ] I n t e g e r s } ,{v ,w} ,
MaxIterat ions −> 6000 ]
NMinimize [{ t t t [ v ,w, 5 0 0 ] , v>=2&&0<w<=500&&w\ [ Element ] I n t e g e r s } ,{v ,w} ,
MaxIterat ions −> 6000 ]
NMinimize [{ t t t [ v ,w, 7 5 0 ] , v>=2&&0<w<=750&&w\ [ Element ] I n t e g e r s } ,{v ,w} ,
MaxIterat ions −> 6000 ]
NMinimize [{ t t t [ v ,w, 1 0 0 0 ] , v>=2&&0<w<=1000&&w\ [ Element ] I n t e g e r s } ,{v ,w} ,
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MaxIterat ions −> 6000 ]
NMinimize [{ t t t [ v ,w, 2 0 0 0 ] , v>=2&&0<w<=2000&&w\ [ Element ] I n t e g e r s } ,{v ,w} ,
MaxIterat ions −> 6000 ]

5.2 Codes for Hierarchical Poisson Model

s :={5 ,1 ,5 ,14 ,3 ,19 ,1 ,1 ,4 ,22}
t :={94.320 , 15 .720 , 62 .880 , 125 .760 , 5 . 240 , 31 .440 , 1 . 048 , 1 . 048 , 2 . 096 , 10 .480}
in tegrand [ x ] : = ( ( temp=0; For [ i = 0 , i < 10 , i ++,
temp=temp+(1.802+ s [ [ i +1 ] ] ) / ( x+t [ [ i + 1 ] ] ) ] ;
temp)−6.5)ˆ2+(summ=0;For [ i =0, i <10, i ++,summ=summ+
(1.802+ s [ [ i + 1 ] ] ) / ( ( t [ [ i +1]]+x ) ) ˆ 2 ] ; summ)
e [ w ] := NIntegrate [ integrand [ k ] ∗ (PDF[ GammaDistribution
[0 .01+10∗1.802 ,1/(1+w) ] , k ] ) , { k , 0 , I n f i n i t y } ]
ek [ w ]:=(1+ e [w] )/(1+(w−6.5)ˆ2)

the command for computing ε when r = 2.5 is

NIntegrate [ Min [PDF[ GammaDistribution [0 .01+10∗1 .802 ,1+(6 .5 −2 .5) ] , k ] ,
PDF[ GammaDistribution [0 .01+10∗1 .802 ,1+(6 .5+2 .5 ) ] , k ] ] , { k , 0 , I n f i n i t y } ]

For other values of ε, the user can just replace the r in the above command.
For computing α,A, λ and b, the plot for e[w] and ek[w] suggests that we only need to
compare the values at w = 6.5−r and w = 6.5+r. The plot for ek[w] is given in the second
example of section Applications, while the plot for e[k] is presented here:

After acquiring the values for ε, α,A, λ and b for different values of r, we get the expressions
for the bounds.
optimal bound from Rosenthal(1993)

r =2, k=10.
NMinimize [{(1−0.249058)ˆ j +1.12174ˆ(10+ j −1)∗5.09248 ˆ( j −1)∗ 7 .79584 ,
0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]

r =2.5 , k=10.
NMinimize [{(1−0.144288)ˆ j +1.54498ˆ(−10+ j −1)∗5.55518ˆ( j −1)∗5.9819 ,
0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
r =3, k=10.
NMinimize [{(1−0.0747777)ˆ j +1.81466ˆ(−10+ j −1)∗6.05518ˆ( j −1)∗5.97184 ,
0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
r =3.5 k=10.
NMinimize [{(1−0.0337557)ˆ j +1.93653ˆ(−10+ j −1)∗6.84376ˆ( j −1)∗6.63933 ,
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0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
r =4, k=10.
NMinimize [{(1−0.0127746)ˆ j +2.02913ˆ(−10+ j −1)∗8.54776 ˆ( j −1)∗ 8 .08168 ,
0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
r =4.5 , k=10.
NMinimize [{(1−0.00382688)ˆ j +2.10017ˆ(−10+ j −1)∗10.8882ˆ( j −1)∗ 10 .0628 ,
0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]

r =5, k=10.
NMinimize [{(1−0.000828392)ˆ j +2.15535ˆ(−10+ j −1)∗14.1012ˆ( j −1)∗ 12 .7823 ,
0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]

r =5.5 , k=10.
NMinimize [{(1−0.000110751)ˆ j +2.19880ˆ(−10+ j −1)∗18.5608 ˆ( j −1)∗ 16 .5572 ,
0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]

r =6, k=10.
NMinimize [{(1−0.00000 675804)ˆ j +2.23347ˆ(−10+ j −1)∗24.911 ˆ( j −1)∗ 21 .9323 ,

0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
r =6.5 , k=10.
NMinimize [{(1−0.00000009337)ˆ j +2.26149ˆ(−10+ j −1)∗34.404ˆ( j −1)∗ 29 .9676 ,
0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]

For k = 50, 100, 200, 500, 750, 1000, 2000, the user can just replace the k in the above com-
mands.

optimal new(weaker) bound from Roberts and Rosenthal(2004)

r =2, k=10.
NMinimize [{(1−0.249058)ˆ j +1.12174ˆ(−10)∗Max[1 ,1/(1−0.249058)
∗1.12174∗ 5 . 0 9 2 4 8 ] ˆ ( j −1)∗ 7 .79584 , 0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
r =2.5 , k=10.
NMinimize [{(1−0.144288)ˆ j +1.54498ˆ(−10)∗Max[1 ,1/(1−0.144288
)∗1 . 54498∗5 . 55518 ] ˆ ( j −1)∗ 5 .9819 , 0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
r =3, k=10.
NMinimize [{(1−0.0747777)ˆ j +1.81466ˆ(−10)∗Max[1 ,1/(1−0.0747777
)∗1 .81466∗ 6 . 0 5 5 1 8 ] ˆ ( j −1)∗5.97184 , 0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
r =3.5 , k=10.
NMinimize [{(1−0.0337557)ˆ j +1.93653ˆ(−10)∗Max[1 ,1/(1−0.0337557
)∗1 . 93653∗6 . 84376 ] ˆ ( j −1)∗6.63933 , 0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
r =4, k=10.
NMinimize [{(1−0.0127746)ˆ j +2.02913ˆ(−10)∗ Max[1 ,1/(1−0.0127746
)∗2 . 02913∗8 . 54776 ] ˆ ( j −1)∗8.08168 , 0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
r =4.5 , k=10.
NMinimize [{(1−0.00382688)ˆ j +2.10017ˆ(−10)∗Max[1 ,1/(1−0.00382688
)∗2 . 10017∗10 . 8882 ] ˆ ( j −1)∗ 10 .0628 , 0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
r =5, k=10.
NMinimize [{(1−0.000828392)ˆ j +2.15535ˆ(−10)∗Max[1 ,1/(1−0.000828392
)∗2 . 15535∗14 . 1012 ] ˆ ( j −1)∗ 12 .7823 , 0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
r =5.5 , k=10.
NMinimize [{(1−0.000110751)ˆ j +2.19880ˆ(−10)∗Max[1 ,1/(1−0.000110751
)∗2 . 19880∗18 . 5608 ] ˆ ( j −1)∗ 16 .5572 , 0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
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r =6, k=10.
NMinimize [{(1−0.00000 675804)ˆ j +2.23347ˆ(−10)∗Max[1 ,1/(1−0.00000 675804
)∗2 . 2 3 3 4 7∗2 4 . 9 1 1 ] ˆ ( j −1)∗ 21 .9323 , 0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]
r =6.5 , k=10.
NMinimize [{(1−0.00000009337)ˆ j +2.26149ˆ(−10)∗Max[1 ,1/(1−0.00000009337
)∗2 . 2 6 1 4 9∗3 4 . 4 0 4 ] ˆ ( j −1)∗ 29 .9676 , 0<j<=10&&j \ [ Element ] I n t e g e r s } , j ]

For k = 50, 100, 200, 500, 750, 1000, 2000, the user can just replace the k in the above com-
mands.
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