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High Curvature

Simple HMC performs badly when the target distribution contains
certain regions with high curvature

Consider the following example to be the distribution of our interest

π(q) =
∏
i=1

N(qi |0, eq0)N(q0|0, 9) (1)

We assume that we only know the unnormalized distribution of the
target
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Funnel Distribution

Therefore, our unnormalized distribution is in form of

exp(−
∑

i q
2
i

2exp(q0)
)exp(−q20

18
) (2)

The potential function in HMC is defined as negative log of the
unnormalized distribution. It takes the form∑

i q
2
i

2exp(q0)
+

D ∗ q20
18

(3)
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Funnel Distribution

The Funnel Distribution is firstly introduced by Radford Neal couple
years ago to illustrate the challenges encountered in MCMC

MCMC, Gibbs Sampler, and Slicing Sampling all having difficult time
of approximate such distribution.

Note that, Funnel Distribution is actually very simple but still can
cause lots of trouble to many sophisticated distribution.
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Funnel Distribution

The following is the level set of our target distribution. The Y-axis is
q0 and X-axis is qi for anyone of the i
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Funnel Distribution

The contour illustrates two noticeable features

The graph has extrememly high curvature around near the
neighborhood of (0,-5)

The graph is very smooth with low curvature everywhere else.

Unfortunately, Hamiltonian MC, jsut as all other MCMC algorithm,
performs badly for this example.
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Funnel Distribution

Note, we already know that the mean for q0 and qi (i = 1, ..,D) to be
zero.Let our dimension D = 10.

Figure: ε = 0.3

Note that due to the large stepsize ε, we unable to explore the high
curvature area and leads the q0 has biased value.
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Funnel Distribution

We see that the estimated value of q0 is inaccurate

Figure: ε = 0.3
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Funnel Distribution

However, Due to Monte Carlo Convergence THM, we are guaranteed that
our estimator will converge to true value. What will happen is that, when
we run the algorithm for so long, once a while, it will step into the high
curvature region and stay there very long time to collect samples to
correct the estimated mean.
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Funnel Distribution

Here is what happen when we stuck in high curvature. We having negative
estimated mean for q0

Figure:
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Adaptive HMC

The Major failure of HMC here is the badly tuned hyperparameter ε.

One globally fixed ε will not work in practice.

ε should be able to adjust itself to maneuver through high curvature
region and capable of escaping from it as well.
(See Aofei’s work on Adaptive HMC tuning ε)
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Manifolds

Another approach is to adaptively adjust our Mass Matrix.

Simple HMC use a global Mass Matrix through all iterations.

This global matrix is used as co-variance matrix to sample momentum
variable p. This doesn’t capture the complicated characteristics of
local regions in many distributions of interests.
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Manifolds

In the simple case, we usually treat our momentum variable and state
variable lies in Cartesian coordinate system (orthonormal coordinate
system).

However, in the complicated situation, our dual space might be in
curvilinear coordinated system.

We treat the dual space as a manifolds where each points has its own
local metric.
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Manifolds

Let x be a point on the manifolds. A tangent vector on the point x is
the velocity vector for some curve lies on the manifolds and pass
through point x
Define the tangent space at point x on manifolds M, Tx0M to be the
collection of all tangent vector. For distance between two points on
the manifolds now can be defined on the tangent plane.

Figure: Manifolds

HMC on Manifolds August 29, 2018 18 / 30



Manifolds

We require the the tangent space endowed with an inner product via
metric tensor. G : Tx0M × Tx0M → R

Since G here needed to represent the distance of two points. It requires
additional properties.

Symmetric (from x to y should be equal distance as from y to x)

Bilinear (G (x + y , z) = G (x , z) + G (y , z))

Positive Definite (We require distance to be positive for two different
points.)

G is called Riemannian Metric
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HMC on Manifolds

Instead of having momentum variable p to be independent of q. we
sample p through a conditonal Gaussian with covariance matrix that
is a Riemannian Metric

π(p|q) ∼ N(0,G (q))

The kinetic function becomes

K (q, p) =
1

2
pTG (q)−1p +

1

2
log |G (q)|
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HMC on Manifolds

The joint distribution of momemtum and state variable becomes

H(q, p) = U(q) + K (q, p)

Note that Simple HMC leapfrog no longer will be working here
because now, kinetic function involves variable q, implies that ∂qH
requires differentiate through K (q, p). And this needed to be taken
into consideration when doing leapfrog
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Generalized Leapfrog

pn+1/2 ← pn − ε

2
∂qH(qn, pn+1/2) (4)

qn+1 ← qn +
ε

2
[∂pH(qn, pn+1/2) + ∂pH(qn+1, pn+1/2)] (5)

pn+1 ← pn+1/2 − ε

2
∂qH(qn+1, pn+1/2) (6)
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Fixed Point Iteration Method

Note, equation (4) and equation (5) are defined implicitly.

Use fixed point iteration. In more general case, we are solving
situation like g(x) = x

Randomly choose a point x0, consider a recursive process

xn+1 = g(xn)

Theoretically, if g(x)− x is a continuous function and {xn}
converges, then it converges to the solution of g(x) = x

Hence, equation (4) and (5) will be solved through such recursive
method. (the number of iteration is a hyperparameters we choose
beforehand)
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Experiments

It capable of moving big step and also capable of moving into the small
high curvature region.

Figure: Contour, ε = 0.3
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Experiments

It outperforms the simple HMC

Figure: Estimated
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Future Work

In the paper ”Riemann Manifold Langevin and Hamiltonian Monte
Carlo”; author doesn’t dicuss the choice of Riennmanian Metric.

If the Riennmanian Metric G chosen to be identity matrix, it reduces
the algorithm back to Simple HMC.

The performance highly depends on how to choose a good Metric.

In the original paper, author carefully design metric depends on what
kind of problem they trying to solve.
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Future Work

In my experiment, I notice that we need to take the local curvature
into the consideration. I choose Hessian matrix of the joint
distribution. As it’s also symmetric.

However, unless our potential distribution happens to be strictly
convex, we can’t guarantee that Hessian matrix is positive definite.

In my experiment, we let G = HTH + σI where H is Hessian matrix.
σI is added ensure that our G is also invertible.

Although, the result is outperforms the Simple HMC, such approach
shouldn’t be capable of generalized.
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Future Work

Design a good generalized metric that is independent of specific
problem environment.

It should also be computational efficient as we need to compute it’s
inverse and determinants.
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Future Work

I notice that some Bayesian Model use Fisher Information matrix. In
our situation, it will be

G (q) = −Eθ(∂2ij logp(q|θ))

Use Fisher Information Matrix might be naive in some situation.

The reason is that in Bayesian model, we usually define a prior
distribution. The equation above can be approximated by sampling θ
from our prior.

But not all target distribution have such nice condition (Hence, unless
the target is posterior distribution, we usually don’t have ability to
sample θ)

Fisher Information can still be zero matrix. (it only guarantees
positive semidefinite)
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For Further Reading I

Mark Girolami; Ben Calderhead; Siu A. Chin
Riemann Manifold Langevin and Hamiltonian Monte Carlo
Semantic Scholar

Radford, Neal
The Short-Cut Metropolis Method
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