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Chapter 1

Introduction to R

An Introduction to R claims that “R is an integrated suite of software

facilities for data manipulation, calculation and graphical display.” What

this means is that we can use R in a variety of ways. For example, any

computation that you want to do can be programmed in R. However, for

most people the strength of R is that it has many statistical and graphical

capabilities.

A major benefit of R is that it is free software (both in the sense of “free

beer” and in the sense of “free speech”) and may be used on a variety of

platforms. R is similar to the commercial product S-Plus. Nearly everything

you can do in R can be done in S-Plus and vice versa.

Rweb is a web interface to the R package. The Rweb commands are

identical to R commands. If you are going to use R in any serious fashion, you

should install it on your own computer or use the machines in the computer

lab instead of using the web interface. Rweb is really only appropriate for

teaching purposes. Rweb should not be used to do computing assignments

for this course.

In the rest of this chapter we will cover some programming concepts fo-

cusing on just enough of the basics of R, C and LATEX to produce a simple

1



2 CHAPTER 1. INTRODUCTION TO R

R package. It is impossible to give a thorough introduction to even one

of these topics in a single chapter. But maybe I can provide enough in-

formation to get a novice started. Learning R or C or LATEX is a lot like

learning statistics or anything else for that matter–you’ve got to use it to

learn it. More substantial documentation for R can be found on-line at

http://www.r-project.org/index.html. There are two main documents

of interest there: An Introduction to R and Writing R Extensions. You can

also find these documents on the course web page. If you are new to R you

should look at this documentation as soon as possible. Finally, the main

pieces of the sample code in this chapter can be found under “Examples” on

the course web page.

1.1 Using R

The first thing to figure out is how to start R. For data analysis it is

most common to use R interactively. Simply type R at the prompt and it

will start. Throughout the shell prompt will be >. If you are an emacs user

then use the commands C-u M-x R to start an interactive R session. To quit

R just type q() at the prompt.

For programming projects it is more common to use the batch mode. To

do this simply write an R program in your favorite text editor and save it as

myfile.R then at the prompt type R CMD BATCH myfile.R.

1.2 Objects

Almost everything in R is an object. Objects can hold a collection of

items and some can contain several different types of data.

• The most common object is a vector. These contain either numbers,
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logicals or character strings. Another common object is a matrix. Both

vectors and matrices contain only one type of item.

• Data frames look like a matrix but may have different item types in

distinct columns.

• A list is an ordered sequence of objects which may contain any sort of

object including another list.

Objects need to have a name. Names can be nearly any combination

of letters, numbers and the period. At least one letter must appear before

the first number, names are case sensitive and underscores are not allowed.

Names are given via the assignment operator ->. Thus, if at the prompt I

type d<-12 I will have created an object named d which is a numeric vector

of length 1. We can also create logical vectors

> lv <-d > 34

> lv

[1] FALSE

and character vectors

> cv<-"x"

> cv

[1] "x"

R objects have modes and attributes.

> df<-data.frame(x=c("galin", "gators", "gophers"),y=rnorm(3))

> df

x y

1 galin -0.676810

2 gators 0.723919
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3 gophers -2.105784

> mode(df)

[1] "list"

> length(df)

[1] 2

> attributes(df)

$names

[1] "x" "y"

$row.names

[1] "1" "2" "3"

$class

[1] "data.frame"

1.3 A Sample Interactive R Session

> library(MASS)

> data(geyser)

> names(geyser)

names(geyser)

[1] "waiting" "duration"

> attach(geyser)

> summary(duration)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.8333 2.0000 4.0000 3.4610 4.3830 5.4500

> mean(duration, trim=.10)

[1] 3.499239



1.4. BASIC PROGRAMMING 5

1.4 Basic Programming

Before we look at programming in R and C, I have a few words about

style. These comments apply to every program written for this course. Any-

time you write a program you should strive for clarity and readability over

cleverness. Extensive comments are a must as well as using variable names

that make sense. That is, a variable named iteration is preferred to i.

Also, a consistent indentation scheme should be followed rigorously.

1.4.1 How to Write a Bad R Program

We will have occasion to use R for more than simple data analysis. In

particular, we will need to be able to write programs to perform sophisticated

computations. R can do a lot of this but, unfortunately, it is awful for doing

computations involving loops such as those encountered in Markov chain

Monte Carlo (which we will see later in the course).

In An Introduction to R you can find the following statement: ”Code

that takes a ’whole object’ view is likely to be faster in R.” Lets see what

this means in an example which computes the inner product of two vectors,

a and b. First, a bad way then a better way.

for (i in 1:n){

d[i] <-a[i]*b[i]

}

s<-0

for(i in 1:n){

s<-s+d[i]

}

Now a better way

s<-sum(a*b)
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1.4.2 Functions in R

A function is just a group of reusable commands. There are many existing

R functions and it is easy (but not always helpful) to look at them.

> cos

.Primitive("cos")

> rnorm

function (n, mean = 0, sd = 1)

.Internal(rnorm(n, mean, sd))

<environment: namespace:stats>

.Primitive returns an entry point to an internally implemented function

while .Internal performs a call to an internal code. This isn’t something

we will worry about in this course.

> summary

function (object, ...)

UseMethod("summary")

<environment: namespace:base>

So summary contains UseMethod("summary"). If we do summary(df) we will

get to the UseMethod command. In this case R looks for the class of the first

argument. Then it checks for a function summary.data.frame. If this exists

it calls summary.data.frame(df). If not it calls summary.default(df).

Thus we see that summary is a generic function.

We can write our own functions for use in an R program. This can be

useful when you have occasion to do the same operation multiple times in a

single program. Here is an example.

>#This function sums the squared elements of a vector.

> sum.sq<-function(u){
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ssq<-t(u)%*%u

ssq

}

> sum.sq(1:10)

[1] 385

1.4.3 C Programming

As with everything else in this chapter, I do not aim to present a compre-

hensive introduction to the C language. But maybe I can get you started.

Basically R is an interpreted language but C is compiled. That is, every time

an R command is entered the R system parses the command into bits. It

then acts on those bits. It has to do this every time a command is entered.

On the other hand, compiled code is generally faster and more efficient than

an interpreted language. In the rest of this section we will look at a simple C

program and then cover the commands required to compile it and execute it

as a standalone program. In the next section we will see how to use C within

R.

In your favorite text editor put the following simple C program that asks

the user to enter a number and then prints the square of that number.

/*[File: myfirst/myfirst.c]*/

/************************************************************

* myfirst -- program to print the square of an integer. *

* This program is used to illustrate writing *

* a C program. *

* Author: Galin Jones *

* Usage: Demonstration of a simple C program. *

* Last modified: 29/12/2005 *

************************************************************/
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#include <stdio.h> /*contains function declarations*/

int main() /*returns an integer*/

{

double user_in; /*user input*/

/*Ask for an integer.*/

printf("Enter a number: ");

scanf("%lf", &user_in);

/*Print the square of the number*/

printf("The square is %f\n", user_in * user_in);

return(0); /*exit normally*/

}

Save this as myfirst.c then at the prompt type

> gcc -o myfirst myfirst.c -lm

> ./myfirst

Enter a number: 3

The square is 9.000000

Here gcc is the C compiler provided by the Free Software Foundation–see

the Gnu link on the course web page. The -o switch tells the compiler that

the program is to be called myfirst and the source file is myfirst.c. Other

switches that are helpful include -g which turns on debugging and -Wall

which turns on the warnings. (These will be helpful in more complicated

programs.) The -lm switch is required since our function does mathematics.

Thus you could also use

> gcc -g -Wall -o myfirst myfirst.c -lm
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> ./myfirst

Enter a number: 3

The square is 9.000000

1.4.4 Calling C from R

A useful feature of R is that you can call C code within it. There are

two ways to do this. One is with the command .Call and another is with

the command .C. We will focus on .Call. Charlie Geyer has a web page

(http://www.stat.umn.edu/~charlie/rc/) which covers using .C.

We start by writing a C function that sums the elements of a vector and

saving it as vecSum.c

#include <R.h>

#include <Rinternals.h>

#include <Rmath.h>

SEXP vecSum(SEXP Rvec){

int i, n;

double *vec, value = 0;

vec = REAL(Rvec);

n = length(Rvec);

for (i = 0; i < n; i++) value += vec[i];

printf("The value is: %4.6f \n", value);

return R_NilValue;

}

• SEXP stands for “S expression”

• If you don’t want the function to return anything use return R NilValue;
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• The statement vec = REAL(Rvec) defines a pointer to the real part of

Rvec which is useful so that we can type vec[0] instead of REAL(Rvec)[0]

Then at the prompt type R CMD SHLIB vecSum.c and it is ready to be used

in R.

> dyn.load("vecSum.so")

> .Call("vecSum", rnorm(10))

The value is: -0.683804

NULL

We can use vecSum.c in R functions. For example, I find it easier to do error

checking and type coercion in R than in C. So we could write an R function

that wraps around the call to the C code.

vecSum <- function(vec){

if (!is.vector(vec))

stop("vec must be a vector")

if (!is.real(vec)) vec <-as.real(vec)

.Call("vecSum",vec)

}

1.5 Making an R Package

An R package is the standard way to collect and distribute R code. The

Writing R Extensions document gives all of the gory details for making a

package. Here is a streamlined version.

1. Make a directory with the same name as the package of interest. Ours

will be vecSum. In this directory will be some files and further subdi-

rectories.
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2. We begin by creating the file DESCRIPTION.

Package: vecSum

Version: 1.0

Date: 2005-12-09

Title: Example R package using vecSum

Author: Galin L. Jones <galin@stat.umn.edu>

Maintainer: Galin L. Jones <galin@stat.umn.edu>

Description: This is a simple package that illustrates building a package.

License: GPL version 2 or newer

3. The next administrative file is INDEX.

vecSum Adds the elements of a vector.

4. Now create 3 subdirectories: R, src and man.

5. In the R subdirectory we have the source of the R function.

vecSum <- function(vec){

if (!is.vector(vec))

stop("vec must be a vector")

if (!is.real(vec)) vec <-as.real(vec)

.Call("vecSum",vec)

}

.First.lib <- function(lib, pkg){

library.dynam(pkg, pkg, lib)

}

This is just the R function from the last section with another function

.First.lib which gets called with the location of the library and the
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package name. library.dynam has arguments of the object to load

(without its suffix), the name of the package and the location of the

library where the package is.

6. The subdirectory src contains the C source code. (An R package does

not require C source code but it will often have it.) In this case it is in

a file named vecSum.c.

#include <R.h>

#include <Rinternals.h>

#include <Rmath.h>

SEXP vecSum(SEXP Rvec){

int i, n;

double *vec, value = 0;

vec = REAL(Rvec);

n = length(Rvec);

for (i = 0; i < n; i++) value += vec[i];

printf("The value is: %4.6f \n", value);

return R_NilValue;

}

7. The subdirectory man contains some documentation in a file ending

with the suffix .Rd. This one is called vecSum.Rd.

\name{vecSum}

\alias{vecSum}

\keyword{arith}

\title{Sum of a vector}

\description{Compute the sum of the elements of a vector}

\usage{vecSum(x)}

\arguments{
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\item{x}{A numeric object, no missing values allowed.}

}

\value{Prints the result of adding the elements of a vector.}

\examples{

x<-1:10

vecSum(x)

}

8. Now check the library. In the directory that contains the package type

R CMD check vecSum. This will generate a long list of checks. Make

sure to fix any problems.

9. Install the package into a library. A library is a directory that holds

packages. Move to the directory that holds the package (here ∼/8701)

and type

R CMD INSTALL -l ~/8701/myRlibray vecSum

And, you’re done!

To use the package from R:

> library("vecSum",lib.loc="~/8701/myRlibrary/")

> vecSum(rnorm(10))

The value is: -0.924766

NULL

1.6 Reproducible Research

One of the main points of scientific research is to share it. But sharing

is not enough, it should also be reproducible–both by yourself and others.
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(Believe it or not, traditional methods of scientific publication do not really

encourage this.) What I mean is that even after several years have passed

you (or anyone with access to your files) should be able to perfectly reproduce

everything in a paper including figures and tables. Notice that simply pro-

viding comments in a computer program will not accomplish this; however,

many researchers do not even do this which renders their programs useless.

1.6.1 LATEX

LATEX is a typesetting system that is used to produce scientific papers in

many disciplines. Lets look at a simple LATEXfile.

\documentclass[12pt]{article}

\usepackage{amsbsy,amsmath,amsthm,amssymb}

\usepackage[sort,longnamesfirst]{natbib}

\newcommand{\pcite}[1]{\citeauthor{#1}’s \citeyearpar{#1}}

\usepackage{geometry}

\geometry{hmargin=3cm,vmargin={2.25cm,2.25cm},nohead,footskip=0.5in}

\renewcommand{\baselinestretch}{1.66}

\setlength{\baselineskip}{0.3in} \setlength{\parskip}{.05in}

\usepackage[dvips]{changebar}

\begin{document}

Using \LaTeX, I plan to rule the world. Care to join my cause? The

key will be the equation

\[

a^{2} + b^{2} = c^{2} \; .
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\]

A labeled equation is different

\begin{equation}

\label{eq:key}

\frac{\mu}{\sigma} \, | \, y \sim \text{N}(0.3, 10) \; .

\end{equation}

Then it can be easily referenced throughout the paper by using

\eqref{eq:key}.

\end{document}

Save this file as myfile.tex then at the prompt type latex myfile.tex or

in emacs use C-c C-c. This will produce a .dvi file that can be viewed with

xdvi or in emacs use C-c C-c again to see it. The result follows.

Using LATEX, I plan to rule the world. Care to join my cause? The key

will be the equation

a2 + b2 = c2 .

A labeled equation is different

µ

σ
| y ∼ N(0.3, 10) . (1.1)

Then it can be easily referenced throughout the paper by using (1.1).

1.6.2 Sweave and Vignettes

Sweave is a framework for putting LATEX code and R code together in

the same document. The idea is that we create a single source file that will

produce a document that has R code and its documentation along with the

output of the R code including tables and figures. A vignette is just an Sweave

file that illustrates an R package. (Once again Charlie Geyer has a nice web

page with extensive examples; see http://www.stat.umn.edu/~charlie/Sweave/)
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Here is a simple example of using Sweave with the vecSum package. We be-

gin by creating a .Rnw file which looks like a LATEX document with R code

“chunks.”

\documentclass[12pt]{article}

\usepackage{amsbsy,amsmath,amsthm,amssymb}

\usepackage[sort,longnamesfirst]{natbib}

\newcommand{\pcite}[1]{\citeauthor{#1}’s \citeyearpar{#1}}

\usepackage{geometry}

\geometry{hmargin=3cm,vmargin={2.25cm,2.25cm},nohead,footskip=0.5in}

\renewcommand{\baselinestretch}{1.66}

\setlength{\baselineskip}{0.3in} \setlength{\parskip}{.05in}

\usepackage[dvips]{changebar}

\begin{document}

\title{My First Sweave Document}

\author{Dr. Evil}

\date{December 25, 2525}

\maketitle

Here we consider a simple Swaeve document.

<<summary>>=

library(MASS)

data(geyser)

attach(geyser)

summary(waiting)
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@

Lets see how to make a plot. First make something to plot.

<<data>>=

x <- 1:10

y <- rnorm(10)

out<-lm(y ~ x)

@

Then Figure~\ref{figpe1} is produced by the following code and appears on

p.~\pageref{figpe1}.

<<label=fig1plot,include=FALSE>>==

plot(x, y)

abline(out)

@

\begin{figure}

\begin{center}

<<label=fig1,fig=TRUE,echo=FALSE>>=

<<fig1plot>>

@

\end{center}

\caption{A simple plot.}

\label{figpe1}

\end{figure}

\end{document}

Save this file as mysweave.Rnw. Now go to the prompt and type

echo ’Sweave("mysweave.Rnw")’ | R --vanilla --quiet
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This will produce the following LATEX file which can be treated like any other

LATEX file.

\documentclass[12pt]{article}

\usepackage{amsbsy,amsmath,amsthm,amssymb}

\usepackage[sort,longnamesfirst]{natbib}

\newcommand{\pcite}[1]{\citeauthor{#1}’s \citeyearpar{#1}}

\usepackage{geometry}

\geometry{hmargin=3cm,vmargin={2.25cm,2.25cm},nohead,footskip=0.5in}

\renewcommand{\baselinestretch}{1.66}

\setlength{\baselineskip}{0.3in} \setlength{\parskip}{.05in}

\usepackage[dvips]{changebar}

\usepackage{/APPS/32/lib/R/share/texmf/Sweave}

\begin{document}

\title{My First Sweave Document}

\author{Dr. Evil}

\date{December 25, 2525}

\maketitle

\begin{Schunk}

\begin{Sinput}

> library(MASS)

> data(geyser)

> attach(geyser)

> summary(waiting)
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\end{Sinput}

\begin{Soutput}

Min. 1st Qu. Median Mean 3rd Qu. Max.

43.00 59.00 76.00 72.31 83.00 108.00

\end{Soutput}

\end{Schunk}

Lets see how to make a plot. First make something to plot.

\begin{Schunk}

\begin{Sinput}

> x <- 1:10

> y <- rnorm(10)

> out <- lm(y ~ x)

\end{Sinput}

\end{Schunk}

Then Figure~\ref{figpe1} is produced by the following code and appears on

p.~\pageref{figpe1}.

\begin{Schunk}

\begin{Sinput}

> plot(x, y)

> abline(out)

\end{Sinput}

\end{Schunk}

\begin{figure}

\begin{center}

\includegraphics{mysweave-fig1}

\end{center}
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\caption{A simple plot.}

\label{figpe1}

\end{figure}

\end{document}

There is one thing that a vignette requires that is not included in a typical

Sweave document:

% \VignetteIndexEntry{vecSum Example}

which should be included before the \begin{document} command.

1.7 Numerical Preliminaries

Most people are vaguely aware that the number system used in a computer

is not the same as the one we like to think about, namely R. Sometimes this

can cause major problems but, to the uninitiated, it often appears to be only

a semantic distinction.

It’s clear that not all of R can be represented in a computer–R is uncount-

able after all. Lets look at just how large (and small) computer numbers can

be in a simple R session.

> 2^1023

[1] 8.988466e+307

> 2^1024

[1] Inf

> 2^-1074

[1] 4.940656e-324

> 2^-1075

[1] 0

We will generally let F ⊂ R denote the possible computer numbers.
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The second thing that is important to keep in mind is that computer

algorithms are also only approximate. For example, when we want x ∈ R

we actually get x∗ ∈ F . Moreover, if we try to compute a function f(·) we

actually get f ∗(·). For a function f(·) and an input x we say that f(x) is well-

conditioned if f(x) is close to f(u) whenever u is close to x and ill-conditioned

otherwise. If f(x) is ill-conditioned then f ∗(x∗) will be problematic.

The difference between f ∗(x∗) and f(x∗) typically depends on the algo-

rithm used to compute f ∗. An algorithm is stable if

f ∗(x) = f(u)

whenever u is near x. That is, the algorithm produces the exact answer to

a nearby problem. An algorithm can matter a lot. Consider calculating the

sample variance

1

n

n∑

i=1

(xi − x̄)2 =
1

n

n∑

i=1

x2
i −

(
1

n

n∑

i=1

xi

)2

> x<-1:3

> mean(x^2) - (mean(x))^2

[1] 0.6666667

> x<-1:3 + 1e+5

> mean(x^2) - (mean(x))^2

[1] 0.666666

> x<-1:3 + 1e+10

> mean(x^2) - (mean(x))^2

[1] -16384

Note that the var function divides by n− 1 rather than n and hence

> x<-1:3

> var(x)

[1] 1
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Chapter 2

Optimality Conditions

2.1 Introduction to Optimization

Optimization is a central concern for statisticians. For example, a fre-

quentist may want to use maximum likelihood while a Bayesian may want

to find a posterior mode. In a course on mathematical statistics these tasks

are done analytically. In the real world this is often impossible and hence

we must approximate the quantity of interest. This is usually done via an

iterative routine implemented on a computer.

For n ≥ 1 let R
n be the set of n-tuples x = (x1, . . . , xn) of real numbers.

Suppose we are given an objective function f along with a set of constraints

C. The problem we are interested in solving is

min
x∈Rn

f(x) subject to x ∈ C . (2.1)

Note that if we want to maximize f we minimize −f . If C = R
n this is

an unconstrained optimization problem while if C ⊂ R
n it is a constrained

optimization problem.

Example 2.1.1. Suppose we have measurements y1, . . . , yn at times x1, . . . , xn

23
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and we want to fit the following model

g(x | β) = β1 + β2x
3 exp{−(β3 − x)2}

where β = (β1, β2, β3)
T . Define ri(β) = yi − g(xi | β). One method for

obtaining an estimate of β is to solve the problem

min
β∈R3

n∑

i=1

r2
i (β)

which is an unconstrained optimization problem known as nonlinear least

squares.

For unconstrained optimization problems we will consider ways to iden-

tify a local minimum. That is, we will focus on finding points at which the

objective function is smaller than at all other feasible points in its neighbor-

hood. Global solutions to (2.1) when C = R
n are often desirable, however

they are also often extremely difficult to identify and locate and, in fact, may

not exist; see Figure 2.1. On the other hand, when C ⊂ R
n, a global solution

may be possible; again see Figure 2.1. We can be more precise about what

constitutes a solution to (2.1).

Definition 2.1.1. The point x∗ ∈ R
n is a

1. global minimizer if f(x∗) ≤ f(x) for all x ∈ R
n

2. local minimizer if there is a neighborhood N(x∗) such that f(x∗) ≤ f(x)

for all x ∈ N(x∗)

3. strict local minimizer if there is a neighborhood N(x∗) such that f(x∗) <

f(x) for all x ∈ N(x∗) and x 6= x∗.

4. isolated local minimizer if there is a neighborhood N(x∗) such that x∗

is the only local minimizer in N(x∗).
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Figure 2.1: A function without a global minimum.

Example 2.1.2.

Suppose f(x) = c for c ∈ R then every point is a weak local minimizer.

Suppose f(x) = (x− 1)2 then x = 1 is a strict local minimizer.

Strict local minimizers are not always isolated but isolated local minimiz-

ers are strict.

Definition 2.1.2. S ⊆ R
n is a convex set if for x, y ∈ S

αx+ (1 − α)y ∈ S ∀ α ∈ [0, 1] .

Definition 2.1.3. f : R
n → R is convex if

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y) ∀ α ∈ [0, 1] .

The set of points lying above the graph of a convex function forms a convex

set.
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Convexity allows characterization of local and global minimizers.

Theorem 2.1.1. Suppose f : R
n → R is convex and that x∗ is a local

minimizer of f . Then x∗ is a global minimizer of f .

Proof. Suppose by way of contradiction that x∗ is not a global minimizer

of f . Then there exists z ∈ R
n such that f(z) < f(x∗). Consider the line

segment joining x∗ and z, i.e.,

x = αz + (1 − α)x∗ for some α ∈ (0, 1] .

By convexity

f(x) ≤ αf(z) + (1 − α)f(x∗) < f(x∗) . (2.2)

Since any N(x∗) will contain at least one point at which (2.2) is satisfied this

contradicts the assumption that x∗ is a local minimizer.

In the rest of this chapter we consider some generalizations of the familiar

criteria that a necessary condition for a minimum of a function is that the

first derivative is zero and a sufficient condition for a local minimum is that

the first derivative is zero and the second derivative is positive. Since such

conditions are rarely stated carefully, we begin with a review of differentiation

theory that gives us the needed tools.

2.2 Differentiation

2.2.1 R
n

Definition 2.2.1. An inner product on R
n is a function u : R

n × R
n → R

such that for all α, β ∈ R and all x, y, z ∈ R
n the following are satisfied

1. u(x, x) ≥ 0 with equality if and only if x = 0,
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2. u(x, y) = u(y, x),

3. u(αx+ βy, z) = αu(x, z) + βu(y, z).

We will denote an inner product by 〈x, y〉 = u(x, y). The norm of x ∈ R
n is

‖x‖ =
√

〈x, x〉.

It is standard that R
n is an n-dimensional vector space, which we equip

with the canonical inner product

〈x, y〉 = xTy = x1y1 + · · · + xnyn, x, y ∈ R
n

and the Euclidean norm

‖x‖ =
√
〈x, x〉 =

√
xTx =

√
x2

1 + · · · + x2
n, x ∈ R

n

and the associated metric

d(x, y) = ‖x− y‖, x, y ∈ R
n.

A linear transformation is a function T : R
n → R

m that satisfies the

linearity property

T (ax+ by) = aT (x) + bT (y), a, b ∈ R, x, y ∈ R
n .

Every linear transformation can be represented by an m× n matrix, so y =

T (x) has two different interpretations. Thinking abstractly, y is the image

of x under the mapping T . Thinking concretely, y is the result of the matrix

multiplication Tx

yi =

n∑

j=1

tijxj

where the tij are the components of the matrix T . Following standard prac-

tice, we will write Tx for both interpretations, so the notation does not force

either interpretation.
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In the case m = 1, where the transformation maps into R, a linear trans-

formation is called a linear functional. Every linear functional is of the form

x 7→ 〈x, y〉 for some y ∈ R
n.

In the case m = n, where the domain and codomain are the same, a linear

transformation is called a linear operator.

A bilinear form on R
n is a function from R

n × R
n to R that is linear in

both arguments. Every bilinear form is of the form (x, y) 7→ 〈x,Ay〉 for some

linear operator A. The same bilinear form can also be constructed using the

adjoint operator A∗ determined by

〈x,Ay〉 =
〈
A∗x, y

〉
, x, y ∈ R

n. (2.3)

Comparing the sums for matrix multiplications and inner products written

out explicitly, it is clear that the matrix representing A∗ is the transpose of

the matrix representing A.

A bilinear form b is symmetric if

b(x, y) = b(y, x), x, y ∈ R
n.

From (2.3) it is clear that a bilinear form is symmetric if and only if the

matrix A representing it satisfies A = A∗, in which case we say that A is

symmetric. Note that the inner product is itself a symmetric bilinear form.

An operator B is antisymmetric if B = −B∗. Any operator A can be

decomposed into symmetric and antisymmetric parts A = As + Aa, where

As = 1
2
(A + A∗) (2.4a)

Aa = 1
2
(A−A∗) (2.4b)

A quadratic form on R
n is a function from R

n × R
n having the form

x 7→ 1
2
b(x, x) where b is a bilinear form. By symmetry of the inner product

〈x,Ax〉 = 〈Ax, x〉 =
〈
x,A∗x

〉
= 〈x,Asx〉
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where As is given by (2.4a). So to each bilinear form there corresponds a

quadratic form, but the quadratic form only depends on the symmetric part

of the operator inducing the bilinear form.

2.2.2 Little Oh Notation

A function ψ : U → R
n, where U is a neighborhood of zero in R

n,

satisfying

lim
x→0

ψ(x) = 0 (2.5)

can also be described as being continuous at zero if we add the condition

ψ(0) = 0. Such a function is said to be o(1), read “little oh of one,” written

ψ(x) = o(1) .

Saying that ψ1(x) = o(1) and ψ2(x) = o(1), does not mean, despite appear-

ances, that ψ1 = ψ2 but only that both ψ1 and ψ2 are continuous at zero and

ψ1(0) = ψ2(0) = 0. Little oh notation is a code that is not decoded according

to the usual rules of mathematics.

Everything above also applies to a function ψ : U → R
n. It is said to be

o(1) if (2.5) holds or if it is continuous at zero with ψ(0) = 0.

More generally, given two functions f and g from a neighborhood U of

zero in R
n to R

m, we say that f is o
(
g(x)

)
, read “little oh of g(x)” if

f(x) = ‖g(x)‖ψ(x) (2.6)

for some o(1) function ψ. The comment about little oh notation being an

unusual code applies even more here. Argument is almost always clearer

when (2.6) is used to put any little oh terms into ordinary mathematical

notation.
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2.2.3 Differentiation

Definitions

A function f : U → R
m, where U is a neighborhood of a point x in R

n, is

differentiable at x if there is a linear transformation A : R
n → R

m such that

f(x+ y) = f(x) + Ay + o(‖y‖), (2.7)

in which case we say that A is the derivative of f at x and write f ′(x) or

∇f(x) in place of A. As usual, we can think of the linear transformation A

as an m× n matrix, if we like, and think of Ay as a matrix multiplication.

It is not obvious from the definition that at most one A satisfying (2.7)

exists. It turns out that this is true, and we will prove it presently. That

means the derivative, if it exists, is uniquely defined.

If we decode the little oh notation in (2.7) we get

f(x+ y) = f(x) + Ay + ‖y‖ψ(y),

for some o(1) function ψ, hence

f(x+ y) − f(x) − Ay

‖y‖ = ψ(y),

or

lim
y→0

f(x+ y) − f(x) −Ay

‖y‖ = 0. (2.8)

Often (2.8) given as the definition of differentiability: f is differentiable at

x if and only if (2.8) holds for some linear transformation A, in which case

∇f(x) = A.

The “vector space” notion of derivative introduced in this section, some-

times called the Fréchet derivative by those who like eponyms, is rather

different from the ordinary derivative of a real-valued function of a single

real variable. It is important to know that the differences arise because of
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the domain of the function being multi-dimensional. They arise even for a

real-valued function on R
n. On the other hand, the codomain being multi-

dimensional is rather trivial. A vector-valued function f can be thought of

as a vector

f(x) =
(
f1(x), . . . , fm(x)

)
(2.9)

of real-valued functions. Since a sequence of vectors converges if and only

if their components converge, it is obvious from the definitions that f is

differentiable if and only if each fi is differentiable and

∇f(x) =
(
∇f1(x), . . . ,∇fm(x)

)
.

Directional and Partial Derivatives

If f : U → R
m is a function, where U is a neighborhood of a point x in

R
n, then

f ′(x;w) = lim
s↓0

f(x+ sw) − f(x)

s

is called the one-sided directional derivative of f at x in the direction w if

the limit exists. If f is actually differentiable at x, then

f(x+ sw) − f(x) = sf ′(x)w + s‖w‖ψ(sw)

for some o(1) function ψ. Hence

f ′(x;w) = lim
s↓0

[
f ′(x)w + ‖w‖ψ(sw)

]
= f ′(x)w

Hence all directional derivatives exist and

f ′(x;w) = f ′(x)w

Hence w 7→ f ′(x;w) is a linear transformation, the same linear transforma-

tion as the derivative f ′(x).

This gives us the proof of the uniqueness of the derivative promised at

the beginning of the preceding section. The directional derivatives f(x;w)
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are uniquely defined, since limits are uniquely defined. Since the direc-

tional derivatives determine the derivative (if it exists), the derivative is also

uniquely defined.

Thus if the derivative f ′(x) exists, then all of the directional derivatives

f ′(x;w) exist and determine a linear transformation w 7→ f ′(x;w). The

converse is not true. All of the directional derivatives can exist and w 7→
f ′(x;w) can be linear, but the function f not be differentiable.

One set of particularly interesting directional derivatives are those along

directions parallel to coordinate axes. Let ei denote the unit vector having

all components zero except the i-th. If the coordinate functions of a vector-

valued function f are given by (2.9), then f ′
i(x; ej) is another notation for

the partial derivative usually denoted ∂fi(x)/∂xj . If we write down what it

means to be the matrix representing ∇f(x), we see that it is the matrix of

partial derivatives.

Thus, if a function is differentiable, the derivative is the matrix of partial

derivatives. But, as the example above shows, the partial derivatives can all

exist and the function not be differentiable.

Stronger assumptions must be imposed to infer differentiability from the

properties of the partial derivatives. The family of functions f : U → R
m,

where U is an open set in R
n, that are continuously differentiable everywhere,

meaning the map x 7→ ∇f(x) is continuous, is denoted C1(U). It is a the-

orem of real analysis that if the partial derivatives exist and are continuous

everywhere on some open set U , then f ∈ C1(U).

Second Derivatives

The space of allm×nmatrices is an (mn)-dimensional vector space, which

we can consider to be R
mn. Hence if ∇f(y) exists for all y in a neighborhood

U of x we can consider whether the map ∇f : U → R
mn is differentiable.

Applying the definition, we see that ∇f is differentiable at x if there is a
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linear function A : R
n → R

mn such that

∇f(x+ y) = ∇f(x) + Ay + o(‖y‖), (2.10)

in which case we say that A is the second derivative of f at x and write it as

f ′′(x) or ∇2f(x). We also say f is twice differentiable at x.

Applying what we have already said about differentiation, we see that if

f is twice differentiable, then the second partial derivatives must exist, and

∇2f(x) must be an (mn2)-dimensional object with elements ∂2fi(x)/∂xj∂xk.

What sort of object is a bit difficult to say. If we want to consider ∇f(x)

a matrix, then ∇2f(x) must be a linear transformation that maps a vector y

to a matrix ∇2f(x)y. Abstractly, everything is simple, m× n matrices form

a vector space, and ∇2f(x) maps R
n to that space. Considered concretely,

things are a bit more complicated, the elements ∂2fi(x)/∂xj∂xk of the matrix

representing ∇2f(x) have three indices, thus are most naturally considered

to form a three-dimensional array, not a matrix.

Fortunately, we are most interested in first and second derivatives of

scalar-valued (R-valued) functions. Then the first derivative can be consid-

ered an n vector rather than a 1 × n matrix, and we rewrite (2.7) as

f(x+ y) = f(x) + 〈∇f(x), y〉 + o(‖y‖).

Similarly, the second derivative can be considered an n × n matrix rather

than a 1 × n× n array, and we rewrite (2.10) as

∇f(x+ y) = ∇f(x) + ∇2f(x)y + o(‖y‖).

Now ∇2f(x) makes sense as a linear operator on R
n that maps the vector y

to another vector ∇2f(x)y, which can be added to other vectors like ∇f(x).

2.2.4 Taylor’s Theorem

In Section 2.5 a more general version of the following theorem is addressed

in some detail. However, the following should be sufficient for our present
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purpose.

Theorem 2.2.1. (Taylor’s Theorem) Suppose f : R
n → R is continuously

differentiable and that s ∈ R
n. Then f has a linear approximation for some

t ∈ (0, 1)

f(x+ s) = f(x) + 〈s,∇f(x+ ts)〉 . (2.11)

If f is twice differentiable then

∇f(x+ s) = ∇f(x) +

∫ 1

0

∇2f(x+ ts) s dt . (2.12)

and

f(x+ s) = f(x) + 〈s,∇f(x+ ts)〉 +
1

2

〈
s,∇2f(x+ ts)s

〉
. (2.13)

for some t ∈ (0, 1).

2.3 Unconstrained Optimization

Recall that the unconstrained optimization problem can be stated as

min
x∈Rn

f(x) . (2.14)

However, we will focus on the characterization of local minima. Recall that

a linear operator A : R
n → R

n is positive semi-definite if

〈y, Ay〉 ≥ 0, y ∈ R
n

and positive definite if

〈y, Ay〉 > 0, y ∈ R
n, y 6= 0.

We use the abbreviations A ≥ 0 to indicate positive semi-definiteness and

A > 0 to indicate positive definiteness.
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Theorem 2.3.1. (First-Order Necessary Conditions) Suppose f : U → R,

where U is a neighborhood of a point x∗ in R
n, is continuously differentiable

on U . If x∗ is a local minimizer of f then

∇f(x∗) = 0. (2.15)

Proof. Suppose by way of contradiction that ∇f(x∗) 6= 0. Set s = −∇f(x∗)

so that sT∇f(x∗) = −‖∇f(x∗)‖2 < 0. By continuity there exists M such

that for all 0 ≤ t ≤M

sT∇f(x∗ + ts) < 0 .

Taylor’s theorem says for any 0 < t∗ ≤M

f(x∗ + t∗s) = f(x∗) + t∗ 〈s,∇f(x∗ + ts)〉

for some 0 < t < t∗. Hence f(x∗ + t∗s) < f(x∗) for any 0 < t∗ ≤ M . Since

any neighborhood N(x∗) will contain at least one point at which f(x∗ +

t∗s) < f(x∗) for some t∗ this contradicts the assumption that x∗ is a local

minimizer.

Theorem 2.3.2. (Second-Order Necessary Conditions) Suppose f : U → R,

where U is a neighborhood of a point x∗ in R
n, and ∇2f is continuous on U .

If x∗ is a local minimizer of f then (2.15) holds and

∇2f(x∗) ≥ 0 . (2.16)

Proof. We already know that (2.15) holds from the previous theorem. Sup-

pose by way of contradiction that ∇2f(x∗) is not positive semi-definite. Then

there is an s ∈ R
n such that sT∇2f(x∗)s < 0. By continuity of ∇2f at x∗

there exists M > 0 such that sT∇2f(x∗ + ts)s < 0 for all 0 ≤ t ≤M .Taylor’s

theorem says for any 0 < t∗ ≤M

f(x∗ + t∗s) = f(x∗) + t∗ 〈s,∇f(x∗)〉 +
1

2
(t∗)2

〈
s,∇2f(x∗ + ts)s

〉
< f(x∗)
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for some 0 < t < t∗. Since any neighborhood N(x∗) will contain at least one

point at which f(x∗+t∗s) < f(x∗) for some t∗ this contradicts the assumption

that x∗ is a local minimizer.

Theorem 2.3.3. (Second-Order Sufficient Conditions) Suppose f : U → R,

where U is a neighborhood of a point x∗ in R
n, and ∇2f is continuous on U .

If ∇f(x∗) = 0 and ∇2f(x∗) > 0 then f has a strict local minimum at x.

Proof. Since ∇2f(x∗) > 0 and ∇2f is continuous there exists an r > 0 such

that ∇2f(z) > 0 for all z ∈ Br(x
∗) = {z : ‖z − x∗‖ < r}. If s 6= 0 and

‖s‖ < r then x∗ + s ∈ Br(x
∗) and hence by Taylor’s theorem

f(x∗ + s) = f(x∗) + 〈s,∇f(x∗)〉 +
1

2

〈
s,∇2f(x∗ + ts)s

〉

= f(x∗) +
1

2

〈
s,∇2f(x∗ + ts)s

〉

for some 0 < t < 1. Since x∗ + ts ∈ Br(x
∗) we have sT∇2f(x∗ + ts)s > 0

which implies f(x∗ + s) > f(x∗). The result follows.

Theorem 2.3.4. Suppose f : R
n → R is convex and differentiable. If x∗

satisfies ∇f(x∗) = 0 then x∗ is a global minimizer of f .

Proof. See Nocedal and Wright (1999, page 17).

2.4 Constrained Optimization

Now consider the problem of minimizing a function f defined on some

subset of R
n subject to the constraint that the solution lie in a closed set C.

For simplicity we assume that f is defined on an open set containing C and

is differentiable everywhere in its domain. The shorthand for our problem is

min
x∈Rn

f(x) subject to x ∈ C .
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Example 2.4.1. Consider a simple example where the objective function has

the form f(x) = x1 + x2 + x3 and we want to restrict our attention to the

region where 4 − x2
1 − x2

2 − x2
3 ≥ 0. Then the feasible region consists of the

ball centered at the origin with radius 2 and its interior.

In the material on unconstrained optimization we saw that finding a

global minimum is difficult in general; see Figure 2.1. However, there are

times when adding constraints to the problem makes this possible; consider

Figure 2.1 with the constraint that 30 ≤ x ≤ 35.

An editorial note: much of the following material is based on the pre-

sentations given by Nocedal and Wright (1999) and Rockafellar and Wets

(1998).

2.4.1 The Tangent Cone

A set K ⊂ R
n is a cone if it contains the origin and x ∈ K implies λx ∈ K

for all λ ≥ 0

Example 2.4.2. Define

F = {(x1, x2) : x1 > 0, x2 ≥ 0} .

Then F is a cone in R
2.

The tangent cone of a set C ⊂ R
n at a point x ∈ C, denoted TC(x), is the

set of all vectors v such that there exists a sequence τn ↓ 0 and a sequence

xn in C converging to x such that

xn − x

τn
→ v

Example 2.4.3. Suppose

C = {x ∈ R
2 : x1 ≥ x2

2, x2 ≥ x2
1} .
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Then the tangent cone at the origin is

TC((0, 0)) = {x ∈ R
2 : x1 ≥ 0, x2 ≥ 0} .

Theorem 2.4.1. TC(x) is a closed cone.

Proof. Exercise.

Another way to think about TC(x) is that it consists of the set of directions

from which sequences xn in C approach x. If none of the xn are equal to x,

let

un =
xn − x

‖xn − x‖ .

The un are unit vectors, so by compactness of the unit sphere there are

convergent subsequences unk
→ u. The tangent cone consists of all such u

and the rays {λu : λ ≥ 0 } generated by such u.

2.4.2 The Variational Inequality

Theorem 2.4.2. If f : U → R, where U is a neighborhood of a point x

in R
n, is differentiable at x, then a necessary condition that f have a local

minimum over a closed set C containing x is

〈∇f(x), v〉 ≥ 0, v ∈ TC(x). (2.17)

Proof. If v ∈ TC(x), there are τn ↓ 0 and xn in C converging to x such that

(xn − x)/τn → v. Note that

f(xn) = f(xn + x− x) = f(x+ (xn − x))

so that the definition of differentiability says (with y = xn − x))

f(xn) − f(x) = 〈∇f(x), xn − x〉 + o (‖xn − x‖) .
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By continuity of the norm

‖xn − x‖
τn

→ ‖v‖.

Hence for any real number c > ‖v‖ there is an integer N such that

‖xn − x‖ ≤ cτn, n ≥ N,

and

f(xn) − f(x)

τn
=

〈
∇f(x),

xn − x

τn

〉
+
o(‖xn − x‖)

τn
→ 〈∇f(x), v〉

If f has a local minimum at x, then the left hand side is eventually greater

than or equal to zero, hence so is the limit on the right.

The variational inequality (2.17) is the generalization of (2.15) to inequality-

constrained problems.

2.4.3 Polars

The polar of a cone K is the cone

K∗ = { v : 〈v, x〉 ≤ 0, x ∈ K } .

K∗ is always a closed convex cone, regardless of whether K is closed or convex

(because it is the intersection of closed half-spaces).

Theorem 2.4.3. (The Double Polar Theorem) If K is a closed convex cone

then K∗∗ = K. In general, K∗∗ is the closed convex hull of K.

2.4.4 Normal Cones

The regular normal cone of a set C ⊂ R
n at a point x ∈ C, denoted

N̂C(x), is the set of all vectors v such that

〈v, y − x〉 ≤ o(‖y − x‖), y ∈ C. (2.18)
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The elements of N̂C(x) are called regular normals to C at x.

The normal cone of a set C ⊂ R
n at a point x ∈ C, denoted NC(x), is

the set of all vectors v such that there exists a sequence xn in C converging

to x and a sequence vn → v with vn ∈ N̂C(xn). The elements of NC(x) are

called normals to C at x.

For now, we are mostly interested in the regular normal cone. The normal

cone will become interesting when we consider asymptotics. The regular

normal cone is interesting because of its close connection with the tangent

cone.

Theorem 2.4.4. N̂C(x) = TC(x)∗.

This gives an equivalent way of stating the variational inequality (2.17).

Corollary 2.4.5. If f is defined in a neighborhood of x and differentiable at

x, then a necessary condition that f have a local minimum over C at x ∈ C

is

−∇f(x) ∈ N̂C(x). (2.19)

2.4.5 Lagrange Multipliers

We now consider the problem of minimizing a function f defined on a

subset of a Euclidean space subject to a finite set of equality and inequality

constraints

minimize f(x)

subject to gi(x) = 0, i ∈ E

gi(x) ≤ 0, i ∈ I

(2.20)

where I and E are disjoint index sets, and the gi are differentiable functions.

This is a special case of the preceding set-up with

C = { x : gi(x) = 0, i ∈ E and gi(x) ≤ 0, i ∈ I } . (2.21)
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C is a closed set because the gi are continuous. A point x is said to be feasible

if it satisfies the constraints so x ∈ C.

The method of Lagrange multipliers is a trick for converting constrained

problems to simpler problems with additional variables, the Lagrange multi-

pliers. Form the Lagrangian function

L(x) = f(x) +
∑

i∈E∪I

λigi(x), (2.22)

the λi being the Lagrange multipliers.

Theorem 2.4.6. A sufficient condition that x solve the problem (2.20) is

that there exist Lagrange multipliers λ such that

(a) [minimization] x minimizes the Lagrangian (2.22).

(b) [primal feasibility] gi(x) = 0, i ∈ E and gi(x) ≤ 0, i ∈ I.

(c) [dual feasibility] λi ≥ 0, i ∈ I.

(d) [complementary slackness] λigi(x) = 0, i ∈ I.

Proof. Let y be any feasible point. By (b) and (d) L(x) = f(x). By (a)

L(x) ≤ L(y). By (b) and (c)

∑

i∈I

λigi(y) ≤ 0 and
∑

i∈E

λigi(y) = 0,

so L(y) ≤ f(y). Thus

f(x) = L(x) ≤ L(y) ≤ f(y).

Corollary 2.4.7. If (a) in the theorem is changed to assert only that x is a

local minimizer of the Lagrangian, then the conditions are sufficient for x to

be a local minimizer of f over C.
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Proof. Consider the problem restricted to a neighborhood of x over which

the Lagrangian achieves its minimum at x.

A necessary condition for condition (a) of the theorem to hold is that the

derivative be zero. Replacing (a) of the theorem by

(a) [zero gradient] ∇L(x) = ∇f(x) +
∑

i∈E∪I λi∇gi(x) = 0.

gives the so-called Kuhn-Tucker conditions Kuhn and Tucker (1951). With-

out further assumptions, this set of conditions is now neither necessary nor

sufficient, not sufficient because ∇L(x) = 0 does not guarantee even a local

minimum and not necessary because no Lagrange multiplier vector λ need

exist that makes the conditions hold.

2.4.6 Examples

Normal Means, Diagonal Covariance

Let x be a normal random vector with unknown mean vector µ and

known covariance matrix Σ and precision matrix Σ−1, which in this section

are assumed to be diagonal and positive definite. We wish to estimate µ

under the constraint µi ≥ 0, for all i. The estimation procedure is maximum

likelihood, or equivalently, weighted least squares. The estimate is found by

minimizing 1
2
(x−µ)T Σ−1(x−µ) with respect to µ subject to the constraints.

The Lagrangian is

L(µ) =
1

2
(x− µ)TΣ−1(x− µ) − λTµ,

λ being the vector of Lagrange multipliers. The reason for the minus sign

is that to plug into (2.22) we need to put the the constraints in the form

gi(µ) = −µi ≤ 0. The Kuhn-Tucker conditions are thus

(a) ∇L(µ) = −Σ−1(x− µ) − λ = 0.
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(b) µi ≥ 0, for all i.

(c) λi ≥ 0, for all i.

(d) λiµi = 0, for all i.

Complementary slackness requires λi = 0 or µi = 0. If λi = 0 then µi = xi,

and primal feasibility requires xi ≥ 0. If µi = 0, then 0 ≤ λi = −σiixi, so

xi ≤ 0. Thus we have our solution

µi =





xi, xi ≥ 0

0, xi ≤ 0

Since the Lagrangian is a positive definite quadratic form its unique min-

imum is found where (a) holds, so this solution is a global minimum by

Theorem 2.4.6.

Linear Regression

Let y = Xβ + e, where e is a vector of i. i. d. standard normal errors.

We wish to estimate β by maximum likelihood (least squares) subject to the

constraint β ≥ 0. The Lagrangian is

L(β) =
1

2
(y −Xβ)′(y −Xβ) − λ′β,

and the Kuhn-Tucker conditions are

(a) ∇L(β) = −X ′(y −Xβ) − λ = 0.

(b) β ≥ 0.

(c) λ ≥ 0.

(d) λiβi = 0, for all i.
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Define s = X ′(y −Xβ) (this is the score, the gradient of the log likelihood).

Then (a) becomes s = −λ ≤ 0. This is as far as we can go in reducing the

Kuhn-Tucker conditions. There is no closed form solution. We are to find a

β such that

s(β) = X ′(y −Xβ) ≤ 0

satisfying complementary slackness: si = 0 or βi = 0. Again because the

Lagrangian is a positive definite quadratic function, any such solution is a

global minimum.

Isotonic Regression

Suppose that we observe random variables

yi = µi + ei

where µi are unknown parameters and the ei are independent and and iden-

tically distributed mean zero normal “errors.” The isotonic regression as-

sumption is that the µi are ordered

µ1 ≤ µ2 ≤ · · · ≤ µn (2.23)

For this example, we also assume that the error variance σ2 is known, al-

though the isotonic regression estimator is unchanged if σ2 is an unknown pa-

rameter. As always with normal errors, maximum likelihood is least squares.

The regression problem is to minimize

f(µ) =

n∑

i=1

1
2
(yi − µi)

2

subject to the n− 1 inequality constraints (2.23). Thus the Lagrangian is

L(µ) =

n∑

i=1

1
2
(yi − µi)

2 +

n−1∑

i=1

λi(µi − µi+1)
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Since this is a quadratic function of µ a zero of the Lagrangian is the global

minimizer, and the Kuhn-Tucker conditions are sufficient conditions for a

global minimizer in the isotonic regression problem.

The first K-T condition is

∂L(µ)

∂µi
= µi − yi + λi − λi−1 = 0, i = 1, . . . , n (2.24)

if we introduce λ0 = λn = 0 to allow for the fact that the i = 1 and i = n

cases involve only one real Lagrange multiplier. We will refer to (2.24) as the

“minimization” condition rather than the “zero gradient” condition because

it does characterize the global minimum of the Lagrangian function.

Complementary slackness requires that either µi = µi+1 or λi = 0 for

i = 1, . . ., n − 1. Consider a block of equal µ values of length l starting at

r + 1, that is,

µr < µr+1 = µr+2 = · · · = µr+l < µr+l+1 (2.25)

Complementary slackness implies λr = λr+l = 0. Hence

r+l∑

i=r+1

∂L(µ)

∂µi
=

r+l∑

i=r+1

(µi − yi)

the other λ’s canceling because of the telescoping sum. Hence

µr+1 = µr+2 = · · · = µr+l =
1

l

r+l∑

i=r+1

yi (2.26)

Thus the isotonic regression estimator is a step function with each step height

being the average of the y values over the step. We will refer to (2.26)

as the “minimization plus complementary slackness” condition because it

encompasses those two of the four K-T conditions. The isotonic regression

estimator must satisfy (2.26) for each step characterized by (2.25).

The hard part is now figuring out where to place the steps. To do that

we need to use the other two K-T conditions. Primal feasibility requires that
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the step heights increase. In order to apply dual feasibility we need to isolate

the remaining Lagrange multipliers. Returning to the step characterized by

(2.25), we now sum fewer terms of (2.24). For k < l

r+k∑

i=r+1

∂L(µ)

∂µi
=

r+k∑

i=r+1

(µi − yi) + λr+k = 0.

Hence dual feasibility requires

r+k∑

i=r+1

(µi − yi) = −λr+k ≤ 0, k = 1, . . . , l − 1,

or

µr+1 = µr+2 = · · · = µr+l ≤
1

k

r+k∑

i=r+1

yi, k = 1, . . . , l − 1, (2.27)

We will refer to (2.27) as the “dual feasibility” condition for isotonic regres-

sion.

This gives us a complete characterization of the isotonic regression esti-

mator: Step heights are determined by the minimization plus complementary

slackness condition (2.26), if primal feasibility holds (step heights are increas-

ing) and dual feasibility (2.27) holds for each step, then this is the unique

solution to the isotonic regression problem.

The Pool Adjacent Violators Algorithm

How does one find the isotonic regression estimator? That is, how does

one find steps such that the Kuhn-Tucker conditions are satisfied? An effec-

tive algorithm for solving the isotonic regression is the pool adjacent violators

algorithm (PAVA). It works as follows.

1. [initialization] Start with any estimate µ that satisfies all the Kuhn-

Tucker conditions except primal feasibility, for example, µ = y.
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2. [pool adjacent violators] If primal feasibility is not satisfied there are

two adjacent steps that are not in increasing order: for some r, l, and

m

µr 6= µr+1 = · · · = µr+l > µr+l+1 = · · · = µr+l+m 6= µr+l+m+1. (2.28)

Combine the two steps into one satisfying (2.26), that is, redefine µr+1,

. . ., µr+l+m to be

1

l +m

r+l+m∑

i=r+1

yi. (2.29)

Repeat this step until primal feasibility is satisfied.

We claim that the PAV update (step 2 of the algorithm) preserves all

of the K-T conditions except primal feasibility. Accepting that claim for

the moment, we see that the algorithm must find the isotonic regression

solution, because it terminates only if primal feasibility is also satisfied. It

must terminate because the number of steps decreases in each execution of

step 2, and if it does not terminate before collapsing down to a single step

(all µ’s equal) it must terminate then because that trivially satisfies primal

feasibility.

So now we need to show that the PAV update preserves the other three

K-T conditions, that is, it satisfies (2.26) and (2.27) for each (new) step after

the pooling operation. Clearly, both these equations hold for the steps that

are unchanged, and (2.26) is satisfied for the new step by definition of the

pooling operation, so we only need to show dual feasibility for the new step.

For this discussion, let µi denote the estimate at the beginning of the PAV

update, and denote the height (2.29) of the new step by µ̄. Then, since the

minimization plus complementary slackness condition is assumed to hold for

the old estimate,

µ̄ =
l

l +m
µr+l +

m

l +m
µr+l+1. (2.30)
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Thus

µr 6= µr+1 = · · · = µr+l > µ̄ > µr+l+1 = · · · = µr+l+m 6= µr+l+m+1.

What we must show is dual feasibility for the new step, which is

µ̄ ≤ 1

k

r+k∑

i=r+1

yi, k = 1, . . . l +m− 1. (2.31)

Clearly (2.31) holds for k < l because (2.27) implies

µ̄ < µr+l ≤
1

k

r+k∑

i=r+1

yi,

and by assumption (2.27) holds at the beginning of each PAV update. For

k ≥ l, we have

1

k

r+k∑

i=r+1

yi =
l

k
µr+l +

1

k

r+k∑

i=r+l+1

yi

≥ l

k
µr+l +

k − l

k
µr+l+1, (2.32)

the equality being minimization plus complementary slackness for the old

step from r + 1 to r + l) and the inequality being dual feasibility for the old

step from r + l + 1 to r + l +m. If we think of the right hand side of (2.32)

as a function of a continuous variable k, that is,

g(x) =
l

x
µr+l +

x− l

x
µr+l+1

then its derivative is

g′(x) = − l

x2
(µr+l − µr+l+1),

which is strictly negative by (2.28). Thus g is a decreasing function, and

g(l + m) = µ̄ by (2.30), so the right hand side of (2.32), which is g(k) is

greater than µ̄ and that is dual feasibility for the new step.
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2.4.7 Constraint Qualification

Let A(x) ⊂ I denote the active set of constraints, those satisfied with

equality at x

A(x) := { i ∈ I : gi(x) = 0 } .

Define the set

KC(x) := { v : 〈∇gi(x), v〉 = 0, i ∈ E and 〈∇gi(x), v〉 ≤ 0, i ∈ A(x) } .

(2.33)

Lemma 2.4.8. TC(x) ⊂ KC(x).

Proof. Suppose v ∈ TC(x) so that there are xn → x in C and τn ↓ 0 such

that (xn − x)/τn → v. Then by continuity of gi for any i ∈ A(x) ∪E

gi(xn) − gi(x)

τn
→ 〈∇gi(x), v〉 .

Since the left hand side is less than or equal zero for i ∈ A(x) and equal to

zero for i ∈ E, it follows that v ∈ KC(x).

Theorem 2.4.9. If all the constraints are linear TC(x) = KC(x).

Proof. Suppose v ∈ KC(x) and the constraints are linear, that is,

gi(x) = 〈ai, x〉 + bi

for some vector of scalars ai and a scalar bi for each i. We claim that there

exists an ǫ > 0 such that xτ = x+ τv ∈ C, whenever 0 ≤ τ < ǫ. This proves

v ∈ TC(x), because (xτ − x)/τ = v trivially converges to v as τ ↓ 0. Thus

it only remains to prove the claim. There are three kinds of constraints to

consider.

(Equality Constraints). Since gi is an equality constraint

gi(xτ ) = 〈ai, x〉 + bi + τ 〈ai, v〉 = gi(x) + τ 〈ai, v〉 = τ 〈ai, v〉 . (2.34)
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If gi(x) = 〈ai, x〉+bi then ∇gi(x) = ∇〈ai, x〉 = ai. Since v ∈ KC(x) it follows

that

〈ai, v〉 = 〈∇gi(x), v〉 = 0

and hence

gi(xτ ) = gi(x+ τv) = 0, τ ∈ R

so that xτ ∈ C.

(Active Inequality Constraints). If gi is an active inequality constraint,

then (2.34) still holds. The first term on the right is again zero because gi is

active, and the second term is nonpositive if τ ≥ 0 by definition of KC(x).

Hence for active inequality constraints

gi(xτ ) = gi(x+ τv) ≤ 0, 0 ≤ τ.

(Inactive Inequality Constraints). If gi is an inactive inequality constraint,

then gi(x) < 0, hence by continuity, there exists an ǫi > 0 such that

gi(xτ ) = gi(x+ τv) < 0, 0 ≤ τ < ǫi

Thus we see that if we take ǫ = mini ǫi, that xτ satisfies all constraints

when 0 ≤ τ < ǫ. That establishes the claim and the theorem.

Theorem 2.4.10. (Kuhn-Tucker constraint qualification) If KC(x) = TC(x)

and f is differentiable at x, then the Kuhn-Tucker conditions are necessary

conditions for f to have a local minimum at x.

Proof. If f has a local minimum at x then (2.19) holds. Consider the cone

WC(x) = { λ∇gi(x) : i ∈ A(x) and λ ≥ 0 or i ∈ E and λ ∈ R } .

By assumption KC(x) = TC(x), so N̂C(x) = KC(x)∗ by (2.33) KC(x) =

WC(x)∗. Hence N̂C(x) = WC(x)∗∗. Thus by the double polar theorem N̂C(x)
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is the closed convex hull of WC(x), so there are λi, i ∈ A(x) ∪ E, such that

λi ≥ 0, i ∈ A(x) and

−∇f(x) =
∑

i∈A(x)∪E

λi∇gi(x)

And this implies the Kuhn-Tucker conditions.

We would now like to find some condition weaker than that of Theo-

rem 2.4.9 that implies the Kuhn-Tucker constraint qualification TC(x) =

KC(x). The following theorem is taken from Rockafellar and Wets (1998).

Theorem 2.4.11. The following two sets of conditions are equivalent. (First

condition) The set

Λ(x) =
{
λ ∈ R

I∪E : λi ≥ 0, i ∈ I and λi = 0, i ∈ I \ A(x)
}

contains no nonzero λ such that
∑

i λi∇gi(x) = 0. (Second set of conditions)

(a) The gradients ∇gi(x), i ∈ E are a linearly independent set of vectors.

(b) The set

K ′
C(x) = { v : 〈∇gi(x), v〉 = 0, i ∈ E and 〈∇gi(x), v〉 < 0, i ∈ A(x) }

is nonempty.

If either set of conditions hold, then TC(x) = KC(x).

Proof. Since neither condition involves the inactive constraints, we may as-

sume without loss of generality that A(x) = I (there are no inactive con-

straints).

The first condition also implies the linear independence of the gradients

of the equality constraints. Suppose without loss of generality that E =

{1, . . . , m}. Define a set of vectors bi, i = m + 1, . . . , n, such that the set
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∇g1(x), . . ., ∇gm(x), bm+1, . . ., bn forms a basis for R
n. Define F : R

n → R
n

by

Fi(y) =





gi(y), i ≤ m

〈bi, y − x〉 , i > m

The Jacobian of Fi is the n×n matrix with rows ∇g1(x), . . ., ∇gm(x), bm+1,

. . ., bn, which is nonsingular at x by construction, and hence, by continuity,

nonsingular in a neighborhood W of x in R
n. Thus by the inverse function

theorem there is a neighborhood U of F (x) = 0, such that F−1 exists and is

differentiable on U . Writing J = ∇F (x) for the Jacobian at x, the inverse

Jacobian is ∇F−1(0) = J−1. In terms of the new variables u = F (y) we must

solve

minimize f
(
F−1(u)

)

subject to ui = 0, i = 1, . . . , m

gi

(
F−1(u)

)
≤ 0, i ∈ I

Setting u1 = · · · = um = 0, we obtain a problem involving only inequality

constraints and the n − m variables um+1, . . . , un. If the assertions of the

theorem hold for this problem, then they hold for the original problem, be-

cause TC(x), KC(x), K ′
C(x), and the rays {λ∇gi(x) : λ ≥ 0 } along gradient

vectors are geometric objects, not changed by transformation of coordinates.

Hence without loss of generality, we may assume that the problem involves

only inequality constraints.

If the second set of conditions, now reduced to (b) alone, hold then if

λ ≥ 0 and λ 6= 0 we have 〈∑i λi∇gi(x), v〉 < 0 for some vector v, and this

is impossible if the first condition fails. Conversely, if (b) fails to hold, then

there is no hyperplane strongly separating the origin and convex hull of the

∇gi(x). Such a half-space must exist by the separating hyperplane theorem

(Rockafellar, 1970, Corollary 11.4.2) unless the origin is in the convex hull

of the ∇gi(x), but then the first condition also fails to hold. This shows the

equivalence of the two sets of conditions.



2.4. CONSTRAINED OPTIMIZATION 53

By Theorem 2.4.8 TC(x) ⊂ KC(x). We need only prove the reverse inclu-

sion. Suppose w ∈ K ′
C(x). The

gi(x+ τw) − gi(x)

τ
→ 〈∇gi(x), w〉 < 0, as τ ↓ 0.

Hence the left hand side is strictly negative for 0 < τ < ǫ for some ǫ > 0.

Consequently x + τw ∈ C for such τ , and w ∈ TC(x). Thus TC(x), being

closed, contains the closure of K ′
C(x), which is KC(x).

2.4.8 Second Order Conditions

Suppose the Kuhn-Tucker conditions hold. What are a necessary con-

dition or a sufficient condition for the solution to be a local minimum? A

sufficient condition is the simpler of the two.

An obvious sufficient condition is that the gradient of the Lagrangian

be zero and Hessian of the Lagrangian strictly positive definite. Then it

follows from Theorem 2.4.6 that the Lagrangian has a local minimum at

the proposed solution, which is thus a local minimum of the constrained

optimization problem. But this condition is far too strong.

Lemma 2.4.12. Suppose the Kuhn-Tucker conditions hold at x with La-

grange multipliers λ, but x is not a local minimum of the problem with ob-

jective function f . Let xn be a sequence in C converging to x such that

f(xn) < f(x) and (xn − x)/‖xn − x‖ → v. Then 〈∇gi(x), v〉 = 0, for every

i ∈ A(x) such that λi > 0. Also 〈∇gi(x), v〉 = 0, for every i ∈ E.

Proof. The assertion about equality constraints follows from Lemma 2.4.8.

This also implies that 〈∇gi(x), v〉 ≤ 0, i ∈ A(x). Suppose to get a contradic-

tion that λk > 0 and 〈∇gk(x), v〉 < 0 so λk 〈∇gk(x), v〉 < 0. Then the first

Kuhn-Tucker condition and complementary slackness imply

−〈∇f(x), v〉 =
∑

i∈E∪A(x)

λi 〈∇gi(x), v〉 < 0 .
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But our assumptions imply

0 ≥ f(xn) − f(x)

‖xn − x‖ → 〈f(x), v〉 ,

so we have the contradiction and λi > 0 must imply 〈∇gi(x), v〉 = 0.

This motivates the following definition. A constraint is strongly active if

it is active and its Lagrange multiplier is nonzero. The set of such constraints

is

As(x) = { i ∈ I : gi(x) = 0 and λi > 0 } .

Since the Lagrange multipliers are not necessarily uniquely defined, this de-

pends on the choice of Lagrange multipliers. Also define the set

D = {x : gi(x) = 0, i ∈ E ∪As(x) and gi(x) ≤ 0, i ∈ I \ As(x) } .

Which is a subset of the original constraint set defined by imposing the

strongly active constraints with equality.

The lemma implies that any direction v along which there is a sequence

xn → x such that f(xn) < f(x) lies in the closed convex cone

KD(x) = { v : 〈∇gi(x), v〉 = 0, i ∈ E ∪As(x)

and 〈∇gi(x), v〉 ≤ 0, i ∈ A(x) \ As(x) }

Hence we only need to check the Hessian in directions along vectors v ∈
KD(x).

Theorem 2.4.13. Suppose the Kuhn-Tucker conditions hold, H = ∇2L(x),

and

vTHv > 0, ∀v ∈ KD(x).

Then the optimization problem has a strict local minimum at x.
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Proof. By complementary slackness and primal feasibility f(x) = L(x), hence

for sequences xn → x in C and τn ↓ 0 such that f(xn) < f(x) and (xn −
x)/τn → v

0 ≥ f(xn) − f(x)

= L(xn) −∑i∈I λigi(xn) − L(x)

≥ L(xn) − L(x)

= (xn − x)TH(xn − x) + o(‖xn − x‖2)

Dividing by τ 2
n and letting n go to ∞ gives 0 ≥ vTHv. By Lemma 2.4.12

v ∈ KD(x). But this contradicts the assumptions of the theorem. Hence

there exists no such sequence xn and x is a strict local minimum.

It would be nice if vTHv ≥ 0, v ∈ KD(x) were a necessary condition, but,

as with the first order conditions, there there is a gap involving constraint

qualification. By Lemma 2.4.8 TD(x) ⊂ KD(x), but the inclusion may be

strict. If so, our necessary condition is weaker.

Theorem 2.4.14. Suppose the Kuhn-Tucker conditions hold, H = ∇2L(x),

and the optimization problem has a strict local minimum at x. Then

vTHv ≥ 0, ∀ v ∈ TD(x).

Proof. For any v ∈ TD(x) there are xn → x in D and τn ↓ 0 such that

(xn − x)/τn → v. Also f(y) = L(y) for any y ∈ D. Thus for all large enough

n

0 ≤ f(xn) − f(x)

= L(xn) − L(x)

= (xn − x)TH(xn − x) + o(‖xn − x‖2)

Dividing by τ 2
n and letting n go to ∞ gives vTHv ≥ 0.

Theorem 2.4.11, of course, gives conditions under which TD(x) = KD(x).
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2.5 Appendix

2.5.1 Linear and Quadratic Functions

If f is a linear transformation represented by a matrix A so that f(x) =

Ax, then

f(x+ y) = f(x) + Ay,

which satisfies (2.7) (there is no little oh term). Thus ∇f(x) = A = f . A

linear function is its own derivative in the abstract view that derivatives are

linear transformations. Moreover, the derivative is constant, not depending

on x.

If q is a quadratic form, represented by a symmetric matrix A so that

q(x) = 1
2
〈x,Ax〉, then

q(x+ y) = 1
2
〈x+ y, A(x+ y)〉

= 1
2
〈x,Ax〉 + 〈Ax, y〉 + 1

2
〈y, Ay〉

= q(x) + 〈Ax, y〉 + 1
2
〈y, Ay〉

The last term on the right hand side is o(‖y‖). Hence the derivative ∇q(x)
is the linear map y 7→ 〈Ax, y〉, which is represented by the vector Ax.

Thus q is differentiable everywhere and its derivative ∇q(x) = Ax is a

linear function, considered as a function of x. Hence ∇2q(x) = A, for all x.

The Chain Rule

If f : U → R
m, where U is a neighborhood of x in R

n, is differentiable at x

and if g : V → R
k, where V is a neighborhood of f(x) in R

m is differentiable

at f(x), then the composition g ◦ f is defined on some set W which is a

neighborhood of x in R
n and is also differentiable at x, the derivative being

given by the chain rule

∇(g ◦ f)(x) = ∇g[f(x)]∇f(x).
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The proof is very much like the proof of the chain rule for univariate

functions. A differentiable function is continuous so f−1(V ) is a neighborhood

of x, hence so is W = f−1(V ) ∩ U . Then

g[f(x+ y)] − g[f(x)] = ∇g[f(x)][f(x+ y) − f(x)] + o
(
f(x+ y) − f(x)

)

= ∇g[f(x)][∇f(x)y + o(‖y‖)] + o
(
∇f(x)y + o(‖y‖)

)

= ∇g[f(x)]∇f(x)y + o(‖y‖)

Linear and Quadratic Approximation

We say a function f : U → R, where U is a neighborhood of x in R
n has

a linear approximation at x if

f(x+ y) = a+ 〈b, y〉 + o(‖y‖) (2.35)

for some a ∈ R and b ∈ R
n. We say f has a quadratic approximation at x if

f(x+ y) = a + 〈b, y〉 + 1
2
〈y,Hy〉+ o(‖y‖2) (2.36)

for some a ∈ R and b ∈ R
n and some linear operator H on R

n. Note that we

may assume H is symmetric, since the bilinear form 〈y,Hy〉 only depends

on the symmetric part of H .

Note also that we have changed terminology. Following the usage of linear

algebra, a linear transformation f satisfies f(0) = 0 and a quadratic form

q satisfies q(0) = 0 and ∇q(0) = 0. Now we are changing to the usage

common in statistics, that a linear function can include a constant term and

a quadratic function can include constant and linear terms. We hope no

confusion will result.

Theorem 2.5.1. A function f : U → R, where U is a neighborhood of x in

R
n has a linear approximation at x if and only if it is differentiable at x and

in (2.35) a = f(x) and b = ∇f(x).

If f is twice differentiable at x then it has a unique quadratic approxima-

tion (2.36) with a = f(x), b = ∇f(x), and H = ∇2f(x).
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Proof. That differentiability implies a linear approximation is true by defi-

nition (2.7). Conversely, if f has a linear approximation (2.35), then setting

y = 0 shows that a = f(x) and then (2.35) satisfies the definition (2.7) with

∇f(x) = b.

If f is twice differentiable, then

∇f(x+ y) = ∇f(x) + ∇2f(x)y + o(‖y‖)

Let u = y/‖y‖ be the unit vector along y, and take the inner product with

u giving

〈∇f(x+ y), u〉 = 〈∇f(x), u〉 +
〈
u,∇2f(x)y

〉
+ o(‖y‖)

Now write s = ‖y‖, so that y = su and

〈∇f(x+ su), u〉 = 〈∇f(x), u〉 + s
〈
u,∇2f(x)u

〉
+ o(s)

Note that by the chain rule, the left hand side is the ordinary derivative of

s 7→ f(x+su), a real-valued function of one real variable. Now integrate with

respect to s from zero to t, giving by the fundamental theorem of calculus

f(x+ tu) − f(x) = t 〈∇f(x), u〉 + 1
2
t2
〈
u,∇2f(x)u

〉
+

∫ t

0

sψ(s) ds

for some o(1) function ψ. The integral is bounded by

t2

2
sup

0≤s≤t
ψ(s)

which is o(t2). Now letting ‖y‖ = t and plugging back in gives

f(x+ y) = f(x) + 〈∇f(x), y〉 + 1
2

〈
y,∇2f(x)y

〉
+ o(‖y‖2)

which is the desired quadratic approximation.

It remains only to be shown that this quadratic approximation is unique.

If (2.36) holds, then setting y = 0 gives a = f(x), and 1
2
〈y,Hy〉 = o(‖y‖2)

so b = ∇f(x). This implies

〈
y, [H −∇2f(x)], y

〉
= o(‖y‖2) (2.37)
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which can only happen if H = ∇2f(x), because if the left hand side of (2.37)

is nonzero for any vector y, then

s 7→
〈
sy, [H −∇2f(x)], sy

〉

is a nonzero quadratic function of the scalar variable s, which is not o(s2).

Corollary 2.5.2. The second derivative of a scalar-valued function is a sym-

metric linear operator.



60 CHAPTER 2. OPTIMALITY CONDITIONS



Chapter 3

Optimization Algorithms

3.1 Overview of Algorithms

An optimization algorithm takes a starting point x0 and generates a se-

quence of iterates x0, x1, x2, . . . with the goal of better approximating a so-

lution point at each step. The algorithms are based on a recursion, that is,

given a point xn a recursion will generate xn+1 with a lower value of the

objective function, f . There are two basic strategies for creating a recipe for

the recursion: line search and trust region.

For an algorithm that employs a line search strategy each iteration chooses

a search direction sn. Then it finds the αn that minimizes the one dimensional

function

w(α) = f(xn + αsn)

and sets xn+1 = xn + αsn. An exact minimization of w(α) is expensive

and turns out to be unnecessary. Instead the basic strategy is to simply

approximate the minimum with a new step length and direction to obtain

xn+1.

Another, often more effective, strategy is the trust region method. The

61
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idea here is to construct a model function wn that mimics the behavior of

the objective function in a region centered at the current step xn. Since the

model is not going to be a good approximation to f for all x we restrict the

search for a minimum to a region centered at xn. In this setting we nearly

always use a quadratic model for f

wn(x) = f(xn) + (x− xn)T∇f(xn) + 1
2
(x− xn)T∇2f(xn)(x− xn) .

But this model is only good in the neighborhood of the current iterate xn,

say for x satisfying ‖x − xn‖ ≤ hn for some constant hn > 0, which we call

a trust region because that is where we “trust” the quadratic model. Thus,

given xn we minimize wn(x) over ‖x− xn‖ ≤ hn to obtain xn+1.

An important issue with any iterative procedure for minimizing f is that

of convergence. That is, will the algorithm terminate at a sensible point.

In some very special cases, such as quadratic programming, this may occur

in a finite number of steps but for the general problem convergence is only

possible in a limiting sense.

3.1.1 Big Oh Notation

“Big oh” and “little oh” notation are complementary. Between the two,

we have a useful description of the convergence behavior of most functions.

“Big oh one” is just another name for locally bounded. A function ψ :

U → R
m, where U is a neighborhood of zero in R

n, is said to be O(1), if

lim sup
x→0

ψ(x) <∞,

or in other words if there exists an ǫ > 0 and M <∞ such that

ψ(x) ≤M, ‖x‖ < ǫ.

The same caution we gave for little oh notation also applies to big oh notation:

it is a code not decoded according to the usual rules of mathematics.
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More generally, given two functions f and g from a neighborhood U of

zero in R
n to R

m, we say that f is O
(
g(x)

)
, read “big oh of g(x)” if

f(x) = |g(x)|ψ(x)

for some O(1) function ψ.

3.1.2 Types of Convergence

Suppose an iterative algorithm converges, that is, the iterates xn converge

to a local minimum x. Let εn = xn − x be the error at iteration n. The

algorithm converges linearly if

‖εn+1‖ = O(‖εn‖), (3.1)

converges quadratically if

‖εn+1‖ = O(‖εn‖2), (3.2)

and converges superlinearly if

‖εn+1‖ = o(‖εn‖). (3.3)

Note that linear convergence doesn’t guarantee much since it doesn’t even

imply εn → 0, though this is implied by the word “convergence” in “linear

convergence.”

3.2 Newton

Newton’s algorithm is more commonly called the Newton-Raphson algo-

rithm by statisticians, but it is so important in optimization and has so many

variants, quasi-Newton, safeguarded Newton, and so forth, that the longer

eponym would be cumbersome. Newton’s algorithm is a method of solving
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simultaneous nonlinear equations. Suppose g : R
n → R

n is a differentiable

map and we are to solve the equation g(x) = 0. Write J(x) = ∇g(x). Now

J(x) is an n× n matrix, generally nonsymmetric, called the Jacobian of the

map g at the point x. At any point xn

g(x) = g(xn) + J(xn)(x− xn) + o(‖x− xn‖).

Setting this to zero and ignoring higher order terms, yields

x = xn − J(xn)−1g(xn)

if J(xn) is nonsingular.

If the one-term Taylor expansion is a perfect approximation, this is the

solution. In general it is not, but we take it to be the next point in an

iterative scheme. Let x0 be any point, and generate a sequence x1, x2, x3, . . .

by

xn+1 = xn − J(xn)−1g(xn).

In the context of unconstrained optimization, Newton’s method tries to

find a zero of the gradient of the objective function f . Write g(x) = ∇f(x)

and H(x) = ∇2f(x) for the gradient and Hessian of the objective function,

then H(x) is the Jacobian of g(x), and the Newton update becomes

xn+1 = xn −H(xn)−1g(xn).

Now the Hessian is a symmetric matrix (unlike a general Jacobian).

Another way to look at Newton’s algorithm applied to optimization is

that it replaces the objective function f with a quadratic model

w(x) = f(xn) + (x− xn)′g(xn) + 1
2
(x− xn)′H(xn)(x− xn) . (3.4)

The model function w has no minimum unless H(xn) is positive definite. It

makes no sense to accept a Newton update unless the Hessian is positive

definite.
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3.2.1 What’s Bad About Newton

Despite the comments at the end of the preceding section, Newton is not

an optimization algorithm. It pays no attention to the values f(xn) of the

objective function and indeed need not compute them if it can compute the

gradient and Hessian without computing f . It just as happily goes uphill as

downhill and indeed has no idea which way it is going.

If started close enough to a strict local minimum, Newton’s method will

converge. But it is usually impossible to tell how close is close enough.

Kantorovich and Akilov (1964, Ch. 18) describes what is known about the

convergence properties of Newton’s method. In general it can be difficult to

verify the conditions that imply convergence.

Even in very simple problems, Newton fails if started far from the solution.

Consider maximum likelihood for a binomial distribution with one success

and one failure. The log likelihood is

l(θ) = log(p(θ)) + log(1 − p(θ)),

where

p(θ) =
eθ

1 + eθ

The first and second derivatives with respect to θ of the log likelihood are

1 − 2p(θ) and − 2p(θ)(1 − p(θ)),

respectively. The Newton update is thus

θn+1 = θn +
1 − 2p(θn)

2p(θn)(1 − p(θn))
.

Define s(θ) = 1−2p(θ) and i(θ) = 2p(θ)(1−p(θ)). If one starts close enough

to the solution (θ = 0, p = 1/2), Newton converges quickly.
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θ p l(θ) s(θ) i(θ) step

1.00000 0.73106 −1.62652 −0.46212 0.39322 −1.1752

−0.17520 0.45631 −1.39396 0.08738 0.49618 0.1761

0.00090 0.50022 −1.38629 −0.00045 0.50000 −0.0009

−1.2 × 10−10 0.50000 −1.38629 0.00000 0.50000 0.0000

Great! But if one starts a bit farther away

θ p l(θ) s(θ) i(θ) step

3.00000 0.95257 −3.09717 −0.90515 0.09035 −10.01787

−7.01787 0.00089 −7.01967 0.99821 0.00179 558.20537

551.18750 1.00000 −∞ −1.00000 0.00000 −∞

where −∞ indicates overflow of the computer’s floating-point arithmetic.

The program crashes.

3.2.2 What’s Good About Newton

When it converges, Newton converges superlinearly, usually quadratically.

Theorem 3.2.1. Suppose xn is a sequence of Newton iterations for mini-

mizing an objective function f converging to a local minimum x∗. Suppose

g(x) = ∇f(x) and H(x) = ∇2f(x) are continuous in a neighborhood of x∗

and H(x∗) is positive definite. Then Newton is superlinearly convergent.

Proof. By the assumptions about g(x) and H(x),

g(y) = g(x) +H(x)(y − x) + o(‖y − x‖) (3.5)

holds for all x and y in some neighborhood of x∗, and

H(y) = H(x∗) + o(1)

A characterization of the Newton update is

0 = g(xn) +H(xn)(xn+1 − xn). (3.6)
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Plugging in Taylor expansions around x∗ for g(xn) and H(xn) in (3.6) gives

0 = g(x∗) +H(x∗)(xn − x∗) + o(‖xn − x∗‖) + [H(x∗) + o(1)] (xn+1 − xn)

= H(x∗)(xn+1 − x∗) + o(‖xn − x∗‖) + o(‖xn+1 − xn‖)

because g(x∗) = 0. Writing εn = xn − x∗ gives

0 = H(x∗)εn+1 + o(‖εn‖) + o(‖εn+1 − εn‖)
= H(x∗)εn+1 + o(‖εn‖) + o(‖εn+1‖)
= H(x∗)εn+1 + o(‖εn‖),

where we have used the triangle inequality and the fact that o(‖εn+1‖) is

negligible compared to H(x∗)εn+1. Since H(x∗) is positive definite, it is

invertible. This proves (3.3).

Quadratic convergence requires a bit more than (3.5).

Theorem 3.2.2. Suppose xn is a sequence of Newton iterations for a func-

tion f converging to a local minimum x∗. Let g(x) = ∇f(x) and H(x) =

∇2f(x). Suppose H(x∗) is positive definite, and suppose

g(y) = g(x) +H(x)(y − x) +O(‖y − x‖2) (3.7)

and

H(y) = H(x) +O(‖y − x‖) (3.8)

for all x and y in some neighborhood of x∗. Then Newton converges quadrat-

ically.

Equation (3.8) is referred to as a Lipschitz condition. Equation (3.7)

is similar, but not usually referred to by that terminology. Both would be

implied by Taylor’s theorem with remainder if third derivatives of f exist.
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Proof. A characterization of the Newton update is

0 = g(xn) +H(xn)(xn+1 − xn).

Using (3.7) and (3.8) to expand around x∗ gives

0 = g(x∗) +H(x∗)(xn − x∗) +O(‖xn − x∗‖2)

+ [H(x∗) +O(‖xn − x∗‖)] (xn+1 − xn)

Since x∗ is a local min, g(x∗) = 0. Thus, writing εn = xn − x∗,

0 = H(x∗)εn+1 +O
(
‖εn‖2 + ‖εn‖ ‖εn+1 − εn‖

)

= H(x∗)εn+1 +O
(
‖εn‖2 + ‖εn‖ ‖εn+1‖

)

= H(x∗)εn+1 +O
(
‖εn‖2

)

The last equality using Theorem 3.2.1. Since H(x∗) is a fixed, positive defi-

nite, invertible matrix, this proves (3.2).

Not only does Newton converge quadratically (under fairly weak regular-

ity conditions). Any algorithm that converges superlinearly is asymptotically

equivalent to Newton.

Theorem 3.2.3 (Dennis-Moré). Suppose xn → x∗ is a sequence of itera-

tions of an optimization algorithm converging to a local minimum of f . Let

g(x) = ∇f(x) and H(x) = ∇2f(x), and suppose H(x∗) is positive definite.

If the algorithm converges superlinearly, then it is asymptotically equivalent

to Newton, in the sense that

xn+1 − xn = ∆n + o(‖∆n‖), (3.9)

where

∆n = −H(xn)−1g(xn)

is the Newton step at xn.
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Proof. Write δn = xn+1 − xn for the steps taken by the algorithm, and

write εn = xn − x∗. So εn+1 = δn + εn. The hypothesis of superlinear

convergence is that εn+1 = o(‖εn‖) or that δn = −εn + o(‖εn‖). Sim-

ilarly the superlinear convergence of Newton asserted by Theorem 3.2.1

implies ∆n = −εn + o(‖εn‖), and this implies δn = ∆n + o(‖εn‖) and

δn = ∆n + o(‖∆n‖). The latter is (3.9).

Corollary 3.2.4. Every superlinearly convergent algorithm is asymptotically

equivalent to any other superlinearly convergent algorithm.

3.2.3 Fisher Scoring

Fisher scoring is Newton modified by replacing observed with expected

Fisher information. To see what this means, we need some definitions. Let

ln(θ) denote the log likelihood for a statistical model (n indicates sample

size, which is fixed throughout most of the discussion). The maximum likeli-

hood problem is to find the point θ̂n, called the maximum likelihood estimate

(MLE), which maximizes ln. The derivative of ln

sn(θ) = ∇ln(θ)

is the score, and minus the second derivative

Jn(θ) = −∇2ln(θ)

is the observed Fisher information. Both of these quantities are random vari-

ables, depending on the data, although this is not indicated by the notation.

When we are finding the MLE we consider the data fixed at the observed

value, in which case sn and Jn are just ordinary functions, but when we

calculate the expected Fisher information we do consider the data random.

Since Jn(θ) is minus the Hessian of ln at θ, the Newton update is

θk+1 = θk + Jn(θk)
−1sn(θk). (3.10)
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The expectation of Jn(θ)

In(θ) = E{Jn(θ)}

is called the expected Fisher information. The Fisher scoring update replaces

(3.10) with

θk+1 = θk + In(θk)
−1sn(θk). (3.11)

Theorem 3.2.5. Let {θk} denote the sequence of iterates of a Fisher scoring

algorithm, and suppose θk → θ∗. Suppose the observed and expected Fisher

information functions Jn and In are continuous at θ∗ and that Jn(θ∗), In(θ∗)

and Jn(θ∗)− In(θ∗) have full rank. Then the Fisher scoring algorithm is not

superlinearly convergent.

Proof. As before write εk = θk − θ∗ and

δk = θk+1 − θk

= In(θk)
−1sn(θk)

∆k = Jn(θk)
−1sn(θk)

for the Fisher scoring and Newton steps, respectively. Then δk → 0 because

θk converges. Also sn is continuous at θ∗ because it is differentiable there.

Hence sn(θk) → sn(θ
∗) and

sn(θk) = In(θk)δk → In(θ∗) · 0 = 0

so sn(θ∗) = 0. Since Jn(θ∗) is assumed invertible and Jn continuous at θ∗,

it follows that Jn(θ) is invertible in some neighborhood of θ∗ so Jn(θk) is

invertible (and the Newton step well defined) for all sufficiently large k, and

∆k = Jn(θk)
−1sn(θk) → Jn(θ

∗)−1 · 0 = 0.

Now write uk = sn(θk)/‖sn(θk)‖ and choose a subsequence so that ukl
→ u

(which is always possible because the uk are unit vectors and the closed unit

ball is compact).
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Now
δkl

‖sn(θkl
)‖ = Jn(θkl

)−1ukl
→ Jn(θ

∗)−1u

and
∆kl

‖sn(θkl
)‖ = In(θkl

)−1ukl
→ In(θ∗)−1u

In order for Fisher scoring and Newton to be asymptotically equivalent, the

limits must agree, that is, Fisher scoring cannot be superlinearly conver-

gent unless Jn(θ
∗)−1u = In(θ∗)−1u, or equivalently unless Jn(θ∗)v = In(θ∗)v,

where v = Jn(θ∗)−1u, but this contradicts the assumption that Jn(θ∗)−In(θ∗)

is full rank.

Example 3.2.1. Recall the example in Section 3.2.1 where we considered

maximum likelihood for a binomial distribution with one success and one

failure. The log likelihood is

l(θ) = log(p(θ)) + log(1 − p(θ)),

where

p(θ) =
eθ

1 + eθ

The first and second derivatives with respect to θ of the log likelihood are

1 − 2p(θ) and − 2p(θ)(1 − p(θ)),

respectively. The expected Fisher information is p(θ)(1−p(θ))(3−p(θ)). The

Fisher scoring update is thus

θk+1 = θk +
1 − 2p(θk)

p(θk)(1 − p(θk))(3 − p(θk))
.

Define s(θ) = 1 − 2p(θ) and i(θ) = p(θk)(1 − p(θk))(3 − p(θk)). The Fisher

scoring algorithm converges more slowly than Newton when given a good

starting point, θ = 1, and doesn’t improve on Newton when started from the

bad point, θ = 3.
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θ p l(θ) s(θ) i(θ)

1.00000 0.731059 -1.62652 -0.462117 0.446101

-0.0359026 0.491025 -1.38662 0.0179494 0.627042

-0.00727712 0.498181 1.38631 0.00363854 0.625447

-0.00145961 0.499635 -1.38629 0.000729803 0.625091

-0.000292091 0.499927 -1.38629 0.000146046 0.625018

-5.8425e-05 0.499985 -1.38629 2.92125e-05 0.625004

-1.16853e-05 0.499997 -1.38629 5.84264e-06 0.625001

-2.33707e-06 0.499999 -1.38629 1.16853e-06 0.62500

-4.67414e-07 0.500000 -1.38629 2.33707e-07 0.62500

θ p l(θ) s(θ) i(θ)

3.0000 0.952574 -3.09717 -0.905148 0.0924959

-6.78582 0.0011284 -6.78808 0.997743 0.00338011

288.395 1 −∞ -1 0

−∞ 0 .NaN 1 0

3.3 Descent Methods

Newton is great when close to the solution. Far from the solution, we

need something else. A standard scheme is to force reduction in the objective

function in each iteration by making a line search. Each iteration chooses a

search direction sn, perhaps the direction of the Newton step, perhaps not.

Then it finds the αn that minimizes the one dimensional function

w(α) = f(xn + αsn)

and sets xn+1 = xn + αnsn. In order that there exist α > 0 such that

w(α) < w(0), we require the search direction sn to satisfy the descent property

w′(0) < 0 or

g(xn)tsn < 0 (3.12)
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where g(x) = ∇f(x).

Requiring αn to be the exact minimizer of w(α) is expensive and unnec-

essary. That is, in practice it makes no sense to waste a lot of time polishing

the solution αn when the solution to the line search subproblem isn’t the so-

lution to the main problem. Thus we want criteria for an inexact line search

that permit a proof about the properties of descent methods. The following

closely follows Fletcher (1987, Section 2.5). Let 0 < ρ < 1
2

and ρ < σ < 1,

and let αn be any α satisfying

w(α) ≤ w(0) + αρw′(0) (3.13)

and

w′(α) ≥ σw′(0) (3.14)

where (3.13) was proposed by Goldstein and (3.14) by Wolfe (see Fletcher

(1987) for citations). In terms of f rather than w, these imply

f(xn) − f(xn+1) ≥ −ρg(xn)T δn (3.15)

and

g(xn+1)
T δn ≥ σg(xn)T δn (3.16)

where

δn = αnsn = xn+1 − xn

is the step taken in the iteration. The angle θn between the gradient and the

step is

cos θn = − g(xn)T δn
‖g(xn) ‖‖δn‖

. (3.17)

We say a method satisfies the angle criterion if (3.17) is bounded away from

zero.

Theorem 3.3.1. For a descent method with inexact line search satisfying

(3.13) and (3.14), if g(x) = ∇f(x) is uniformly continuous on a set con-

taining all the iterations, if f(xn) is bounded below, and if (3.17) is bounded

away from zero, then g(xn) → 0.



74 CHAPTER 3. OPTIMIZATION ALGORITHMS

Proof. Since f(xn) is bounded below, f(xn) − f(xn+1) → 0 and (3.13) and

(3.12) imply g(xn)T δn → 0. Suppose to get a contradiction that g(xn) fails

to converge to zero, so there is a c > 0 and a subsequence xnk
such that

g(xnk
) ≥ c. Then δnk

→ 0.

Now (3.16) implies

[g(xn+1) − g(xn)]T δn ≥ (σ − 1)g(xn)T δn

or

−g(xn)T δn ≤ [g(xn+1) − g(xn)]
T δn

1 − σ
≤ ‖g(xn+1) − g(xn)‖ ‖δn‖

1 − σ
(3.18)

Uniform continuity of g(x) means that for every ǫ > 0 there is a η > 0 such

that

‖g(x+ αs) − g(x)‖ ≤ ǫ

whenever 0 ≤ α ≤ η for all x and for all unit vectors s. Hence αnk
= ‖δnk

‖ →
0 implies

‖g(xnk+1) − g(xnk
)‖ = ‖g(xnk

+ αnk
snk

) − g(xnk
)‖ → 0.

Combining (3.18) and (3.17) gives

‖g(xn)‖ ‖δn‖ cos θn ≤ ‖g(xn+1) − g(xn)‖ ‖δn‖
1 − σ

Hence

0 ≤ cos θnk
≤ ‖g(xnk+1) − g(xnk

)‖
(1 − σ)‖g(xnk

)‖ → 0

But this contradicts the angle criterion. Hence the assumption that g(xn)

fails to converge to zero was false.

Note that the theorem does not assert that xn converges. Consider the

one-dimensional function f(x) = exp(−x), which is minimized as x → ∞.

The conditions of the theorem are trivially satisfied, hence ∇f(xn) = −f(xn)

converges to zero, but that requires xn → ∞.
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If, however, the level set B = {x : f(x) ≤ f(x1) } is bounded, since f(xn)

is decreasing, xn cannot escape B. So B is closed, hence compact, because

f is continuous. Thus there is no escape to infinity. Every subsequence has

cluster points. For any subsequence xnk
converging to a cluster point x∗, the

theorem and the assumed continuity of ∇f(x) imply ∇f(xnk
) → ∇f(x∗) = 0.

Thus every cluster point is a stationary point of f . More cannot be said. In

practice, the line search will usually force convergence to a local minimum,

but does not guarantee this.

A good method of choosing a descent direction is to use the Newton

direction

sn = − ∇2f(xn)−1∇f(xn)

‖∇2f(xn)−1∇f(xn)‖ (3.19)

when this definition satisfies the descent property, which it must if ∇2f(xn)

is positive definite. But if ∇f(x) is even positive semi-definite for all x ∈ B,

then f is convex on B, a strong property that will not always hold in appli-

cations. Hence the choice (3.19) will not always work. A descent algorithm

must detect when (3.19) fails to satisfy the descent property and make some

other choice, such as sn = −∇f(xn), the steepest descent direction.

3.4 The EM algorithm

The EM algorithm was named by Dempster et al. (1977) but had been

used by many earlier authors. Dempster et al. (1977) proved some of the basic

properties of the algorithm but also claimed convergence properties which

were not true. The erroneous claims were corrected by Boyles (1983) and

Wu (1983), although the conditions implying convergence in the theorems in

these papers are difficult to verify.

The EM algorithm is an algorithm for doing maximum likelihood in prob-

lems with missing data. There is a family of probability densities fθ(x, y) of

variables x and y, which may both be multivariate. Only y is observed. So
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x is “missing data.” The likelihood for the parameter θ is

L(θ) = fθ(y) =

∫
fθ(x, y) dx. (3.20)

The integral here may be intractable, making maximum likelihood difficult,

in which case the EM algorithm may be useful. The EM algorithm also

applies to problems that are formally similar, problems with latent variables,

random effects, or mixtures and empirical Bayes problems.

One of the most popular methods for specifying fθ(x, y) is the two-stage

hierarchical model (HM). That is, the conditional density of Y |X is specified

as f(y|x; θ1) while the marginal density of X is h(x; θ2) and θ = (θ1, θ2).

Example 3.4.1. Undoubtedly, the most important special case of the HM is

the usual normal theory mixed model (McCulloch and Searle, 2001, Chapter

6). Let X and Z be known design matrices of dimension n × p and n ×
q, respectively. Suppose Y |u ∼ N(Xβ + Zu,R) and U ∼ N(0, D). Then

Y ∼ N(Xβ,R+ZDZT ) and hence the likelihood (3.20) is available in closed

form. However, finding maximum likelihood estimates (MLEs) often requires

a numerical technique.

If Θ is the parameter space, and ϕ is any point in Θ, define a function

Qϕ : Θ → R by

Qϕ(θ) = Eϕ{log fθ(X, Y )|Y = y} =

∫ (
log fθ(x, y)

)
fϕ(x|y) dx (3.21)

where

fθ(x|y) =
fθ(x, y)

fθ(y)
=

fθ(x, y)∫
fθ(x, y) dx

An iteration of the EM algorithm maximizes Qϕ rather than L. Of course,

this doesn’t solve the problem. The maximizer of Qϕ is not the maximizer of

L. So what the EM algorithm does is generate a sequence of iterates θ1, θ2,

. . . having the property that if the current iterate is θk then the next iterate
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is found by maximizing Qθk
, that is,

Qθk
(θk+1) = sup

θ∈Θ
Qθk

(θ)

Example 3.4.2. Suppose f and g are densities with common support. Then

if 0 < p < 1

h(y) = pf(y) + (1 − p)g(y)

is also a density. Moreover, h is the marginal of the joint density defined by

f(y|x) = f(y)I(x = 1) + g(y)I(x = 0) X ∼ Binomial(1, p) .

Now suppose Y1, . . . , Yn
iid∼ h. Then the likelihood is

L(p|X, Y ) =
n∏

i=1

[pf(yi)]
xi[(1 − p)g(yi)]

1−xi

and the log-likelihood is

l(p|x, y) =
n∑

i=1

xi log(pf(yi)) + (1 − xi) log((1 − p)g(yi)) .

Now Xi|Yi, p ∼ Binomial(1, pf(yi)/(pf(yi) + (1 − p)g(yi))). Hence

Qp′(p) = E[l(p|x, y)|y, p′]

=

n∑

i=1

[(1 − λi) log((1 − p)g(yi)) + λi log(pf(yi))]

where

λi =
p′f(yi)

p′f(yi) + (1 − p′)g(yi)
.

Now we need to maximize Q with respect to p

Q′
p′(p) =

∑n
i=1 λi

p(1 − p)
− n

1 − p

and setting Q′
p′(p) = 0 and solving we obtain p = λ̄, which is easily shown to

be a maximum. Here is the EM updating rule

pk+1 =
1

n

n∑

i=1

pkf(yi)

pkf(yi) + (1 − pk)g(yi)
.
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Under certain conditions θn does converge to the maximizer of the likeli-

hood (3.20). Write l(θ) = logL(θ). Define

Hϕ(θ) = Eϕ{log fθ(X|Y )|Y = y}. (3.22)

Note that Qϕ is the conditional expectation of the log of a joint density while

Hϕ is the conditional expectation of the log of a conditional density.

It is tacitly assumed here that these definitions make sense for all θ and ϕ.

It can happen that the likelihood l(θ) is well defined even though the complete

data likelihood is not. This happens in variance components problems as

shown in the following example.

Example 3.4.3. Suppose

y = µ+ b1 + · · ·+ bp

and the bi are independent Normal(0, θiGi) where the Gi are known matrices.

The likelihood l(θ) is well-defined unless all of the elements of y are the same.

The maximum of l(θ) can occur on the boundary of the parameter space where

some of the θi are zero. The likelihood is complicated,

l(θ, µ) = −1
2
(y − µ)′V −1(θ)(y − µ) − 1

2
log detV (θ),

where V (θ) =
∑

i θiGi is the variance of y and det denotes the determinant

of a matrix. The complete data log likelihood is simpler. Ignoring terms not

containing the parameters, the log likelihood for the bi is

−1
2

∑

i

θ−1
i b′iG

−1
i bi − n

2

∑

i

log θi

thus

Qϕ(θ, µ) = −1
2

∑

i

θ−1
i Eϕ{b′iG−1

i bi|y − µ}) − n
2

∑

i

log θi.

If all of the terms Eϕ{b′iG−1
i bi|y−µ} are strictly positive, Qϕ has a maximum

in the interior of the parameter space since it goes to −∞ when any θi goes
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to zero. But if one of the ϕi is zero, then bi has variance zero and then the

part of Qϕ that depends on θi is just −n
2

log θ, which goes to +∞ as θi → 0.

It is still possible to define the EM iteration by continuity. For ϕ in the

interior of the parameter space, Qϕ achieves its maximum when

µ = ȳ

θi = 1
n
Eϕ{b′iG−1

i b′i|y − µ}, i = 1, . . . , p.

These equations also make sense on the boundary, but they have the property

that if θi = 0, then the EM iteration leaves it zero forever. If the solution

is in the interior of the parameter space, then EM must be started in the

interior to converge to the solution.

The tacit assumption mentioned above that Hϕ and Qϕ are not infinite

for ϕ of interest will be made throughout unless something is explicitly said

to the contrary. For the variance components, that means ϕ is in the interior

of the parameter space.

Lemma 3.4.1.

l(θ) = Qϕ(θ) −Hϕ(θ), for all θ and ϕ. (3.23)

Proof.

Hϕ(θ) = Eϕ{log fθ(X|Y )|Y = y}

= Eϕ

{
log

(
fθ(X, Y )

fθ(Y )

) ∣∣∣∣∣ Y = y

}

= Eϕ

{
log fθ(X, Y )

∣∣ Y = y
}
−Eϕ

{
log fθ(Y )

∣∣ Y = y
}

= Qϕ(θ) − log fθ(y)

= Qϕ(θ) − l(θ)
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Lemma 3.4.2. Hϕ achieves its global maximum at ϕ, i.e., Hϕ(ϕ) ≥ Hϕ(θ)

for all θ.

Proof.

Hϕ(θ) −Hϕ(ϕ) = Eϕ

{
log

(
fθ(X|Y )

fϕ(X|Y )

) ∣∣∣∣∣ Y = y

}

≤ log

(
Eϕ

{
fθ(X|Y )

fϕ(X|Y )

∣∣∣∣∣ Y = y

})

= log

(∫
fθ(x|y)
fϕ(x|y)fϕ(x|y) dx

)

= log

(∫
fθ(x|y) dx

)

= log(1) = 0

The inequality is Jensen’s inequality, which applies to conditional as well as

unconditional expectations (Chung, 1974, p. 302).

This lemma has nothing special to do with EM. As a statement about

unconditional rather than conditional probabilities it is familiar in many

contexts, including the consistency of maximum likelihood. It says that

the Kullback-Leibler information “distance” between densities fθ and fϕ is

minimized when θ = ϕ. The extension to conditional densities is trivial

because Jensen applies to both.

Theorem 3.4.3.

l(θn+1) − l(θn) ≥ Qθn
(θn+1) −Qθn

(θn)

Hence every EM iteration increases the log likelihood unless the M-step cannot

increase Qθn
.
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Proof. By the lemmas

l(θn+1) − l(θn) = Qθn
(θn+1) −Qθn

(θn) − [Hθn
(θn+1) −Hθn

(θn)]

≥ Qθn
(θn+1) −Qθn

(θn)

Lemma 3.4.4. If Qϕ and Hϕ are defined on some open set Ω in the param-

eter space and differentiable at every point of Ω, then

∇l(θ) = ∇Qθ(θ), for all θ ∈ Ω.

Proof. Differentiate (3.23). ∇Hϕ(ϕ) = 0, because Hϕ has a global maximum

at ϕ.

Theorem 3.4.5. If Qϕ and Hϕ are defined on some open set Ω in the param-

eter space and differentiable at every point of Ω, if the map (ϕ, θ) 7→ ∇Qϕ(θ)

is (jointly) continuous, and if the EM sequence θn is contained in Ω and

converges to a point θ∗, then ∇l(θ∗) = 0.

Proof. Since θn+1 maximizes Qθn

0 = ∇Qθn
(θn+1) → ∇Qθ∗(θ

∗).

Hence

∇l(θ∗) = ∇Qθ∗(θ
∗) −∇Hθ∗(θ

∗) = 0

This theorem says that if EM converges, it converges to a stationary

point of the log likelihood. It does not say that EM does converge. Even

if a compactness argument implies convergent subsequences, this argument

cannot be adapted to apply to subsequences. It is however a simple way to

see most of what is true about EM.
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1. When EM converges, the limit is not guaranteed to be a local maxi-

mum, rather it can be a saddle point. An example is given by Murray

(1977).

2. If EM converges to a local maximum, this need not be the global maxi-

mum of the log likelihood, despite each M-step finding the global maxi-

mum of Qθn
. A number of examples of EM converging to local maxima

that are not global maxima are given in papers cited in Wu (1983).

It is possible to prove something about subsequences, but the argument

is more complicated. Dempster et al. (1977) define a GEM algorithm (for

“generalized” EM) to be any algorithm that produces a sequence θn such

that Qθn
(θn+1) ≥ Qθn

(θn), that is, any algorithm that goes uphill on Qθn
,

not necessary finding the global maximum. They are introducing the same

principle of inexact search in the M-step that we saw in inexact line search

in descent algorithms. Conditions which guarantee the convergence of EM

are covered in Section 3.6. As with Newton these can be difficult to verify,

however, unlike Newton, EM doesn’t typically enjoy superlinear convergence.

Theorem 3.4.6. Suppose EM converges to a point θ∗ in the interior of the

parameter space that is a stationary point of the log likelihood, suppose it is

possible to differentiate (3.23) twice, and ∇2l(θ), ∇2Qθ(θ), and ∇2Hθ(θ) are

continuous in θ and have full rank at θ = θ∗, then the convergence cannot be

superlinear.

Proof. Suppose the EM sequence is θn → θ∗. Differentiating (3.23) twice

gives

∇2l(θ) = ∇2Qθ(θ) −∇2Hθ(θ) .

The Newton step at θ for maximizing the log likelihood is

∆(θ) = −
(
∇2l(θ)

)−1 ∇l(θ).
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The M step at θ is determined by maximizing the function Qθ. The Newton

step at θ for maximizing Qθ is

−
(
∇2Qθ(θ)

)−1 ∇Qθ(θ) (3.24)

Since the conditions of Theorem 3.2.1 hold, Newton is superlinearly conver-

gent in this subproblem and (3.24) is within little oh of the M step, that is,

if we denote the M step at θ by δ(θ) then

δ(θ) + o(‖δ(θ)‖) = −
(
∇2Qθ(θ)

)−1 ∇Qθ(θ)

So by the Dennis-Moré theorem EM can have superlinear convergence δ(θn)

and ∆(θn) are asymptotically equivalent.

By Lemma 3.4.4 ∇Qθ(θ) = ∇l(θ) so by assumption ∇Qθ∗(θ
∗) = ∇l(θ∗) =

0. Define un = ∇Qθ(θn) = ∇l(θn) and choose a convergent subsequence

unk
→ u. Then we have superlinear convergence of EM only if the two limits

−
(
∇2l(θnk

)
)−1

unk
→ −

(
∇2l(θ∗)

)−1
u

and

−
(
∇2Qθ∗(θ

∗)
)−1

u

are the same, call the common limit v, which requires

∇2l(θ∗)v = ∇2Qθ∗(θ
∗)v

hence

∇2Hθ∗(θ
∗)v = 0,

which violates the assumption that ∇2Hθ∗(θ
∗) has full rank.

3.5 Trust Regions

A method even better than line searches of forcing convergence is the

method of trust regions. The idea is that each step should minimize the
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quadratic model (3.4). But this model is only good in the neighborhood of

the current iterate xn, say for x in the set

Ωn = {x : ‖x− xn‖ ≤ hn }

for some constant hn > 0, which we call a trust region because that is where

we “trust” the quadratic model. Thus in step n we find the next iterate

xn+1 = xn + δn by solving the constrained problem

minimize wn(δ) = δTg(xn) + 1
2
δTH(xn)δ

subject to δT δ ≤ h2
n

(3.25)

The Lagrangian is

L(δ) = δTg(xn) + 1
2
δTH(xn)δ + 1

2
λδTδ.

So the Kuhn-Tucker conditions are

• [minimization]

∇L(δ) = g(xn) + [H(xn) + λI]δ = 0

or

δ = − (H(xn) + λI)−1 g(xn) (3.26)

• [primal feasibility] ‖δ‖ ≤ hn

• [dual feasibility] λ ≥ 0

• [complementary slackness] either λ = 0 or ‖δ‖ = hn.

Taking the first choice in the complementary slackness condition, let λ = 0,

then (3.26) becomes

δ = −H(xn)−1g(xn)

the Newton step. But this only satisfies the second order optimality condition

in the trust region subproblem if H(xn) is positive definite and only keeps δ
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in the trust region if δT δ ≤ h2
n. If either of these conditions are violated, we

make the other choice in the complementary slackness condition, imposing

the trust region constraint with equality. One way to solve this subproblem

is to apply Newton’s method to the system of nonlinear equations in δ and

λ

g(xn) + [H(xn) + λI]δ = 0

δT δ = h2
n

A variety of interesting special methods have been proposed for finding λ

here, which are discussed in Fletcher (1987, pp. 101–106). Particularly in-

teresting is the Hebden-Moré scheme, for which see Fletcher. However λ is

found, δ will then be given by (3.26) and this will minimize the Lagrangian

if H(xn)+λI is positive semi-definite. In fact this always happens. Consider

another step u such that uTu = h2
n. If we assume δ is the global minimizer

of the constrained problem, then

0 ≤ wn(u) − wn(δ)

= −g(xn)T (δ − u) + 1
2
uTH(xn)u− 1

2
δTH(xn)δ

Using (3.26) to eliminate g(xn) and uTu = δT δ = h2
n, and writing H(xn) = H

gives

0 ≤ δT (H + λI)(δ − u) + 1
2
uTHu− 1

2
δTHδ

= 1
2
(δ − u)(H + λI)(δ − u).

This implies that H + λI is at least positive semi-definite. For a formal

statement of these facts see Theorem 5.2.1 in Fletcher (1987).

How do we choose the trust region radius? The idea is to choose it

dynamically as the algorithm proceeds. If it seems that we have a satisfactory

approximation, we leave the radius alone or increase it. If the approximation

seems bad, we decrease it. What criterion do we use? Without doing any
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extra work, all we know is the value of the quadratic approximation wn(δn),

the predicted decrease in the objective function, as well as the actual decrease

f(xn+1)−f(xn). We must evaluate f at xn+1 in order to do the next iteration,

so the comparison costs nothing. Let

rn =
f(xn+1) − f(xn)

w(δn)
.

Then rn is about 1 when the predicted and actual decrease are about the

same, rn is near zero when the actual decrease is much smaller than predicted,

and rn is negative if the step actually goes uphill rather than downhill. The

actual decision points are rather arbitrary. Fletcher (1987, p. 96) suggests

the following simple trust-region update.

1. Solve the constrained problem (3.25) finding xn+1

2. Evaluate f(xn+1) and rn.

3. If rn > 0.75 and the constraint δT
n δn = h2

n was binding, set hn+1 = 2hn.

4. If rn < 0.25, set hn+1 = hn/4.

5. If rn ≤ 0, don’t accept the step: set xn+1 = xn.

The last part makes every step go downhill. If no downhill step can be found,

the algorithm does not move.

For this algorithm, Fletcher (1987) proves the following theorem.

Theorem 3.5.1. For the trust region algorithm above, if the sequence of

iterates is contained in a compact set K, and if f is continuously twice dif-

ferentiable on an open set containing K, then there exists a cluster point

of the sequence of iterates that satisfies the first and second order necessary

conditions for a local minimum.
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Example 3.5.1. The Rosenbrock function is

f(x) = 100(x2 − x2
1)

2 + (1 − x1)
2 .

it is straightforward to show that x∗ = (1, 1)T is the only local minimizer

of this function. This can be verified with the R library trust (written by

Charlie Geyer) that can be found from the link on the class homepage. In the

following R code note the use of D function from deriv to calculate symbolic

derivatives.

The usage

trust(objfun, parinit, rinit, rmax, parscale,

iterlim = 100, fterm = sqrt(.Machine$double.eps),

mterm = sqrt(.Machine$double.eps),

minimize = TRUE, blather = FALSE, ...)

The input

library(trust)

##### Rosenbrock’s function #####

objfun <- function(x) {

stopifnot(is.numeric(x))

stopifnot(length(x) == 2)

f <- expression(100 * (x2 - x1^2)^2 + (1 - x1)^2)

g1 <- D(f, "x1")

g2 <- D(f, "x2")

h11 <- D(g1, "x1")

h12 <- D(g1, "x2")

h22 <- D(g2, "x2")

x1 <- x[1]

x2 <- x[2]



88 CHAPTER 3. OPTIMIZATION ALGORITHMS

f <- eval(f)

g <- c(eval(g1), eval(g2))

B <- rbind(c(eval(h11), eval(h12)), c(eval(h12), eval(h22)))

list(value = f, gradient = g, hessian = B)

}

trust(objfun, c(3, 1), 1, 5)

and the output

trust(objfun, c(3, 1), 1, 5)

$value

[1] 5.160801e-15

$gradient

[1] 5.430221e-07 -2.003744e-07

$hessian

[,1] [,2]

[1,] 802.0001 -400

[2,] -400.0000 200

$argument

[1] 1.000000 1.000000

$converged

[1] TRUE

$iterations

[1] 21
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3.6 Appendix: Convergence of EM

A GEM algorithm has a set M(θ) of points among which it chooses θn+1.

Thus M is a set-valued mapping, it maps points θ in the parameter space Θ

to subsets M(θ) ⊂ Θ. A notation for this is M : Θ ⇉ Θ. The requirement

that satisfied by a GEM algorithm as defined by Dempster et al. (1977) is

Qϕ(θ) ≥ Qϕ(ϕ), ∀θ ∈ M(ϕ) (3.27)

But (3.27) is too weak to be used in proving anything. It is, for example,

satisfied by any constant sequence. At the very least an algorithm must make

progress if it can, that is

Qϕ(θ) > Qϕ(ϕ), ∀θ ∈M(ϕ) (3.28)

whenever there exists a θ′ ∈ Θ such that Qϕ(θ′) > Qϕ(ϕ). But in order to

prove anything we need much stronger regularity conditions. The ones given

here follow Wu (1983).

The map M is outer semicontinuous (OSC) if its graph

grphM = { (ϕ, θ) ∈ Θ × Θ : θ ∈M(ϕ) }

is a closed set, that is, if (ϕn, θn) → (ϕ∗, θ∗) and θn ∈ M(ϕn), then θ∗ ∈
M(ϕ∗). Suppose we are attempting to prove that every cluster point of the

GEM sequence induced by the set-valued mapping M lies in a certain set

Γ ⊂ Θ, called the “solution set.” Γ might be the set of stationary points of

the log likelihood or the set of local maxima of the log likelihood.

Let Ω be a subset of Θ having the property that M(ϕ) ⊂ Ω whenever

ϕ ∈ Ω and that Γ ⊂ Ω. The point of introducing Ω is to deal with solutions

on the boundary of the parameter space (if any). It is often true that the

EM sequence stays in the interior of Θ if started in interior. If the solution

set Γ is contained in the interior, then we may take Ω to be the interior of

Θ. On the other hand, if the solution set contains points on the boundary, in
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particular if the actual maximum of the likelihood is on the boundary, then

we take Ω = Θ.

Theorem 3.6.1. Let M : Ω ⇉ Ω be the set-valued mapping for an GEM

algorithm and Γ ⊂ Ω. Suppose the following conditions.

(a) The restriction of M to Ω \ Γ is outer semicontinuous.

(b) If ϕ ∈ Ω \ Γ, then (3.28) holds.

(c) If ϕ ∈ Γ, then (3.27) holds.

(d) The log likelihood is continuous on Ω and the level set

{ θ ∈ Ω : l(θ) ≥ l(θ1) }

is compact.

Then l(θn) converges to a limit λ, and every cluster point of {θn} is contained

in Γ.

Proof. The assumptions in (d) imply the log likelihood is bounded above.

Hence, since l(θn) is nondecreasing by (3.27), (3.28), and Theorem 3.4.3, it

converges to a limit λ. Suppose to get a contradiction that θnk
→ θ∗ but

θ∗ /∈ Γ. Then l(θ∗) = λ, by continuity of l. By the compactness assumption

in (d), the sequence θnk+1 has a convergent subsequence θnkl
+1 → θ∗∗. Then

θ∗∗ ∈ M(θ∗) by outer semicontinuity of M , and l(θ∗∗) = λ by continuity of

l. But this contradicts (3.28).

Corollary 3.6.2. If the conditions of the theorem hold and the set Γ consists

of a single point θ̂, then the EM sequence θn converges to θ̂.



Chapter 4

Integration

4.1 Applied Measure Theory

If X is a random element of some probability space having measure P ,

then we write

E{g(X)} =

∫
g(x)P (dx) (4.1)

whenever g is a real-valued function such that the expectation exists. From

an applied point of view, we can regard (4.1) as a convenient shorthand.

Whatever is meant by the left hand side is whatever is meant by the right

hand side.

If X is a discrete random variable taking values in a set S with probability

mass function f , then (4.1) means

E{g(X)} =
∑

x∈S

g(x)f(x).

If X is a continuous random variable with probability density function f ,

then (4.1) means

E{g(X)} =

∫ +∞

−∞

g(x)f(x) dx.

91
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If X is a continuous random vector taking values in R
3 with probability

density function f , then (4.1) means

E{g(X)} =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

g(x1, x2, x3)f(x1, x2, x3) dx1 dx2 dx3.

If X is a random variable that is neither discrete nor continuous, for example,

X is an exponential random variable with rate parameter λ right censored

at T (meaning we observe the exponential random variable or T , whichever

is smaller), then (4.1) means

E{g(X)} =

∫ T

0

g(x)λe−λx dx+ g(T )e−λT .

So the integral in (4.1) doesn’t necessarily mean integration in the sense

of calculus. It may mean summation or a combination of integration and

summation. And even if it does mean integration in the sense of calculus, it

may mean a double, triple, or higher integral.

So measure-theoretic notation is valuable even in applied situations be-

cause it allows us to cover all the special cases with one notation. But isn’t

the left hand side of (4.1) and all those other equations good enough as a

common notation? Not really, because it is too vague. The right hand side

of (4.1) clearly indicates the measure P and clearly indicates that what ex-

pectation means depends (through P ) on the probability model in question.

The left hand side doesn’t. However, if we write EP{g(X)} it should be

clear. This clarity will become more apparent as we go along.

We shall not need the abstract measure-theoretic definition of measures

like P . It will be enough to know that when outside an integral, a measure

is a set function, a map from subsets A of the state space to probabilities

P (A). It is a deep theorem that such functions determine abstract integrals

like the right hand side of (4.1). But to apply measure theory, one only needs

to know that probability is a special case of expectation

P (A) = EP{IA(X)} =

∫

A

P (dx), (4.2)
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where IA denotes the indicator function of the set A,

IA(x) =





1, x ∈ A

0, otherwise
(4.3)

4.2 Intractable Integrals

Consider an integral that is an expectation, say

E{g(X)} =

∫
g(x)P (dx), (4.4)

where X is a random variable with probability measure P . We assume this

expectation actually exists. For convenience we denote it by a Greek letter

µ =

∫
g(x)P (dx). (4.5)

Most integrals are impossible to calculate exactly. Hence the best we can

do is an approximation.

Example 4.2.1. Consider a simple version of the so-called logit-normal

model. For i = 1, . . . , n and j = 1, . . . q, assume yij |ui
ind∼ Bernoulli(πij)

where πij satisfies

logit(πij) = βxij + ui

and β is unknown while xij is a known covariate. Finally, assume that the

ui are iid N(0, σ2
u). The likelihood is clearly analytically intractable:

L(β, σ2
u; y) ∝

1

(σ2
u)

q/2

∫ ∏

i,j

exp{yij(β + ui)}
1 + exp{yij(β + ui)}

× exp

{

− 1

2σ2
u

n∑

i=1

u2
i

}

du .

A computer algebra system like Mathematica or Maple can probably do

more integrals than any one person, but most integrals are provably analyt-

ically intractable. When symbolic expression does not exist, no computer

program can find it.
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A computer algebra system like Mathematica or Maple or the integrate

function in the base package of R can do numerical integration. This works

for many low dimensional integrals. Unfortunately, it does not work well for

integrals of even moderate dimension. Five is really pushing it. It is also

difficult to assess the error in the approximation of µ when using numerical

integration. Lets take a brief look at how basic quadrature methods work.

4.3 Numerical Integration

Suppose f : R → R and we want the value of a linear functional

I(f) =

∫ b

a

f(x) dx −∞ ≤ a ≤ b ≤ ∞ . (4.6)

Our goal is to create an approximation to I(f). Since I(f) is linear it makes

sense to think about approximations of the form
n∑

i=0

aif(xi)

where the ai and xi are to be determined by some rule. This technique is

known as numerical quadrature.

Editorial note: Much of the material in this section is based on the pre-

sentations in Ralston and Rabinowitz (2001) and Burden and Faires (2005).

4.3.1 Lagrangian Interpolation

The first step in approximating I(f) in (4.6) is to approximate the inte-

grand. Here we consider one method (but not necessarily the best method)

for doing this. Suppose x0, x1, . . . , xn ∈ R are n + 1 distinct points. Let

f : R → R be a function whose values are given at these points. Define

Ln,k(x) =
n∏

i=0

i6=k

x− xi

xk − xi



4.3. NUMERICAL INTEGRATION 95

and set

p(x) =

n∑

k=0

f(xk)Ln,k(x) . (4.7)

Then p(x) is a unique polynomial of degree at most n such that for each

k = 0, 1, . . . , n

f(xk) = p(xk) .

And p is the nth Lagrange interpolating polynomial.

Example 4.3.1. Let f(x) = 1/x for x > 0. The nodes are x0 = 2, x1 =

3, x2 = 5. We will find the second Lagrange interpolating polynomial. Now

L2,0(x) =
1

3
(x− 3)(x− 5)

L2,1(x) =
−1

2
(x− 2)(x− 5)

L2,2(x) =
1

6
(x− 2)(x− 3)

Then the second Lagrange interpolating polynomial based on these nodes is

p(x) =
1

6
(x− 3)(x− 5) − 1

6
(x− 2)(x− 5) +

1

30
(x− 2)(x− 3) .

This approximation is plotted with the target function in the left hand panel

of Figure 4.1. Using different nodes will result in a different approximation,

at least over some interval. For example, choosing x0 = 2, x1 = 2.5, x2 = 4

yields the following second Lagrange interpolating polynomial

p(x) = (.05x− 0.425)x+ 1.15 .

This approximation is plotted with the target function in the right hand panel

of Figure 4.1.

An obvious question of interest is quantifying the error in approximating

the the target function with an interpolating polynomial.
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Figure 4.1: Interpolating polynomial approximation of f(x) = 1/x. The

solid curve in each panel is f(x) = 1/x while the dashed curves are the

approximations.
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Theorem 4.3.1. Suppose x0, x1, . . . , xn ∈ [a, b] are n+ 1 distinct points and

f is n+ 1 times continuously differentiable on [a, b]. Then for each x ∈ [a, b]

there exists ξ(x) ∈ (a, b) such that

f(x) = p(x) +
f (n+1)(ξ(x))

(n+ 1)!

n∏

i=0

(x− xi)

where p is defined in (4.7).

4.3.2 Quadrature

Given a Lagrange interpolating polynomial we can approximate the inte-

grand in I(f). To approximate I(f) itself we can integrate the approximation

to the integrand and its error term from Theorem 4.3.1

∫ b

a

f(x) dx =

∫ b

a

p(x) dx+

∫ b

a

f (n+1)(ξ(x))

(n+ 1)!

n∏

i=0

(x− xi) dx

=

n∑

i=0

aif(xi) +
1

(n + 1)!

∫ b

a

f (n+1)(ξ(x))

n∏

i=0

(x− xi) dx

where, for i = 0, 1, . . . , n

ai =

∫ b

a

Ln,i(x) dx .

Hence the quadrature approximation is

∫ b

a

f(x) dx ≈
n∑

i=0

aif(xi)

with error

E(f) =
1

(n+ 1)!

∫ b

a

f (n+1)(ξ(x))

n∏

i=0

(x− xi) dx .

Note that E is difficult to calculate but, due to the factor 1/(n + 1)!, will

decrease rapidly as the number of nodes n increases. What we need are
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methods for choosing the number and location of the nodes. The (n + 1)-

point Closed Newton-Cotes method chooses the nodes according to

xi = x0 + i
b− a

n
for i = 1, . . . , n

with x0 = a. Setting n = 1 yields the familiar Trapezoidal rule while n = 2

correspond to Simpson’s rule and n = 3 is Simpson’s Three-Eighths rule.

Newton-Cotes usually works well when b−a is small. Thus composite or ex-

tended Newton-Cotes rules divide the interval [a, b] into multiple, nonover-

lapping subintervals [ai, bi], and then apply a Newton-Cotes rule to each

subinterval.

Newton-Cotes forces the nodes to be equally spaced. However, there is no

reason that this should be optimal. Gaussian quadrature attempts to choose

the nodes in a more optimal fashion. We consider only one of the most basic

forms which is often called Gauss-Legendre quadrature. To begin note that

setting x = c1 + c2t where c1 = 0.5(b+ a) and c2 = 0.5(b− a) gives
∫ b

a

f(x) dx = c2

∫ 1

−1

f(c1 + c2t) dt .

and the quadrature approximation to I(f) is then
∫ b

a

f(x) dx ≈ c2

n∑

i=1

wif(c1 + c2ti) .

We still need to determine the weights and the nodes. The nodes are the

roots of a Legendre polynomial. The nth degree Legendre polynomial is given

by

pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n .

Then the weights are given by

wi =

∫ 1

−1

∏

j=1

j 6=i

t− tj
ti − tj

dt . (4.8)

The following theorem shows that these are sensible choices for a quadrature

rule.
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Figure 4.2: A spiky function.

Theorem 4.3.2. Suppose that x1, x2, . . . , xn are the roots of the nth degree

Legendre polynomial and that the weights wi are given by (4.8). If p(x) is

any polynomial of degree less than 2n, then

∫ 1

−1

p(x) dx =
n∑

i=1

wi p(xi) .

Fortunately, there is no reason to actually calculate the weights and nodes

“by hand” as both of these have been extensively tabulated; see Abramowitz

and Stegun (1972). It is also the case that the integrate function in R

does something called adaptive quadrature which attempts to distribute the

approximation error evenly by using unequally spaced nodes.

Example 4.3.2. Let f(x) = |2x| − ⌊2x⌋ (see Figure 4.2) and suppose we

want to find ∫ 1

−1

f(x) dx.
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This is dead easy with R’s integrate function.

> integrand<-function(x){abs(2*x) - floor(abs(2*x))}

> integrate(integrand, lower=-1, upper=1)

1 with absolute error < 1.1e-14

integrate can also handle integration over an infinite interval. Let f(x) =

1/((x+ 3)1.5
√
x) and we will find its integral over (0,∞).

> integrand<-function(x){1/(sqrt(x)*(x+3)^1.5)}

> integrate(integrand, lower=0, upper=Inf)

0.6666667 with absolute error < 5.1e-06

4.4 Monte Carlo Integration

Consider an integral that is an expectation, say

EP{g(X)} =

∫
g(x)P (dx), (4.9)

where X is a random variable with probability measure P . We assume this

expectation actually exists. For convenience we denote it by a Greek letter

µ =

∫
g(x)P (dx). (4.10)

Most integrals of interest in probability theory are impossible to calculate

exactly. Hence the best we can do is an approximation. That’s why normal

approximations and large-sample theory are so widely used.

The only generally applicable tool for approximating integrals like (4.10)

is so-called Monte Carlo integration. Suppose we can simulate an iid sequence

X1, X2, . . . of random variables having the probability measure P . Then

Yi = g(Xi), i = 1, 2, . . .
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is an iid sequence of random variables having mean µ, which is the integral

(4.10) we want to evaluate.

The strong law of large numbers (SLLN) says that if E|Y | <∞ then with

probability 1 as n→ ∞

Ȳn :=
1

n

n∑

i=1

Yi → µ. (4.11)

In words, we can approximate µ with an arbitrary level of precision if we

only average over a sufficiently large number of simulations. And using Ȳn

as an approximation for µ is the “Monte Carlo method.” The following toy

example will illustrate this procedure.

Example 4.4.1 (Gamma). Suppose X ∼ Gamma(3/2, 1) and we want to

calculate

µ = E

[
1

(X + 1) log(X + 3)

]
.

Then if X1, X2, . . . , Xn are iid copies of X and g(x) = [(X+1) log(X+3)]−1

an estimate of µ is given by

1

n

n∑

i=1

1

(xi + 1) log(xi + 3)
.

The following R code implements this estimation procedure.

> nsim<-1e4

> x<-rgamma(nsim,3/2,1)

> g.hat<-1/((x+1)*log(x+3))

> mu.hat<-mean(g.hat)

> mu.hat

mu.hat

[1] 0.3561899

Note that nsim is the Monte Carlo sample size. An important point about

Monte Carlo methods is that different runs will give different estimates.
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> nsim<-1e4

> x<-rgamma(nsim,3/2,1)

> g.hat<-1/((x+1)*log(x+3))

> mu.hat<-mean(g.hat)

> mu.hat

mu.hat

[1] 0.3573980

If the simulation size n is sufficiently large the estimates shouldn’t differ by

much.

Trivial, is it not? Just a cutesy name for something every statistician

already knows and uses every day. But don’t let the triviality bother you.

It’s great! That means you are already completely comfortable with most

of the theory of the Monte Carlo method. It’s just statistics (actually large

sample, frequentist statistics).

Despite its simplicity and familiarity to all statisticians, Monte Carlo

can be a bit confusing because there are two sorts of samples, sample sizes,

sources of stochastic variability. Throughout these notes we will use m to

denote the observed data sample size while n will be reserved for the size of

the simulation. The following example will make this clear.

Example 4.4.2 (Trimmed Mean). Suppose X1, X2, . . ., Xm are a random

sample from a standard normal distribution. What is the relative efficiency

of the sample mean compared to a 25% trimmed mean θ̂ as an estimator of

the true unknown population mean θ?

The following R code does the simulation

mdat <- 30

nsim <- 1e4

theta.hat <- double(nsim)

for (i in 1:nsim) {
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x <- rnorm(mdat)

theta.hat[i] <- mean(x, trim = 0.25)

}

Note that in the code mdat is the data sample size and nsim is the Monte

Carlo sample size.

We want to evaluate Var(θ̂). Since a variance is an expectation it can

be written in the form (4.10) for some function g, but the formula would

be very messy. A trimmed mean is not a function defined by a nice simple

expression. But that doesn’t matter in Monte Carlo. If a computer can

evaluate the function, no problem.

The relative efficiency is Var(θ̂) divided by the variance of the sample

mean, which we know to be 1/m without doing any Monte Carlo. Thus our

Monte Carlo approximation to the relative efficiency is computed by

mdat * mean(theta.hat^2)

This formula, as opposed to mdat * var(theta.hat), is used because by the

symmetry of the normal distribution, E(θ̂) = 0.

A run of this code in R gives 1.178922 for the Monte Carlo approximation

to the relative efficiency. Of course, the relative efficiency is a function of

m, so we would have to redo the calculation for any data sample size m we

were interested in.

It is very important to keep in mind that a Monte Carlo approximation is

not exact. The number 1.178922 calculated in the example is not exact value

of the integral we are trying to approximate using the Monte Carlo method.

It is off by some amount, which we call Monte Carlo error. How large is the

Monte Carlo error? Just as everywhere else in statistics, we can never know.

The error is 1.178922− µ. Hence we don’t know its value unless we know µ,

and if we knew that we wouldn’t be doing Monte Carlo in the first place.
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We know that our Monte Carlo approximation, Ȳn, is the average of some

random variables Y1, Y2, . . . forming an IID sequence. If E(Y 2
i ) < ∞, then

the central limit theorem says

Ȳn ≈ Normal

(
µ,
σ2

n

)
(4.12)

where var(Yi) = σ2. Generally (4.12) tells us all we can know about the

Monte Carlo error. Of course, this is no better and no worse than our general

knowledge about sampling variability everywhere in statistics. We don’t

know the error, but do know its sampling distribution and must be satisfied

with that.

Also, as elsewhere in statistics, we don’t know the variance σ2 and must

estimate it from the samples by

S2
n =

1

n− 1

n∑

i=1

(Yi − Ȳn)
2.

One can produce a confidence interval for the true unknown value of µ,

but it often suffices to just report the Monte Carlo standard error (MCSE),

Sn/
√
n. We usually only want a rough idea of how accurate our Monte Carlo

calculation is. Does it have two significant figures, three significant figures,

no significant figures, or what? The only way to know is if the MCSE is

calculated and reported.

Example 4.4.3 (Gamma, MCSE). In this example it is easy to calculate the

MCSE for each of the two runs. The first run first (µ̂ = 0.3561899)

> sd(g.hat)/sqrt(nsim)

[1] 0.001941493

and the second run second (µ̂ = 0.3573980)

> sd(g.hat)/sqrt(nsim)

[1] 0.001950561
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As everywhere else in statistics, there is no need to keep a lot of inaccurate

significant figures once we figure out what the accuracy actually is. For ex-

ample, in the first run we would report the estimate as 0.356 with MCSE

0.002 while for the second run it would be 0.357 with MCSE 0.002.

Despite its simplicity and familiarity to all statisticians, MCSE can be

confusing when there are several variances floating around. The variance

involved in the MCSE needn’t be, and usually isn’t, the variance involved

in the expectation µ being calculated. Again, the distinction must be kept

crystal clear.

Example 4.4.4 (Trimmed Mean, MCSE). In the trimmed mean example,

the expectation being calculated is a constant times a variance, µ = mVar(θ̂).

We estimated it by

µ̂n =
m

n

n∑

i=1

θ̂2
i

where θ̂1, θ̂2, . . . are the Monte Carlo samples. The things being averaged to

calculate µ are the mθ̂2
i , thus S2

n should be the sample variance of the mθ̂2
i .

With the preceding discussion, is should now be clear that the MCSE is

sqrt(var(mdat * theta.hat^2) / nsim)

which turned out to be 0.01671859.

As in the Gamma example, there is no need to keep a lot significant

figures. We can now report our result as 1.179 with MCSE 0.017 or if we

prefer even fewer figures as 1.18 with MCSE 0.02.

Note that both sample sizes mdat and nsim appeared in our MCSE calcu-

lation, and also that the variance var(mdat * theta.hat^2) that appeared

in the MCSE is very different from the variance in mdat * var(theta.hat)

that might have been used as our Monte Carlo estimate.
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Monte Carlo is very simple in theory. Its theory is just frequentist large-

sample theory (consistency, asymptotic normality, etc.) that we are all fa-

miliar with. In practice, one must keep very clear what’s what in order not

to get confused.

So far we haven’t covered anything about how to generate a random

sample for estimating EP [g(X)]. This is addressed in the next section.

4.5 Generating a Random Sample

The methods presented in this section assume that we can use the com-

puter to generate U ∼ Uniform(0, 1) which is easy in R; just use runif.

Technically, what the computer generates is not a random number from a

uniform distribution but rather a pseudo-random number that is generated

by a deterministic algorithm and hence isn’t random at all. For this reason

the following remark by John von Neumann is often quoted.

Anyone who considers arithmetical methods of producing random

digits is, of course, in a state of sin.

However, an awful lot of research (some of it ongoing) has gone into showing

that there are algorithms that produce such pseudo-random numbers that

behave as if they were in fact randomly drawn from a uniform distribution.

There are some advanced computing situations where it is important to keep

in mind the deterministic and periodic nature of pseudo-random number

generators but we should not encounter these in our course.

4.5.1 Inversion

Theorem 4.5.1 (Probability Integral Transform). Suppose X has a con-

tinuous, strictly increasing cumulative distribution function FX(x). If U ∼
Uniform(0, 1) then F−1

X (u) ∼ FX .
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Proof.

Pr(F−1
X (U) ≤ t) = Pr(FX(F−1

X (U)) ≤ FX(t)) = Pr(U ≤ FX(t)) = FX(t) .

Example 4.5.1. Our goal is to generate an observation from a Gamma(α, β)

distribution where α ∈ Z+. Recall that if X1, X2, . . . , Xα are iid Exponential(β)

then
α∑

i=1

Xi ∼ Gamma(α, β) .

Let X ∼ Exponential(β). Then

fX(x) =
1

β
e−x/β and FX(x) = 1 − e−x/β .

Also, y = 1 − e−x/β if and only if x = −β log(1 − y). Thus F−1
X (y) =

−β log(1 − y). So if U ∼ Uniform(0, 1) then F−1
X (u) = −β log(1 − u) ∼

Exponential(β). It follows now that if U1, U2, . . . , Uα are iid Uniform(0, 1)

then
α∑

i=1

−β log(1 − ui) ∼ Gamma(α, β) .

4.5.2 Accept-Reject

This is an indirect method of simulation; we use draws from a density

fY (·) to get draws from a density fX(·). That is, we sample from the wrong

distribution and correct it.

Theorem 4.5.2. Let X ∼ fX and Y ∼ fY where the support of fY contains

the support of fX. Define

M := sup
x

fX(x)

fY (x)
.

If M <∞ on the support of fX then we can generate X ∼ fX as follows:
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1. Generate Y ∼ fY and independently U ∼ uniform(0, 1).

2. If

u <
fX(y)

M fY (y)

set X = Y ; otherwise discard Y and return to the first step.

Proof.

Pr(X ≤ x) = Pr(Y ≤ x |X = Y ) =
Pr(Y ≤ x, U ≤ fX(y)/MfY (y))

Pr(U ≤ fX(y)/MfY (y))
(4.13)

Now

Pr(Y ≤ x, U ≤ fX(y)/MfY (y)) = E[Pr(Y ≤ x, U ≤ fX(y)/MfY (y) | Y )]

= E

[
I(y ≤ x)

fX(y)

M fY (y)

]

=
1

M

∫
I(y ≤ x)

fX(y)

fY (y)
fY (y) dy

=
1

M

∫
I(y ≤ x)fX(y) dy

and

Pr(U ≤ fX(y)/MfY (y)) = E[Pr(U ≤ fX(y)/MfY (y) | Y )]

= E[fX(y)/fY (y)]

=
1

M

∫
fX(y)

fY (y)
dy

=
1

M
.

From (4.13) we have

Pr(X ≤ x) =

∫
I(y ≤ x)fX(y) dy = FX(x) .
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Note that Pr(U ≤ fX(y)/MfY (y)) = 1/M . The number of iterations

until the algorithm produces a single draw from FX is Geometric(1/M) and

hence the expected number of iterations until success is M . Lets return to

Examples 4.4.1 and 4.5.1.

Example 4.5.2. Recall from Example 4.4.1 that X ∼ Gamma(3/2, 1) and

we want to calculate

µ = E

[
1

(X + 1) log(X + 3)

]
.

We’ve already shown that if X1, X2, . . . , Xn are iid copies of X and g(x) =

[(X + 1) log(X + 3)]−1 an estimate of µ is given by

1

n

n∑

i=1

1

(xi + 1) log(xi + 3)
.

In Example 4.5.1 we showed how to generateX1, X2, . . . , Xn from a Gamma(α, β)

when α is a positive integer. Now we can use the Accept-Reject algorithm

to generate from a general Gamma distribution. It seems natural to use a

Gamma (z, 1) where z ∈ {1, 2, 3, . . .}, candidate but if we do this then

M = sup
x>0

fX(x)

fY (x)
=

2(z − 1)!√
π

sup
x>0

x−z+3/2 = ∞

and hence we cannot apply the Accept-Reject algorithm. In a homework ex-

ercise you will address a solution this problem.

It is possible to implement Accept-Reject sampling without knowing the

value of M explicitly; see Caffo et al. (2002). Also, when the target density

is log-concave the Adaptive Rejection sampling method of Gilks (1992) and

Gilks and Wild (1992) can work nicely.

4.6 Problems with Ordinary Monte Carlo

The main problem with ordinary Monte Carlo is that it is very hard to

do for multivariate stochastic processes. A huge number of methods exist
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for simulating univariate random variables. Devroye (1986) is the definitive

source. Ripley (1987) is more introductory but is authoritative as far as it

goes.

There are a few tricks for reducing multivariate problems to univariate

problems. A general multivariate normal random vector X ∼ N(µ,Σ) can

be simulated using the Cholesky decomposition of the dispersion matrix Σ =

LLT . Let Z be a N(0, I) random vector (each component is standard normal

and the components are independent). Then X = µ + LZ has the desired

N(µ,Σ) distribution (Ripley, 1987, p. 98). Wishart distributions can also

be simulated (Ripley, 1987, p. 99–100). There are a few other special cases

in which independent simulations of a multivariate process are possible, but

not many.

One general method that has occurred to many people is to use the laws

of conditional probability. Simulate the first component X1 from its marginal

distribution, simulate the second component X2 from its conditional distri-

bution given X1, then simulate X3 from its conditional distribution given

X1 and X2, and so forth. Unfortunately, this technique is not that useful

in general because the required marginal and conditional distributions are

typically unknown and cannot be used for simulation.

Example 4.6.1. Consider the following conditionally independent hierarchi-

cal model. Suppose for i = 1, . . . , K that

Yi|θi ∼ N(θi, a) θi|µ, λ ∼ N(µ, λ) (4.14)

λ ∼ IG(b, c) f(µ) ∝ 1 .

where a, b, c are all known positive constants. (Note that in this example we

say W ∼ Gamma(α, β) if its density is proportional to wα−1e−βwI(w > 0)

and and W−1 ∼ IG(α, β).)

Let π(θ, µ, λ|y) be the posterior distribution corresponding to the hierarchy

in (4.14). Note that θ is a vector containing all of the θi and that y is a vector
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containing all of the data. Consider the factorization

π(θ, µ, λ|y) = π(θ|µ, λ, y)π(µ|λ, y)π(λ|y). (4.15)

If it is possible to sequentially simulate from each of the densities on the

right-hand side of (4.15) we can produce iid draws from the posterior. Now

π(θ|µ, λ, y) is the product of independent univariate normal densities, i.e.

θi|µ, λ, y ∼ N((λyi + aµ)/(λ + a), aλ/(λ + a)). Also, π(µ|λ, y) is a normal

distribution, i.e. µ|λ, y ∼ N(ȳ, (λ+ a)/K). Next

π(λ|y) ∝ 1

λb+1(λ+ a)(K−1)/2
e−c/λ−s2/2(λ+a)

where ȳ = K−1
∑K

i=1 yi and s2 =
∑K

i=1(yi − ȳ)2. An accept-reject algorithm

with an IG(b, c) candidate can be used to sample from π(λ|y) since if we let

g(λ) be the kernel of an IG(b, c) density

sup
λ≥0

1

g(λ)λb+1(λ+ a)(K−1)/2
e−c/λ−s2/2(λ+a) = sup

λ≥0
(λ+a)(1−K)/2e−s2/2(λ+a) = M <∞

It is easy to show that the only critical point is λ̂ = s2/(K − 1) − a which is

where the maximum occurs if λ̂ > 0. But if λ̂ ≤ 0 then the maximum occurs

at 0.

4.7 Importance Sampling

4.7.1 Densities (More Applied Measure Theory)

We say a probability measure P has a density f with respect to another

probability measure Q if (4.9) can be rewritten

E{g(X)} =

∫
g(x)P (dx)

=

∫
g(x)f(x)Q(dx)

(4.16)
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and this holds for all functions g for which the expectation is defined.

For example, consider the case where both P and Q are the probability

measures of continuous real-valued random variables. Say X has measure P

and Y has measure Q and

E{g(X)} =

∫ +∞

−∞

g(x)fX(x) dx =

∫
g(x)P (dx)

for any function g for which the expectation is defined and

E{g(Y )} =

∫ +∞

−∞

g(y)fY (y) dy =

∫
g(x)Q(dy)

for any function g for which the expectation is defined, then in (4.16) we

have

f(w) =
fX(w)

fY (w)
(4.17)

so long as there is no problem with division by zero (the reader should check

that this definition does indeed do the job). When both the numerator and

denominator are zero in (4.17), the left hand side may be defined arbitrar-

ily (the reader should check that such a definition still works). When the

denominator in (4.17) is zero but the numerator is not, we have a problem.

Then P does not have a density with respect to Q. Readers acquainted with

measure theory may object that the last statement is imprecise, the density

can still be defined so long as Pr{fY (X) = 0} = 0.

4.7.2 Importance Sampling

One of the most important techniques in Monte Carlo is the importance

sampling trick. This uses one distribution to give information about another.

Suppose P has a density f with respect to Q and we want to calculate the

expectation (4.9) by Monte Carlo. If direct simulation from P is difficult

then a glance at (4.16) tells us another way to do it. That is, one Monte
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Carlo approximation of EP{g(X)} is

1

n

n∑

i=1

g(Xi) (4.18a)

where X1, X2, . . . form an identically P -distributed sequence obeying the

SLLN. Another is
1

n

n∑

i=1

g(Yi)f(Yi) (4.18b)

where Y1, Y2, . . . form an identically Q-distributed sequence obeying the

SLLN. This works because

EP{g(X)} = EQ{g(Y )f(Y )}

when X has measure P and Y has measure Q. This is just (4.17) rewritten

in different notation.

As long as we only discuss the SLLN, both estimates are equally good

(that is, they both work). If we look a little deeper and consider the variance

of the Monte Carlo estimators, one may be better than the other.

In the simplest case using independent sequences, the variance of (4.18a)

is
1

n
VarP{g(X)} (4.19a)

and the variance of (4.18b) is

1

n
VarQ{g(Y )f(Y )} . (4.19b)

The two variances will typically not be the same. They could only be the

same by wild coincidence. One may be much smaller than the other. In the

extreme, we might have

f(y) ∝ 1

g(y)

which would make the random variable g(Y )f(Y ) constant and hence (4.19b)

zero. Then there would be no Monte Carlo error, but only because we knew
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so much about the problem that we didn’t need to use Monte Carlo. In

practical applications, one cannot arrange for (4.19b) to be zero but can

sometimes arrange that (4.19b) is less than (4.19a).

This variance reduction spin on importance sampling is perhaps the least

interesting aspect of it. The problem with classical importance sampling is

that it’s often not worth the trouble. Suppose (4.19a) is 100 times (4.19b) for

the same n. This means that one has to have n 100 times larger in (4.18a)

than in (4.18b) to get the same accuracy.

So what? If we’re talking about 100 seconds versus 1 second, it’s not

worth the trouble if it takes you hours of extra time figuring out the impor-

tance sampling scheme and coding it up.

But strange as it may seem from what we’ve said so far, importance sam-

pling is often used when efficiency considerations go the other way, when

(4.19a) is smaller than (4.19b). The reason is simple. Sometimes the con-

venience factor goes the other way. Sometimes the importance sampling

estimator (4.18b) is easier to do. That is, simulation from Q is so easy that

that’s the one that is done.

Example

Consider the parametric family

P = {Pθ : θ ∈ Θ }

of probability measures (a statistical model) and we want to calculate

µ(θ) = Eθ{g(X)} =

∫
g(x)Pθ(dx) (4.20)

for all θ ∈ Θ. The naive way to calculate this by Monte Carlo does a different

simulation X1, X2, . . . identically Pθ-distributed for each θ and uses the

estimator (4.18a) to estimate µ(θ). The trouble with the naive idea is that

it takes an infinite amount of time to do an infinite number of simulations.
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Of course, anyone implementing the naive idea will only actually do a finite

number of simulations at a grid of points in Θ, but that is still a lot of time,

especially if Θ is not one-dimensional.

Suppose all of the measures in the model are dominated by some proba-

bility measure Q, say. Then

µ(θ) =

∫
g(x)Pθ(dx) =

∫
g(y)fθ(y)Q(dy) (4.21)

for all functions g for which the expectation exists. Then if Y1, Y2, . . . form

an identically Q-distributed sequence obeying the SLLN

µ̄n(θ) =
1

n

n∑

i=1

g(Yi)fθ(Yi) (4.22)

is a Monte Carlo estimate of (4.20).

We get an estimate for all θ ∈ Θ with just one Monte Carlo sample!

Now that’s real efficiency. But not in terms of the the usual “importance

sampling” spin. The variance of µ̄n(θ) will vary with θ and may be very bad

for some θ. The idea here is not to have the optimal scheme for calculating

any one expectation, but a scheme that does an acceptable job of calculating

many expectations.

4.7.3 Normalized Importance Sampling

Recall (4.17). In practice we will often know f only up to a ratio of

normalizing constants. That is, if hX and hY are nonnegative functions such

that

f(w) =
hX(w)/cX
hY (w)/cY

(4.23)

where

cX =

∫
hX(w) dw
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and cY is defined similarly. We know hX and hY but not cX or cY . Unnor-

malized densities slightly complicate importance sampling. Formula (4.22)

doesn’t work. However, a slight variant does.

Note that

EP [g(X)] = EQ

[
g(Y )fX(Y )

fY (Y )

]
=
cY
cX
EQ

[
g(Y )hX(Y )

hY (Y )

]
=
cY
cX
EQ[g(Y )w(Y )]

where the unnormalized importance weights are

w(y) =
hX(y)

hY (y)
.

Hence if if Y1, Y2, . . . Yn form an identically Q-distributed sequence obeying

the SLLN
1

n

n∑

i=1

g(Yi)w(Yi) → EQ[g(Y )w(Y )]

with probability 1 as n→ ∞. Now

EQ[w(Y )] = EQ

[
hX(Y )

hY (Y )

]
=
cX
cY
EQ

[
fX(Y )

fY (Y )

]
=
cX
cY

.

Thus, if Y1, Y2, . . . Yn form an identically Q-distributed sequence obeying

the SLLN
1

n

n∑

i=1

w(Yi) =
1

n

n∑

i=1

hX(Yi)

hY (Yi)
→ cX

cY

with probability 1 as n→ ∞. Let

w∗(y) =
w(y)∑n

i=1w(yi)

which are called the normalized importance weights. Then if Y1, Y2, . . . Yn

form an identically Q-distributed sequence obeying the SLLN

n∑

i=1

g(Yi)w
∗(Yi) =

1
n

∑n
i=1 g(Yi)w(yi)

1
n

∑n
i=1w(Yi)

→ cY
cX
EQ[g(Y )w(Y )] = EP [g(X)]

with probability 1 as n→ ∞.
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Note that w∗ is a function having the properties of a probability distri-

bution on the sample Y1, . . . , Yn

w∗(Yi) ≥ 0, i = 1, . . . , n and
n∑

i=1

w∗(Yi) = 1 .

Suppose that the function g for which we are calculating a Monte Carlo

expectation is an indicator function (so the expectation is a probability),

hence we write

P (A) = EP{IA(X)} =

∫

A

P (dx)

and the Monte Carlo estimate

P̄n(A) =
n∑

i=1

IA(Yi)w
∗(Yi) .

Now our intuition about probabilities says these should satisfy the comple-

ment rule

P̄n(Ac) = 1 − P̄n(A)

and they do, but only because we are using normalized importance sampling.

The reader should check that ordinary importance sampling doesn’t satisfy

the complement rule or many other rules of probability simply because un-

normalized importance weights don’t add to one.

Thus there is some point to using normalized importance sampling even

when we have normalized densities so we could use (4.22) instead of (4.29).

The little extra work involved in normalizing the importance weights could

save you from a major mistake doing something “intuitively obvious” but

completely bogus (like using the complement rule).

Example

Suppose, as is often the case, that the densities fθ defined by (4.21) are

known only up to a constant of proportionality, that is, we know functions
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hθ such that

fθ(x) ∝ hθ(x)

but we do not know the constant of proportionality. Of course, we must

“know” it in the theoretical sense. Its value is determined by the requirement

that fθ integrate to one. Hence

fθ(x) =
hθ(x)

c(θ)
(4.24a)

where

c(θ) =

∫
hθ(x)Q(dx). (4.24b)

But we may not know how to do this integral, so we don’t know the “nor-

malizing constant” c(θ) in any practical sense.

Actually, normalizing function might be a better name for (4.24b). It is

a “constant” in (4.24a) because the densities fθ are considered functions of

x not θ, but c(θ) does usually depend on θ, as the notation suggests.

It is useful to have terminology to describe this situation. We say that

H = {hθ : θ ∈ Θ }

is a family of unnormalized probability densities with respect to Q. Then

(4.24b) defines the normalizing function of the family, and (4.24a) defines

the corresponding normalized densities fθ.

The SLLN argument for the validity of (4.22) as a Monte Carlo estimate

says with probability 1, as n→ ∞

1

n

n∑

i=1

g(Yi)fθ(Yi) → µ(θ) .

If we plug in (4.24a) we get, as n→ ∞

1

n

n∑

i=1

g(Yi)
hθ(Yi)

c(θ)
→ µ(θ)
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with probability 1, or

1

n

n∑

i=1

g(Yi)hθ(Yi) → c(θ)µ(θ) (4.25)

The special case of (4.25) with g ≡ 1 gives, because Eθ(1) = 1

1

n

n∑

i=1

hθ(Yi) → c(θ) (4.26)

with probability 1 as n→ ∞. Dividing (4.25) by (4.26) we get

1
n

∑n
i=1 g(Yi)hθ(Yi)

1
n

∑n
i=1 hθ(Yi)

→ µ(θ) (4.27)

The left hand side of (4.27) is the desired Monte Carlo estimator of µ(θ) in

the case where densities are unnormalized.

The n numbers hθ(Yi) are the unnormalized importance weights. When

divided by their sum, they are the normalized importance weights

wθ(y) =
hθ(y)∑n

i=1 hθ(Yi)
. (4.28)

Then the left hand side of (4.27) can be written as a weighted average

µ̄n(θ) =
n∑

i=1

g(Yi)wθ(Yi) . (4.29)
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Chapter 5

Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are just like the ordinary

Monte Carlo methods of Chapter 4 except that instead of simulating an iid

sequence we will now be simulating a realization of a Markov chain. This may

not seem to be much of an advance since the Monte Carlo data produced

by MCMC methods will not generally be independent or even identically

distributed. However, we will see that MCMC is the only truly general

method of simulating observations that are at least approximately from the

target distribution. Moreover, all of the major concepts used in the discussion

of GOFMC carry over to the MCMC setting. In particular, our major goal

is still to estimate an unknown expectation

Eπ[g(X)] =

∫
g(x) π(dx)

where now π is the probability distribution we are interested in using for

inference. But the complication is that we are now going to assume that

direct simulation from π is impossible. This is the realm where MCMC is

most useful.

121
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5.1 Transition Kernels

Throughout this chapter X will be a general space1 For most statisticians

Markov chain theory is somewhat eccentric in its notation in that it doesn’t

use the “bar” notation for conditional probability. Instead of writing P (A | y)
we write P (y, A), meaning that the measure P (y, ·) is a possibly different

measure for each different y ∈ X. We will be interested in Markov transition

kernels2 which are conditional probabilities written as P (y, A).

If P is a Markov kernel and λ(·) is a probability measure on B(X) we

define

λP (A) :=

∫

X

P (x, A)λ(dx) for each A ∈ B(X) (5.1)

and if f is a measurable function on X we define the conditional expectation

of f as

Pf(x) :=

∫

X

f(y)P (x, dy) for each x ∈ X. (5.2)

5.2 Markov Chains

A Markov chain is a sequence X = {X1, X2, . . .} ∈ X of random elements

having the property that the future depends on the past only through the

present, that is, for any function g for which the expectations are defined

E{g(Xn+1, Xn+2, . . .) | Xn, Xn−1, . . .} = E{g(Xn+1, Xn+2, . . .) | Xn}. (5.3)

Let

h(Xn+1) = E[g(Xn+1, Xn+2, . . .)|Xn+1] .

1Formally, we require that (X,B(X)) be a Polish (complete separable metric) space.
2The formal definition is that for each A ∈ B(X), P (·, A) is a nonnegative measurable

function on X and for each x ∈ X, P (x, ·) is a probability measure on B(X).
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Then using the Markov property (5.3) and the iterated expectation theorem

we have

E{g(Xn+1, Xn+2, . . .)|X1, . . . , Xn} = E
{
E[g(Xn+1, Xn+2, . . .)|X1, . . . , Xn+1]

∣∣ X1, . . . , Xn

}

= E
{
E[g(Xn+1, Xn+2, . . .)|Xn+1]

∣∣ X1, . . . , Xn

}

= E{h(Xn+1)|X1, . . . , Xn}
= E{h(Xn+1)|Xn}

Thus in order to verify that a random sequence is a Markov chain it is enough

to verify that

E{g(Xn+1, Xn+2, . . .)|X1, . . . , Xn} = E{h(Xn+1)|Xn} . (5.4)

holds for all functions h for which the expectations are defined and for all

integers n.

Suppose h is an indicator function, i.e., h(x) = I(x ∈ A) where A ∈ B(X).

Then the conditional expectations

E{h(Xn+1) | Xn} = Pn(Xn, A) (5.5)

are the one-step transition probabilities of the Markov chain and are Markov

transition kernels. In general, the transition probabilities (5.5) are allowed to

depend on n, but in most applications they do not. In this case, the Markov

chain is said to be time-homogeneous and we write P = Pn.

The time-homogeneous case is by far the most important. In order to

avoid saying “time-homogeneous Markov chain” over and over, this is just

taken as part of the definition of “Markov chain.” However, there has been

a lot of recent interest in “adaptive MCMC” where the Markov chains are

not time-homogeneous; we probably won’t say much more about this but the

interested reader might look at Atchade and Rosenthal (2005).

The transition probabilities (5.5) determine the conditional probability

distribution of X2, X3, . . . given X1. In order to specify the joint distribution
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of the whole sequence, we need to specify the marginal distribution of X1,

which is called the initial distribution of the Markov chain, say λ. Let Pn be

the Markov kernel that gives the distribution of Xn given Xn−1 for n = 2, 3,

. . . . Then we can calculate the so-called “finite-dimensional distributions”

of the Markov chain as

E{g(X1, . . . , Xn)} =

∫∫
· · ·
∫
λ(dx1)P2(x1, dx2) · · ·Pn(xn−1, dxn)g(x1, . . . , xn) .

It is a deep theorem of measure theory that the finite-dimensional distri-

butions determine a unique infinite-dimensional distribution for the whole

sequence.

Recall (5.1) and (5.2). If P2, P3, . . . are the transition probability kernels

of a general Markov chain, then PnPn+1 is the conditional distribution of

Xn+1 given Xn−1. If λ is the marginal distribution of Xn−1, then λPnPn+1 is

the marginal distribution of Xn+1, and multiplication is associative

(λPn)Pn+1 = λ(PnPn+1).

Similarly, if f is a measurable function on the state space, then PnPn+1f

is the conditional expectation of f(Xn+1) given Xn−1, and multiplication is

associative

(PnPn+1)f = Pn(Pn+1f).

If P is the transition kernel of a time-homogeneous Markov chain with,

then P n, meaning PP · · ·P with n factors, is the conditional distribution of

Xn+1 given X1. If λ is the initial measure of the Markov chain, then λP n is

the marginal distribution of Xn+1.

Examples

The classical presentation of Markov chains centers on the case where X

is at most countable. For example, suppose X = {0, 1, 2, 3, . . .}. In this case,



5.2. MARKOV CHAINS 125

the transition kernel is a matrix

P =





P00 P01 P02 · · ·
P10 P11 P12 · · ·
...





where each Pij ≥ 0 and
∑∞

j=0 Pij = 1 for each i ≥ 0. The Pij are the one-step

transition probabilities.

Example 5.2.1. Suppose X lives on X = Z such that if x ≥ 1 and 0 < θ < 1

then a time-homogeneous Markov chain is defined by the transition kernel

P (x, x+ 1) = P (−x,−x− 1) = θ , P (x, 0) = P (−x, 0) = 1 − θ ,

P (0, 1) = P (0,−1) =
1

2
.

Example 5.2.2. This example concerns a simple hard-shell (also known as

hard-core) model. Suppose X = {1, . . . , n1} × {1, . . . , n2} ⊆ Z
2. A proper

configuration on X consists of coloring each point either black or white in

such a way that no two adjacent points are white. Let X denote the set of

all proper configurations on X and NX(n1, n2) be the total number of proper

configurations.

Consider the following Markov chain on X. Fix p ∈ (0, 1) and set X0 = x0

where x0 ∈ X is an arbitrary proper configuration. Randomly choose a point

(x, y) ∈ X and independently draw U ∼ Uniform(0, 1). If u ≤ p and all of

the adjacent points are black then color (x, y) white leaving all other points

alone. Otherwise, color (x, y) black and leave all other points alone. Call the

resulting configuration X1. Continuing in this fashion yields a Markov chain

{X0, X1, X2, . . .} on X.

Most Markov chains encountered in MCMC live on uncountable state

spaces. (This doesn’t have to mean that they are complicated, however.)
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Often the transition kernel can be represented as the integral of a conditional

density k(y | x), say. Then

P (x, A) =

∫

A

k(y | x) dy .

Example 5.2.3. Consider a Markov chain that evolves on X = (0, 1) as fol-

lows. Suppose Xn = x and independently draw U ∼ Uniform (0, 1). If u ≤
1/2 then Xn+1 ∼ Uniform (0, x) but if u > 1/2 then Xn+1 ∼ Uniform (x, 1).

Then the Xn+1 can be thought of as drawn from the distribution having con-

ditional density

k(y | x) =
1

2

1

x
I(0 < y < x) +

1

2

1

1 − x
I(x < y < 1) ,

that is, the Markov kernel determined by

P (x,A) =

∫

A

k(y | x) dy .

5.3 Regularity Conditions

A Markov chain is stationary if the marginal distribution of Xn does not

depend on n. When the Markov chain is stationary, among the variables

having the same marginal distribution is X1, so another way to discuss sta-

tionarity is to say that the initial distribution is the same as the marginal

distribution of all the variables. Such a distribution is said to be a stationary

distribution or an invariant distribution for the Markov chain. Formally, π

is an invariant distribution for a Markov kernel P if πP = π.

Not all Markov chains have stationary distributions. But all of those of

use in MCMC do. Moreover, there is never any issue about whether a Markov

chain for MCMC has a stationary distribution or what it is, because, as we

shall see, all Markov chains for MCMC are constructed to have a specified

stationary distribution.
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There is, however, a uniqueness question. A Markov chain can have more

than one stationary distribution. It is not always obvious whether a Markov

chain for MCMC has a unique stationary distribution. If it doesn’t have a

unique stationary distribution, it is useless for MCMC. Thus the uniqueness

question is important, but since it wanders off into fairly obnoxious theory,

we will just punt on it. In fact, we will assume more than is required to

get a unique invariant distribution. Our standing set of assumptions (hence-

forth known as the usual regularity conditions) are that the Markov chain

having invariant distribution π is aperiodic, π-irreducible and positive Harris

recurrent

1. Aperiodic means that we cannot partition X in such a way that the

Markov chain makes a regular tour through the partition.

2. π-irreducible means that if π(A) > 0 then there is a positive probability

that the chain will eventually visit A.

3. Positive Harris recurrent. “Positive” means that π is a probability

distribution; “Harris recurrent” means that no matter the starting dis-

tribution of the Markov chain every set of positive π-measure will be

visited infinitely often if the chain is run forever.

Note that the assumption of positive Harris recurrence is actually stronger

than irreducibility. From a practical point of view, the usual regularity con-

ditions imply that the starting value is irrelevant and that the chain will

thoroughly explore the state space as the number of iterations grows large.

A Markov chain X satisfying the usual regularity conditions is said to be

Harris ergodic.

Examples

Example 5.3.1. Recall the Markov chain defined in Example 5.2.1. This

chain is Harris ergodic and its stationary distribution is a vector π = (. . . , π(−1), π(0), π(1), . . .)
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satisfying πP = π. A straightforward calculation shows that π is given by

π(0) = (1 − θ)/(2 − θ) and for x ≥ 1

π(x) = π(−x) = π(0)
θx−1

2
.

Example 5.3.2. Consider the Markov chain defined in Example 5.2.3. This

chain is Harris ergodic and its stationary distribution has density g satisfying

g(y) =

∫ 1

0

k(y | x)g(x) dx

which holds if

g(x) =
1

π
√
x(1 − x)

.

5.3.1 Reversible Markov Chains

If P is a Markov kernel, then P is reversible with respect to a measure π

if ∫∫
π(dx)P (x, dy)g(x, y) =

∫∫
π(dy)P (y, dx)g(y, x) (5.6)

whenever g is such that the integrals exist (g is bounded, for example).

Plugging g(x, y) = IA(y) into (5.6) we get
∫
π(dx)P (x,A) =

∫

A

∫
π(dx)P (x, dy) =

∫

A

π(dx) = π(A),

which is πP = π. Hence P reversible with respect to π implies π is invariant

for P .

The reason the notion is called “reversible” (sometimes “time reversible”)

is that when π is used as the initial distribution (a generally impossible

task), so the chain is stationary, (5.6) has the interpretation that the joint

distribution of the pair (Xn, Xn+1) is the same as the joint distribution of

the pair (Xn+1, Xn) with the order reversed. From this one easily shows that

the k-tuple (Xn+1, . . . , Xn+k) has the same joint distribution as the k-tuple

(Xn+k, . . . , Xn+1) with the order reversed.
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Thus we say the stationary chain with reversible kernel P looks the

same (in distribution) running forward or backward. Note well that a non-

stationary chain with kernel P will not look the same running forward or

backward.

The main use of reversibility in MCMC is constructing kernels that have

a specified invariant distribution. Given π, find a P such that P is reversible

with respect to π. It turns out that this is a much easier problem than: given

π find a P that preserves π (meaning π is invariant for P ). The reason is that

πP = π is a difficult integral equation to solve for P given π, whereas (5.6)

although even more difficult if considered as an integral equation to solve, is

quite trivial when considered as a symmetry condition to check (swapping

x and y in the argument of g doesn’t change anything). The reversibility

condition is sometimes written

π(dx)P (x, dy) = π(dy)P (y, dx)

meaning that if we hit both sides with g(x, y) and integrate, we get the same

thing, regardless of what function g we use (so long as the expectations exist).

5.4 Asymptotics for Markov Chains

5.4.1 Total Variation

A basic issue involved in MCMC is trying to describe how “far apart”

the distribution of Xn is from the target. Hopefully, after many iterations

these distributions are “close.” The most common way of measuring this

discrepancy is via the total variation norm.

‖P n(x, ·) − π(·)‖ = sup
A∈B(X)

|P n(x,A) − π(A)| . (5.7)

Generally speaking, it is rare that P n is available in an analytically tractable

form. It is sometimes possible to think of total variation in terms of densities
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rather that measures; see the appendix in section 5.6.

Harris ergodic Markov chains enjoy a nice form of convergence. Specifi-

cally, (see Meyn and Tweedie (1993a, p. 323)) for all x ∈ X

‖P n(x, ·) − π(·)‖ ↓ 0 as n→ ∞, (5.8)

Note that (5.8) says that

|P n(x,A) − π(A)| → 0

for every π–continuity set A which is equivalent to convergence in distribu-

tion; see Billingsley (1995, Theorem 25.8). Thus, a Harris ergodic Markov

chain started from any point in the state space will eventually produce ob-

servations that look like they were drawn from the target distribution π.

Later we will be concerned with the rate of total variation convergence.

Let M(x) be a nonnegative function and γ(n) be a nonnegative decreasing

function on N such that

‖P n(x, ·) − π(·)‖ ≤ M(x)γ(n) . (5.9)

When X is geometrically ergodic (5.9) holds with γ(n) = tn for some t < 1.

Uniform ergodicity means M is bounded and γ(n) = tn for some t < 1.

Polynomial ergodicity of order m where m ≥ 0 corresponds to γ(n) = n−m.

Establishing (5.9) directly may be difficult in general. However, there are

constructive methods for establishing the existence of an appropriate M and

γ; see Jarner and Roberts (2002), Jones and Hobert (2001) and Meyn and

Tweedie (1993a) for a complete introduction to these methods.

5.4.2 The Strong Law of Large Numbers (SLLN)

A Harris ergodic Markov chain X = (X1, X2, . . .) having stationary dis-

tribution π satisfies the law of large numbers; that is if Eπ|g(X)| < ∞ then



5.4. ASYMPTOTICS FOR MARKOV CHAINS 131

as n→ ∞
ḡn :=

1

n

n∑

i=1

g(Xi)
a.s.→ Eπ[g(X)]. (5.10)

Dependence on the Initial Distribution

Note that if the chain is not stationary the SLLN still holds, even though

none of the Xi have the stationary distribution π. In fact, it is typically the

case that

Eπ[g(X)] 6= E[g(Xi)], for all i.

(And hence ḡn is a biased estimate of Eπ{g(X)}.) The SLLN holds for

any initial distribution of the Markov chain (Meyn and Tweedie, 1993a,

Theorem 17.1.6). This is one aspect of what we mean by saying the initial

distribution is irrelevant in MCMC. The other shoe will drop when we discuss

the CLT.

5.4.3 MCMC

As we discussed in the introduction, MCMC is just like GOFMC except

that X1, X2, . . . is a Harris ergodic Markov chain with a specified stationary

distribution π. Basically, MCMC is the practice of using the left hand side

of (5.10) as an estimate of the right hand side, just as GOFMC is the same

practice when X1, X2, . . . are iid with distribution π. In fact, GOFMC is a

special case of MCMC because iid sequences are Markov chains too.

Note that all of the arguments in Chapter 4 were based on the SLLN and

since (5.10) is exactly the same everything in Chapter 4 applies to MCMC.

5.4.4 The Central Limit Theorem (CLT)

The CLT is the basis of all error estimation in Monte Carlo, MCMC or

GOFMC. For large Monte Carlo sample sizes n, and generally we do take
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very large sample sizes as a matter of course, the distribution of Monte Carlo

estimates is approximately normal so the asymptotic variance tells the whole

story about accuracy of estimates.

To simplify notation, let us define notation for the two sides of (5.10)

ḡn =
1

n

n∑

i=1

g(Xi) (5.11a)

is the Monte Carlo estimate, and

µ = Eπ{g(X)} (5.11b)

is the expectation being estimated. Then the SLLN says

ḡn
a.s.→ µ

and the CLT says that as n→ ∞
√
n(ḡn − µ)

D−→ N (0, σ2) (5.11c)

where σ2 is some nonnegative constant.

In the iid case, the CLT is completely understood: (5.11c) holds if and

only if the Var[g(Xi)] <∞ and, moreover,

σ2 = Var[g(Xi)] (5.11d)

and is easily estimated by the sample variance of g(X1), . . ., g(Xn).

In the general Markov chain case, the CLT is incompletely understood.

Whether or not Var[g(Xi)] exists doesn’t control whether or not (5.11c) holds.

The CLT (5.11c) can fail when the variance exists and hold when the variance

doesn’t exist. When the CLT does hold, σ2 is generally not given by (5.11d).

The last point is not surprising. It is just a consequence of the fact that

the variance of a sum is the sum of the variances if and only if the terms are

uncorrelated. So in the iid case

Var(ḡn) =
σ2

n
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but in general

Var(ḡn) =
1

n2

n∑

i=1

n∑

j=1

cov{g(Xi), g(Xj)}. (5.11e)

Dependence on the Initial Distribution

One thing that is completely understood about the Markov chain CLT is

that if (5.11c) holds for any initial distribution, then it holds for every other

initial distribution, and the asymptotic variance σ2 is the same regardless of

the distribution (Meyn and Tweedie, 1993a, Theorem 17.1.6).

This is the other shoe dropping. The initial distribution is irrelevant in

MCMC in that neither the SLLN nor the CLT depends on it.

Calculation of the Asymptotic Variance

The upshot of the preceding section is that “without loss of generality”

we may assume stationarity. Even though we cannot use stationary chains

in MCMC (if we could produce even one sample X1 from the stationary

distribution to start MCMC, we could produce many iid samples and do

GOFMC), the CLT for the stationary chain is no different from the CLT for

the chain we actually use.

The variance formula (5.11e) can be simplified a bit using stationarity,

which implies that the joint distribution of Xn and Xn+k depends only on

k not upon n. Hence all of the terms in (5.11e) having the same difference

between i and j are the same, and we can rewrite (5.11e) as

nVarπ(ḡn) = Varπ{g(Xi)} + 2
n−1∑

k=1

n− k

n
covπ{g(Xi), g(Xi+k)} (5.11f)

(the subscripts π are there to remind us that this is valid only for the sta-

tionary chain). In the time series literature, the quantity

γk = covπ{g(Xi), g(Xi+k)} (5.11g)
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is called the lag k autocovariance of the stationary time series g(X1), g(X2),

. . . . The function k 7→ γk is called the autocovariance function of the time

series. Using this notation, we can rewrite (5.11f) as

nVarπ(ḡn) = γ0 + 2

n−1∑

k=1

n− k

n
γk (5.11h)

Since (n − k)/n → 1 as n → ∞ one might suspect that the right hand

side of (5.11h) converges to

σ2
g = γ0 + 2

∞∑

k=1

γk (5.11i)

if it converges at all. In fact, this is not quite true. It is mathematically

possible for the right hand side of (5.11h) to converge when the infinite sum

in (5.11i) does not converge. But in all cases in which the CLT is known to

hold (5.11i) gives the asymptotic variance.

Just what are the conditions to guarantee a Markov chain CLT? This is

an important question. Not every Markov chain enjoys a CLT and it doesn’t

have to be a pathological example.

Example 5.4.1. Consider a Markov chain that evolves as follows. Let the

current state be Xn = x. Draw y ∼ Pareto(α, λ) and independently draw

u ∼ Uniform(0, 1). Set Xn+1 = y if

u < xβ−λyλ−β

otherwise set Xn+1 = x. This defines a Harris ergodic Markov chain on

[α,∞) with stationary distribution is a Pareto(α, β) and is known as a Metropolis–

Hastings independence sampler. We will introduce this algorithm more for-

mally in the next chapter. Consider estimating the mean of the stationary

distribution, that is,
αβ

β − 1
.
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Using results from Mengersen and Tweedie (1996) shows that a CLT will

hold if λ ≤ β but an application of results from Roberts (1999) gives that a

CLT cannot hold if λ > 2β. There is a grey area for β < λ ≤ 2β.

This is illustrated empirically in Figure 5.4.4 where three different simu-

lations were performed. Each panel of the figure is the result of performing

1000 independent replications of the above algorithm each for a length of

1000. For each replication x̄n was computed and saved. The plots are his-

tograms of these empirical means. The top panel’s settings are α = 1, β = 4

and λ = 3, the middle panel’s settings are α = 1, β = 4 and λ = 6, while

the bottom panel has α = 1, β = 4 and λ = 9. A CLT is apparent in the top

panel while in the middle panel the chain may not have been run sufficiently

long for a CLT to “kick in” and the theory says that the bottom panel will

never (no matter how long it is run) enjoy a CLT.

There are many papers on when a Markov chain CLT holds but one the

cleanest statements is given by the following result.

Theorem 5.4.1. Let X be a Harris ergodic Markov chain on X with invariant

distribution π and let g : X → R. Assume one of the following conditions:

1. X is polynomially ergodic of order m > 1, EπM < ∞ and there exists

B <∞ such that |g(x)| < B almost surely;

2. X is polynomially ergodic of order m, EπM <∞ and Eπ|g(x)|2+δ <∞
where mδ > 2 + δ;

3. X is geometrically ergodic and Eπ|g(x)|2+δ <∞ for some δ > 0;

4. X is geometrically ergodic, reversible and Eπg
2(x) <∞; or

5. X is uniformly ergodic and Eπg
2(x) <∞.

Then for any initial distribution, as n→ ∞
√
n(ḡn − Eπg)

D−→ N(0, σ2
g) .
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Figure 5.1: An illustration for Example 5.4.1.
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The theorem was proved by Ibragimov and Linnik (1971) (condition 5),

Roberts and Rosenthal (1997) (condition 4) and Chan and Geyer (1994)

(Condition 3). See Jones (2004) for details on conditions 1 and 2 and an

overview of the other results. That is the end of the story of the CLT, at

least as far as we are concerned. Readers who want to know more must look

elsewhere.

5.4.5 Estimating the Variance

In order to get Monte Carlo standard errors of estimates, we need to

estimate the variance (5.11i). Generally speaking, this can be difficult. In

this section we will consider two of the most basic and effective methods.

However, these methods are not without limitations. For other approaches

the interested reader should look at Geyer (1992) and Jones et al. (2005).

Batch Means

Suppose n = ab and hence a = an and b = bn are functions of n. This

method is based on

nVar(ḡn) → σ2
g , as n→ ∞.

This is not a consequence of the CLT, since convergence in distribution

doesn’t imply convergence of moments but sometimes may be proved with

additional work and sometimes with similar conditions as required for a CLT.

Hence

mVar(ḡm) ≈ nVar(ḡn)

whenever m and n are both large. Thus a (not very good) estimate of

mVar(ḡm) is

m
(
ḡm − ḡn

)2
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where we are thinking here that 1 ≪ m ≪ n meaning m is large compared

to 1 but small compared to n (which means n is very large).

As everywhere else in statistics, we can increase precision by averaging.

If the Markov chain were stationary, every block of length b would have the

same joint distribution. For some reason, early in the history of this subject,

the blocks were dubbed “batches” so that is what we will call them. A batch

of length b of a Markov chain X1, X2, . . ., is b consecutive elements of the

chain. For example, the first batch is

X0, X1, . . . , Xb−1

The batch mean is the sample mean of the batch

ḡj =
1

b

jb−1∑

i=(j−1)b

g(Xi) (5.12)

The batch means estimator of σ2
g is

σ̂2
BM =

b

a− 1

a∑

j=1

(Ȳj − ḡn)2 . (5.13)

If the number of batches is fixed (5.13) is not a consistent estimator of σ2
g

(Glynn and Iglehart, 1990; Glynn and Whitt, 1991). However, if the batch

size and the number of batches are allowed to increase with n it may be

possible to obtain consistency. The following theorem was proved by Jones

et al. (2005).

Theorem 5.4.2. Assume g : X → R such that Eπ|g|2+ǫ1+ǫ2 < ∞ for some

ǫ1 > 0, ǫ2 > 0 and let X be a Harris ergodic Markov chain with invariant

distribution π. Further, suppose X is geometrically ergodic. If

1. an → ∞ as n→ ∞,

2. bn → ∞ and bn/n→ 0 as n→ ∞,
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3. b−1
n n2α[log n]3 → 0 as n→ ∞ where α = 1/(2 + ǫ2) and

4. there exists a constant c ≥ 1 such that
∑

n(bn/n)c <∞

then as n→ ∞, σ̂2
BM → σ2

g with probability 1.

Remark 5.4.1. It is common to use bn = ⌊nθ⌋ and an = ⌊n/bn⌋. If 1 > θ >

(1 + ǫ2/2)−1 conditions 1–4 of the theorem are met. A rule of thumb is to

use θ = 1/2.

If the batch means procedure is performed according to the conditions

of Theorem 5.4.2 we will call it consistent batch means (CBM) in order to

distinguish it from the batch means (BM) procedure with a fixed number

of batches or batch sizes. CBM produces an asymptotically valid confidence

interval for Eπg via

ḡn ± tan−1
σ̂BM√
n

(5.14)

where tan−1 is the appropriate quantile from a student’s t distribution with

an−1 degrees of freedom. But this should (as with any other procedure based

on estimating σ2
g) used with caution. If n isn’t sufficiently large (whatever

that means) the estimate σ̂BM isn’t going to be any good. On the other

hand, it should be obvious that using CBM to produce 5.14 will result in

intervals with better coverage than if BM were used; see Jones et al. (2005).

Overlapping Batch Means

A generalization of BM is the method of overlapping batch means (OLBM).

Note that there are n− b+ 1 batches of length b, indexed by k running from

zero to n−b. The method of overlapping batch means Meketon and Schmeiser

(1984) averages all of them. Its estimate of variance is

Var ḡn ≈ b

n
· 1

n− b+ 1

n−b∑

k=0

(
ḡk − ḡn

)2
(5.15)
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Of course ḡk is almost the same as ḡk+1, because the batches differ by only

one element. So there is little point to using all the batches. If we only used

half of them

Var ḡn ≈ b

n
· 1

⌊(n− b)/2⌋ + 1

⌊(n−b)/2⌋∑

k=0

(
ḡ2k − ḡn

)2

where ⌊x⌋ denotes the “floor” of x, the largest integer not exceeding x,

our variance estimate would be almost as good. The reason for the name

OLBM is that in the early days of the method, intuition told the inventors

of the batch means idea that they should use nonoverlapping batches only.

Thus the unqualified term “batch means” refers to nonoverlapping batch

means (NOLBM). Empirically, OLBM seemed like a big improvement over

NOLBM. In hindsight, there was never any good reason for using nonover-

lapping batches, so OLBM is the obvious implementation of the batch means

idea. However, the asymptotic properties of OLBM are much less well un-

derstood than those of nonoverlapping batch means; see e.g. Theorem 5.4.2.

That is, the major criticism of overlapping batch means is that, as described

here, it is not guaranteed to produce a consistent estimator of σ2
g .

If no account is taken of the extra work in computing the batch means

for more batches, the optimal estimate uses all the batches. You don’t get a

better answer by using less information.

5.5 Toy Example: Normal AR(1) Markov Chains

Consider the normal AR(1) time series defined by

Xn+1 = ρXn + Zn (5.16)

where Z1, Z2, . . . are normal with mean zero and Zn is independent of X1, . . .,

Xn. In the time series literature, the Zi are called the innovations and their



5.5. TOY EXAMPLE: NORMAL AR(1) MARKOV CHAINS 141

variance the innovations variance. Let τ 2 denote the innovations variance.

Then

Var(Xn+1) = ρ2 Var(Xn) + Var(Zn)

shows that in order for the sequence to be stationary, which requires that

Var(Xn) = σ2
X

not depend on n, we must have

σ2
X =

τ 2

1 − ρ2
(5.17)

which requires ρ2 ≤ 1 in order for (5.17) to define a variance and ρ2 < 1 in

order for the Xi to have a non-degenerate distribution. Now the fact that

the sum of normals is normal shows that the normal distribution with mean

zero and variance (5.17) is a stationary distribution of this Markov chain.

Asymptotic Variance

Suppose we want to estimate the mean of the stationary distribution (i.e.,

zero) by Monte Carlo so the Monte Carlo estimator is the sample mean of X1,

X2, . . . or X̄n. Then X̄n is AN(0, σ2
X(1+ρ)/(1−ρ)) since the autocovariance

function of this random sequence can be calculated as follows. First

γ0 = Var(Xi) = σ2
X

Then

γn = cov(Xn+1, X1) = ρ cov(Xn, X1) + cov(Zn, X1) = ργn−1

gives a recursion formula, from which we can calculate

γn = ρnσ2
X
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and hence the variance in the Markov chain CLT (5.11i)

σ2 = γ0 + 2
∞∑

k=1

γk

= σ2
X

(
1 + 2

∞∑

k=1

ρk

)

= σ2
X

1 + ρ

1 − ρ
(5.18)

This is just about the only example where we can calculate the variance in

the CLT analytically (so this is a really unique and precious toy problem).

Note that the variance (5.18) goes to infinity as ρ ↑ 1 so this gives us

examples that are arbitrarily bad for MCMC. Of less interest is the fact that

(5.18) goes to zero as ρ ↓ −1, so this gives an example in which MCMC is

arbitrarily better than GOFMC. The reason this isn’t interesting is that it is

just a toy problem. Real examples often show arbitrarily bad behavior, but

real examples don’t come close to GOFMC in performance (we always prefer

GOFMC whenever we can figure out how to do independent sampling).

Bias

If a stationary chain is used for MCMC, there is no bias: E(X̄n) = µ.

But, of course, in real life we cannot use stationary chains, so there will be

bias. In particular, if we consider initial distributions concentrated at one

point, which is the same as conditioning on X1, the bias is

E(X̄n | X1) = E

(
1

n

n∑

i=1

Xi

∣∣∣∣∣ X1

)

=
1

n

n∑

i=1

E(Xi | X1)

In our toy problem, we can actually calculate the bias, something we can
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never do in a practical problem.

E(X̄n | X1) =
1

n

n∑

i=1

E(Xi | X1)

=
1

n

n∑

i=1

ρi−1X1

=
1

n
· 1 − ρn

1 − ρ
X1

Note that the term ρn is negligible compared to one for large n so

E(X̄n | X1) ≈
X1

n(1 − ρ)
(5.19)

or if one is really fussy, since |ρ| < 1 is required for stationarity, we have the

bound

|E(X̄n | X1)| ≤
2|X1|

n(1 − ρ)

Thus the bias is O(n−1). This is no surprise, since in general the influence

of the stationary distribution is Op(n
−1). That general result does not imply

the specific result that the bias is O(n−1), but it does agree with it.

Numerical Example

Let ρ = .95 and τ = 1. The top panel of Figure 5.2 (p. 144) shows

one sample path (n = 10000) of a normal AR(1) time series. The high

autocorrelation is evident. It is even more easily seen in the bottom panel,

which shows the initial one-tenth of the same sample path. The sample mean

of the run shown in the top panel of Figure 5.2 is X̄n = −0.10235 (the true

value is µ = 0).

In this case we will estimate the the asymptotic variance using OLBM.

Figure 5.3 (p. 145) plots the batch means for batch length 100 for the run

shown in the top panel of Figure 5.2, that is, it plots X̄m,k defined by (5.12)

versus k. This is, of course, another time series. The method of OLBM says
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Figure 5.2: (Top) One run of a stationary normal AR(1) time series with

ρ = 0.95 and τ = 1. (Bottom) The initial tenth (1000 steps) of the same

run.
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Figure 5.3: Batch means for batch length 100 for the normal AR(1) time

series shown in the top panel of Figure 5.2. The ordinate of the dotted line

is the sample mean of the whole sequence.

the sample variance of this time series approximates σ2/m, where σ2 is the

variance in the CLT (5.11i) and m is the batch length. Actually, the proper

formula (5.15) is not precisely proportional to the sample variance of the

time series of batch means, because X̄n is not precisely the sample mean of

the X̄m,k, but for purposes of developing intuition about what’s going on the

analogy is close enough. The variance estimate (5.15) for the run shown in

the top panel of Figure 5.2 is

σ̂2
n

n
= 0.0363969 (5.20)

and, of course, its square root (0.1908) is the MCSE. Thus we can report our

results as a little table

estimate standard error

−0.10 0.19

Presumably, all readers are sophisticated enough to know how to interpret
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standard errors, but if we like we can make a confidence interval for the

true unknown value (here known to be µ = 0 because of the toyness of

the problem). An approximate 95% confidence interval would, of course, be

−0.10 ± 2 × 0.19 or (−0.48, 0.28). We see that (no surprise) statistics works

and the confidence interval actually covers the true value. We also know

that in actual practice a 95% confidence interval will fail to cover 5% of the

time, so failure of the interval to cover wouldn’t necessarily have indicated a

problem.

We would like to point out that our variance estimate isn’t very good.

We can calculate σ2 in this problem. From (5.18) and (5.17) we have

σ2 = σ2
X

1 + ρ

1 − ρ
=

τ 2

1 − ρ2
· 1 + ρ

1 − ρ
= 400

for the parameters ρ = 0.95 and τ = 1 used in Figure 5.2. In contrast, our

estimate, (5.20) times n is

σ̂2
n = 363.97

The asymptotic theory behind our confidence interval assumes that n is so

large that the difference between σ̂2
n and σ2 is negligible. The difference here

is obviously not negligible. So we can’t expect our nominal 95% confidence

interval to actually have 95% coverage. The Monte Carlo sample size n must

be much larger for all the asymptotics we so casually assume to hold. This

is a very common phenomenon; obtaining a good estimate of an asymptotic

variance often require larger sample sizes than estimating an asymptotic

mean.

5.6 Appendix: Total Variation

Let µ and ν be two probability measures defined on the same measurable

space (X,B). The total variation distance of µ and ν is defined as

‖µ− ν‖ = sup |µ(·) − ν(·)| . (5.21)
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Theorem 5.6.1. If α is any σ–finite measure which dominates µ and ν then

‖µ− ν‖ =
1

2

∫
|r1 − r2| dα (5.22)

where r1 = dµ/dα and r2 = dν/dα are Radon–Nikodym derivatives.

Proof. (Billingsley, 1968, p. 224) Let φ = r1 − r2. Then we have

0 =

∫
φ(x)α(dx) =

∫
[IA(x) + IAc(x)]φ(x)α(dx)

so that ∣∣∣∣
∫
IA(x)φ(x)α(dx)

∣∣∣∣ =

∣∣∣∣
∫
IAc(x)φ(x)α(dx)

∣∣∣∣

and hence

|µ(A) − ν(A)| =

∣∣∣∣
∫
IA(x)φ(x)α(dx)

∣∣∣∣

=
1

2

[∣∣∣∣

∫
IA(x)φ(x)α(dx)

∣∣∣∣+
∣∣∣∣

∫
IAc(x)φ(x)α(dx)

∣∣∣∣

]

≤ 1

2

[∫
IA(x)|φ(x)|α(dx) +

∫
IAc(x)|φ(x)|α(dx)

]

=
1

2

∫
|φ(x)|α(dx)

=
1

2

∫
|r1(x) − r2(x)|α(dx) .

The supremum is achieved with A = {x : r1(x) − r2(x) > 0}.

Corollary 5.6.2.

‖µ− ν‖ = sup
|f |≤1

1

2

∣∣∣∣

∫
f(x)µ(dx) −

∫
f(x)ν(dx)

∣∣∣∣ . (5.23)

Proof. (Billingsley, 1968, p. 224)

1

2

∣∣∣∣
∫
f(x)µ(dx) −

∫
f(x)ν(dx)

∣∣∣∣ =
1

2

∣∣∣∣
∫
f(x)[r1(x) − r2(x)]α(dx)

∣∣∣∣

≤ 1

2

∫
|r1(x) − r2(x)|α(dx)

= ‖µ− ν‖ .
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The supremum is achieved when A = {x : r1(x) − r2(x) > 0} and f =

IA − IAc .



Chapter 6

Practical Markov Chain Monte

Carlo

While the title of this chapter has been taken from Geyer’s (1992) article,

we mean something different. His focus was on estimating the variance of

the asymptotic distribution of ḡn. In this chapter we endeavor to cover most

of the major topics in how to do MCMC in light of the theory covered in the

previous chapter.

We are nearly ready to start describing the algorithms for doing real

MCMC. But first we need to take care of a few important issues that oth-

erwise will get lost if presented while we are trying to understand the algo-

rithms.

By an update mechanism in MCMC we mean a bit of computer code

that does something random to the current state of the computer program.

We say an update mechanism preserves a specified invariant distribution if it

changes the marginal probability distribution of the state from the the invari-

ant distribution to the invariant distribution, that is, the specified invariant

distribution is unchanged by the update.

Generally, there are many different ways to construct update mechanisms

149
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having a specified invariant distribution. But before we look at any of those

ways, we show how to combine different update mechanisms preserving the

same invariant distribution giving a combined update mechanism that also

preserves the same invariant distribution.

The point is that once we learn about procedures for combining updates,

we never need to refer to them again. We can concentrate on how “elemen-

tary” update mechanisms work.

6.1 Combining Update Mechanisms

6.1.1 Composition

By composition of update mechanisms we mean computer code in which

one update follows another. If foo and bar are C functions having one

argument, which is a pointer to the state x, and both preserve a specified

stationary distribution, then so does the combined update

foo(x);

bar(x);

The reason we call it composition is that it is composition of functions

in many ways. This would be obvious if we defined the functions to return a

value, which is the pointer to the updated state. Then we could write

x = bar(foo(x));

which looks exactly like composition of functions.

It is a trivial observation that if each term of a product of kernels pre-

serves the invariant distribution, then so does the product, in mathematical

notation

πPi = π, for all i
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implies

πP1P2 . . . Pd = π,

the proof being that multiplication is associative.

This method of combining elementary update mechanisms is not usually

called “composition” in the MCMC literature. To the extent that it has a

standard name, it is called fixed scan. We do not like that name, because it

focuses attention on a type of “scan” rather than on a type of “combining”

mechanisms. As we will see, “scan” needlessly restricts the notion. There are

many types of combining that aren’t one of the traditional “scan” notions.

6.1.2 Simple Mixing

If multiplication of kernels provides one method of combining, perhaps

addition provides another? Addition of kernels is well defined and obvious,

but does not correspond to any probabilistic operation. The sum of two

Markov kernels is not Markov (the sum integrates to two, not one).

By mixing of update mechanisms we mean computer code which makes

a random choice among update mechanisms. By simple mixing we mean a

random choice that does not depend on the state of the Markov chain.

If foo and bar are C functions that update the state in place by modifying

their argument, which is a pointer to the state x, and both preserve a specified

stationary distribution, then so does the combined update

if (unif_rand() < p)

foo(x);

else

bar(x);

where unif_rand() is a source of uniform random numbers and p is a con-

stant between zero and one that does not depend on x.
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More generally, we can consider a convex combination of kernels

q1P1 + q2P2 + · · ·+ qdPd

where the Pi are Markov kernels and the qi are nonnegative real numbers that

sum to one (and do not depend on x or A in the kernels), does correspond

to a probabilistic operation. This combined update proceeds as follows.

• Choose an index j at random, choosing j with probability qj .

• Update the state using the mechanism with kernel Pj.

We call this state independent mixing to contrast with state dependent

mixing, which we hope to cover later. State independent means the qj do not

depend on the state x. That

π(q1P1 + q2P2 + · · · + qdPd) = π

is again a trivial matter of algebra (and the fact that the qi sum to one), and

again it is our use of measure-theoretic notation that makes it trivial. It is

crucial that the qi do not depend on x or A. As we shall see, state dependent

mixing is rather less trivial.

What we are calling mixing here is more often called “random scan” in

the literature, the image being one of making a “scan” over the possible

choices in random order. But from our point of view (the “update” point of

view), this term is misleading. A state independent mixing update does not

do a “scan.” Rather it executes the mechanism associated with exactly one

Pj (chosen randomly).

6.1.3 Subsampling a Markov Chain

Although rarely thought of as belonging in this section (combining up-

dates), a subsampled Markov chain is just a special case of composition.
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Fixed Subsampling

Repeating the same update is a special case of composition. The com-

bined update

for (i=0; i<k; i++)

foo(x);

obviously preserves the same stationary distribution that foo does. The

Markov chain that has this as its update mechanism can also be obtained by

taking every k-th element of the chain having foo as its update mechanism.

Subsampling a Markov chain gives another Markov chain. If P is a

Markov kernel, then P k is also a Markov kernel, and P k is clearly the k-

fold composition of P with itself. If X1, X2, . . . is a Markov chain with

kernel P , then Xk, X2k, . . . is a Markov chain with kernel P k.

Geyer (1992) also gave a finer analysis. If one considers not only the

cost (computing time, memory usage, whatever) of generating the Markov

chain, but also the cost of using the samples generated and notices that a

subsampled chain will have cost of generation proportional to kn where k

is the spacing and n the number of iterates in the subsampled chain, but

the cost of using samples will be proportional to n. So subsampling may

be effective, but only if the cost of “using” is large compared to the cost of

“sampling.” The theorems that forbid subsampling mentioned above assume

zero cost of “using.”

The point is not that one should do such an analysis (the analysis would

generally take longer than just going ahead and doing something suboptimal).

The point is to be aware of the issue. Before these theorems, subsampling

sounded plausible to many MCMC experts. Even if one considers costs, most

users’ intuitions about subsampling are far too favorable to it. Most users

guess that intervals like 100 or 1000 are a good idea when a formal analysis

might say something more like 3 or 5 is optimal.
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Moreover, subsampling also competes with the method of batch means.

If the only point of subsampling is to avoid excessive memory use, then one

can batch instead of subsample and get the full accuracy possible without

using more memory.

Random Subsampling

Fixed interval subsampling can be “part of the problem not part of the

solution” because it can convert an effective sampler into a useless one. This

most often happens when the original sampler is periodic, but can also hap-

pen when the original sampler is only “nearly” periodic. Subsampling using

an interval that is a multiple of the period (or “near” period) can destroy all

of the good properties of the sampler (even mere irreducibility).

But subsampling at a random interval has no such drawbacks. If we let

k in the preceding example be a random variable having a distribution that

does not depend on the current state (at the time the loop starts), then we

are mixing over the various values of k and thus using both composition and

mixing. For example,

k = rgeom(p);

for (i=0; i<k; i++)

foo(x);

where rgeom(p) is a source of geometric random numbers and p is a constant

between zero and one that does not depend on x.

Curiously fixed subsampling is widely used in MCMC, probably overused.

But random subsampling is almost never used. This is surprising because

random subsampling is a major tool of Markov chain theory, used again

and again in (Meyn and Tweedie, 1993b, Section 5.5). They call the notion

“sampled chains” rather than our “subsampled,” but the concept is the same.
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Optimal Subsampling

Basically, you don’t get a better answer by throwing away data. If the cost

of using samples is ignored, optimal subsampling is no subsampling (Geyer,

1992; MacEachern and Berliner, 1994).

That doesn’t mean there is no point to subsampling. If one wants a

long run but doesn’t want that many samples, then subsampling is appro-

priate. The only point of this section is to warn the reader against the once

widespread yet erroneous notion that subsampling can improve accuracy. It

can’t.

6.2 The Metropolis Update

6.2.1 Algorithm

Given an unnormalized density h with respect to λ, the Metropolis update

makes a random change to the state that preserves the distribution having

this unnormalized density. Thus, if iterated, it produces a Markov chain with

h as the unnormalized density of the equilibrium distribution.

Let q be any function on the product of the state space with itself such

that

• q(x, y) = q(y, x) for all x and y,

• q(x, · ) is a probability density w. r. t. λ for all x, and

• it is possible to simulate random realizations from q(x, · ) for all x.

The Metropolis update of the state moves from a state x to the state x∗

according to the following procedure

• [The Proposal] Simulate y from q(x, · ).
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• [The Odds Ratio] Calculate

r =
h(y)

h(x)
(6.1)

• [Metropolis Rejection] With probability min(r, 1) set x∗ = y, otherwise

set y = x.

In the last step we say we “accept the proposal” when we set x∗ = y and

otherwise we say we “reject the proposal.”

The update is undefined when h(x) = 0, but h(y) = 0 is allowed. Such

a proposal gives r = 0 so we “accept” the proposal with probability zero.

If the update is used as the transition probability mechanism of a Markov

chain, then so long as h(x1) > 0 each iterate will be well-defined and satisfy

h(xn) > 0 as well.

Computer code for the update looks something like this, supposing rq(x)

simulates a random variate having density q(x, · ) and runif simulates a

uniform (0, 1) random variate

y = rq(x);

r = h(y) / h(x);

if (runif() < r)

x = y;

(the value of x at the end is what is denoted x∗ in the mathematical descrip-

tion).

Note well that when the “Metropolis rejection” step “rejects” the state

does not change (we have x∗ = x). So a Markov chain that is produced by

iterating a Metropolis update over and over, has many steps when the state

does not change. This is part of preserving π. Any attempt to avoid this

“rejection” only ruins the algorithm. The state not changing in “rejection”

steps is not a bug, it’s a feature. It’s what makes the algorithm get the

correct stationary distribution with only trivial calculations.
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6.2.2 Invariant Distribution for Metropolis

We claim the Metropolis update defines a kernel P that is reversible

w. r. t. η which is an unnormalized measure corresponding to the function h.

First we define the kernel. Let

a(x, y) =
h(y)

h(x)
∧ 1

be the probability that the “Metropolis rejection” step is “accepted” (exe-

cutes the assignment x = y). Then

P (x,A) =

∫

A

q(x, y)a(x, y)λ(dy) + I(x ∈ A)

(
1 −

∫
q(x, y)a(x, y)λ(dy)

)
.

This is a little complicated, but sensible if we take it one bit at a time. We

can move from x to A by proposing y ∈ A and accepting (that’s the first

term) or by having x ∈ A originally (that’s what the I(x ∈ A) is in there

for) and proposing some y that is rejected.

Now
∫∫

η(dx)P (x, dy)g(x, y) =

∫∫
h(x)q(x, y)a(x, y)g(x, y)λ(dx)λ(dy)

+

∫
h(x)g(x, x)

(
1 −

∫
q(x, y)a(x, y)λ(dy)

)
λ(dx)

and the second term on the right hand side is obviously unchanged if the two

arguments of g are swapped (since they are both x). Thus we only need to

show that the first term is unchanged if we replace g(x, y) by g(y, x). So
∫∫

h(x)q(x, y)a(x, y)g(x, y)λ(dx)λ(dy) =

∫∫
h(y)q(y, x)a(y, x)g(y, x)λ(dy)λ(dx)

=

∫∫
h(y)q(x, y)a(y, x)g(y, x)λ(dy)λ(dx)

the first inequality being interchange of dummy variables and the other being

the symmetry requirement q(x, y) = q(y, x). Thus in order to finish the proof

it is enough to show that

h(x)a(x, y) = h(y)a(y, x), for all x and all y. (6.2)
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To prove that, assume without loss of generality that h(x) ≥ h(y). Then

a(x, y) =
h(y)

h(x)
≤ 1 and a(y, x) = 1 .

Hence

h(x)a(x, y) = h(x) · h(y)
h(x)

= h(y) = h(y)a(y, x) .

so (6.2) does indeed hold, and the Metropolis update does indeed preserve η

because its kernel is reversible w. r. t. η.

6.2.3 Turning an Update into a Markov Chain

One makes a Markov chain by executing the same random mechanism

over and over and letting Xn be the state after the n-th execution. This

random mechanism is associated with a transition probability kernel P . The

chain starts atX0 which can have any distribution (the “initial distribution”).

MCMC involves running a Markov chain with transition proba-

bility kernel P and invariant distribution π.

That’s all there is to it. There’s a Markov chain. You run it. And you use

averages over the run to estimate properties of π.

Right now, we only know one way to make a kernel P that preserves a

specified stationary distribution π, the Metropolis update. So right now our

recipe for doing MCMC is to iterate the same Metropolis update over and

over.

But we shall soon meet other methods of making what we call elemen-

tary updates, the “indivisible atoms” of MCMC mechanisms, and we have

already met methods of combining elementary updates to make a “combined

kernel” P that preserves a specified π. Then everything we said here will

apply to these more general update mechanisms. Given π you construct a

random mechanism described by a kernel P (elementary or combined) that
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preserves π. Then one makes a Markov chain (with invariant distribution π)

by executing this random mechanism over and over.

Example 6.2.1. Suppose the target distribution is Cauchy(θ, σ) so that

h(x) =

[

1 +

(
x− θ

σ

)2
]−1

.

Suppose we use a N(x, 1) candidate, that is,

q(x, y) =
1√
2π
e−

1

2
(y−x)2

so that it is obvious that q(x, y) = q(y, x). The odds ratio is then given by

r =
σ2 + (x− θ)2

σ2 + (y − θ)2
.

Let θ = 0 and σ = 1. The following R code implements the Metropolis

algorithm.

set.seed(23)

n<-5e2 #number of iterations

markov<-c(1,rep(0,n-1)) #initial state of the Markov chain

for(i in 2:n){

prop<-rnorm(1, mean=markov[i-1]) #get the proposal

odds.ratio<-(1 + markov[i-1]^2)/(1 + prop^2) #calculate the odds ratio

if (runif(1) < odds.ratio) {markov[i]<-prop}

else {markov[i]<-markov[i-1]}

}

Trace plots of an implementation for this setting are given in Figure 6.2.3 on

page 160. Specifically, the top plot shows a run of length 500 while the bottom

plot shows a run of length 100. High autocorrelation is apparent in the top

plot while in the bottom plot we see that the sampler is frequently stuck at a

point for repeated iterations.
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Figure 6.1: One run of the Metropolis algorithm for Example 6.2.1. The top

plot shows the initial 500 iterations while the bottom plot shows the initial

100 iterations.
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6.2.4 Choosing the Proposal Distribution

The standard example is to make q(x, · ) be a nondegenerate multivariate

normal distribution centered at x. Then

q(x, y) = φ(x− y)

where φ is multivariate normal centered at zero. Hence q does indeed have the

required symmetry property. This is the update used by the metrop function

in the mcmc contributed package for R. The variance-covariance matrix of the

normal proposal can be anything so long as it is nonsingular. In order that

the Markov chain be time homogeneous, the proposal distribution must not

change. We must use the same variance-covariance matrix for all proposals.

Clearly, the particular form of the normal distribution plays no role in

the preceding example. We could replace the normal φ above by any density

having point symmetry about zero

φ(x) = φ(−x), for all x.

There are not many such symmetric multivariate distributions that can be

simulated so as to make suitable proposals. For example, another obviously

correct possibility is uniform on any region having a center of symmetry with

x being the center. The regions could be balls, ellipsoids, or boxes. It is not

clear that any of these are better than normal proposals.

The wonderful feature of the Metropolis algorithm, that any proposal

works, leaves us with a difficult problem of too many choices. Some propos-

als will work better than others (will produce more accurate Monte Carlo

approximation in the same amount of computer time). Which do we choose?

In general, there is very little one can say. The possible problems that

MCMC can be used to solve include every possible probability problem,

not to mention every possible integration problem (thus going far beyond

probability and statistics). This class of problems is so general, that nothing

can be said at this level of generality.
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Most discussions in the literature focus on the acceptance rate in the

Metropolis rejection step (the proportion of Metropolis proposals that are

accepted) as a guide. Moreover, they focus on a particular class of proposals

(for example, multivariate normal Metropolis proposals). With such simpli-

fication of the problem, our choices seem much simpler. How do we adjust

the variance matrix of the (multivariate normal) proposal so as to get good

performance, and how does the acceptance rate indicate good performance?

It is important to understand that higher acceptance rate is not neces-

sarily good.

• If the unnormalized density h is continuous, then one can always make

the acceptance rate as close to one as one pleases by making the pro-

posal variance very very small so h(y) and h(x) are nearly equal and

the odds ratio is nearly one.

But such “baby steps” take a very long time to get anywhere.

• Conversely, consider “giant steps” with very large proposal variance.

In order for h to be integrable, it must go to zero at infinity, thus if the

current position x is from the equilibrium distribution and y is very far

from x we will generally have h(y) ≪ h(x) and the odds ratio is nearly

zero.

The “giant steps are bad” part of the argument is not so clear as the “baby

steps are bad” part, but it is clear that we do not want an acceptance rate

so low that there are very few acceptances in the entire run of the Markov

chain that we are willing to do. It is clear that we don’t want an acceptance

rate that is either zero or one.

Thus it seems that we have something of a “Goldilocks problem” (we don’t

want the porridge too hot or too cold as in the children’s story of Goldilocks

and the three bears). We want an acceptance rate somewhere between zero

and one. Surprisingly, it is possible to work out the theoretically optimal
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acceptance rate for some very simple problems. Gelman et al. (1996) consid-

ered the problem of sampling the multivariate normal distribution (which, of

course, does not need MCMC but is simple enough to analyze theoretically)

and showed that an acceptance rate of about 20% was right for normal pro-

posal Metropolis (the optimal rate goes to 23.4% and the dimension of the

state space goes to infinity).

In a quite different situation Geyer and Thompson (1995) came to a

similar conclusion, that a 20% acceptance rate is about right, But they also

warned that a 20% acceptance rate could be very wrong and produced an

example where a 20% acceptance rate was impossible and attempting to

reduce the acceptance rate below 70% would keep the sampler from ever

visiting part of the state space.

The 20% magic number must be considered like other rules of thumb we

teach in intro courses (like n > 30 means means normal approximation is

valid). It is not at all clear that the focus on acceptance rate as the sole

criterion of goodness of proposal makes any sense. Even if one decides to

focus on acceptance rate, we have no theory that tells us what acceptance

rate to use in general. One should always look at diagnostics such as time

series plots as well but there are no guarantees.

Example 6.2.2. In this example the use of the mcmc package is illustrated

using the setting of Example 6.2.1. The metrop function requires the log of

the unnormalized target density. In this case,

− log

(

1 +

(
x− θ

σ

)2
)

.

As in example 6.2.1 let θ = 0 and σ = 1. Then the following R code imple-

ments the Metropolis algorithm and produces the plot in Figure 6.2.4. This

code runs the Metropolis algorithm for 3 different settings. In each case it

starts from X0 = 1 and uses a Normal proposal distribution but with a dif-

ferent proposal variance; specifically 1/4, 1 and 25. The output shows that
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the acceptance rates decrease as the proposal variance increases.

h<-function(x){-log(1+x^2)}

library(mcmc)

set.seed(528)

out1<-metrop(h, initial=1, nbatch=500, blen=1, nspac=1, scale=.5)

names(out1)

[1] "accept" "batch" "initial" "final" "initial.seed"

[6] "final.seed" "time" "lud" "nbatch" "blen"

[11] "nspac" "scale"

out1$accept

[1] 0.886

out2<-metrop(h, initial=1, nbatch=500, blen=1, nspac=1, scale=1)

out2$accept

[1] 0.746

out3<-metrop(h, initial=1, nbatch=500, blen=1, nspac=1, scale=5)

out3$accept

[1] 0.382

par(mfrow=c(3,1))

plot(out1$batch[ , 1],type="l")

plot(out2$batch[ , 1],type="l")

plot(out3$batch[ , 1],type="l")

6.2.5 Example: Bayesian Logistic Regression

This example is taken from a PhD Qualifying Exam (School of Statistics,

University of Minnesota) and is also used in the vignette for the mcmc R

contributed package. Suppose that for i = 1, . . . , 100 and j = 0, . . . , 4

Yi | β ∼ Bernoulli (pi)
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Figure 6.2: Three runs of length 500 of the Metropolis algorithm using the

metrop R function for Example 6.2.1. The top plot is based on a proposal

variance of 1/4, the middle plot on a proposal variance of 1 and the bottom

plot on a proposal variance of 25.
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where β = (β0, β1, β2, β3, β4)
T ,

logit(pi) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 = ηi

and βj ∼ N(0, 4), independently. The posterior is characterized by

π(β | y) ∝ f(y | β) π(β)

where y is all of the data and hence the log unnormalized posterior is

log[h(β | y)] =
∑

[yi log(pi) + (1 − yi) log(1 − pi)] −
1

8

∑
β2

j

where

pi =
eηi

1 + eηi
.

Data simulated from this model are given in the file

http://www.stat.umn.edu/~galin/teaching/8701/logit.txt

Our goal is to calculate the posterior mean of each of the five regression

coefficients.

> logit.data<-read.table("logit.txt", header=TRUE)

> out <- glm(y ~ x1 + x2 + x3 + x4, data=logit.data, family=binomial)

> x<-logit.data

> x$y<-NULL

> x<-as.matrix(x)

> x<-cbind(1,x)

> dimnames(x)<-NULL

> y<-logit.data$y

> lupost<-function(beta, x, y){

+ eta<-x %*% beta

+ p<- 1/(1+exp(-eta))

+ logl <- sum(log(p[y==1])) + sum(log(1-p[y==0]))
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+ return(logl + sum(dnorm(beta, 0, 2, log=TRUE)))

+ }

> library(mcmc)

> set.seed(528)

> beta.initial<-as.numeric(coefficients(out))

> out<-metrop(lupost, beta.initial, 1000, x=x, y=y)

> names(out)

[1] "accept" "batch" "initial" "final" "initial.seed"

[6] "final.seed" "time" "lud" "nbatch" "blen"

[11] "nspac" "scale"

> out$accept

[1] 0.028

> plot(ts(out$batch),main="scale=1")

This acceptance rate is obviously too low. The plot in Figure 6.3 shows this

and that little of the space is being explored. Now we try two other values

for the scale to achieve a better acceptance rate.

> out<-metrop(out, scale = 0.1, x=x, y=y)

> out$accept

[1] 0.729

> plot(ts(out$batch),main="scale=0.1")

> out<-metrop(out, scale = 0.4, x=x, y=y)

> out$accept

[1] 0.238

> plot(ts(out$batch),main="scale=0.4")

Using scale=0.4 results in a reasonable acceptance rate and better explo-

ration (see Figure 6.5) based a pilot run of 1000. Also, the autocorrelation

plots in Figure 6.6 show that the all of the autocorrelations are negligible

after about lag 20.
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> acf(out$batch)

This means that we should be comfortable using batch sizes of around 25

but lets use batches of length 50 just to be safe.

> out<-metrop(out, nbatch=200, blen=50, outfun= function(z,...) z, x=x, y=y)

> out$accept

[1] 0.2417

Notice that there is an additional argument that gives the functional

of the state we want to average. Recall that for this problem we want to

estimate the posterior mean. Hence we want to average the state itself.The

outfun returns z for an argument z. The . . . argument to outfun is required

since the function is also passed the other arguments (x and y) to metrop.

The batch means are obtained with

> post.mean<-apply(out$batch, 2, mean)

> post.mean

[1] 0.6671069 0.7886261 1.1591764 0.4881030 0.7252611

These 5 numbers are the Monte Carlo estimates of the posterior means

We still need to calculate Monte Carlo standard errors. We will do this

two ways. The first will be with ordinary batch means while in the second

case we will use the consistent nonoverlapping batch means (CBM) method

of Jones et al. (2005). (We could also use the olbm function to do OLBM.)

Recall this was described in the previous chapter. Using ordinary batch

means is easy for post.mean.

> post.mean.mcse<-apply(out$batch, 2, sd) / sqrt(out$nbatch)

> post.mean.mcse
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[1] 0.01238445 0.01452696 0.01460955 0.01292095 0.01611571

Now lets do the same calculation using consistent version of batch means.

An R function, bm, to do CBM is included in the Appendix to this chapter.

> set.seed(528)

> out<-metrop(out, nbatch=10000, blen=1, outfun= function(z,...) z, x=x, y=y)

> out$accept

[1] 0.2417

> bm(out$batch[,1])

$est

[1] 0.6671069

$se

[1] 0.01256335

$bs

[1] "sqroot"

> bm(out$batch[,2])

$est

[1] 0.7886261

$se

[1] 0.01521510

$bs

[1] "sqroot"
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> bm(out$batch[,3])

$est

[1] 1.159176

$se

[1] 0.01607124

$bs

[1] "sqroot"

> bm(out$batch[,4])

bm(out$batch[,4])

$est

[1] 0.488103

$se

[1] 0.01377448

$bs

[1] "sqroot"

> bm(out$batch[,5])

$est

[1] 0.7252611

$se

[1] 0.01831652
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$bs

[1] "sqroot"

The estimates of the posterior means are the same (as they should be) but

using the CBM method to calculate the MCSEs results in (slightly) larger

MCSEs. This is expected since the theory (see Jones et al., 2005) indicates

that this should be the case. Whichever method is used these MCSEs are a

little too large (The exam problem asked for MCSEs less than 0.01.) so lets

try for some more precision.

> out<-metrop(out, nbatch=50000, blen=1, outfun= function(z,...) z, x=x, y=y)

> out$accept

[1] 0.23312

> bm(out$batch[,1])

$est

[1] 0.6647892

$se

[1] 0.005448522

$bs

[1] "sqroot"

> bm(out$batch[,2])

$est

[1] 0.7877401

$se
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[1] 0.007277969

$bs

[1] "sqroot"

> bm(out$batch[,3])

$est

[1] 1.175269

$se

[1] 0.007488702

$bs

[1] "sqroot"

> bm(out$batch[,4])

$est

[1] 0.5208893

$se

[1] 0.00730302

$bs

[1] "sqroot"

> bm(out$batch[,5])

$est
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[1] 0.7195294

$se

[1] 0.008576123

$bs

[1] "sqroot"
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Figure 6.6: Autocorrelation plots of MCMC output.
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6.3 The Metropolis-Hastings Update

6.3.1 Algorithm

Hastings (1970) proposed a variant of the Metropolis update which makes

the symmetry requirement unnecessary. Everything is the same as described

in Section 6.2.1 except that the requirement

• q(x, y) = q(y, x) for all x and y

is dropped and replaced by the much weaker

• q(x, y) can be evaluated for all x and y.

Of course, without the symmetry requirement, the algorithm is no longer cor-

rect, but Hastings found that the simple change of replacing the Metropolis

definition of r in (6.1) by

r =
h(y)q(y, x)

h(x)q(x, y)
(6.3)

restores correctness.

Then everything goes through unchanged (use this r in the Metropolis

rejection and everything else works the same). The proof in Section 6.2.2

can be altered for this Metropolis-Hastings update, but, since this update is

a special case of the more general Metropolis-Hastings-Green update (that

we hope to meet later) we shall omit the details.

The requirements on q allow us to be extremely flexible in our choice of

proposal distribution. So in some ways we have only complicated matters

since some proposals will work better than others. Again we are faced with

the question of which one do we choose?

It is basically impossible to give a general recommendation. However,

there are a few update recipes that seem to have taken hold in the literature.

However, there is no guarantee that any of them will be useful in a particular
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problem. If these don’t work then try another. The choice of proposal

distribution is only limited by our basic requirements and our imagination.

6.3.2 Independence Sampler

The so-called independence sampler results when the proposal is chosen

independently of the current state. That is, q(x, y) = q(y). Then the odds

ratio is

r =
h(y) q(x)

h(x) q(y)

This update has the property that it either works well or often not at all.

This should be surprising since if q doesn’t mimic h fairly well then the

proposals will be very different from what one would expect from the target.

However, this method can occasionally work well in practice and proves to be

a continuing source of toy examples used to illustrate complicated theory. In

fact, we already met one of these examples when we considered the Markov

chain CLT. Here we meet it again.

Example 6.3.1. Suppose the target distribution is Pareto(α, β) and the pro-

posal distribution is Pareto(α, λ). Then the Hastings ratio is

r = xβ−λyλ−β .

Thus we can simulate a Markov chain having a Pareto(α, β) invariant dis-

tribution as follows. Let the current state be Xn = x. Draw y ∼ Pareto(α, λ)

and independently draw u ∼ Uniform(0, 1). Set Xn+1 = y if

u < xβ−λyλ−β

otherwise set Xn+1 = x.

Mengersen and Tweedie (1996) show that if there exists a κ > 0 such

that
π(x)

q(x)
≤ κ ∀ x ∈ X (6.4)
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then the independence sampler having invariant density π and proposal den-

sity q is uniformly ergodic and that

‖P n(x, ·) − π(·)‖ ≤
(

1 − 1

κ

)n

.

Mengersen and Tweedie (1996) also show that if for all κ > 0 there is a set

of positive π measure where (6.4) fails to hold then the chain is not even

geometrically ergodic.

Example 6.3.2. This is a continuation of Example 6.3.1. It is easy to see

that if λ ≤ β then this independence sampler is uniformly ergodic since

π(x)

q(x)
=
β

λ
αβ−λxλ−β ≤ β

λ
.

Also, if λ ≤ β and P is the Markov kernel associated with this independence

sampler

‖P n(x, ·) − π(·)‖ ≤
(

1 − λ

β

)n

.

6.3.3 Langevin Update

Grenander and Miller (1994) proposed using a continuous time rather

than a discrete time Markov process for simulation. They were not the

first to do this, however, one problem with this is that a computer can’t do

continuous time. One must use a discrete-time approximation. But then

one is not actually doing the process one is theorizing about. It turns out

that discretizing a continuous time process like this is highly problematic

(Roberts and Tweedie, 1996); the convergence properties of the continuous

time process need not correspond to those of the discrete time approximation.

Fortunately, Besag (1994) in his discussion of Grenander and Miller (1994)

pointed out how to fix their algorithm. Simply consider each of their iterates

as a mere proposal in a Metropolis-Hastings update which must be followed

by a Metropolis rejection step.
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The Langevin diffusion proposal is multivariate normal but does not have

the symmetry property of a Metropolis proposal (which requires the mean

be the current state x). It proposes y to be multivariate normal with mean

x+
ǫ

2
∇h(x)

and variance-covariance matrix ǫ times the identity. Here ǫ is some “small”

number that is the discrete time step length (as ǫ→ 0 we get closer and closer

to continuous time) and ∇h(x) is the gradient (vector of partial derivatives)

of h evaluated at the point x.

When we consider this as a Metropolis-Hastings update there is no reason

for ǫ to be small; the update is valid for all positive ǫ. As in all Metropolis-

Hastings we adjust the “tuning parameter” (here ǫ) so that we get an accep-

tance rate that is not too large and not too small. There is no reason to make

ǫ as small as possible. In fact, this is the worst thing you can do. Making

ǫ very small guarantees the algorithm will make only very small steps and

have very slow convergence.

Roberts and Rosenthal (1998) show that an acceptance rate of about 50%

is optimal for the Langevin diffusion approximation Metropolis-Hastings al-

gorithm, more precisely, they show that for problems in which the equilibrium

distribution has IID components that the optimal acceptance rate goes to

57.4% as the dimension of the state space goes to infinity. They also discuss

some extensions of their theory to slightly more complicated problems than

IID ones, but do not have an extension to completely general equilibrium

distributions. Thus, as we saw for simple Metropolis in Section 6.2.4, there

is no general theory for setting acceptance rates. Nor is there any general

theory that says that acceptance rates are the right quantity to look at to

adjust the proposal of a Metropolis-Hastings update.
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6.4 The Gibbs Update

In this section subscripts denote components of the state vector not dif-

ferent variables of a Markov chain.

6.4.1 The Basic Gibbs Update

Given a desired stationary distribution π whose state is a vector x =

(x1, . . . , xd), update one variable, say xj , by giving it a random realization

from its conditional distribution given “the rest” (x1, . . . , xj−1, xj+1, . . . , xd),

this conditional distribution being derived from the joint distribution π.

6.4.2 The Block Gibbs Update

For any subset J of D = {1, . . . , d}, let xJ denote the tuple formed from

the variables xj , j ∈ J . A block Gibbs update gives xJ a random realiza-

tion from its conditional distribution given “the rest” xD\J , this conditional

distribution being derived from the joint distribution π.

6.4.3 The Generalized Gibbs Update

Given any function of the state g(x), a generalized Gibbs update gives x

a random realization from its conditional distribution given g(x), this condi-

tional distribution being derived from the joint distribution π.

Clearly, a block Gibbs update is the special case obtained when g(x) = xJ ,

and an ordinary Gibbs update is the special case of block Gibbs obtained

when J = {j}. Conversely, generalized Gibbs is the special case of ordinary

Gibbs obtained when one does a change of variable so that one of the variables

is g(x).
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6.4.4 Invariance

Let P be the conditional distribution of X given g(X) for a generalized

Gibbs update, and let Q be the marginal distribution of g(X), both marginal

and conditional being derived from π. If the current state X has distribution

π, then g(X) has distribution Q, and a generalized Gibbs update of the

current state has distribution
∫
Q(dy)P (y, A) = π(A)

because when we integrate out y = g(x) we get the marginal of the other

variable which is the joint distribution π (because the “other” variable is X).

6.4.5 The Gibbs Sampler

The so-called Gibbs sampler is an MCMC algorithm using only Gibbs

updates. A single Gibbs update does not, by itself, make a good Markov

chain. Since (if ordinary) it only changes one variable, it can never sample

the equilibrium distribution. One needs to combine the Gibbs updates using

any of the combining methods discussed in Section 6.1.

6.4.6 Examples

Toy Example

This example is taken from Jones and Hobert (2001). Let Y1, . . . , Ym be

iid N(µ, θ) and let the prior for (µ, θ) be proportional to 1/
√
θ. The posterior

density is characterized by

π(µ, θ|y) ∝ θ−
m+1

2 exp

{

− 1

2θ

m∑

j=1

(yj − µ)2

}

(6.5)

where y = (y1, . . . , ym)T . This posterior is proper as long as m ≥ 3 and we as-

sume this throughout. Using the Gibbs sampler requires the full conditional
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densities, f(µ|θ, y) and f(θ|µ, y), which are as follows:

µ|θ, y ∼ N(ȳ, θ/m) ,

θ|µ, y ∼ IG

(
m− 1

2
,
s2 +m(ȳ − µ)2

2

)
,

where ȳ is the sample mean and s2 =
∑

(yi − ȳ)2. (Note that W ∼ IG(α, β)

if its density is proportional to w−(α+1)e−β/wI(w > 0).)

Consider the Gibbs sampler that updates θ then µ; that is, if we let (θ′, µ′)

denote the current state and (θ, µ) denote the future state, the transition

looks like (θ′, µ′) → (θ, µ′) → (θ, µ). The state space in this case is X =

R
+ × R and the Markov transition density is

k(θ, µ|θ′, µ′) = f(θ|µ′, y) f(µ|θ, y) . (6.6)

In other words, the density of the new value (θ, µ) given the current state

(θ′, µ′) is k(θ, µ|θ′, µ′). Simulating a random variable from this density can

be done sequentially by first taking θ ∼ f(θ|µ′, y) followed by µ ∼ f(µ|θ, y).
Jones and Hobert (2001) show that this Gibbs sampler is geometrically er-

godic as long as m ≥ 5.

Benchmark Pump Failure Data

Gaver and O’Muircheartaigh (1987) present a data set concerning the

failure rates of 10 pumps at a nuclear power plant, each monitored for

different amounts of time. The failure counts for pump i, having been

monitored for time ti, are assumed to follow a Poisson law with a pump-

specific mean tiλi and observed count yi. A multilevel model is assumed with

λi ∼ Gamma(1.802, β) and β ∼ Gamma(.01, 1). (We say W ∼ Gamma(α, β)

if its density is proportional to wα−1e−βwI(w > 0).) Let π(β, λ|y) be the re-

sulting posterior.

A Harris ergodic Gibbs sampler having π(β, λ|y) as its invariant den-

sity completes a one-step transition (β ′, λ′) → (β, λ) by simulating β ∼
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Gamma(18.03,
∑
λ′i + 1) then each λi ∼ Gamma(1.802 + yi, ti + β) indepen-

dently. This Gibbs sampler has been analyzed by many authors including

Robert and Casella (1999), Rosenthal (1995), and Tierney (1994).

The following is a (slight) generalization of the above Gibbs sampler. Set

y = (y1, y2, . . . , ym)T and let π(x, y) be a joint density on R
m+1 such that the

corresponding full conditionals are

X|y ∼ Gamma (α1, a+ bTy)

Yi|x ∼ Gamma (α2i, βi(x))

for i = 1, . . . , m, b = (b1, . . . , bm)T where a > 0 and each bi > 0 are known.

Since, conditional on x, the order in which the Yi are updated is irrelevant this

is effectively a two variable Gibbs sampler with the transition rule (x′, y′) →
(x, y). That is we first obtain x conditional on y′ then y conditional on

x. Jones (2004) shows that this Gibbs sampler is uniformly ergodic if for

i = 1, . . . , m there is a function g > 0 such that for all x > 0

βi(x)

bix+ βi(x)
≥ g(x) .

Despite this example uniform ergodicity of Gibbs samplers appears to be

rare.

Bayesian Inference for the Two-Parameter Normal

Suppose we observe data X1, . . ., Xm iid N(µ, λ−1) and want to make

Bayesian inference about the parameters µ and λ. The distribution we want

to know about here is the posterior distribution of µ and λ given the data

X = (X1, . . ., Xm). The posterior depends on the data and on our prior,

which we will assume has a probability density function g(µ, λ).

As is well known , there is a closed-form solution to this problem, if we
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choose the prior for reasons of mathematical convenience to be of the form1

µ | λ ∼ N
(
γ, δ−1

)
, (6.7a)

λ ∼ Gamma(α, β) (6.7b)

where α, β, γ, and δ are hyperparameters of the prior to be chosen by the

user. The likelihood times the prior is proportional to

h(µ, λ) = λm/2 exp

{
−mλvm

2
− mλ

2
(x̄m − µ)2

}
λα−1e−βλ exp

{
−δ

2
(µ− γ)2

}

where

x̄m =
1

m

m∑

i=1

xi and vm =
1

m

m∑

i=1

(xi − x̄m)2 .

Using the definition of h(µ, λ) we see that

λ | µ ∼ Gam
(
α +

m

2
, β +

nvm

2
+
m

2
(x̄m − µ)2

)
(6.8a)

µ | λ ∼ N

(
mλx̄m + δγ

mλ+ δ
,

1

mλ + δ

)
(6.8b)

So here is the recipe for the Gibbs sampler for this problem. Start any-

where, say at the prior means µ1 = γ and λ1 = α/β. Then alternate the

update steps. Simulate λ2 from the distribution (6.8a) with µ1 plugged in

for µ. Then simulate µ2 from the distribution (6.8b) with λ2 (the current

value) plugged in for λ. Repeat.

• Simulate λn from the distribution (6.8a) with µn−1 plugged in for µ.

• Simulate µn from the distribution (6.8b) with λn plugged in for λ.

1The notation Gamma(α, β) here indicates the distribution with density

f(x) =
βα

Γ(α)
xα−1e−βx, x > 0

rather than the other convention which replaces β by 1/β.
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This produces a Markov chain (λn, µn), n = 1, 2, . . . with state space R
2.

Lets look at some R code for implementing this Gibbs sampler.

> alpha <- 1

> beta <- 20^2

> gammu <- 50

> delta <- 1 / 10^2

> n <- 10

> xbar <- 41.56876

> v <- 207.5945

> set.seed(731)

> nsim<-1e3

> mu <- lambda <- rep(NA, nsim)

> mui <- gammu

> lambdai <- 1 / beta

> for (i in 1:nsim) {

+ lambdai <- rgamma(1, alpha + n / 2) /

(beta + n * v / 2 + n * (mui - xbar)^2 / 2)

+ mui <- (n * lambdai * xbar + delta * gammu) / (n * lambdai + delta) +

rnorm(1) / sqrt(n * lambdai + delta)

+ mu[i] <- mui

+ lambda[i] <- lambdai

+ }

There are several ways to look at the simulation output. One is to look at

time-series plots of functionals of the chain and the autocorrelation functions.

> plot(mu)

> acf(mu)
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> plot(lambda)

> acf(lambda)

The time series plots show very little autocorrelation which is also confirmed

in Figures 6.9 and 6.10. The reader should be warned that this example is

very atypical. Most MCMC time-series plots show much more autocorrela-

tion. This is a very easy Markov chain problem.

Another way to look at the simulation output is a scatter plot of two

functionals of the chain. An example is Figure 6.11, which plots µn versus

σn = 1
√
λn.

> plot(mu, 1 / sqrt(lambda))

In this figure we have lost the time-series aspect. It gives no indication that

the sample is from a Markov chain or how much dependence there is in the

Markov chain. There is no way to tell, just looking at the figure, whether

this is an MCMC sample or an ordinary, independent-sampling sample. This

is an important principle of MCMC.

An MCMC scatter plot approximates the distribution of interest, just like

a GOFMC scatter plot. This follows from the LLN. Suppose A is any event

(some region in the figure). Then the LLN says w.p. 1

1

n

n∑

i=1

IA(λn, µn) → E{IA(λ, µ) | data}

Without the symbols, this says the fraction of points in a region A in the

figure approximates the posterior probability of that region.

Yet another way to look at the simulation output is a histogram of one

functional of the chain.

hist(lambda)
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Figure 6.7: Time series plot of Gibbs sampler output for µ in the two-

parameter normal model. Sufficient statistics for the data were x̄m =

41.56876, vm = 207.5945, and n = 10. Hyperparameters of the prior were

α = 1, β = 202, γ = 50, and δ = 1/102. The starting point was µ = γ and

λ = α/β.
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Figure 6.8: Time series plot of Gibbs sampler output for λ in the two-

parameter normal model. Sufficient statistics for the data were x̄m =

41.56876, vm = 207.5945, and n = 10. Hyperparameters of the prior were

α = 1, β = 202, γ = 50, and δ = 1/102. The starting point was µ = γ and

λ = α/β.
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Figure 6.9: Autocorrelation plot of Gibbs sampler output for µ in the two-

parameter normal model.
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Figure 6.10: Autocorrelation plot of Gibbs sampler output for λ in the two-

parameter normal model.
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Figure 6.11: Scatter plot of Gibbs sampler output for µ and σ = 1/
√
λ in

the two-parameter normal model, the same run as shown in Figure 6.7.
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Figure 6.12: Histogram of Gibbs sampler output for λ in the two-parameter

normal model, the same run as shown in Figure 6.7. The curve is the esti-

mator of Wei and Tanner (1990) given by (6.9).



6.4. THE GIBBS UPDATE 195

An example is Figure 6.12, which plots a histogram of the λn. By the LLN

again, this is the MCMC approximation of the marginal posterior distribution

of λ (same argument as for scatter plots).

A histogram is a limited way to look at a distribution. A clever method

due to Wei and Tanner (1990) gives a much better estimate. Consider esti-

mating the distribution of µ. Wei and Tanner’s method curiously ignores the

simulated values of µ and uses only the simulated values of λ. The distribu-

tion of µ given λ is a known normal distribution (6.8b). Denote its density

by f(µ | λ, data). Let fλ(λ | data) denote the marginal posterior density of

λ (which is not known). The marginal posterior for µ is then given by

fµ(µ | data) =

∫
f(µ | λ, data)fλ(λ | data) dλ.

The integrand is the joint posterior of (µ, λ) given the data, so integrating

out λ gives the marginal for µ. We cannot easily do the integral analytically,

but we can do it by Monte Carlo

f̂µ,n(µ | data) =
1

n

n∑

i=1

f(µ | λi, data) (6.9)

where the λi are the simulated values from the MCMC run. Note well that

(6.9) is to be considered a function of µ. For fixed data and MCMC output

λ1, . . ., λn, we vary µ obtaining the smooth curve in Figure 6.13. Clearly

the smooth curve is a much better estimate of the marginal posterior than

the histogram. It is also much better than the histogram smoothed using

standard methods of density estimation, such as kernel smoothing.

> mumu <- pretty(mu)

> mumu <- seq(min(mumu), max(mumu), 0.2)

> dmumu <- rep(0, length(mumu))

> for (i in 1:nsim) {

+ dmumu <- dmumu + dnorm(mumu, (n * lambda[i] * xbar + delta * gammu) /
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Figure 6.13: Histogram of Gibbs sampler output for µ in the two-parameter

normal model, the same run as shown in Figure 6.7. The curve is the esti-

mator of Wei and Tanner (1990) given by (6.9).
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(n * lambda[i] + delta), 1 / sqrt(n * lambda[i] + delta))

+ }

> dmumu <- dmumu / nsim

> hist(mu, probability=TRUE, nclass=15, ylim=range(dmumu))

> lines(mumu, dmumu)

We can also get a highest posterior density (HPD) region for µ. An HPD

region is a level set of the posterior density, in this case a set of the form

Ac = {µ : fµ(µ | data) ≥ c }

for some constant c, which is chosen to give a desired posterior coverage,

e. g., a 95% HPD region chooses c so that P (µ ∈ Ac | data) = 0.95. For any

event A, the LLN says that this probability is approximated by

P (µ ∈ A | data) ≈ 1

n

n∑

i=1

IA(µi)

So a region A will have 95% coverage, as estimated by MCMC, if it contains

95% of the points µ1, . . ., µn. It will be a HPD region if it has the property

that fµ(µ | data) is larger for any µ ∈ A than for any µ /∈ A. Thus we

estimate c by the fifth percentile of the n numbers fµ,n(µi | data), i = 1, . . .,

n, and estimate Ac by

Ac,n = {µ : fµ,n(µ | data) ≥ c }

Then the MCMC estimate of P (µ ∈ An,c | data) is 0.95 by construction, and

Ac,n approximates the HPD region Ac.

> dmu <- rep(0, length(mu))

> for (i in 1:nsim) {

+ dmu <- dmu + dnorm(mu, (n * lambda[i] * xbar + delta * gammu) /

(n * lambda[i] + delta), 1 / sqrt(n * lambda[i] + delta))



198 CHAPTER 6. PRACTICAL MARKOV CHAIN MONTE CARLO

+ }

> dmu <- dmu / nsim

> quantile(dmu, .95)

95%

0.08633233

> foo <- spline(mumu, dmumu, n=1001)

> max(foo$x[foo$x < median(mu) & foo$y < quantile(dmu, 0.05)])

[1] 34.2

> min(foo$x[foo$x > median(mu) & foo$y < quantile(dmu, 0.05)])

[1] 52.96

Thus, for the run shown in Figure 6.13, the fifth percentile is 0.0863, giving

a 95% HPD region (34.2, 52.96).

6.4.7 Variable-at-a-Time Metropolis-Hastings

When the state X is a vector X = (X1, . . . , Xd), the Metropolis-Hastings

update can be done one variable at a time, just like the Gibbs update. The

algorithm is essentially the same as before, although some changes in notation

are required because the proposal only changes a single variable and hence

the proposal density q(x, y) is not a density with respect to the measure µ

on the whole space. (Warning: for the rest of the section, subscripts indicate

components of the state vector, not the time index of a Markov chain.)

Suppose µ is a product measure µ1 ×· · ·×µd. For a Metropolis-Hastings

update of the i-th variable, we need a proposal density qi(x, · ) with respect

to µi. The update then works as follows. The current position is x, and the

update changes x to its value at the next iteration.

1. Simulate a random variate y having the density qi(x, · ). Note that y
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has the dimension of xi not x. Let xy denote the state with xi replaced

by y

xy = (x1, . . . , xi−1, y, xi+1 . . . xd).

2. Evaluate the Hastings ratio

r =
h(xy)qi(xy, xi)

h(x)qi(x, y)
.

3. Do Metropolis rejection: with probability min(1, r) set x = xy.

Note that, as with the original Metropolis-Hastings update, this update also

stays in feasible states if started in a feasible state.

It is easy enough to go through the statements and proofs of Section 6.2.2

making the necessary notational changes to obtain the analogous results

for one-variable-at-a-time Metropolis-Hastings. But we won’t bother at this

point.

6.4.8 Why Gibbs is a Special Case of Metropolis-Hastings

Gibbs updates a variable xi from its conditional distribution given the

rest. The unnormalized joint density of all the variables is h(x) = h(x1, . . . , xd).

As usual, this is also an unnormalized conditional density of xi given x−i.

A Gibbs update is a Metropolis-Hastings update in which the proposal

density is proportional to xi 7→ h(x1, . . . , xd), that is,

qi(x, y) = h(x1, . . . , xi−1, y, xi+1, . . . , xd)/c

where c is the unknown normalizing constant that makes h a proper condi-

tional probability density. Then using the notation of the preceding section,

the Hastings ratio is

h(xy)qi(xy, xi)

h(x)qi(x, y)
=

h(xy)h(x)

h(x)h(x1, . . . , xi−1, yi, xi+1, . . . , xd)
= 1.
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Thus this Metropolis-Hastings simulates a new value of xi from its conditional

given the rest and always accepts the proposal. It does exactly the same thing

as a Gibbs update.

6.5 Doing MCMC

From a “big picture” point of view, MCMC is simple.

1. Construct a Markov chain having a specified stationary distribution.

2. Simulate the Markov chain.

3. Average over the run to get estimates, including Monte Carlo standard

errors.

6.5.1 The Fundamental Problem of MCMC

There are a lot of open research questions involving Markov chains and

MCMC. But there is only one practical problem. You can never be sure that

MCMC works. Except, of course, in easy problems for which the correct

answer is discoverable by means other than MCMC and you know MCMC

works if it agrees with the correct answer.

Because of the dependence in the observed values of the Markov chain,

even a large sample can be very unrepresentative of the stationary distribu-

tion. All of the sample points may lie in a small subset of the state space. If

the dependence is very strong, then samples with very large (Monte Carlo)

sample sizes can be very unrepresentative.

The fundamental problem is often referred to as the problem of “noncon-

vergence” but, strictly speaking, this is a gross misnomer. Finite sequences

don’t converge, only infinite sequences. Better terminology would be the

problem of “unrepresentativeness.”
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There is a huge literature on the diagnosis of “nonconvergence” (or un-

representativeness). Most so-called convergence diagnostics use one of the

following ideas.

• The Markov chain may not look stationary.

• Starting from a different place may give different results.

• Running longer may give different results.

A different kind of diagnostic uses so-called perfect sampling, which uses a

Markov chain simulation to produce a single draw from exactly the target

distribution. Perfect sampling is the subject of much ongoing research but

is outside the scope of these notes. As far as I know perfect sampling is the

only reliable “convergence diagnostic” in that failure of a perfect sampler

“diagnoses nonconvergence” of MCMC using the same Markov chain.

Unfortunately, the current state of the art in perfect sampling is pretty

much restricted to toy problems. For most moderately complicated problems

no perfect sampler is known. Perfect sampling aside, there are no reliable

“convergence diagnostics.”

Convergence diagnostics may alert you to a problem.

Or they may fail to find problems that actually exist.

They can never show absence of problems.

If you are going to do MCMC, you just have to accept the possibility of being

fooled. There is no escape.

Fortunately, the situation is not as bad as the preceding discussion makes

it sound. Many MCMC problems are easy. It is obvious from the nature

of the problem that the extremely strong dependence of “hard” problems is

absent. Also, there are many possible MCMC schemes for any given problem.

If you are worried about one scheme, you can try a better one. This last
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point is usually not thought of as a “convergence diagnostic” but is much

better (barring perfect sampling) than all the “convergence diagnostics” in

the literature put together. Basically, the recommendation is (1) if worried,

try a better sampler, and (2) if still worried, try one better still. The trouble

with this recommendation is that eventually you run out of ideas, time,

patience, or all three, and you may still be worried. In that case, you just

have to accept the worry since if the best sampler anyone can devise doesn’t

work, then nothing will.

Additional suggested reading at http://www.stat.umn.edu/∼charlie/mcmc/diag.html

6.5.2 The “Burn-In” Non-Problem

Folklore makes MCMC seem much harder than the simple view described

at the beginning of this section. Folklore and naive intuition say that one

needs to run a stationary Markov chain. Otherwise your estimates are biased,

and everyone knows bias is a bad thing.

Actually, theory tells us that bias is negligible for large Monte Carlo

sample sizes, more precisely, that the influence of the initial distribution is

Op(n
−1) whereas the Monte Carlo error is Op(n

−1/2). Moreover, in practice

we can’t start the Markov chain in the stationary distribution. If we can

produce even one sample from the stationary distribution, we can produce

many and do GOFMC so there’s no need for MCMC. Thus what folklore

and naive intuition require is unnecessary and impossible.

So one might think that folklore and intuition about stationarity and

unbiasedness would have been dumped so people could get on with business.

But folklore and intuition are strange things, often not affected by theory.

Many people choose instead to attempt the impossible. Of course, they don’t

think of it that way. What they think they are doing is the next best thing.

They choose to start in something approximating the stationary distribution

so they are approximately unbiased.
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Their method for starting in approximate stationarity has many names:

burn-in; warm-up; throwing away an initial transient. We will call it “burn-

in.” The idea is this.

• Start somewhere (anywhere?)

• Run m steps, but “throw away” the results

Now the current state of the chain (after m “burn-in” steps) is supposed to

be a good starting point, one in which the distribution of the current state

Xm is approximately stationary. It is at this point that many people also

confound this idea with those of the previous section. After all, how can the

sample be representative without being stationary? But this is just confused.

There are at least three things very wrong with the burn-idea. The first is

that it is theoretically unnecessary. By this we mean that if the SLLN, CLT

and even the Law of the Iterated Logarithm hold for one distribution then

they hold for any starting distribution. Recall that it is also possible to obtain

consistent estimates of the variance of the asymptotic normal distribution

from any starting distribution. Second, one generally has no idea how well it

works. That is, if we don’t know how to start from the invariant distribution

then how do we know if we run for 100 or 1000 or 10000 iterations if we are

really close to stationarity? The answer is we don’t. There are exceptions

to this; see Jones and Hobert (2001) for discussion and references. But the

theory required to do this is substantial and hence has (so far) only been

done for some fairly simple examples. The third objection is that it is a very

limited way of selecting an initial distribution. This is ultimately the fatal

objection. Burn-in is just limiting. Why only that way of selecting an initial

distribution? In most areas of research, we are always striving to find good

new ideas. Why is it that on this particular issue, people cling to the old

idea? The following slogan is intended to wake those people up.

Burn-in is only one method, and not a particularly good method,
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of finding a good starting point.

People woofing about burn-in are worried about a legitimate issue (they

just don’t have a sensible solution). Our analysis suggesting that the initial

distribution is irrelevant, because its influence is Op(n
−1) while the Monte

Carlo error is Op(n
−1/2), is the full story only in asymptopia, where n has

gone to infinity. Reality is not asymptopia, so we can’t completely ignore the

initial distribution. So long as n stays finite (as of course it always must),

the initial distribution cannot be completely ignored.

Looking at our AR(1) toy problem, where we have an explicit formula

(5.19) for the bias, we see that the bias is indeed O(n−1), but we also see

that when n is considered fixed there are initial values X1 so large that the

bias is huge. In real life, n, if not exactly fixed—we are always free to run a

little longer—does not go to infinity either. There is an upper limit to the

amount of time we are willing to wait for answers.

For purposes of discussion consider the Monte Carlo sample size n fixed.

Then it is clear that there is always an X1 large enough so that the bias

completely swamps the variance. Thus it is necessary to avoid such bad

starting points.

Starting far out in the tail of the stationary distribution is bad.

On the other hand, any point that isn’t “far out in the tail” is as good a

starting point as any other. One way to say this is

Any point you don’t mind having in a sample is a good starting

point.

And what if you have not a clue as to what your sample should look like?

The slogan isn’t much good then, but neither is anything else.

If completely clueless, you don’t know how long to burn-in either.
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6.5.3 Other Methods of Starting

Having beaten up on burn-in enough, it is time to suggest some alternate

methods of starting a Markov chain. Before we do, we stress that there is

nothing special about these methods. We only claim that they are not bad

and can be used instead of burn-in.

Start Where the Last Run Stopped

R saves random number generator seeds in a dataset .Random.seed so

that the random number generators are used in one continuous stream. The

analogous practice in MCMC is to at the end of each run write the complete

state, all the variables of the program and all the random number generator

seeds into a dataset and to use that as the starting point of the next run.

The idea is that multiple runs of the Markov chain behave exactly as if they

were bits of one run.

In order that this strategy work it is necessary to write the code so that

it allows an arbitrary starting point, which is input at the beginning of the

run.

There are a great many benefits to this strategy besides having a starting

method. One can do the runs in short pieces, so that little is lost when

a machine crashes. With only a little bit more work, this strategy can be

converted to a “checkpointing” method. If the entire state (including random

number generator seeds) is written to disk every five minutes, then no more

than five minutes of computer time is ever lost in a crash. All that requires

is making the code to write out the state a subroutine that can be called at

any time, rather than just at the end of a run.

This method is not guaranteed to find a good starting point. But we

can say that if it doesn’t, then the Markov chain in question is completely

useless. In all the running it ever did, it never got any samples that were



206 CHAPTER 6. PRACTICAL MARKOV CHAIN MONTE CARLO

representative of the stationary distribution. Burn-in wouldn’t have helped

(all the running you ever did wasn’t enough burn-in).

On the other hand, if the chain is of any use at all, then this method

provides good starting points. If the previous run produced any output

representative of the stationary distribution (even a little bit at the end after

a long burn-in), then where it stopped is as good a starting point as any. No

further burn-in is necessary.

Additional suggested reading at http://www.stat.umn.edu/∼charlie/mcmc/one.html

Start at a Known Good Point

There are many situations where some feature of the stationary distribu-

tion is available.

When the stationary distribution is specified by an unnormalized density,

one can if one wants calculate the mode. This may or may not be near the

mean or other notion of center of the distribution. So it may not be a

reasonable starting point. But if one thinks it is, use it. The main message

here is that a little bit of analysis and careful thinking about the problem at

hand can be much better than starting at an arbitrary point.

6.5.4 The Multistart Non-Solution

Many people, not trusting Markov chains (and rightly so in any compli-

cated situation) hope that injecting some independence back into the situa-

tion may help.

Perhaps several different runs of a Markov chain with independently cho-

sen starting points will give better answers than just one run. They will,

if one does the wrong comparison. But here as everywhere else we should

always compare methods that use equal computer time. Thus what should

be compared is one long run versus several (or many) short runs. The short
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runs no longer look good by this standard. If one run of length mn is too

short to be trusted, then m runs of length n are way too short to be trusted.

The slogan for this is

Many short runs isn’t MCMC. It’s i. i. d. sampling from a slightly

fuzzed version of the starting distribution.

Additional suggested reading at http://www.stat.umn.edu/∼charlie/mcmc/one.html

6.6 Appendix: R function for CBM

## Function to implement consistent Batch Means procedure

## (Jones, Haran, Caffo and Neath, 2006, JASA)

## Galin L. Jones, Murali Haran, Brian S. Caffo, and Ronald Neath,

## "Fixed-Width Output Analysis for Markov Chain Monte Carlo"

## Author: Murali Haran

## A function for computing batch means in R

## input: vals, a vector of N values (from a Markov chain),

## bs=batch size and g, a function

## output: estimate of E(g(x)) and an estimate of the Monte Carlo

## standard error of estimate of E(g(x))

id <- function(x) return(x) # default: identity function

bm <- function(vals,bs="sqroot",g=id,warn=FALSE)

{

N <- length(vals)

if (N<1000)

{

if (warn) # if warning
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cat("WARNING: too few samples (less than 1000)\n")

if (N<10)

return(NA)

}

if (bs=="sqroot")

{

b <- floor(sqrt(N)) # batch size

a <- floor(N/b) # number of batches

}

else

if (bs=="cuberoot")

{

b <- floor(N^(1/3)) # batch size

a <- floor(N/b) # number of batches

}

else # batch size provided

{

stopifnot(is.numeric(bs))

b <- floor(bs) # batch size

if (b > 1) # batch size valid

a <- floor(N/b) # number of batches

else

stop("batch size invalid (bs=",bs,")")

}

Ys <- sapply(1:a,function(k) return(mean(g(vals[((k-1)*b+1):(k*b)]))) )

muhat <- mean(g(Ys))

sigmahatsq <- b*sum((Ys-muhat)^2)/(a-1)
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bmse <- sqrt(sigmahatsq/N)

return(list(est=muhat,se=bmse,bs=bs))

}
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Chapter 7

Advanced Sampling Techniques

7.1 State Independent Mixing

Recall from Section 6.1.2 that any random mixture of update mechanisms

preserving the same distribution also preserves the same distribution so long

as the mixing probabilities do not depend on the current state. This section

gives more details and an example.

Suppose that for each possible value z of a random variable Z, there is

an update mechanism corresponding to the Markov kernel Pz, all of which

preserve the same stationary distribution. Then the Markov chain that uses

the update mechanism corresponding to the kernel

Pmix(x,A) = E{PZ(x,A)} =

∫
Pz(x,A)Q(dz), (7.1)

where Q is the probability distribution governing Z, also preserves the same

stationary distribution.

More precisely, what is to be shown is that if η is an unnormalized measure

proportional to the desired stationary distribution, so that for any event A

211



212 CHAPTER 7. ADVANCED SAMPLING TECHNIQUES

and any z ∫
η(dx)Pz(x,A) = η(A)

(this is the property of Pz preserving η), this implies the same equation with

Pz replaced by Pmix, that is,
∫
η(dx)

∫
Q(dz)Pz(x,A) = η(A).

The proof of this is trivial, a simple consequence of reversing the order of

integration (i.e., Fubini’s theorem).
∫
η(dx)

∫
Q(dz)Pz(x,A) =

∫∫
η(dx)Q(dz)Pz(x,A)

=

∫
Q(dz)

∫
η(dx)Pz(x,A)

=

∫
Q(dz)η(A)

= η(A)

∫
Q(dz)

= η(A)

A real measure theory fan also wants a proof that Pmix is actually a kernel,

that is,

• x 7→ Pmix(x,A) is measurable for each A.

• A 7→ Pmix(x,A) is a measure for each x.

The former is one part of the Fubini theorem and the only nontrivial part of

the latter is countable additivity, which follows by the monotone convergence

theorem.

7.1.1 The Hit-and-Run Algorithm

An example of general state-independent mixing is the so-called “hit-and-

run” algorithm which has the following basic updates. The state space is a
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sunset of R
d. The random variables Z involved in the mixing are random

directions in R
d. We can think of Z as being a unit vector along a random

direction. The hit-and-run algorithm basic update with kernel Pz moves the

state in the direction z, that is we move from the current position x to a

point y = x + λz for some real λ. In words, a hit-and-run update makes

a one-dimensional move (restricted to points along a line) but in a random

direction.

There are hit-and-run samplers that make a random choice among Gibbs

updates, those that make a random choice among Metropolis updates, and

those that make a random choice among Metropolis-Hastings updates. They

are all just special cases of state independent mixing of elementary updates.

The original motivation for hit-and-run algorithms seems to have been the

poor performance of one-variable-at-a-time algorithms on certain problems.

To see what this is all about we compare traditional Gibbs samplers for the

uniform distribution on a rectangle with sides parallel to the coordinate axes

and a rectangle with sides at 45◦ angles to the coordinate axes.

Example 7.1.1 (Gibbs Sampling a Uniform Distribution). Consider a bounded

set A in R
d. A conventional Gibbs sampler uses d updates, one for each co-

ordinate. The i-th update updates the i-th coordinate, giving it a new value

simulated from its conditional distribution given the rest of the coordinates,

which is uniform on some line segment.

If the region A is a rectangle parallel to the coordinate axes, the sampler

produces i. i. d. samples. Starting at the point (x1, y1) in Figure 7.1, it

simulates a new x value uniformly distributed over its possible range thereby

moving to a position uniformly distributed along the horizontal dashed line,

say to (x2, y1). Then it simulates a new y value uniformly distributed over its

possible range thereby moving to a position uniformly distributed along the

vertical dashed line, say to (x2, y2). This clearly produces a point uniformly

distributed in the rectangle and uncorrelated with the previous point.
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t

(x1, y1)
t

(x2, y1)

t

(x2, y2)

Figure 7.1: Moves of a Gibbs sampler for the uniform distribution on a

rectangle with sides parallel to coordinate axes.

If the region A is not a rectangle parallel to the coordinate axes, then

the Gibbs sampler has autocorrelation. The update moves are still parallel

to the coordinate axes. The possible range of values for each update is the

intersection of a horizontal or vertical line, as the case may be, with A.

Clearly, starting from the point (x1, y1) shown in Figure 7.2, it would take

several moves to get into the upper half of the rectangle. Conclusion: the

Gibbs sampler for the second rectangle is less efficient.

This example is an important toy problem. What it lacks in realism, it

makes up for in simplicity. It is very easy to visualize this Gibbs sampler.

Moreover, it does share some of the characteristics of realistic problems.

Example 7.1.2 (Hit-and-Run Sampler for a Uniform Distribution). The

hit-and-run sampler is almost the same as the Gibbs sampler, except that

it moves in an arbitrary direction. A hit-and-run step simulates a random

angle θ uniformly distributed between 0 and 2π. Then it simulates a new

point uniformly distributed along the intersection of A and the line through

the current point making angle θ. It is obvious from Figure 7.3 that some

hit-and-run update steps move farther than Gibbs update steps. Some hit-

and-run steps, not many, only those in a fairly small range of angles, can go

from one end of the rectangle to the other. No Gibbs update step can do that.
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Figure 7.2: Moves of a Gibbs sampler for the uniform distribution on a

rectangle with sides not parallel to coordinate axes.
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Figure 7.3: Moves of a Hit-and-Run sampler for the uniform distribution on

a rectangle.
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7.2 The Metropolis-Hastings-Green Algorithm

7.2.1 Radon-Nikodym Derivatives

Suppose µ and ν are two positive measures. We say µ is dominated by ν,

written µ≪ ν, if

ν(A) = 0 implies µ(A) = 0, for all measurable sets A. (7.2a)

The Radon-Nikodym theorem says that if µ and ν are both are sigma-finite

and µ ≪ ν, then µ has a density with respect to ν, that is, a function f such

that

µ(A) =

∫

A

f(x)ν(dx), for all measurable sets A. (7.2b)

By the basic property of integration that integrating over a set of measure

zero gives zero the theorem gives a necessary and sufficient condition, that

is, not only does (7.2a) imply (7.2b) but also (7.2b) implies (7.2a).

The density f in (7.2b) is also called the Radon-Nikodym derivative of µ

with respect to ν and is often written

f =
dµ

dν
(7.3a)

or

f(x) =
dµ

dν
(x) (7.3b)

to indicate explicitly that it is a function of x. Thus in this case (µ dominated

by ν) “Radon-Nikodym derivative” is a fancy name for an ordinary concept.

Radon-Nikodym derivatives are just densities of one probability distribution

with respect to another, the kind of thing explained in Section 4.7.1.

The non-dominated case is a bit trickier. The Lebesgue decomposition

theorem, that says for any positive measures µ and ν defined on the same

measurable space it is possible to decompose µ into a part singular with

respect to ν and and a part dominated by ν. This means there exists a set A
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that is a support of ν, that is, ν(Ac) = 0, such that the restriction of µ to A

has a density with respect to ν, that is, there exists a function f such that

µ(A ∩B) =

∫

A∩B

f(x)ν(dx), for all measurable sets B.

This function f is also called the Radon-Nikodym derivative of µ with respect

to ν and written (7.3a) or (7.3b), although one might also say in a more long

winded way that it is the Radon-Nikodym derivative of the part of µ that is

dominated by ν.

All of this seems very technical, but it is easy to calculate any Radon-

Nikodym derivatives that arise in practice. Here are some examples.

Example 7.2.1 (Normal Distributions). Let µ and ν be normal probability

measures with means θ1 and θ2 and variances σ2
1 and σ2

2, respectively. The

measures dominate each other because the only sets of probability zero are

sets of Lebesgue measure zero, which are the same for both. Thus the Radon-

Nikodym derivative is just the ratio of the densities with respect to Lebesgue

measure
dµ

dν
(x) =

σ1

σ2
exp

(
−(x− θ1)

2

2σ2
1

+
(x− θ2)

2

2σ2
2

)

Example 7.2.2 (Uniform Distributions). Let µ and ν be uniform probability

measures with supports (a, b) and (c, d). These distributions do not necessar-

ily dominate one another.

Case I Clearly µ≪ ν if and only if

c ≤ a < b ≤ d

in which case the Radon-Nikodym derivative is again the ratio of densities

dµ

dν
(x) =

I(a,b)(x)

b− a
· d− c

I(c,d)(x)
=






d−c
b−a

, a < x < b

0 c < x < a or b < x < d

arbitrary, otherwise
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as this indicates, the derivative can be defined arbitrarily off the support of

ν, where the ratio of the indicator functions is the indeterminate zero over

zero. Usually, one picks the simplest definition

dµ

dν
(x) =

d− c

b− a
I(a,b)(x), x ∈ R.

Case II Clearly µ and ν are singular with respect to each other if and only

if their supports do not overlap, that is,

b ≤ c or d ≤ a

in which case the part of µ dominated by ν is the zero measure and the

Radon-Nikodym derivative is zero

dµ

dν
(x) = 0, for all x.

Case III What remains to be worked out are three cases of partial overlap.

For simplicity, we only look at one

a < c < b < d

The support of ν is

A = (c, d),

and the part of µ that is dominated by ν is the restriction the part that sits on

A, which is actually concentrated on (c, b). We denote that measure by µ|A
(the restriction of µ to A). It has density with respect to Lebesgue measure

g(x) =
1

b− a
I(c,b)(x), x ∈ R.

Note that this is not a probability density because it integrates to

µ(A) =
b− c

b− a
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which is less than one. The Radon-Nikodym derivative dµ/dν is the density

of µ|A with respect to ν, which is the ratio of these densities

dµ

dν
(x) =

I(c,b)(x)

b− a
· d− c

I(c,d)(x)
=






d−c
b−a

, c < x < b

0 b < x < d

arbitrary, otherwise

Again, one usually chooses the simplest formula where the ratio of densities

is indeterminate

dµ

dν
(x) =

d− c

b− a
I(c,b)(x), x ∈ R.

Note that unlike case II this Radon-Nikodym derivative does not integrate to

one because it is really a density of µ|A rather than µ and hence has the mass

of µ|A which is µ(A).

The other two cases of partial overlap

c < a < d < b

and

a < c < d < b

are left as exercises for the reader.

Note that, as a matter of cleaning up notation, all cases can be written

dµ

dν
(x) =

d− c

b− a
I(a,b)∩(c,d)(x), x ∈ R.

In fact this formula gives us the idea of a simpler derivation without case

splitting. The Radon-Nikodym derivative must be concentrated on the region

of overlap of the supports of the two measures (a, b)∩(c, d), hence the indicator

function in the formula. On this (possibly empty, as in case II) interval both

densities are finite and nonzero and the Radon-Nikodym derivative is their

ratio.
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7.2.2 The Elementary Update

The Metropolis-Hastings-Green (MHG) algorithm replaces the densities

in the Hastings ratio with one Radon-Nikodym derivative. Here’s what we

mean. Replace the unnormalized density h with an “unnormalized proba-

bility measure” η, that is, η is just a general finite positive measure. It is a

constant times the invariant probability measure π we want the update to

preserve. Replace the proposal density q with a general transition kernel Q.

Recall that for each x in the state space Q(x, · ) is a probability measure,

which is the distribution of the proposal given the current state is x.

With this setup we need to figure out what the Hastings ratio is supposed

to be. Let S be the state space. The measure η and kernel Q define a joint

measure m on S2 by

m(A) =

∫∫
IA(x, y)η(dx)Q(x, dy) (7.4a)

Note that (7.4a) characterizes the joint distribution of the current state X

and the proposal Y , which may or may not be the next state, depending

on whether it is accepted in the “Metropolis rejection” step. To define the

analog of the Hastings ratio in the MHG algorithm (the Green ratio) we also

need to define the “transpose” or “reverse” of m

mR(A) =

∫∫
IA(y, x)η(dx)Q(x, dy)

=

∫∫
IA(x, y)η(dy)Q(y, dx) (7.4b)

which is the same as the definition of m except for x and y being swapped

either in the indicator function or in the measures (it makes no difference,

of course, because x and y are dummy variables), that is, m is the joint

distribution of the pair (X, Y ) and mR is the joint distribution of the pair

(Y,X). The Green ratio is then the Radon-Nikodym derivative

R =
dmR

dm
(7.4c)



222 CHAPTER 7. ADVANCED SAMPLING TECHNIQUES

It is sometimes written

R(x, y) =
η(dy)Q(y, dx)

η(dx)Q(x, dy)
(7.4d)

which makes it look a lot like (6.3). Despite the familiarity of (7.4d), it

means precisely the same thing as (7.4c). Both formulas indicate the same

Radon-Nikodym derivative. If that isn’t obvious, then the notation in (7.4d)

is problematical rather than helpful. The reason (7.4d) is supposed to make

sense is that it is supposed to remind you of the “measure” parts of (7.4a)

and (7.4b).

Now we can explain the MHG elementary update. Denote the current

position by x.

1. Simulate a random variate y having probability measure Q(x, · ).

2. Calculate the Green ratio given by (7.4a), (7.4b), and (7.4c)1

3. With probability min(1, R) set x = y.

Everything is just the same as with MH except for measures replacing den-

sities. In particular, once the Green ratio is calculated, the “Metropolis

rejection” step (3) is exactly the same.

The virtue of the MHG algorithm is that the proposal distributions

Q(x, · ) and the invariant distribution π are not required to have densities

with respect to the same measure. We have already mentioned one instance,

so-called one-variable-at-a-time Metropolis-Hastings (Section 6.4.7), where

one might want to do this. The following section gives another example.

7.3 State Dependent Mixing

When the distribution of the mixing variable Z in the Section 7.1 depends

on the current state, the proof of that section doesn’t work. It is not at all

1or by (7.4d) if you prefer that notation
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obvious that one can do state-dependent mixing.

However there is a way to do state-dependent mixing discovered by Green

(1995). Suppose we have a family of update mechanisms corresponding to

kernels Pz. We make no assumption about what distribution, if any, these

updates preserve. As we shall see, that’s not what’s needed here. Suppose

for each point x in the state space, there is a density qx with respect to

some measure µ that tells us the probabilities of using each Pz. Thus the

state-dependent mixture kernel is

Pmix(x,A) = Ex{PZ(x,A)} =

∫
µ(dz)qx(z)Pz(x,A). (7.5)

Note the difference between (7.1) and (7.5). In (7.1) we just wrote Q(dz) al-

lowing an arbitrary mixing distribution. In (7.5) we write µ(dz)qx(z) instead

of Qx(dz). The point is that we need to use a dominated family of mixing

distributions for reasons that will become apparent presently.

We need to show that the overall composite kernel (7.5) preserves a par-

ticular measure η (the unnormalized distribution of interest). As always we

want to use the divide-and-conquer strategy of making simpler checks on

simpler objects. That is, we want to make a check for each value of z and

have that imply what we want about the composite update.

Now what we need to check is properties of the kernels

Kz(x,A) = qx(z)Pz(x,A) (7.6)

that are the integrands in (7.5). Now the interesting issue here is that the Kz

are not Markov kernels. They do not correspond to updates of any Markov

chain. What we mean by that is they do not give probability one to the

whole state space S because

Kz(x, S) = qx(z)Pz(x, S) = qx(z)

which is not one in general. Thus we cannot verify that the Kz preserve η be-

cause only Markov kernels preserve distributions. Instead we verify detailed
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balance. Unlike the property of preserving a distribution (which only Markov

kernels can have), detailed balance with respect to a measure η applies to

general kernels. Recall that we say K satisfies detailed balance with respect

to η if
∫∫

f(x)g(y)η(dx)K(x, dy) =

∫∫
g(x)f(y)η(dx)K(x, dy)

And this works.

Theorem 7.3.1. If each Kz defined by (7.6) satisfies detailed balance with

respect to η, then so does Pmix defined by (7.5). Moreover if each Pz in (7.5)

and (7.6) is Markov, then so is Pmix.

Proof. The assertion about detailed balance is just changing the order of

integration (the Fubini theorem)
∫∫

f(x)g(y)η(dx)Pmix(x, dy) =

∫∫
f(x)g(y)η(dx)

∫
µ(dz)qx(z)Pz(x, dy)

=

∫∫∫
f(x)g(y)η(dx)µ(dz)Kz(x, dy)

=

∫
µ(dz)

∫∫
f(x)g(y)η(dx)Kz(x, dy)

and by assumption the inner integral on the bottom line is unchanged in

value by interchanging f and g, hence so is the integral on the left hand side

of the top line. And that proves the detailed balance assertion.

The Markov assertion is even more trivial. If S denotes the whole state

space

Pmix(x, S) =

∫
µ(dz)qx(z)Pz(x, S) =

∫
µ(dz)qx(z) = 1

because each qx is assumed to be a (normalized) probability density.

This state dependent mixing is quite simple to set up and fairly obvious

in hindsight, although no one before Green (1995) saw it, so it couldn’t have

been all that obvious.
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The only thing that remains to be done is to show how we arrange that

a Kz rather than a Pz be reversible with respect to η.

7.4 The Metropolis-Hastings-Green Update

Revised

As in Section 7.2.2 the Metropolis-Hastings-Green (MHG) elementary

update Green (1995) replaces the densities with Radon-Nikodym derivatives.

The only novelty here is that there is state-dependent mixing so we are

working with kernels Kz as in the preceding section.

As in Section 7.2.2 the unnormalized probability measure that is propor-

tional to the desired stationary distribution of the Markov chain is denoted

by η. Now for each z in some set we have a proposal distribution Qz(x, · ),
which is the distribution of the proposal given the current state is x. We

also have, the mixing densities qx with respect to some measure µ. Don’t get

confused between “big Qz” and “little qx”.

Now the MHG elementary update corresponding to the kernel Pz will be

the result of the usual Metropolis rejection applied to some Green ratio Rz

(which will be defined presently, for now its exact form is unspecified). As in

all our previous descriptions of Metropolis-like updates we denote the current

position by x, and the update changes x to its value at the next iteration.

1. Simulate a random variate y having probability measure Qz(x, · ).

2. Calculate the Green ratio Rz(x, y).

3. With probability min(1, Rz(x, y)) set x = y.

Everything is just the same as in Section 7.2.2 except for the subscripts z.
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This update corresponds to the kernel Pz defined by

Pz(x,A) = rz(x)I(x,A) +

∫

A

az(x, y)Qz(x, dy) (7.7a)

where

az(x, y) = min(1, Rz(x, y)) (7.7b)

and

rz(x) = 1 −
∫
az(x, y)Qz(x, dy). (7.7c)

So the question is now with Pz defined by (7.7a), how do we define the

Green ratio Rz so that the kernel Kz defined by (7.6) is reversible with respect

to η?

In order to do that we follow Section 7.2.2 in defining joint measures mz

and mR,z on S2 where S is the state space by

mz(A) =

∫∫
IA(x, y)η(dx)qx(z)Qz(x, dy) (7.8a)

mR,z(A) =

∫∫
IA(y, x)η(dx)qx(z)Qz(x, dy) (7.8b)

and finally

Rz =
dmR,z

dmz
(7.9)

or if you prefer

Rz(x, y) =
η(dy)qy(z)Qz(y, dx)

η(dx)qx(z)Qz(x, dy)
(7.10)
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7.4.1 Why It Works

What must be shown is that the kernel Kz defined by (7.6) and (7.7a)

satisfies detailed balance with respect to η. That is, we must show that
∫∫

f(x)g(y)η(dx)Kz(x, dy) =

∫∫
f(x)g(y)η(dx)qx(z)Pz(x, dy)

=

∫
f(x)g(x)rz(x)η(dx)qx(z)

+

∫∫
f(x)g(y)az(x, y)η(dx)qx(z)Qz(x, dy)

is unchanged in value if we interchange f and g. This is clearly true of the

first term in the final expression above. Thus we only need to work on the

second term ∫∫
f(x)g(y)az(x, y)η(dx)qx(z)Qz(x, dy)

First note that by definition of the Green ratio (7.9)
∫∫

f(x)g(y)az(x, y)η(dx)qx(z)Qz(x, dy)

=

∫∫
f(y)g(x)az(y, x)η(dy)qy(z)Qz(y, dx)

=

∫∫
f(y)g(x)az(y, x)Rz(x, y)η(dx)qx(z)Qz(x, dy)

Thus it is enough to show that

az(x, y) = az(y, x)Rz(x, y), for almost all (x, y) [mz ], (7.11)

because the measure η(dx)qx(z)Qz(x, dy) we are integrating with respect to is

mz and what happens on a set of measure zero does not change an integral.

Equation (7.11) follows from the way Metropolis rejection works and the

property of Radon-Nikodym derivatives

Rz(y, x) =
1

Rz(x, y)
, for almost all (x, y) [mz], (7.12)

which is proved below. There are two cases.
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• For almost all x and y such that Rz(x, y) ≥ 1 we have

az(x, y) = 1

az(y, x) = Rz(y, x) =
1

Rz(x, y)

and (7.11) holds.

• And for almost all x and y such that Rz(x, y) ≤ 1 we have

az(x, y) = Rz(x, y)

az(y, x) = 1

and again (7.11) holds.

So far the proof was just like the proof of ordinary Metropolis-Hastings.

The only thing that remains is the bit of measure-theoretic business

(7.12). To prove that we will use Green’s recipe for constructing Green

ratios. Let ξ be any symmetric measure on S × S that dominates both mz

and mR,z . (A measure ξ is symmetric if ξ = ξR.) Define

fz(x, y) =
dmz

dξ
.

Then

fz(y, x) =
dmR,z

dξ
.

and

Rz(x, y) =
fz(x, y)

fz(y, x)
(7.13)

where we take (7.13) to be +∞ if the numerator is nonzero and the denom-

inator is zero and to be 1 if the numerator and denominator are both zero.

Allowing the Green ratio to be +∞ causes no problems because we are only

interested in values less than one and we define min(1,+∞) = 1. Note that

(7.12) follows immediately from (7.13); it even holds for all x and y if we
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consider 1/∞ = 0 and 1/0 = ∞. Hence, if we took (7.13) as a definition of

the Green ratio (as Green does), there would be nothing further to prove.

Since we take the fundamental notion of Radon-Nikodym derivative as the

definition of the Green ratio, we have something left to prove: that Green’s

recipe does actually calculate the Radon-Nikodym derivative.

Define

A = { (x, y) : fz(x, y) = 0 }
Then, of course,

AR = { (x, y) : fz(y, z) = 0 }
is the “reverse” set. Note that Ac is a support of mz . Hence what must be

checked is that

mR,z(B ∩ Ac) =

∫

B

Rz(x, y)mz(dx, dy) (7.14)

for all measurable sets B (this is the defining property of a Radon-Nikodym

derivative in this situation, compare with the displayed equation in the mid-

dle of page 218). But (7.14) is an obvious consequence of Green’s recipe
∫

B

Rz(x, y)mz(dx, dy) =

∫

B

Rz(x, y)f(x, y)ξ(dx, dy)

=

∫

B∩Ac

f(y, x)ξ(dx, dy)

= mR,z(B ∩Ac)

And that proves the unstated theorem that the Metropolis-Hastings-Green

algorithm actually works.

7.5 Bayesian Model Comparison

7.5.1 The Theory of Bayesian Model Comparison

The Bayesian competitor to frequentist hypothesis testing and model se-

lection involves computing Bayes factors for the various models under consid-
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eration. To a Bayesian anything uncertain is random. All lack of knowledge

is properly described by probability theory. When you don’t know which

model is correct, just as everywhere else in Bayesian inference, you put a

prior distribution on what is unknown (here on models) and use Bayes rule

to calculate posteriors. Philosophically, that’s all there is to it. Everything

that follows is just turning the mathematical crank.

Suppose we have a family M of models. In a hypothesis testing situa-

tion, M will have just two models (which a frequentist would call the null

and alternative hypotheses, though a Bayesian treats models evenhandedly

and needs no such distinguishing terminology). In a model selection situa-

tion there may be many models (for example, choosing the right subset of

predictors in regression).

The Bayesian starts with a prior distribution h on models, that is a

probability distribution

h(m), m ∈ M.

With each model m ∈ M is associated a parameter set Θm. In a hypothesis

testing situation, these will be the parameter sets Θ0 and Θ1 specified by

the null and alternative hypotheses. There is also a prior distribution g on

model parameters

g(θ | m), θ ∈ Θm, m ∈ M.

Note that this distribution is rather weird in that the dimension of the vari-

able θ depends on the value of the conditioning variable m.

Finally, we have the part of the Bayesian model specification that is what

a frequentist would call the model specification (a probability distribution

for data x given the parameters)

f(x | θ,m), θ ∈ Θm, m ∈ M.

The joint distribution of (X, θ,m) is, of course,

f(x | θ,m)g(θ | m)h(m), θ ∈ Θm, m ∈ M.
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We emphasize again that the dimension of θ changes as m changes, but other

than that everything is just the standard Bayesian setup. There are a lot

of Bayesian questions that can be asked and answered (any question about

the distribution of any or all of the parameters given the data), but here we

are only interested in model comparison, and for that we want the posterior

probabilities of models given the data

p(m | x), m ∈ M,

which are given by Bayes rule as

p(m | x) =

∫

Θm

f(x | θ,m)g(θ | m)h(m) dθ

∑

m∈M

∫

Θm

f(x | θ,m)g(θ | m)h(m) dθ

(7.15)

If you have to chose a model, the one with the highest posterior probability

is best. So that’s the story on Bayesian model selection except for a few

caveats and cautions.

Improper Priors The prior is the product g(θ | m)h(m) and is allowed

to be improper, but parts of the prior g(θ | m) for each model aren’t allowed

to be improper by themselves. If g(θ | m) were improper, it would be unnor-

malizable, and hence would have no natural “level” meaning that it could be

multiplied by an arbitrary constant c(m) without changing its interpretation.

But if such arbitrary constants are inserted in (7.15) giving

p(m | x) =

c(m)

∫

Θm

f(x | θ,m)g(θ | m)h(m) dθ

∑

m∈M

c(m)

∫

Θm

f(x | θ,m)g(θ | m)h(m) dθ

we get nonsense. The arbitrary constants c(m) do not cancel out, hence the

result is arbitrary. Thus the only impropriety that is allowed is in h(m), but
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that only makes sense when M is an infinite set, which is not usually the

case.

If the argument given above is unsatisfying, here is another that shows

more directly how the arbitrary constants arise. Suppose we wish to use

proper but very “diffuse” priors (meaning the priors are almost flat over the

region where the likelihood is appreciable). For example we could use priors

g(θ | m) that are multivariate normal with mean zero and variance a (large)

constant times the identity. Of course the dimension varies with m, say

model m has dimension dm, and with that notation let us write the prior

variance for model m as σ2
m times the identity. Then

g(θ | m) =

(
1√

2πσm

)dm

exp(−‖θ‖2/2σ2
m)

Now assume that for each m, the likelihood is actually integrable, that is, we

could use a flat prior if we were not doing model comparison,
∫

Θm

f(x | θ,m) dθ <∞.

Then
∫

Θm

f(x | θ,m) exp(−‖θ‖2/2σ2
m) dθ →

∫

Θm

f(x | θ,m) dθ, as σm → ∞

by dominated convergence. For very large σm the formula (7.15) becomes

p(m | x) ≈
(2πσ2

m)−dm/2h(m)

∫

Θm

f(x | θ,m) dθ

∑

m∈M

(2πσ2
m)−dm/2h(m)

∫

Θm

f(x | θ,m) dθ
.

So now we see the source of the arbitrary constants. We can allow the

“diffuse” priors to approach flatness in many different ways. By picking

different sequences σmn we can arrange that

(2πσ2
mn)−dm/2 → c(m), as n→ ∞
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for any constants c(m). Thus, unlike the situation when we are not doing

model comparison, the interpretation of an improper prior depends critically

on which “diffuse” proper prior it is thought to approximate.

The message to be taken away from this analysis is that the submodel

priors g(θ | m) are not allowed to be improper or even “sort of” improper

(proper but “diffuse”). The submodel priors cannot be “noninformative” in

any sense. They must be highly informative, quite proper, priors encapsu-

lating someone’s subjective opinion about possible parameter values in each

submodel.

Bayes Factors When choosing a model it is customary to report Bayes

factors rather than posterior probabilities. The Bayes factor for comparing

models m and m′ is the ratio of posterior to prior odds

p(m | x)
p(m′ | x) · h(m

′)

h(m)
=

∫

Θm

f(x | θ,m)g(θ | m) dθ

∫

Θm′

f(x | θ,m′)g(θ | m′) dθ
(7.16)

We sometimes call the numerator on the right hand side the unnormalized

Bayes factor for model m. Strictly speaking, it is the probability of the data

x given the model m (with the parameter θ integrated out). The point is that

the Bayes factors themselves are just ratios of “unnormalized Bayes factors.”

Why are Bayes factors interesting? Actually it’s not clear they are, and

many Bayesians consider them bogus, but those that do like them give the

following argument. The posterior probability is strongly dependent on the

prior probability. If the Bayes factor for comparing models H0 and H1 is 100

but the prior odds are 1010 in favor of H1, then the posterior odds are still

108 in favor of H1. This sounds like (and is) very strong odds, but is entirely

due to the prior. What the data have to say about the situation actually

goes the other way. H1 is 100 times less likely after observing the data than
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before. The Bayes factor focuses on this influence of the data, “factoring

out,” as it were, the influence of the posterior.

Or, to be precise, we should say “factoring out” a part of the influence

of the prior because the Bayes factor is influenced by g(θ | m) and g(θ | m′)

and these are in no sense “factored out.” They’re still there in (7.16). This

is part of what makes Bayes factors controversial. The other part is how

one chooses the priors g(θ | m) is any way that looks natural enough to be

explained without arousing strong objections in the audience. That we leave

aside as a philosophical issue of no interest in a computing course.

Bayes Factors and Improper Priors If g(θ|m) is itself improper then

the prior marginal probability of model m is

∫

Θm

g(θ | m)h(m) dθ = ∞

so there is no “prior odds” to use in the definition of Bayes factors. The

constants h(m) are not prior probabilities on models unless the g(θ | m) are

proper probability densities.

7.5.2 Bayesian Logistic Regression

For a concrete example of Bayesian model comparison, let us consider

again Bayesian logistic regression (Section 6.2.5). In that model there were

three predictors. Hence there are 23 = 8 different models that can be formed

by including or excluding any of these predictors. One, the full model, which

has all three predictors and four regression coefficients including the inter-

cept, is the one we already analyzed in Example 6.2.5. Another, the null

model has no predictors and just one regression coefficient, the intercept, and

just fits a Bernoulli model to the data (that is, the data Yi are i. i. d. Ber(p)

with p the single unknown parameter). Between these are three models with
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one predictor and another three with two predictors. The model selection

problem is to select the single model that that best fits the observed data.

The parameter spaces for different submodels typically have different di-

mensions. For our logistic regression example, the parameter spaces have

dimensions between one (for the null model) and four (for the full model).

In order to distinguish different parameter spaces with the same dimension,

we denote them R
I , where I is a subset of {0, 1, 2, 3} that contains 0, and

are shown in the Figure 7.4.2 The parameter spaces of the logistic regression

model selection problem are partially ordered by embedding, the arrows in

the diagram denoting the natural embeddings, which set certain coordinates

to zero, for example, the arrow going from R
{0,2} to R

{0,1,2} represents the

embedding (β0, β2) 7→ (β0, 0, β2).

7.5.3 Priors

As we concluded in our discussion of improper priors, there are no “dif-

fuse” or “noninformative” priors that make sense. It is clear that we want

priors centered at zero for the regression coefficients, because anything else

biases the choice in favor of particular models, and we don’t want to do that.

It is also clear that the meaning of a regression coefficient depends on the

values of the corresponding predictor that occur in the data. Thus we will

standardize all the predictors to have mean zero and variance one (this does

not change the family of logistic regression distributions in the model, it

2This is set-theoretic notation. For any sets A and B, the symbol AB denotes the set

of all functions from B to A, hence R
S means the set of all functions from S to R, and an

element β ∈ R
{0,1,3} is a function from {0, 1, 3} to R, which can be specified by giving its

values β(0), β(1) and β(3) at the points of the domain. If we write βi instead of β(i) we

get the more familiar notation for vectors. An element β ∈ R
{0,1,3} represents a 3-vector

(β0, β1, β3). Notice the value of the notation. The parameter spaces R
{0,1,3} and R

{0,2,3}

are different. They index different models. If we denoted both of them by R
3, we would

not be able to distinguish them.
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Figure 7.4: Lattice of models for a regression model with three predictors

plus intercept.
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only reparameterizes each submodel). next we put a standard normal prior

on each regression coefficient not constrained to be zero in each submodel.

Why variance one? Because, in this artificial situation (i.e., toy problem),

we have no idea what would be a sensible variance. But we do know that

making the variance really large makes the results meaningless. So we want

some “reasonable sized” prior variance. In fact, the standardization of the

predictors does not make them the same. If you know anything at all about

the data, you may know more about some regression coefficients than others

(standardized predictors or no). Hence you should not be using the same

prior variance for all predictors.

7.5.4 An MHG Sampler, Try One

The simplest MHG sampler for this problem works as follows.

1. Staying in one model. Maybe we could use the “default update”

we used in Example 6.2.5). Recall that there we used independent

normal proposals for each variable centered at the current value of the

variable and all the normal moves having the same standard deviation

σ. However, since the dimensions of the models are different these

moves should have different step sizes, say σm for model m.

2. Going down one step. These are moves that go in the reverse di-

rection of the arrows in the figure, dropping one of the variables. The

simplest move for these is deterministic. Just delete the variable, leav-

ing the rest alone.

3. Going up one step. These are moves that go along one of the arrows

in the figure, adding one variable. The simplest move is to propose a

step centered at the “current value” in the smaller model, which is zero

with the standard deviation say σm,m∗ for the move from model m to

model m∗.
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We call these moves lateral, down, and up, respectively.

So what are the Green ratios for these steps? The lateral moves we

already know how to do. An unnormalized posterior is the likelihood times

the prior L(β)g(β | m)h(m). The lateral moves are Metropolis, so the Green

ratio is just

R =
L(β∗)g(β∗ | m)

L(β)g(β | m)

where β is the current position and β∗ is the proposed position.

The up and down moves for the same arrow in the figure must be consid-

ered together, since one is the reverse move of the other. For a down move,

say from model m to model m∗, the proposal β∗ in the parameter space of

model m∗ is just the current position β in model m with one coordinate set to

zero. The move is deterministic, so the Q(x, dy) part of (7.4d) is equal to one

(there is no randomness, hence probability one, in the move). The reverse

move of this down move is an up move, which proposes a new value for one

coordinate, say βi that was zero in β∗. Since β and β∗ agree in all coordi-

nates except the i-th and β∗
i = 0, we can write (βi)

2 as ‖β − β∗‖2, obtaining

a notation that does not explictly mention i. The proposal distribution is

normal, having density

1

σm∗,m
φ

(‖β∗ − β‖
σm∗,m

)

where φ is the standard normal density. This is the Q(y, dx) part of (7.4d).

Hence the Green ratio for a down move is

R =
L(β∗)g(β∗ | m∗)h(m∗) 1

σm∗,m
φ
(

‖β∗−β‖
σm∗,m

)

L(β)g(β | m)h(m)
. (7.17)

It should be clear that the Green ratio for an up move just changes the

roles of up and down, hence the numerator and denominator of (7.17) switch.

The Green ratio for an up move from β to β∗ is the reciprocal of that for a
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down move from β∗ to β.

L(β∗)g(β∗ | m∗)h(m∗)

L(β)g(β | m)h(m) 1
σm,m∗

φ
(

‖β−β∗‖
σm,m∗

) (7.18)

Then each combined update might consist of

• one lateral move, followed by

• one up or down move, every possible move being chosen with equal

probability (1/3 in our example, one over the number of predictors in

general)

It is important that the up and down moves are balanced so that the prob-

ability an arrow is chosen for a move is the same each way (up or down),

otherwise the algorithm is incorrect (you are not yet expected to understand

why as this will be explained in the next section on “state-dependent mix-

ing”).

7.5.5 A Note About Importance Sampling

It is an important fact that

• although the Bayes factors themselves do not depend on the prior prob-

abilities for models h(m), and we are only interested in computing the

Bayes factors,

• the behavior of the sampler is critically dependent on the h(m).

The ratio of time (in the long run) the sampler spends in a model

estimates the posterior odds of that model and is the prior odds times

the Bayes factor, hence is proportional to h(m).

• Bayes factors can be huge numbers, like 105 or 10−10.
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• Thus, if one uses the flat prior on models, h(m) ≡ 1, it can take

extremely long runs to estimate posterior probabilities.

• Since the Bayes factors do not depend on the h(m) one is free to choose

them for reasons of computational convenience. They do not need to

have anything to do with anyone’s subjective probabilities.

Our analysis seems to have arrived at a useless conclusion: if you already

know the answer, then you also know how to calculate the answer (but if you

don’t know the answer, then you don’t know how to calculate). But things

are not as bad as they seem. They just indicate a need for some iteration

(trial and error). If the sampler doesn’t visit one of the models, increase its

prior probability. If the prior probability is increased enough, then it will be

visited.

At first sight, the trial and error seems onerous, but there is a trick that

helps a lot. Since the only theory we have about MCMC is Markov chain

theory, it requires that we run a Markov chain with a specified stationary

distribution, but only as the last run we use for final calculations. What we

do for trial and error can be anything useful for trial and error. It doesn’t

even have to be a Markov chain (although presumably it will use most of the

code of the MCMC sampler).

In this context, a simple trick for this trial and error is the following.

• After each iteration, reduce the prior on the model that is the current

state of the sampler.

• This gives a Markov chain with nonstationary transition probabilities

(because the priors keep changing), hence none of the Markov chain

theory we know applies.

• But if the changes are small, the sampler won’t be too different in

behavior from the chain with stationary transition probabilities we will

use for final calculations.



7.5. BAYESIAN MODEL COMPARISON 241

• The simplest change is to multiply the prior probability of the current

model by e−λ for some small positive number λ, in each iteration, or,

what is the same, is to subtract λ from the log prior (it makes sense to

store the priors as logs to prevent overflow).

7.5.6 Tuning the Sampler

We have to find the tuning parameters for the proposals, σm for the lateral

proposals and σm,m∗ for the up proposals, and the priors (or log priors) that

give even posteriors.

Here is a record of tuning the sampler for the problem described in Ex-

ample 6.2.5.3 The initial values of all the tuning parameters (the σm and

σm,m∗) equal to 1.0. This is known to be reasonable because we adjusted

the predictors so the significant regression coefficients would have order of

magnitude 1.0. I also started with a flat prior on models. The table below

shows the tuning of the prior.

n λ log h(m) − min log h(m)

104 10−4 1.00 0.99 0.84 0.53 1.00 0.98 0.69 0.00

104 10−3 4.01 3.65 2.30 1.16 4.01 3.50 1.52 0.00

105 10−3 8.77 4.80 2.40 1.01 8.69 4.40 1.57 0.00

105 10−4 8.79 4.72 2.39 0.98 8.62 4.31 1.58 0.00

Since the log prior did not change much in the last run and the occupation

numbers of the models (not shown) were fairly even, we stop here.

The next step is to adjust the other tuning parameters to get acceptance

rates of about 20%. The sampler keeps track of acceptance rates for each

type of move. The eight different acceptance rates for lateral moves (in each

of the eight different models) ranged from 29% in the model with only the

constant predictor to 3% in the model with all four predictors. Since the

3This was originally performed by Charlie Geyer and later updated by me.
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acceptance rate seemed to depend strongly on the dimension of the model

we changed the proposal standard deviation for lateral moves from 1.0 to

1/
√
d, where d is the model dimension (as we shall see, this didn’t work

perfectly, but at least goes in the right direction). The 24 different up and

down acceptance rates (12 up along the arrows in Figure 7.4 and 12 down

in the opposite direction of the arrows) ranged between 44% and 29%. We

changed the proposal standard deviation for up moves from 1.0 to 2.0 (the

down moves are deterministic with nothing to adjust).

Then we did another run of length 105. The acceptance rates for lateral

moves now ranged from 31% to 17%, and the acceptance rates for up and

down moves ranged from 27% to 19%. We called this good enough. After

all, we have no theory which tells us what acceptance rates are optimal for

this model.

The occupation numbers for this run were

{0} {0, 1} {0, 2} {0, 3} {0, 1, 2} {0, 1, 3} {0, 2, 3} {0, 1, 2, 3}
11700 11805 12287 12496 12412 13110 12856 13334

And the log priors were

{0} {0, 1} {0, 2} {0, 3} {0, 1, 2} {0, 1, 3} {0, 2, 3} {0, 1, 2, 3}
8.7858 8.6212 2.3912 4.7222 1.5793 4.3068 0.9807 0.0000

(these are unchanged from the end of the adjustment, but look a bit different

because the models have been reordered).

The occupation numbers divided by the run length (here 105) estimate

the posterior probabilities. The occupation numbers divided by the prior

give unnormalized Bayes factors. Since unnormalized Bayes factors may be

multiplied by an arbitrary constant, we scale them so the model with the

largest Bayes factor is 1.00.
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model Bayes factor log10 Bayes factor

{0} 0.00013 −3.87240

{0, 1} 0.00016 −3.79703

{0, 2} 0.08433 −1.07400

{0, 3} 0.00834 −2.07901

{0, 1, 2} 0.19187 −0.71700

{0, 1, 3} 0.01325 −1.87778

{0, 2, 3} 0.36160 −0.44177

{0, 1, 2, 3} 1.00000 0.00000

And we are almost done. The Bayes factors, if we can trust the Monte Carlo

calculation, show that the full model has the most support from the data,

but two other models, {0, 1, 2} and {0, 2, 3} also look good. The 3 to 1 odds

against {0, 2, 3} and the 5 to 1 odds against {0, 1, 2} (both compared to the

full model) are not very strong evidence against them. Even the 12 to 1

odds against {0, 2} are not very strong. So the only firm conclusion from our

Bayesian model selection is that predictor 2 must be in the model because

without it the odds against are 75 to 1 or worse.

But our Monte Carlo analysis is not done until we produce Monte Carlo

standard errors. Here we used the delta method to calculate standard errors

for log unnormalized Bayes factors.

First we estimate the mean occupation numbers and their variances and

covariances by the method of overlapping batch means with batch size 103.

Since our estimator for log unnormalized Bayes factor for model i is

log10 µ̂i − log10 µ̂j − log10 h(i) + log10 h(j) (7.19)

where j is the model we are taking as a reference (here the full model), the

delta method gives

1

log(10)2

(
Var(µ̂i)

µ2
i

− 2 cov(µ̂i, µ̂j)

µiµj

+
Var(µ̂j)

µ2
j

)
(7.20)
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for the asymptotic variance of (7.19). Of course we estimate (7.20) by plug-

ging µ̂i for µi everywhere. This gives

model log10 Bayes factor MCSE

{0} −3.872 0.018

{0, 1} −3.797 0.019

{0, 2} −1.074 0.016

{0, 3} −2.079 0.018

{0, 1, 2} −0.717 0.016

{0, 1, 3} −1.878 0.016

{0, 2, 3} −0.442 0.014

{0, 1, 2, 3} 0.000 0.000

Thus we have two decimal places in our estimate of the log Bayes factor.

Please note the near miraculous result of our calculations. By our trick

of choosing priors for computational reasons (to get a uniform posterior for

models) rather than reflecting anyone’s prior opinion we have accurately

calculated some extremely small probabilities. If we convert these log Bayes

factors back to posterior probabilities corresponding, for example, to the

uniform prior on models we get

model posterior probability

{0} 0.0000808

{0, 1} 0.0000961

{0, 2} 0.0508

{0, 3} 0.00502

{0, 1, 2} 0.116

{0, 1, 3} 0.00798

{0, 2, 3} 0.218

{0, 1, 2, 3} 0.603

We won’t bother with explicit standard error calculation, but it is clear from

the standard error calculation for the log unnormalized Bayes factors that
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each of these has two or three correct significant figures, including the very

small probabilities for models {0} and {0, 1}, which would be exceedingly

difficult to estimate without our trick.
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Appendix A

GNU Free Documentation

License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other

written document “free” in the sense of freedom: to assure everyone the

effective freedom to copy and redistribute it, with or without modifying it,

either commercially or noncommercially. Secondarily, this License preserves

for the author and publisher a way to get credit for their work, while not

being considered responsible for modifications made by others.

247
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This License is a kind of “copyleft”, which means that derivative works

of the document must themselves be free in the same sense. It complements

the GNU General Public License, which is a copyleft license designed for free

software.

We have designed this License in order to use it for manuals for free

software, because free software needs free documentation: a free program

should come with manuals providing the same freedoms that the software

does. But this License is not limited to software manuals; it can be used

for any textual work, regardless of subject matter or whether it is published

as a printed book. We recommend this License principally for works whose

purpose is instruction or reference.

A.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice

placed by the copyright holder saying it can be distributed under the terms

of this License. The “Document”, below, refers to any such manual or work.

Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the

Document or a portion of it, either copied verbatim, or with modifications

and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of

the Document that deals exclusively with the relationship of the publishers

or authors of the Document to the Document’s overall subject (or to related

matters) and contains nothing that could fall directly within that overall

subject. (For example, if the Document is in part a textbook of mathematics,

a Secondary Section may not explain any mathematics.) The relationship

could be a matter of historical connection with the subject or with related

matters, or of legal, commercial, philosophical, ethical or political position
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regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are

designated, as being those of Invariant Sections, in the notice that says that

the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as

Front-Cover Texts or Back-Cover Texts, in the notice that says that the

Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy,

represented in a format whose specification is available to the general pub-

lic, whose contents can be viewed and edited directly and straightforwardly

with generic text editors or (for images composed of pixels) generic paint

programs or (for drawings) some widely available drawing editor, and that is

suitable for input to text formatters or for automatic translation to a variety

of formats suitable for input to text formatters. A copy made in an other-

wise Transparent file format whose markup has been designed to thwart or

discourage subsequent modification by readers is not Transparent. A copy

that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII

without markup, Texinfo input format, LATEX input format, SGML or XML

using a publicly available DTD, and standard-conforming simple HTML de-

signed for human modification. Opaque formats include PostScript, PDF,

proprietary formats that can be read and edited only by proprietary word

processors, SGML or XML for which the DTD and/or processing tools are

not generally available, and the machine-generated HTML produced by some

word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus

such following pages as are needed to hold, legibly, the material this License

requires to appear in the title page. For works in formats which do not have

any title page as such, “Title Page” means the text near the most prominent
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appearance of the work’s title, preceding the beginning of the body of the

text.

A.2 Verbatim Copying

You may copy and distribute the Document in any medium, either com-

mercially or noncommercially, provided that this License, the copyright no-

tices, and the license notice saying this License applies to the Document are

reproduced in all copies, and that you add no other conditions whatsoever

to those of this License. You may not use technical measures to obstruct or

control the reading or further copying of the copies you make or distribute.

However, you may accept compensation in exchange for copies. If you dis-

tribute a large enough number of copies you must also follow the conditions

in section 3.

You may also lend copies, under the same conditions stated above, and

you may publicly display copies.

A.3 Copying in Quantity

If you publish printed copies of the Document numbering more than 100,

and the Document’s license notice requires Cover Texts, you must enclose

the copies in covers that carry, clearly and legibly, all these Cover Texts:

Front-Cover Texts on the front cover, and Back-Cover Texts on the back

cover. Both covers must also clearly and legibly identify you as the publisher

of these copies. The front cover must present the full title with all words of

the title equally prominent and visible. You may add other material on the

covers in addition. Copying with changes limited to the covers, as long as

they preserve the title of the Document and satisfy these conditions, can be

treated as verbatim copying in other respects.
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If the required texts for either cover are too voluminous to fit legibly,

you should put the first ones listed (as many as fit reasonably) on the actual

cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document number-

ing more than 100, you must either include a machine-readable Transparent

copy along with each Opaque copy, or state in or with each Opaque copy a

publicly-accessible computer-network location containing a complete Trans-

parent copy of the Document, free of added material, which the general

network-using public has access to download anonymously at no charge us-

ing public-standard network protocols. If you use the latter option, you must

take reasonably prudent steps, when you begin distribution of Opaque copies

in quantity, to ensure that this Transparent copy will remain thus accessible

at the stated location until at least one year after the last time you distribute

an Opaque copy (directly or through your agents or retailers) of that edition

to the public.

It is requested, but not required, that you contact the authors of the

Document well before redistributing any large number of copies, to give them

a chance to provide you with an updated version of the Document.

A.4 Modifications

You may copy and distribute a Modified Version of the Document under

the conditions of sections 2 and 3 above, provided that you release the Mod-

ified Version under precisely this License, with the Modified Version filling

the role of the Document, thus licensing distribution and modification of the

Modified Version to whoever possesses a copy of it. In addition, you must

do these things in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that

of the Document, and from those of previous versions (which should, if
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there were any, be listed in the History section of the Document). You

may use the same title as a previous version if the original publisher of

that version gives permission.

• List on the Title Page, as authors, one or more persons or entities

responsible for authorship of the modifications in the Modified Version,

together with at least five of the principal authors of the Document (all

of its principal authors, if it has less than five).

• State on the Title page the name of the publisher of the Modified

Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to

the other copyright notices.

• Include, immediately after the copyright notices, a license notice giving

the public permission to use the Modified Version under the terms of

this License, in the form shown in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and

required Cover Texts given in the Document’s license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled “History”, and its title, and add to it an

item stating at least the title, year, new authors, and publisher of the

Modified Version as given on the Title Page. If there is no section

entitled “History” in the Document, create one stating the title, year,

authors, and publisher of the Document as given on its Title Page, then

add an item describing the Modified Version as stated in the previous

sentence.
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• Preserve the network location, if any, given in the Document for public

access to a Transparent copy of the Document, and likewise the network

locations given in the Document for previous versions it was based on.

These may be placed in the “History” section. You may omit a network

location for a work that was published at least four years before the

Document itself, or if the original publisher of the version it refers to

gives permission.

• In any section entitled “Acknowledgements” or “Dedications”, preserve

the section’s title, and preserve in the section all the substance and tone

of each of the contributor acknowledgements and/or dedications given

therein.

• Preserve all the Invariant Sections of the Document, unaltered in their

text and in their titles. Section numbers or the equivalent are not

considered part of the section titles.

• Delete any section entitled “Endorsements”. Such a section may not

be included in the Modified Version.

• Do not retitle any existing section as “Endorsements” or to conflict in

title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices

that qualify as Secondary Sections and contain no material copied from the

Document, you may at your option designate some or all of these sections

as invariant. To do this, add their titles to the list of Invariant Sections in

the Modified Version’s license notice. These titles must be distinct from any

other section titles.

You may add a section entitled “Endorsements”, provided it contains

nothing but endorsements of your Modified Version by various parties – for

example, statements of peer review or that the text has been approved by

an organization as the authoritative definition of a standard.
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You may add a passage of up to five words as a Front-Cover Text, and a

passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover

Texts in the Modified Version. Only one passage of Front-Cover Text and

one of Back-Cover Text may be added by (or through arrangements made

by) any one entity. If the Document already includes a cover text for the

same cover, previously added by you or by arrangement made by the same

entity you are acting on behalf of, you may not add another; but you may

replace the old one, on explicit permission from the previous publisher that

added the old one.

The author(s) and publisher(s) of the Document do not by this License

give permission to use their names for publicity for or to assert or imply

endorsement of any Modified Version.

A.5 Combining Documents

You may combine the Document with other documents released under

this License, under the terms defined in section 4 above for modified versions,

provided that you include in the combination all of the Invariant Sections

of all of the original documents, unmodified, and list them all as Invariant

Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and mul-

tiple identical Invariant Sections may be replaced with a single copy. If there

are multiple Invariant Sections with the same name but different contents,

make the title of each such section unique by adding at the end of it, in

parentheses, the name of the original author or publisher of that section if

known, or else a unique number. Make the same adjustment to the section

titles in the list of Invariant Sections in the license notice of the combined

work.

In the combination, you must combine any sections entitled “History”
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in the various original documents, forming one section entitled “History”;

likewise combine any sections entitled “Acknowledgements”, and any sec-

tions entitled “Dedications”. You must delete all sections entitled “Endorse-

ments.”

A.6 Collections of Documents

You may make a collection consisting of the Document and other docu-

ments released under this License, and replace the individual copies of this

License in the various documents with a single copy that is included in the

collection, provided that you follow the rules of this License for verbatim

copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute

it individually under this License, provided you insert a copy of this License

into the extracted document, and follow this License in all other respects

regarding verbatim copying of that document.

A.7 Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate

and independent documents or works, in or on a volume of a storage or dis-

tribution medium, does not as a whole count as a Modified Version of the

Document, provided no compilation copyright is claimed for the compilation.

Such a compilation is called an “aggregate”, and this License does not ap-

ply to the other self-contained works thus compiled with the Document, on

account of their being thus compiled, if they are not themselves derivative

works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of

the Document, then if the Document is less than one quarter of the entire
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aggregate, the Document’s Cover Texts may be placed on covers that sur-

round only the Document within the aggregate. Otherwise they must appear

on covers around the whole aggregate.

A.8 Translation

Translation is considered a kind of modification, so you may distribute

translations of the Document under the terms of section 4. Replacing Invari-

ant Sections with translations requires special permission from their copy-

right holders, but you may include translations of some or all Invariant Sec-

tions in addition to the original versions of these Invariant Sections. You

may include a translation of this License provided that you also include the

original English version of this License. In case of a disagreement between

the translation and the original English version of this License, the original

English version will prevail.

A.9 Termination

You may not copy, modify, sublicense, or distribute the Document except

as expressly provided for under this License. Any other attempt to copy,

modify, sublicense or distribute the Document is void, and will automatically

terminate your rights under this License. However, parties who have received

copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

A.10 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the

GNU Free Documentation License from time to time. Such new versions will
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be similar in spirit to the present version, but may differ in detail to address

new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If

the Document specifies that a particular numbered version of this License ”or

any later version” applies to it, you have the option of following the terms

and conditions either of that specified version or of any later version that

has been published (not as a draft) by the Free Software Foundation. If the

Document does not specify a version number of this License, you may choose

any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your

documents

To use this License in a document you have written, include a copy of the

License in the document and put the following copyright and license notices

just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to

copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.1 or any later

version published by the Free Software Foundation; with the In-

variant Sections being LIST THEIR TITLES, with the Front-

Cover Texts being LIST, and with the Back-Cover Texts being

LIST. A copy of the license is included in the section entitled

“GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections”

instead of saying which ones are invariant. If you have no Front-Cover Texts,

write “no Front-Cover Texts” instead of “Front-Cover Texts being LIST”;

likewise for Back-Cover Texts.
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If your document contains nontrivial examples of program code, we rec-

ommend releasing these examples in parallel under your choice of free soft-

ware license, such as the GNU General Public License, to permit their use

in free software.



Bibliography

Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Func-

tions with Formulas, Graphs, and Mathematical Tables. Dover, New York.

Atchade, Y. F. and Rosenthal, J. S. (2005). On adaptive Markov chain Monte

Carlo algorithms. Bernoulli, 11:815–828.

Besag, J. (1994). Discussion of Grenander and Miller (1994). Journal of the

Royal Statistical Society, Series B, 56:591–592.

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.

Billingsley, P. (1995). Probability and Measure. Wiley, New York, third

edition.

Boyles, R. A. (1983). On the convergence of the EM algorithm. Journal of

the Royal Statistical Society Series B, 45:47–50.

Burden, R. L. and Faires, J. D. (2005). Numerical Analysis. Thomson, 8th

edition.

Caffo, B. S., Booth, J. G., and Davison, A. C. (2002). Empirical supremum

rejection sampling. Biometrika, 89(4):745–754.

Chan, K. S. and Geyer, C. J. (1994). Comment on “Markov chains for

exploring posterior distributions”. The Annals of Statistics, 22:1747–1758.

259



260 BIBLIOGRAPHY

Chung, K. L. (1974). A Course in Probability Theory. Academic Press, New

York, 2nd edition.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likeli-

hood from incomplete data via the EM algorithm. Journal of the Royal

Statistical Society Series B, 39:1–38.

Devroye, L. (1986). Non-uniform Random Variate Generation. Springer-

Verlag Inc.

Fletcher, R. (1987). Practical Methods of Optimization. John Wiley, Chich-

ester; New York, 2nd edition.

Gaver, D. P. and O’Muircheartaigh, I. G. (1987). Robust empirical Bayes

analyses of event rates. Technometrics, 29:1–15.

Gelman, A., Roberts, G. O., and Gilks, W. R. (1996). Efficient Metropolis

jumping rules. In Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith,

A. F. M., editors, Bayesian Statistics 5 – Proceedings of the Fifth Valencia

International Meeting, pages 599–607. Clarendon Press [Oxford University

Press].

Geyer, C. J. (1992). Practical Markov chain Monte Carlo (with discussion).

Statistical Science, 7:473–511.

Geyer, C. J. and Thompson, E. A. (1995). Annealing Markov chain Monte

Carlo with applications to ancestral inference. Journal of the American

Statistical Association, 90:909–920.

Gilks, W. R. (1992). Derivative-free adaptive rejection sampling for Gibbs

sampling. In Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A.

F. M., editors, Bayesian Statistics 4. Proceedings of the Fourth Valencia

International Meeting, pages 641–649. Clarendon Press.



BIBLIOGRAPHY 261

Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs

sampling. Applied Statistics, 41:337–348.

Glynn, P. W. and Iglehart, D. L. (1990). Simulation output analysis using

standardized time series. Mathematics of Operations Research, 15:1–16.

Glynn, P. W. and Whitt, W. (1991). Estimating the asymptotic variance

with batch means. Operations Research Letters, 10:431–435.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation

and Bayesian model determination. Biometrika, 82:711–732.

Grenander, U. and Miller, M. I. (1994). Representations of knowledge in

complex systems. Journal of the Royal Statistical Society, Series B, 56:549–

603. With discussion.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains

and their applications. Biometrika, 57:97–109.

Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and Stationary Se-

quences of Random Variables. Walters-Noordhoff, The Netherlands.

Jarner, S. F. and Roberts, G. O. (2002). Polynomial convergence rates of

Markov chains. Annals of Applied Probability, 12:224–247.

Jones, G. L. (2004). On the Markov chain central limit theorem. Probability

Surveys, 1:299–320.

Jones, G. L., Haran, M., Caffo, B. S., and Neath, R. (2005). Fixed-width

output analysis for Markov chain Monte Carlo. Journal of the American

Statistical Association, to appear.

Jones, G. L. and Hobert, J. P. (2001). Honest exploration of intractable

probability distributions via Markov chain Monte Carlo. Statistical Sci-

ence, 16:312–334.



262 BIBLIOGRAPHY

Kantorovich, L. V. and Akilov, G. P. (1964). Functional Analysis in Normed

Linear Spaces. Pergamon Press, Oxford. Translated from the original

Russian (Fizmatgiz, Moskow, 1959) by D. E. Brown and A. P. Robertson.

Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. In Neyman,

J., editor, Proceedings of the Second Berkeley Symposium on Mathematical

Statistics and Probability, pages 481–492. University of California Press.

MacEachern, S. N. and Berliner, L. M. (1994). Subsampling the gibbs sam-

pler. American Statistician, 48:188–190.

McCulloch, C. E. and Searle, S. R. (2001). Generalized, Linear, and Mixed

Models. John Wiley & Sons, New York.

Meketon, M. S. and Schmeiser, B. W. (1984). Overlapping batch means:

Something for nothing? In Sheppard, S., Pooch, U. W., and Pegden, C. D.,

editors, 1984 Winter Simulation Conference Proceedings, pages 227–230.

Elsevier/North-Holland, New York/ Amsterdam.

Mengersen, K. and Tweedie, R. L. (1996). Rates of convergence of the Hast-

ings and Metropolis algorithms. The Annals of Statistics, 24:101–121.

Meyn, S. P. and Tweedie, R. L. (1993a). Markov Chains and Stochastic

Stability. Springer-Verlag, London.

Meyn, S. P. and Tweedie, R. L. (1993b). Markov Chains and Stochastic

Stability. Springer-Verlag, London.

Murray, G. D. (1977). Discussion of the paper by Professor Dempster et al.

Journal of the Royal Statistical Society Series B, 39:27–28.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. Springer,

New York, 1st edition.



BIBLIOGRAPHY 263

Ralston, A. and Rabinowitz, P. (2001). A First Course in Numerical Anal-

ysis. Dover, New York, 2nd edition.

Ripley, B. D. (1987). Stochastic Simulation. John Wiley & Sons.

Robert, C. P. and Casella, G. (1999). Monte Carlo Statistical Methods.

Springer, New York.

Roberts, G. O. (1999). A note on acceptance rate criteria for CLTs for

Metropolis-Hastings algorithms. Journal of Applied Probability, 36:1210–

1217.

Roberts, G. O. and Rosenthal, J. S. (1997). Geometric ergodicity and hybrid

Markov chains. Electronic Communications in Probability, 2:13–25.

Roberts, G. O. and Rosenthal, J. S. (1998). Optimal scaling of discrete

approximations to Langevin diffusions. Journal of the Royal Statistical

Society, Series B, 60:255–268.

Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of

Langevin distributions and their discrete approximations. Bernoulli,

2:341–363.

Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press.

Rockafellar, R. T. and Wets, R. J.-B. (1998). Variational Analysis. Springer-

Verlag.

Rosenthal, J. S. (1995). Minorization conditions and convergence rates for

Markov chain Monte Carlo. JOURNAL OF THE AMERICAN STATIS-

TICAL ASSOCIATION, 90:558–566.

Tierney, L. (1994). Markov chains for exploring posterior distributions (with

discussion). The Annals Of Statistics, 22:1701–1762.



264 BIBLIOGRAPHY

Wu, C.-F. J. (1983). On the convergence properties of the EM algorithm.

The Annals of Statistics, 11:95–103.


