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Chapter 1

Computer Arithmetic

Because of the limitations of finite binary storage, computers do not store exact representations of
most numbers or perform exact arithmetic. A standard computer will use 32 bits of storage for an
integer or for a single precision floating point number, and 64 bits for a double precision number.

1.1 Integers

For many computers the 32 bits of a stored integer u can be thought of as the binary coefficients
xi in the representation

u =
32∑
i=1

xi2i−1 − 231,

where each xi = 0 or 1. (This may not be the exact way the values are stored, but this model
gives the same results as the most common representation.) In this representation, if x32 = 1 and
all the other xi = 0, then u = 0. The largest possible integer (all xi = 1) is∑31

i=1 2i−1 = 2147483647, and the largest (in magnitude) negative integer is −231 = −2147483648,
which has all xi = 0. When results of an integer arithmetic operation go beyond this range, the
result is usually the lower order bits from the representation of the exact result. That is,
2147483647 + 1 = 232 − 231, so its representation would have xi = 0 for i = 1, . . . , 32, and x33 = 1,
if there were an x33. Since there is no 33rd bit, only bits 1 to 32 are stored (all zeros), and the
result is −231 = −2147483648. This can easily be seen in any compiled program that does integer
arithmetic. For example, in Splus (where it takes quite a bit of work to coerce integer arithmetic):

> u <- as.integer(0)
> b <- as.integer(1)
> two <- as.integer(2)
> for (i in 1:31) {u <- u+b; b <- b*two}
> u
[1] 2147483647
> u+as.integer(1)

6



1.2. FLOATING POINT 7

[1] -2147483648

It is possible to get integer results unintentionally, though:

> a <- rep(c(’a’,’b’,’c’),1000)
> b <- table(a)
> b

a b c
1000 1000 1000

> b[1]*b[2]*b[3]
a

1000000000
> b[1]*b[2]*b[3]*b[1]

a
-727379968

The output from the table command is stored in integer mode, and multiplication of integers
produces an integer result.

1.2 Floating Point

A floating point number can be thought of as being represented in the form

(−1)x0(
t∑

i=1

xi2−i)2k,

where k is an integer called the exponent and xi = 0 or 1 for i = 1, . . . , t. x0 is the sign bit, with
x0 = 0 for positive numbers and x0 = 1 for negative. The fractional part

∑t
i=1 xi2−i is called the

mantissa. By shifting the digits in the mantissa and making a corresponding change in the
exponent, it can be seen that this representation is not unique. By convention, the exponent is
chosen so that the first digit of the mantissa is 1, except if that would result in the exponent
being out of range.

A 32-bit single precision floating point number is usually represented as a sign bit, a 23 bit
mantissa, and an 8 bit exponent. The exponent is usually shifted so that it takes the values −126
to 128. The remaining possible value of the exponent is probably reserved for a flag for a special
value (eg underflow, overflow [which sometimes prints as Inf] or NaN [not a number]). When the
exponent is in the allowed range, the first digit in the mantissa is always a 1, so it need not be
stored. When the exponent is at the minimum value (eg −126), the first digit does need to be
given, so there has been a loss of at least one digit of accuracy in the mantissa, and the program
may report that underflow has occurred. The IEEE standard calls for underflow to occur
gradually. That is 2−130 could be represented with k = −126, x4 = 1 and the other xi = 0. Note
that 2−130 + 2−152 would be stored the same as 2−130, since there are not enough digits in the
mantissa to include the additional term. It is this loss of accuracy that is called underflow (note
that 2−152 would be stored as 0).

(Note that since the above representation includes both a positive and negative 0, which is not
necessary, one additional value could also be included in the range of representable values.)
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A standard double precision representation uses a sign bit, an 11 bit exponent, and 52 bits for the
mantissa. With 11 bits there are 211 = 2048 possible values for the exponent, which are usually
shifted so that the allowed values range from −1022 to 1024, again with one special value.

The IEEE standard for floating point arithmetic calls for basic arithmetic operations to be
performed to higher precision, and then rounded to the nearest representable floating point
number. Sun SPARC architecture computers appear to be compliant with this standard.

1.3 Machine Constants

The representation for floating point numbers described above is only one possibility, and may or
may not be used on any particular computer. However, any finite binary representation of
floating point numbers will have restrictions on the accuracy of representations. For example,
there will be a smallest possible positive number, a smallest number that added to 1 will give a
result different than 1, and in general for any number a closest representable number. There are
also the largest (in magnitude) positive and negative numbers that can be stored without
producing overflow. Numbers such as these are called machine constants, and are determined by
how floating point numbers are stored and how arithmetic operations are performed. If we knew
exactly how numbers were stored and arithmetic performed, then we could determine exactly
what these numbers should be. This information is generally not readily available to the average
computer user, though, so some standard algorithms have been developed to diagnose these
machine constants.

The LAPACK library of linear algebra routines contains FORTRAN subroutines slamch and
dlamch for computing single and double precision machine constants. Corresponding C routines
are available in the C version of the library. Source code for LAPACK can be obtained from
Netlib (http://www.netlib.org). The Numerical Recipes library (Press et. al. (1992), Section
20.1) also has a program for computing machine constants, called machar. Individual sections of
the Numerical Recipes books can be accessed at http://www.nr.com/.

Since Splus is essentially a compiled C and FORTRAN program, for the most part it stores
floating point numbers and performs arithmetic the same as in C and FORTRAN, and it will be
used here to examine some of these constants. First consider the smallest number that can be
added to 1 that will give a value different from 1. This is often denoted εm. Recalling the basic
floating point representation,

1 = (1/2 +
t∑

i=2

0/2i)21,

so the next largest representable number is 1 + 1/2t−1. It was claimed above that in standard
double precision, t = 52. However, since the leading bit in the mantissa need not be stored, an
extra digit can be gained, effectively making t = 53. Thus 1 + 1/252 should be different than 1:

> options(digits=20)
> 1+1/2^53
[1] 1
> 1+1/2^52
[1] 1.000000000000000222
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> 1/2^52
[1] 2.2204460492503130808e-16

While 1 + 1/252 is the next largest representable number, εm may be smaller than 1/252. That is,
if addition is performed to higher accuracy and the result rounded to the nearest representable
number, then the next representable number larger than 1/253, when added to 1, should also
round to this value. The next number larger than 1/253 should be
(1 + 1/252)/253 = 1/253 + 1/2105.

> 1/2^53
[1] 1.1102230246251565404e-16
> 1/2^53+1/2^106
[1] 1.1102230246251565404e-16
> 1/2^53+1/2^105
[1] 1.1102230246251567869e-16
> 1+(1/2^53+1/2^106)
[1] 1
> 1+(1/2^53+1/2^105)
[1] 1.000000000000000222

If instead of adding numbers to 1 we subtract, the results are slightly different. Since the result is
< 1, the exponent shifts by 1, gaining an extra significant digit. Thus the next representable
number smaller than 1 should be 1 − 1/253, and 1 − (1/254 + 1/2106) should round to this value.

Exercise 1.1 Verify the previous statement.

If x is the true value of a number and f(x) is its floating point representation, then εm is an
upper bound on the relative error of any stored number (except in the case of overflow or
underflow). That is, if f(x) = 2k(1/2 +

∑t
i=2 xi/2i) with xi = 0, 1, then using exact (not floating

point) arithmetic, the relative error is

|x − f(x)|
|x| ≤ 2k

2t+1|x| ,

since otherwise |x| would round to a different floating point number, and since

1
|x| ≤

1
|f(x)| − 2k/2t+1

≤ 1
2k−1(1 − 1/2t)

≤ 21−k(1 + 1/2t−1),

where the last inequality follows because 1 ≤ (1− 1/2t)(1 + 1/2t−1). Combining with the previous
expression then gives

|x − f(x)|
|x| ≤ 1/2t + 1/22t−1 = εm.

The value εm thus plays an important role in error analysis. It is often called the machine
precision or machine epsilon. From above, in double precision on a Sun, εm

.= 1.11 × 10−16, so
double precision numbers are stored accurate to about 16 decimal digits. Note: there is not
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complete agreement on the terminology. dlamch in LAPACK gives the value above for
eps = relative machine precision, while Press et. al. (1992) use 1/252 for
eps = floating point precision. Splus includes an object .Machine that specifies a number
of machine constants, which gives 1/252 for .Machine$double.eps.)

Exercise 1.2 Determine εm as defined above for single precision floating point numbers. (In
Splus this can be done by making extensive use of the as.single() function.)

The largest and smallest positive floating point numbers are given below.

> # largest possible mantissa
> u <- 0
> for (i in 1:53) u <- u+1/2^i
> u
[1] 0.99999999999999988898
> # and the largest possible exponent--note that calculating 2^1024
> # directly overflows
> u*2*2^1023
[1] 1.7976931348623157081e+308
> # next largest floating point number overflows
> (u*2*2^1023)*(1+1/2^52)
[1] Inf
>
> # smallest possible mantissa and smallest possible exponent
> 1/2^52*2^(-1022)
[1] 4.9406564584124654418e-324
> 1/2^52*2^(-1022)/2
[1] 0

Although numbers less than 2−1022 can be represented (on machines compliant with the IEEE
standard), generally smaller numbers can have larger relative errors than machine precision, due
to the gradual loss of significant digits in the mantissa:

> (1/2+1/2^53)
[1] 0.50000000000000011102
> 2^(-1022)/2
[1] 1.1125369292536006915e-308
> (1/2+1/2^53)*2^(-1022)
[1] 1.1125369292536006915e-308
> (1/2+1/2^52)*2^(-1022)
[1] 1.1125369292536011856e-308

That is, the representation of 1/2 and 1/2 + 1/253 are distinct, but the representations of
(1/2) × 2−1022 and (1/2 + 1/253) × 2−1022 are not, so the latter has a larger relative error.
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Exercise 1.3 (a) Determine the smallest and largest positive representable numbers in single
precision. (b) Determine the smallest and largest representable negative numbers in single
precision. (c) Determine the smallest and largest representable negative numbers in double
precision.

Exercise 1.4 Describe a general algorithm for determining the largest representable number
without producing overflow.

1.4 Accuracy of Arithmetic Operations

Consider computing x + y, where x and y have the same sign. Let δx and δy be the relative error
in the floating point representation of x and y (δx = [f(x) − x]/x, so f(x) = x(1 + δx)). What the
computer actually calculates is the sum of the floating point representations f(x) + f(y), which
may not have an exact floating point representation, in which case it is rounded to the nearest
representable number f(f(x) + f(y)). Let δs = [f(f(x) + f(y))− f(x)− f(y)]/[f(x) + f(y)] be the
relative error in this final representation. Note that max{|δx|, |δy|, |δs|} ≤ εm. Also,

|f(x) + f(y)| = |x(1 + δx) + y(1 + δy)| ≤ |x + y|(1 + εm),

where the fact that x and y have the same sign has been used. Thus

|f(f(x) + f(y)) − (x + y)| = |f(f(x) + f(y)) − f(x) − f(y) + f(x) − x + f(y) − y|
≤ |δs[f(x) + f(y)]| + |δxx| + |δyy|
≤ |x + y|(εm + ε2m) + |x + y|εm
.= 2εm|x + y|,

where the higher order terms in εm have been dropped, since they are usually negligible. Thus
2εm is an (approximate) bound on the relative error in a single addition of two numbers with the
same sign.

For multiplication, letting δm be the relative error in the floating point representation of f(x)f(y),

f(f(x)f(y)) = f(x)f(y)(1 + δm) = x(1 + δx)y(1 + δy)(1 + δm),

so the relative error is bounded by 3εm (to first order in εm). A similar bound holds for division,
provided the denominator and its floating point representation are nonzero.

These errors in single binary operations accumulate as more and more calculations are done, but
they are so small that a very large number of such operations must be done to introduce
substantial inaccuracy in the results. However, there is one remaining basic binary operation:
subtraction, or adding numbers of opposite sign. For subtraction, if the two numbers are similar
in magnitude, then the leading digits in the mantissa will cancel, and there may only be a few
significant digits left in the difference, leading to a large relative error. To illustrate with an
extreme example, suppose the floating point representations are f(x) = (1/2 +

∑t−1
i=1 xi/2i + 1/2t)

and f(y) = (1/2 +
∑t−1

i=1 xi/2i + 0/2t). Then the computed difference f(x) − f(y) = 1/2t. But due
to the error in the representation of x and y (f(x) and f(y) could each have absolute error as
large as 1/2t+1), the true difference could be anywhere in the interval (0, 1/2t−1). Thus in this
extreme case there is no guarantee of any significant digits of accuracy in the result, and the
relative error can be arbitrarily large.
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Example 1.1 It is easy to find examples where subtraction results in catastrophic cancellation.
Consider the problem of computing exp(x). If |x| is not too large, the Taylor series
exp(x) =

∑
i≥0 xi/i! converges rapidly. A straightforward implementation for evaluating the

partial sums in this series is given below. Note that it works well for positive x but poorly for
negative x.

> fexp <- function(x) {
+ i <- 0
+ expx <- 1
+ u <- 1
+ while(abs(u)>1.e-8*abs(expx)) {
+ i <- i+1
+ u <- u*x/i
+ expx <- expx+u
+ }
+ expx
+ }
> options(digits=10)
> c(exp(1),fexp(1))
[1] 2.718281828 2.718281826
> c(exp(10),fexp(10))
[1] 22026.46579 22026.46575
> c(exp(100),fexp(100))
[1] 2.688117142e+43 2.688117108e+43
> c(exp(-1),fexp(-1))
[1] 0.3678794412 0.3678794413
> c(exp(-10),fexp(-10))
[1] 4.539992976e-05 4.539992956e-05
> c(exp(-20),fexp(-20))
[1] 2.061153622e-09 5.621884467e-09
> c(exp(-30),fexp(-30))
[1] 9.357622969e-14 -3.066812359e-05
> (-20)^10/prod(2:10)
[1] 2821869.489
> (-20)^9/prod(2:9)
[1] -1410934.744
> (-20)^20/prod(20:2)
[1] 43099804.12

By x = −20 there are no significant digits of accuracy, and the algorithm gives a negative value
for exp(−30). The terms in the series for x = −20, for i = 9, 10, 20, are also given above. The
problem occurs because the terms alternate in sign, and some of the terms are much larger than
the final solution. Since double precision numbers have about 16 significant digits, through the
20th term the accumulated sum would be expected to have an absolute error of order at least
10−8, but exp(−20) is order 10−9.

When x > 0, all terms are positive, and this problem does not occur. A solution is easily
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implemented by noting that exp(−x) = 1/ exp(x), as follows.

> fexp <- function(x) {
+ xa <- abs(x)
+ i <- 0
+ expx <- 1
+ u <- 1
+ while(u>1.e-8*expx) {
+ i <- i+1
+ u <- u*xa/i
+ expx <- expx+u
+ }
+ if (x >= 0) expx else 1/expx
+ }
> c(exp(-1),fexp(-1))
[1] 0.3678794412 0.3678794415
> c(exp(-10),fexp(-10))
[1] 4.539992976e-05 4.539992986e-05
> c(exp(-20),fexp(-20))
[1] 2.061153622e-09 2.061153632e-09
> c(exp(-100),fexp(-100))
[1] 3.720075976e-44 3.720076023e-44

2

A computing problem is said to be ill conditioned if small perturbations in the problem give large
perturbations in the exact solution. An example of an ill conditioned problem is solving the
system of linear equations

An×nxn×1 = bn×1

for x when A is nearly singular. In this problem small changes (or errors) in A or b can give large
differences in the exact solution x. Since storing A and b in a computer involves small errors in
rounding to floating point numbers, it is essentially impossible to get precise solutions to
ill-conditioned problems.

In the exponential example above, if exact computations were done, then a small change in x
would give only a small change in the computed value of exp(x). The difficulty encountered was
with the particular algorithm, and was not inherent in the problem itself.

Suppose g(x) is the exact solution to a problem with inputs x, and g∗(x) is the value computed
by a particular algorithm. The computed solution g∗(x) can often be thought of as the exact
solution to a perturbed problem with inputs x̃, that is, g∗(x) = g(x̃). If there is always an x̃ close
to x such that g∗(x) = g(x̃), then the algorithm is said to be stable. If not, then the algorithm is
unstable. The first algorithm given above for computing exp(x) is unstable for large negative x,
while the second version is stable.

This definition of stability is related to the concept of backward error analysis. The analysis of
errors for binary arithmetic operations given above was a forward error analysis. In forward
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analysis, the calculations are examined one step at a time from the beginning, and the errors that
can occur at each step accumulated. This can generally only be done for fairly simple problems.
In backward analysis, given a particular computed solution, it is determined how much the
original problems would need to be modified for the computed solution to be the exact solution to
the perturbed problem. If only a small perturbation is needed, then the solution is about as good
as could be expected. In ill-conditioned problems, such a solution still might not be very accurate,
but it is as about as good as can be done with the available tools. The topic of backward error
analysis was extensively developed by Wilkinson (1963). There will be little formal error analysis
in this course, but a few results will be given below for sums and variances, and some results will
also be given later for solving systems of equations.

1.5 Computing Sums

The basic problem is to compute S =
∑n

i=1 xi from the stored floating point representations
f(xi). Suppose first that f(x1) is added to f(x2) and the result stored as a floating point number,
then f(x3) is added to the sum and the result again converted to a floating point number, and the
sum computed by continuing in this fashion. Denote this computed sum by S∗. Let δi be the
relative error in the representation f(xi), and let εi be the relative error in converting the result of
the ith addition to a representable floating point number. For n = 3,

S∗ = {[x1(1 + δ1) + x2(1 + δ2)](1 + ε1) + x3(1 + δ3)}(1 + ε2)
= [x1(1 + δ1) + x2(1 + δ2)](1 + ε1)(1 + ε2) + x3(1 + δ3)(1 + ε2)

.=
3∑

i=1

xi +
3∑

i=1

xi(δi +
2∑

j=i−1

εj),

dropping higher order terms in the δ’s and ε’s, and where ε0 ≡ 0. The generalization to n terms is
easily seen to be

S∗ = [x1(1 + δ1) + x2(1 + δ2)]
n−1∏
j=1

(1 + εj) +
n∑

i=3

xi(1 + δi)
n−1∏

j=i−1

(1 + εj)

.=
n∑

i=1

xi +
n∑

i=1

xi

δi +
n−1∑

j=i−1

εj

 .

Thus to first order in the errors, again denoting the machine precision by εm

|S∗ − S| ≤ |x1|nεm +
n∑

i=2

|xi|(n − i + 2)εm (1.1)

≤ max
i

|xi|εm(n +
n∑

i=2

i) = max
i

|xi|εm(n2 + 3n − 2)/2, (1.2)

since
∑n

i=1 i = n(n + 1)/2. From (1.2), the error in this algorithm increases as the square of the
number of terms in the sum. As before, if some elements are of opposite sign, and |S| is much
smaller than maxi |xi|, then the relative error can be very large. If all numbers have the same
sign, then the error in this algorithm can be reduced by summing the values with the smallest
magnitude first, since by (1.1) the first 2 terms are involved in n− 1 additions and accumulate the
largest potential errors, while the last number added is only involved in 1 sum.
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Organizing the calculations differently can reduce the bound on the error. Suppose n = 8 and the
calculations are performed by first adding adjacent pairs of values, then adding adjacent pairs of
the sums from the first stage, etc., as implied by the parentheses in the following expression:

S = {[(x1 + x2) + (x3 + x4)] + [(x5 + x6) + (x7 + x8)]}.

In this pairwise summation algorithm, each value is only involved in 3 additions, instead of the
maximum of 7 in the previous algorithm. In general, if n = 2k, then each term is involved in only
k = log2(n) additions in the pairwise summation algorithm. Reasoning as before, it can be shown
that the sum computed from the floating point representations using pairwise summation, say S∗

p ,
satisfies

|S∗
p − S| ≤

n∑
i=1

|xi|(k + 1)εm ≤ max
i

|xi|n(k + 1)εm, (1.3)

when n = 2k. When n is not a power of 2, the bound holds with k equal to the smallest integer
≥ log2(n). Thus roughly speaking, the error is order n log2(n) for pairwise summation versus n2

for the standard algorithm. For n = 1000, n/ log2(n) .= 100, and pairwise summation could be as
much as 2 digits more accurate than the standard approach.

Exercise 1.5 Derive the error bound (1.3) for the pairwise summation algorithm.

Exercise 1.6 Write a function in C or FORTRAN to implement pairwise summation. Do not
overwrite the original data with the partial sums. What is the minimal amount of storage needed?

Error bounds consider worst case scenarios that may not represent typical behavior. If the
relative error in each binary floating point arithmetic operation was uniformly distributed on
(−εm, εm), and the errors were independent, then the error in a series of N computations would
approximately be distributed N(0, Nε2m/3), suggesting a typical error of O(N1/2εm) (the standard
deviation). However, errors tend not to be independent, and as has been seen above, subtractions
can produce much larger relative errors, so this value probably does not represent typical
behavior either.

1.6 Computing Sample Variances

The familiar formula for the sample variance,

S2 =
1

n − 1

 n∑
i=1

x2
i −

1
n

[
n∑

i=1

xi

]2
 ,

suggests a one-pass algorithm for computing S2:

Algorithm 1.1
1. Initialize U = 0, V = 0.

2. For i = 1 to n, set U = U + xi and V = V + x2
i .

3. Set S2 = (V − U2/n)/(n − 1).
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Unfortunately, this simple algorithm is unstable, since the subtraction can leave few significant
digits of accuracy.

It is much better to use a two pass algorithm:

Algorithm 1.2
1. In the first pass compute U as above, and set U = U/n.

2. Initialize V = 0.

3. For i = 1 to n, set V = V + (xi − U)2.

4. Set S2 = V/(n − 1).

Since there will be floating point errors in computing U , it may sometimes be possible to get a
further improvement by correcting the two pass algorithm:

Algorithm 1.3
1. In the first pass compute U as above, and set U = U/n.

2. Initialize V = 0 and W = 0.

3. For i = 1 to n, set V = V + (xi − U)2 and W = W + (xi − U).

4. Set S2 = (V − W 2/n)/(n − 1).

While Algorithm 1.3 corrects V for errors in U , these errors are generally small, and so it usually
results in little change and may not be worth the added computations.

In most situations the standard two-pass algorithm would be preferred. However, if for some
reason the entire data vector cannot be stored in memory simultaneously, then a two pass
algorithm might be substantially slower, because of the need to access the data twice. For
example, in a simulation where a large number of values were generated from each simulated
sample, and the variances of these values over the simulated samples were to be computed, it
might be preferred to compute the variance contributions from each sample as they were
generated, rather than storing all the output and computing the variances at the end from the
stored output.

Another setting where the two-pass algorithm is inefficient is computing weighted variances with
weights that require extra computations. This occurs in computing the information for the Cox
partial likelihood. Let Ti be the failure/censoring time, δi the failure indicator (1 for failures, 0 for
censored), and zi the covariate value, for subject i, i = 1, . . . , n. The proportional hazards model
specifies that the failure hazard satisfies λ(t|zi) = λ0(t) exp(ziβ), where λ0 is an unknown
underlying hazard, and β is an unknown parameter. The partial likelihood information for β is
given by the formula ∑

i

δi

∑
j∈R(Ti) wjz

2
j∑

j∈R(Ti) wj
−

(∑
j∈R(Ti) wjzj∑
j∈R(Ti) wj

)2
 ,

where R(t) = {j : Tj ≥ t} and wj = exp(zjβ). The term inside square brackets is a weighted
sample variance. If the two-pass algorithm is applied, then the weights wj need to be recomputed
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in each pass. Alternately, they could be computed once and stored, but that would require using
extra memory (which may not be a problem unless n is very large).

In settings where a two-pass algorithm is inconvenient or inefficient, there are two ways to
proceed. The first is to use a preliminary guess at the mean, and to use this preliminary guess in
place of U in algorithm 3. For computing the partial likelihood information, the unweighted mean∑

j∈R(Ti) zj/
∑

j∈R(Ti) 1 would usually be adequate (and unless censoring depends heavily on the
covariates, the overall unweighted mean

∑n
j=1 zj/n would also usually be acceptable). That is, the

unweighted mean could be computed in one pass, which would not require computation of the wj ,
and then a weighted version of steps 2–4 of algorithm 3 applied with the unweighted mean in
place of U .

The second (and generally more accurate) method is to use an updating formula. Let
xk =

∑k
i=1 xi/k and SS(k) =

∑k
i=1(xi − xk)2. Then it is easily verified that

SS(k) = SS(k − 1) + k(k − 1)(xk − xk−1)2

= SS(k − 1) +
k

k − 1
(xk − xk)2

= SS(k − 1) +
k − 1

k
(xk − xk−1)2, (1.4)

any of which could be used to compute the variance in a single pass over the data. The third
formula can be implemented as follows:

Algorithm 1.4
1. Initialize U1 = x1 and V1 = 0.

2. For i = 2 to n set Vi = Vi−1 + (i − 1)(xi − Ui−1)2/i and Ui = Ui−1 + (xi − Ui−1)/i.

3. Set S2 = Vn/(n − 1).

Here at each step Ui is the mean of the first i observations and Vi is their corrected sum of squares.

Exercise 1.7 Verify the updating formula (1.4).

Exercise 1.8 Derive an updating formula similar to (1.4) for computing a weighted variance.

Example 1.2 To illustrate these approaches to computing the sample variance, a simple example
with 5 data points will be considered. Calculations are done in single precision. Note that the
exact variance for the original data is 2.5 × 10−8. However, the exact data values cannot be
represented in floating point, so the stored data values have errors. The variance of the stored
values is 2.50023369119 × 10−8 (to 12 significant digits), and the best that could be expected of
any computational algorithm is to give the variance of the values as stored in the computer.

> options(digits=12)
> x <- as.single(c(1.0,1.0001,1.0002,.9999,.9998))
> x
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[1] 1.000000000000 1.000100016594 1.000200033188 0.999899983406 0.999800026417
> n <- as.integer(length(x))
> c(is.single(x^2),is.single(sum(x)),is.single(sum(x)/n))
[1] T T T
> # usual "one-pass" formula (although not actually computed in one pass)
> (sum(x^2)-sum(x)^2/n)/(n-as.integer(1))
[1] -2.38418579102e-07
> # standard "two-pass" algorithm
> y <- x-sum(x)/n
> sum(y^2)/(n-as.integer(1))
[1] 2.50023504123e-08
> sum(y)
[1] -5.36441802979e-07
> # "two-pass" corrected
> (sum(y^2)-sum(y)^2/n)/(n-as.integer(1))
[1] 2.50023362014e-08
> # shifted one-pass (using x[5] as a preliminary guess at the mean)
> y <- x-x[5]
> (sum(y^2)-sum(y)^2/n)/(n-as.integer(1))
[1] 2.50023326487e-08
> # updating correction by current mean
> u <- x[1]
> v <- as.single(0)
> for (i in 2:n) {
+ t1 <- x[i]-u
+ t2 <- t1/i
+ v <- v+(i-as.integer(1))*t1*t2
+ u <- u+t2
+ }
> v <- v/(n-as.integer(1))
> is.single(v)
[1] T
> v
[1] 2.50053169282e-08

As can be seen, all approaches except the first work reasonably well.

It is interesting to note that if the above calculations are repeated on the 5 numbers 9998, 9999,
10000, 10001, 10002, then the one pass algorithm gives 0, and all the other approaches give the
exact result of 2.5. The difference is that in this case the numbers are integers that have exact
floating point representations in single precision. However, the squares of several of these values
cannot be represented exactly in single precision, and hence the one-pass algorithm still fails. 2
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1.7 Error Analysis for Variance Algorithms

Chan, Golub and LeVeque (1983) summarize results on error bounds for algorithms for
computing sample variances. A key part of their analysis, and for error analysis of many
problems, is a quantity called the condition number. Condition numbers generally measure how
well (or ill) conditioned a problem is. That is, the condition number relates the relative change in
the exact solution to a problem when the inputs are perturbed to the magnitude of the
perturbation of the inputs. Suppose the exact value of the corrected sum of squares is
SS =

∑n
i=1(xi − xn)2. Suppose also each xi is perturbed by a relative amount ui, and set

x∗
i = xi(1 + ui) and SS∗ =

∑n
i=1(x

∗
i − x∗

n)2. Then to first order in ‖u‖,
|SS∗ − SS|

|SS| ≤ ‖u‖2(1 + nx2
n/SS)1/2, (1.5)

where ‖u‖ = (
∑

i u
2
i )

1/2 is the usual Euclidean norm of the vector of perturbations u. The
quantity κ = 2(1 + nx2

n/SS)1/2 is the condition number, which is a function of the particular data
set. If κ is large, then small perturbations in the data can give large changes in the sum of
squares. Note that in the data used above, the condition number is 2.8 × 104, so computing the
variance for this data is not a well conditioned problem. Computing the variance will be
ill-conditioned whenever |xn| >> (SS/n)1/2, that is, whenever the mean is much larger than the
standard deviation.

To give a rough argument for (1.5), first note that (using exact arithmetic)

SS∗ =
∑

i

x2
i (1 + ui)2 − 1

n

[∑
i

xi(1 + ui)

]2

=
∑

i

x2
i + 2

∑
i

x2
i ui +

∑
i

x2
i u

2
i − nx2

n − 2xn

∑
i

xiui −
(∑

i

xiui

)2

/n

= SS + 2
∑

i

uixi(xi − xn) + O(‖u‖2),

so

|SS∗ − SS|
SS

≤ 2

∣∣∣∣∣∑
i

uixi(xi − xn)

∣∣∣∣∣ /SS + O(‖u‖2)

≤ 2‖u‖
[∑

i

x2
i (xi − xn)2

]1/2

/SS + O(‖u‖2)

≤ 2‖u‖
[∑

i

x2
i SS

]1/2

/SS + O(‖u‖2)

= 2‖u‖
[
(SS + nx2

n)SS
]1/2

/SS + O(‖u‖2)

= 2‖u‖ (1 + nx2
n/SS)1/2 + O(‖u‖2).

The second line follows from the Cauchy-Schwarz inequality, which states that
(
∑

i aibi)2 ≤ (
∑

i a
2
i )(

∑
i b

2
i ), and the third line because

∑
i a

2
i b

2
i ≤ (

∑
i a

2
i )(

∑
i b

2
i ), for any real

numbers.
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The condition number given by Chan, Golub and LeVeque does not have the factor of 2, so there
may be a better argument that gives a tighter bound.

The effect of shifting the data can be seen in the condition number. Shifting the data to have
mean 0 reduces the condition number to 1. Shifting the data so that the mean is small relative to
the SS will make the condition number small.

The condition number indicates how much the exact SS can be influenced by small errors in the
data. It still remains to determine how much error can result from using a particular algorithm to
compute SS. Chan, Golub and LeVeque give the following approximate bounds on the relative
error in computing SS (with small constant multipliers and higher order terms dropped). The
relative error in computing the variance is essentially the same as for SS.

Table 1. Error bounds on the relative error in computing SS,
from Chan, Golub and LeVeque (1983).

Algorithm 1 Nκ2εm

Algorithm 2 Nεm + N2κ2ε2m
Algorithm 3 Nεm + N3κ2ε3m
Algorithm 4 Nκεm

Generally, if pairwise summation is used throughout, then N is replaced by log2(N) in these
formulas. From these approximate bounds, if the data are shifted so that the condition number is
not too large, then the one-pass algorithm 1 could be used, while for large condition numbers a
two-pass or updating algorithm is needed. If N = 5, κ = 2.8× 104 (as in the example earlier), and
εm

.= 6 × 10−8 (fairly standard for single precision), then the bound on the precision of Algorithm
1 is about 235 (ie no precision), the bound on the precision of Algorithm 2 is about 7 × 10−5.
These bounds suggest that Algorithm 1 has no accuracy for this problem, while Algorithm 2
should be accurate to at least 4 significant digits, both of which were reflected in the numerical
results above. The bound on the corrected two-pass algorithm (algorithm 3) is about 3 × 10−7,
suggesting it can give substantial additional gains over Algorithm 2. Note that in the example,
the accuracy of Algorithm 3 compared to the true variance of the original data was less than this.
However, these bounds are in the error of the computational algorithm, and do not take into
account the initial errors in the floating point representations of the data. In the example,
Algorithm 3 was within the error bound when compared to the variance of the data as stored.
The updating algorithm has an error bound of 8 × 10−3, but the numerical result was more
accurate than this would suggest (the bounds need not be terribly tight in specific examples).

Exercise 1.9 Suppose N = 1000, κ = 100, and εm
.= 6 × 10−8. How many significant digits

would be expected for each of the 4 algorithms, based on the error bounds in Table 1?
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Chapter 2

Numerical Linear Algebra

Some Terminology and Notation:
Elements of a matrix A will usually be denoted aij , with the first subscript denoting the row and
the second the column. Matrices will also be written as A = (aij).
A′ denotes the transpose of a matrix or vector A. If A = (aij) and (bij) = B = A′, then bij = aji.
A vector x is a column vector, and x′ is a row vector.
The main diagonal of a square matrix A consists of the elements aii.
Sub-diagonal elements are those elements below the main diagonal (which are the elements aij

with i > j.)
Super-diagonal elements are those elements above the main diagonal (j > i).
An upper triangular matrix has all sub-diagonal elements equal to 0.
A lower triangular matrix has all super-diagonal elements equal to 0.
A diagonal matrix is a square matrix with all elements equal to 0 except those on the main
diagonal.
An identity matrix is a square matrix I with 1’s on the main diagonal and all other elements 0.
A symmetric matrix A is positive definite if x′Ax > 0 for all x 6= 0.

2.1 Matrix Multiplication

Interesting matrix operations on p × p matrices generally require O(p3) operations.

Consider the following FORTRAN fragment for computing

Am×kBk×n = Cm×n.

DO 90, J = 1, N
DO 50, I = 1, M

C( I, J ) = ZERO
50 CONTINUE

DO 80, L = 1, K
IF( B( L, J ).NE.ZERO )THEN

TEMP = B( L, J )
DO 70, I = 1, M

22
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C( I, J ) = C( I, J ) + TEMP*A( I, L )
70 CONTINUE

END IF
80 CONTINUE
90 CONTINUE

If none of the elements of B are 0, then the command

C( I, J ) = C( I, J ) + TEMP*A( I, L )

is executed mkn times.

For square matrices, m = k = n = p, so there are exactly p3 multiplications and exactly p3

additions.

A FLOP is a measure of computation complexity equivalent to one step in an inner product
calculation (1 floating point addition, 1 floating point multiplication, plus some array address
calculations).

Floating point multiplication and division require similar amounts of processing time, and both
require substantially more time than floating point addition or subtraction. Instead of formally
counting FLOPs, a close approximation to computation complexity in numerical linear algebra
problems can often be obtained by just counting the number of floating point multiplications and
divisions. Here FLOP will be used to refer specifically to the number of multiplications and
divisions in an algorithm, although this usage is not standard and could give somewhat different
results than the formal definition. As already noted, there are exactly p3 multiplications in the
above algorithm, so in this terminology it requires p3 FLOPS.

If matrix multiplication requires O(p3) operations, it would be expected that more complex
problems, such as inverting matrices and solving systems of equations, would require at least this
order of computational complexity.

The order of the loops in the above algorithm is important. Compare the algorithm above with
the naive ordering of commands in the following code:

do 10 i=1,m
do 12 j=1,n

c(i,j)=0
do 14 l=1,k

c(i,j)=c(i,j)+a(i,l)*b(l,j)
14 continue
12 continue
10 continue

Using separate programs for each algorithm, with n = m = k = 500, the first version took 62
CPU seconds while the second required 109 CPU seconds. Using optimization flags when
compiling the code, ie f77 -O, the time is reduced to 12 CPU seconds for the first algorithm and
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to 53 CPU seconds for the second. (Calculations were done on a SUN workstation using the SUN
f77 compiler.) The reason for the difference is that in the first algorithm the inner loop is
addressing consecutive storage locations in the A and C arrays, and the computer can access
consecutive locations faster than arbitrary memory addresses. In FORTRAN, the elements in the
column of a matrix are stored in consecutive memory addresses, while in C the elements in a row
are stored in consecutive addresses. (One other difference is that in FORTRAN the entire array is
stored in a consecutive block of memory, that is, the entire array can be thought of as one long
vector subdivided into columns, while in C it is possible for different rows in an array to not be in
adjacent memory locations, unless some extra work is done setting up the array; see the
discussion of this point in Press et. al. (1992).) In Splus, arrays are stored in the same order as in
FORTRAN. Quite possibly this was done because when the original version of old S was written,
LINPACK FORTRAN libraries were used for matrix calculations.

It is possible to improve on the p3 multiplications required in the algorithms above. Strassen’s
algorithm for matrix multiplication requires only plog2(7) .= p2.807 multiplications for square
matrices, but requires many more additions, so the savings is likely to be small unless p is quite
large. This algorithm is briefly discussed in Section 2.11 of Press et. al. (1992).

2.2 Systems of Linear Equations

Consider the problem of solving for x1, . . . , xp in the system of equations

p∑
j=1

aijxj = bi, i = 1, . . . , p, (2.1)

given values for the aij and bi. In matrix terms, this system can be written

Ax = b,

where Ap×p = (aij), and x and b are column vectors.

For example, suppose A is an information matrix. The delta method variance of the MLE is of
the form

b′A−1b. (2.2)

It is generally better to calculate A−1b as the solution to Ax = b than to calculate A−1 directly
and multiply. Actually, in this application A should be positive definite, and it is usually even
better to factor A = U ′U , where U is upper triangular, so

b′A−1b = b′(U ′U)−1b = [(U ′)−1b]′[(U ′)−1b].

Then (U ′)−1b can be calculated by solving the triangular system U ′x = b, and b′A−1b computed
by taking the inner product x′x.
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2.2.1 Triangular Systems

Suppose A is upper triangular:

a11x1 + a12x2 + · · · + a1pxp = b1

a22x2 + · · · + a2pxp = b2

...
...

...
appxp = bp

This system can be solved easily by starting with the last equation and working back up the
system. That is

xp = bp/app

xp−1 = (bp−1 − ap−1,pxp)/ap−1,p−1

...
...

...
x1 = (b1 − a12x2 − · · · − a1pxp)/a11

The solution can overwrite b, since once xj is computed bj is no longer needed.

Solving for xp−j , given the values for xj+1, . . . , xp, requires j multiplications and one division, so
the total number of FLOPS needed in computing the entire solution is

p−1∑
j=0

(j + 1) = p(p + 1)/2.

This algorithm is called backward substitution.

There is an analogous forward substitution algorithm for lower triangular systems. That is, for the
system

i∑
j=1

aijxj = bi, i = 1, . . . , p,

the solution can be computed by
x1 = b1/a11,

and in general

xj = (bj −
j−1∑
k=1

ajkxk)/ajj .

Again the total number of FLOPS required is p(p + 1)/2.

Although it is usually unnecessary, consider the problem of solving for the inverse of a triangular
matrix. Define vectors e(i) by e

(i)
i = 1 and e

(i)
j = 0 for j 6= i. Then the ith column of A−1 can be

found by solving Ax = e(i). For finding all the columns of the inverse, either forward or backward
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substitution as described above would require p2(p + 1)/2 FLOPS. However, there are substantial
additional savings if special procedures are used. If the first k components of b are 0, then the
first k components of the solution x of a lower triangular system will also be 0, so they need not
be computed explicitly. Thus the forward substitution algorithm for solving for the inverse of a
lower triangular matrix can be implemented with

p∑
i=1

i(i + 1)/2 = (p + 2)(p + 1)p/6

FLOPS. There is an analogous savings when solving for the inverse of an upper triangular matrix,
since in this case, if the last k elements of b are 0, so are the last k elements of x.

2.2.2 Gaussian Elimination and the LU Decomposition

For a square nonsingular matrix A, the LU decomposition factors A into the product of a lower
triangular matrix L and an upper triangular matrix U . This decomposition is essentially
equivalent to the standard Gaussian elimination procedure for solving systems of equations.

The Gaussian elimination procedure for solving Ax = b for a general nonsingular matrix A, starts
by appending the right hand side b as an extra column to the matrix A, giving

C =


a11 a12 · · · a1p b1

a21 a22 · · · a2p b2
...

...
...

...
...

ap1 ap2 · · · app bp

 .

Denote the ith row of C by c′i. The next step is to reduce the A portion of this matrix to upper
triangular form using elementary row operations. That is, first replace c′2 by c′2 − (a21/a11)c′1,
replace c′3 by c′3 − (a31/a11)c′1, continuing in this manner through the pth row. The resulting
matrix is 

a11 a12 · · · a1p b1

0 a22 − a12a21/a11 · · · a2p − a1pa21/a11 b2 − b1a21/a11
...

...
...

...
...

0 ap2 − a12ap1/a11 · · · app − a1pap1/a11 bp − b1ap1/a11

 .

Then multiples of the second row of this modified matrix are subtracted from rows 3, . . . , p, to
zero out the subdiagonal elements in the second column, and the process is continued until the A
portion of the matrix has zeros for all subdiagonal matrices. (At each stage, the elements as
modified by previous stages are used, so the formulas become progressively more complex.) These
operations give an equivalent system of equations to (2.1), which still has the same solution vector
x.

Once the matrix is reduced to upper triangular form, the process could be continued starting from
the last row and working back up, eventually reducing the A portion of the matrix to an identity
matrix. The modified column b at the end would then be the solution to (2.1). Alternately, once
A is reduced to an upper triangular matrix, the backward substitution algorithm for upper
triangular systems can be applied. It turns out these two approaches are identical.
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The reduction of the system of equations to upper triangular form described above can also be
thought of as factoring the matrix A into the product of a lower triangular matrix L and an
upper triangular matrix U . The matrix U is precisely the matrix left in the A portion of the
matrix above after it has been reduced to upper triangular form. The sub-diagonal elements of
the matrix L simply record the multipliers used at each stage of the Gaussian elimination
procedure, and the diagonal elements of L are 1.

To give explicit formulas for the matrices U and L, let L = (lij), with lij = 0 for j > i and lii = 1,
and U = (uij) with uij = 0 for i > j. Recursive formulas for the other elements of L and U are as
follows. For j = 1, 2, . . . , p (in that order), compute both

uij = aij −
i−1∑
k=1

likukj , i = 1, . . . , j,

and then

lij =
1

ujj

aij −
j−1∑
k=1

likukj

 , i = j + 1, . . . , p.

The lik and ukj needed at each step have already been computed. Also, once a component uij or
lij has been computed, the corresponding aij is no longer required, so the upper triangle of U and
the sub-diagonal elements of L can overwrite A. The resulting matrices then satisfy LU = A,
which can be verified directly (although with some rather tedious algebra). This factorization is
called the LU decomposition. The standard approach to Gaussian elimination is to first perform
this decomposition on A, and then solve the system for x. The particular set of calculations above
for the decomposition is known as Crout’s algorithm.

Once the LU decomposition is computed, it is still necessary to solve the system LUx = b. First
forward substitution can be used to solve for y in

Ly = b,

and then backward substitution can be used to solve for x in

Ux = y,

giving the solution to Ax = b.

Why perform the decomposition first and then solve the equations? First, no additional
computations are needed, since applying the forward and backward substitution algorithms to b is
the same as the calculations done when b is carried along in the standard Gaussian elimination
procedure. Also, once the decomposition is computed, solutions for any number of right-hand side
vectors b can be computed from the factored matrix. Further, b need not be available at the time
A is factored. The factored form also provides easy ways to compute related quantities. For
example, the determinant of A is given by the product of the diagonal elements of U , and each of
the columns of A−1 can be calculated by taking b to be the corresponding column of the p × p
identity matrix.

Small diagonal elements uii can cause numerical instability in the solutions obtained using this
algorithm. If the order of the equations in (2.1) is permuted, the system of equations remains
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exactly the same, and the solution remains the same, but the diagonal elements in the
decomposition will change. For this reason the above algorithm is modified to permute the rows
at each stage to make the diagonal element the largest of those possible for the remaining rows.
That is, uii and the numerators of the lki for k > i are computed, and if uii is not the largest of
these then the ith row is swapped with the row that has the larges lki. This procedure is known
as partial pivoting. The algorithm must keep track of the permutations, so they can be applied
later to the right-hand side vectors b.

A (row) permutation matrix is a matrix P such that the product PA is the matrix A with its
rows permuted. In general P is an identity matrix with its rows permuted. If A has 3 rows, then

P =

 0 1 0
1 0 0
0 0 1


is a permutation matrix that swaps the first and second rows of A. Permutation matrices can be
stored as a vector giving the permutation of the row indices, so the full matrix need not be stored.
When partial pivoting is used (as it should be), the LU decomposition represents A as
A = P−1LU , where P is the row permutation matrix recording the row interchanges due to
partial pivoting. Although a literal interpretation would be that this is the product of 3 p × p
matrices, as indicated above U and the subdiagonals of L (all that is needed since the diagonal of
L consists of 1’s) can be written in a single p × p matrix, and the permutations can be stored in
an integer vector, so only slightly more than a single p × p matrix is needed for storage.

The number of FLOPS needed to compute the LU decomposition is approximately p3/3 (the
implementation in Press et. al. (1992) appears to use about p3/3 + 3p2/2 + p/6). Solving for a
single right hand side then requires roughly an additional p2 FLOPS (p2/2 each for the forward
and backward substitution parts of the algorithm), which as p gets larger is negligible. Solving for
p right hand side vectors generally takes an additional p3 FLOPS, but in the special case of
solving for A−1, if special procedures are used in the forward substitution algorithm for the
leading zeros in the right hand side vectors, then the total count is reduced to approximately p3/6
for forward substitution plus p3/2 for backward substitution (plus p3/3 for the decomposition).
Thus a matrix inverse can be computed using roughly p3 FLOPS (including those needed in the
LU decomposition).

Splus has 2 types of matrix objects, as described in Venables and Ripley (1997), Section 2.9, and
in the Splus on-line documentation. Standard matrix objects are created with the command
matrix(). The functions for these matrices do not include an implementation of the LU
decomposition (the solve() function uses a QR decomposition; see Section 2.6, below). The
second type of matrix objects require attaching a separate library with the command
library(Matrix). This library includes a function Matrix() that creates a different type of
Matrix object. The Matrix library creates special classes for diagonal, upper and lower triangular,
row and column permutation, and Hermitian matrices (for real matrices, Hermitian is equivalent
to symmetric). There are special methods written for these classes. For example, a Diagonal
matrix will only have the vector of diagonal elements stored, and has a special method
solve.Diagonal() for efficiently solving diagonal systems of equations. Unfortunately, the
classes in the Matrix library do not have special methods for multiplication. Instead the matrix
multiplication function expands a matrix with special storage structure (such as Diagonal or



2.2. SYSTEMS OF LINEAR EQUATIONS 29

RowPermutation) into the full p × p matrix, and performs the ordinary O(p3) matrix
multiplication, even though there are much more efficient ways to perform the calculation. Many
of the functions in the Matrix library rely on FORTRAN code from LAPACK for the main
computations. However, due to the overhead in checking classes and so on in the Matrix
functions, most are not particularly efficient, and there may be little advantage to using them
over the ordinary matrix functions in many applications. They are used here to illustrate various
computations that are not available in the regular functions.

(If w is a vector containing the diagonal elements of a diagonal matrix, to form the product of the
diagonal matrix and another matrix A, do not use the Splus commands diag(w) %*% A (in the
ordinary matrix commands) or Diagonal(w) %*% A in the Matrix library, since they require p3

multiplications (assuming A is p × p). Instead use w*A, which requires only p2 multiplications. To
perform the multiplication with the diagonal matrix on the right, the form t(w*t(A)) can be
used.)

The Matrix library includes a function lu() which will compute the LU decomposition of a
general square matrix. (It also has a separate method for computing a factorization of a
symmetric [Hermitian] matrix.) The function solve() can then be used to solve a system of
equations using the factored matrix. (solve() is actually a generic function. It calls appropriate
methods for different classes of Matrix objects.) If the factored matrix is only needed for
computing one set of solutions, then solve() can be called with the unfactored matrix and it will
perform the factorization internally. There are a variety of other functions for performing
operations with the factored matrix, such as facmul(), with extracts one of the factors P , L, or
U , and multiplies it times another vector or matrix. Here is a simple illustration.

Example 2.1 > A <- Matrix(c(2,1,1,-1),2,2)
> A.lu <- lu(A)
> expand(A.lu)
$l:

[,1] [,2]
[1,] 1.0 0
[2,] 0.5 1
attr($l, "class"):
[1] "UnitLowerTriangular" "LowerTriangular" "Matrix"

$u:
[,1] [,2]

[1,] 2 1.0
[2,] 0 -1.5
attr($u, "class"):
[1] "UpperTriangular" "Matrix"

$permutation:
[1] 2
attr($permutation, "class"):
[1] "Identity" "Matrix"
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attr(, "class"):
[1] "expand.lu.Matrix"
> facmul(A.lu,’L’,c(1,2))

[,1]
[1,] 1.0
[2,] 2.5
attr(, "class"):
[1] "Matrix"
> facmul(A.lu,’P’,c(1,2))

[,1]
[1,] 1
[2,] 2
attr(, "class"):
[1] "Matrix"
> A.s <- solve(A.lu,c(1,2))
> A.s

[,1]
[1,] 1
[2,] -1
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "call"
> attributes(A.s)
$dim:
[1] 2 1

$dimnames:
$dimnames[[1]]:
character(0)

$dimnames[[2]]:
character(0)

$class:
[1] "Matrix"

$rcond:
[1] 0.3333333

$call:
solve.lu.Matrix(a = A.lu, b = c(1, 2))

2
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The attribute rcond of the solution above is an estimate of the reciprocal of the condition number
of the matrix, which is a measure of how close to singular the matrix is. Values of rcond close to 1
are good, and values close to 0 indicate singular or nearly singular matrices. The value 0.33 above
indicates a well-conditioned matrix. Condition numbers will be discussed in more detail below.

Example 2.2 Suppose a vector parameter θ = (θ1, . . . , θp)′ is estimated by solving the
(nonlinear) equations

Ui(θ;X) = 0, i = 1, . . . , p,

where X represents the data. Let θ̂ be the estimate, and set

gij = ∂Ui(θ̂;X)/∂θj , G = (gij),

vij = Cov[Ui(θ;X), Uj(θ;X)]|θ=θ̂ , and V = (vij).

Let h(θ) be a parametric function, and

b =

(
∂h(θ̂)
∂θ1

, . . . ,
∂h(θ̂)
∂θp

)′
.

Subject to regularity conditions, a large sample estimator of the variance of the estimator h(θ̂) is
given by

b′G−1V (G−1)′b. (2.3)

Note that G need not be symmetric. It might be necessary to compute (2.3) for many different
values of b.

There are many different ways the calculations for computing (2.3) could be organized. Consider
the following options.

1. Compute G−1 using the LU decomposition algorithm described above. Then use matrix
multiplication to calculate B = G−1V , and a second multiplication to compute
H = B(G−1)′. Finally, compute (2.3) from

p∑
i=1

b2
i hii + 2

p∑
j=2

bj

j−1∑
i=1

bihij

 . (2.4)

2. First compute the LU decomposition of G. Then calculate B = G−1V by solving the
systems Gx = vj , where vj is the jth column of V . The solution corresponding to vj is the
jth column of B. Next note that GH = B′, so the jth column of H can be calculated by
solving the system Gx = yj , where yj is the jth column of B′. Once H has been calculated,
b′Hb is again computed from (2.4).

3. First compute the LU decomposition of G′. Then for each vector b, compute (G′)−1b by
solving G′x = b, and then compute (2.3) by calculating x′V x, using a formula analogous to
(2.4).
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In option 1, computing the LU decomposition plus the calculations involved in solving for the
inverse require about p3 FLOPS. The product B = G−1V requires another p3 multiplications.
Since H is known to be symmetric, only p(p + 1)/2 of its p2 elements need to be computed, so the
product B(G−1)′ requires only p2(p + 1)/2 multiplications. Thus calculating H in this way
requires about 5p3/2 FLOPS. The matrix H only needs to be computed once. Formula (2.4)
requires

2p + 1 +
p∑

j=2

(j − 1 + 1) = 2p + p(p + 1)/2

multiplications for computing b′Hb. This takes advantage of the symmetry of H. If instead Hb
were computed first, then that would require p2 multiplications, and then an additional p would
be required for the inner product of b and Hb, giving a total of p2 + p FLOPS, which is nearly
twice as large as for (2.4). If b′Hb needs to be computed for m vectors b, then given H, the
number of multiplications needed is about mp2/2. Thus the total computational complexity of
this algorithm is roughly 5p3/2 + mp2/2 FLOPS.

For option 2, the LU decomposition requires p3/3 FLOPS, solving for B requires about p3

FLOPS, and solving for H requires roughly 2p3/3 FLOPS, giving a total of about 2p3. The
reason solving for H requires only 2p3/3, is that since H is known to be symmetric, solutions do
not need to be calculated for all values in the final backward substitution algorithm (solving for
the needed values can be done with about p(p + 1)(p + 2)/6 FLOPS, instead of the usual
p2(p + 1)/2). Comparing with option 1, computing H by explicitly computing the inverse of G
and multiplying requires about p3/2 more FLOPS than directly solving for the matrix products
from the factored version of G. This is true quite generally. When a matrix inverse appears in a
formula, it is almost always better to factor the matrix and solve for the products, rather
explicitly compute the inverse and multiply. The latter option also tends to be less numerically
stable. Thus in this example option 2 is superior to option 1. Since the final step in option 2 is
the same as for option 1, the total number of FLOPS required in option 2 is roughly 2p3 + mp2/2.

For option 3, the LU decomposition of G′ again requires about p3/3 FLOPS. For each b, solving
for x in G′x = b then requires roughly p2 FLOPS, and computing x′V x as in (2.4) requires
roughly p2/2 FLOPS. Thus the total number of FLOPS required is roughly p3/3 + 3mp2/2. This
is smaller than for option 2 if m < 5p/3, and is larger than for option 2 when m > 5p/3, so the
values of m and p determine which algorithm is faster. Another consideration could be that in
option 2, once H is computed, the LU decomposition of G and V are no longer needed, and do
not need to be retained, while in option 3 both V and the LU decomposition of G are needed
throughout. 2

To further emphasize the point that matrix inverses should not be explicitly computed, suppose
as part of some computation it is necessary to compute A−1bj for j = 1, . . . , m. The bj might be
columns of a matrix, distinct vectors, or some combination. Computing A−1 requires roughly p3

FLOPS, and each multiplication A−1bj requires p2 FLOPS, so the total is p3 + mp2. If the
quantities A−1bj are computed by repeatedly solving Ax = bj , then the initial LU decomposition
requires roughly p3/3 FLOPS, and the forward and backward substitution algorithms for
computing each solution together require roughly p2 FLOPS, so the total is p3/3 + mp2. Again
computing the inverse and multiplying tends to require more computation and is generally less
stable than repeatedly solving for the A−1bj from the factored form of A.
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2.2.3 The Choleski Decomposition

The LU decomposition above can always be applied to square, non-singular matrices. However,
for matrices with special features it is often possible to give alternate methods that perform
better. If the coefficient matrix A is symmetric and positive definite, then A can be factored as

A = U ′U,

where U is upper triangular. The additional condition that the diagonal elements of U be positive
is sufficient to uniquely determine U . Recursive formulas for U are

u11 = a
1/2
11 , u1j = a1j/u11, j = 2, . . . , p,

and proceeding row by row,

uii =

(
aii −

i−1∑
k=1

u2
ki

)1/2

, uij =
1
uii

(
aij −

i−1∑
k=1

ukiukj

)
, j = i + 1, . . . , p.

Done in the proper order, the elements of U can overwrite the upper triangle of A. The number of
FLOPS required is

p∑
i=1

[(i − 1) + i(p − i)] = p(p + 1)(p + 2)/6 − p
.= p3/6,

plus the computations required for p square-root calculations. The square-root calculations are
much slower than multiplications, but since the number of square-root calculations is O(p), while
the number of multiplications is O(p3/6), the square-root calculations are usually an insignificant
part of the computational burden, unless p is small. Thus the number of computations required
for the Choleski factorization is about half that for the LU decomposition.

Once the Choleski decomposition is calculated, the solution to Ax = b can be obtained by
applying forward substitution to solve U ′y = b followed by backward substitution to solve
Ux = y. As before each of these steps requires roughly p2/2 FLOPS.

Once the Choleski decomposition has been calculated, to compute b′A−1b, as in (2.2), requires
roughly p2/2 FLOPS for the forward substitution algorithm to solve U ′x = b, plus an additional p
for the inner product calculation x′x. Computing b′A−1d requires roughly p2 FLOPS, since either
A−1b needs to be calculated using both forward and backward substitution (followed by the inner
product calculation b′(A−1d)), or both U ′x = d and U ′y = b need to be solved (followed by
calculation of x′y).

In Splus, there is a function chol() for computing the Choleski factor for regular matrix objects
(and curiously a separate function choleski()). Within the standard matrix functions there is
also a function backsolve() that can be used to solve upper triangular systems. The Matrix
library does not have a function for computing the Choleski decomposition of a Matrix object.
This may be partly because it is difficult to determine whether a matrix is positive definite
without computing some form of decomposition of the matrix. The chol() function appears to
work correctly on Matrix objects, but to continue using Matrix library routines on the output of
chol(), the class must be redefined appropriately. Also, there are no special methods in the
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library for Choleski decomposition objects, which may make some computations slightly more
cumbersome.

As already noted, the lu() function does have a special method for symmetric (Hermitian)
indefinite matrices. A symmetric indefinite matrix can be factored in the form TBT ′, where T is
lower triangular with 1’s on the main diagonal, and B is block diagonal with block sizes of 1 or 2.
For a positive definite matrix, B will be an ordinary diagonal matrix. The Choleski factor U
above can then be obtained from the output of lu() through U ′ = TB1/2. One way to do this is
implemented in the functions Choleski.lu() and Choleski.lu2() in the example below (the
only difference is in how they handle multiplication by a diagonal matrix). Unfortunately
obtaining the Choleski factor from the output of lu() is not very efficient, even when
multiplication by the diagonal factor is done properly (a safer but even slower variation is given in
the function Choleski() on page 60 of Venables and Ripley). The symmetric indefinite
factorization is more complicated, and details will not be given, since it arises less frequently in
statistical applications (for more information on the output of lu() in this case see
help(lu.Hermitian)). Since obtaining the Choleski decomposition from the output of lu() is
substantially slower than other methods, it seems preferable to use chol(), or to just work with
the symmetric indefinite decomposition from lu(), which for most purposes is as good as the
Choleski decomposition.

Example 2.3 > library(Matrix)
> A <- Matrix(c(2,1,1,1),2,2)
> A.c <- chol(A) # works, even though Matrix instead of matrix
> class(A.c) <- c(’UpperTriangular’,’Matrix’) # define the class so
> ## solve() will use special methods
> A.c

[,1] [,2]
[1,] 1.414214 0.7071068
[2,] 0.000000 0.7071068
attr(, "class"):
[1] "UpperTriangular" "Matrix"

other attributes:
[1] "rank"
> x1 <- solve(t(A.c),c(1,2)) # forward substitution for lower triangular
> x1 <- solve(A.c,x1) # backward substitution for upper triangular
> x1

[,1]
[1,] -1
[2,] 3
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "call"
> attributes(x1)
$dim:
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[1] 2 1

$dimnames:
$dimnames[[1]]:
character(0)

$dimnames[[2]]:
character(0)

$class:
[1] "Matrix"

$rcond:
[1] 0.3333333

$call:
solve.UpperTriangular(a = A.c, b = x1)

> ## rcond above is the reciprocal condition number of A.c, not the reciprocal
> ## condition number of A (rcond(A)=rcond(A.c)^2)
> x2 <- solve(A,c(1,2)) # check the solution
> x2

[,1]
[1,] -1
[2,] 3
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "call"
> attr(x2,’rcond’)
[1] 0.1111111
> rcond(A.c)^2
[1] 0.1111111
>
>
> Choleski.lu <- function(x) { # function to use lu.Hermitian()
+ if (!inherits(x,’Hermitian’)) stop(’x must be a Hermitian Matrix’)
+ x <- lu(x)
+ x <- facmul(x,’T’) %*% sqrt(facmul(x,’B’))
+ class(x) <- c(’LowerTriangular’,’Matrix’)
+ t(x)
+ }
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>
> Choleski.lu2 <- function(x) { # faster function to use lu.Hermitian()
+ if (!inherits(x,’Hermitian’)) stop(’x must be a Hermitian Matrix’)
+ x <- lu(x)
+ x <- t(facmul(x,’T’))*sqrt(c(facmul(x,’B’)))
+ class(x) <- c(’UpperTriangular’,’Matrix’)
+ x
+ }
> # start with a large pd matrix and compare timings
> u <- Matrix(runif(40000),nrow=200)
> uu <- t(u) %*% u
> class(uu) <- c(’Matrix’)
> unix.time(lu(uu)) # standard LU decomposition
[1] 0.4900002 0.0000000 1.0000000 0.0000000 0.0000000
> unix.time(lu(uu)) # standard LU decomposition
[1] 0.5 0.0 1.0 0.0 0.0
> class(uu) <- c(’Hermitian’,’Matrix’)
> unix.time(lu(uu)) # symmetric indefinite (calls lu.Hermitian())
[1] 0.3099999 0.0000000 1.0000000 0.0000000 0.0000000
> unix.time(lu(uu)) # symmetric indefinite (calls lu.Hermitian())
[1] 0.3199997 0.0000000 1.0000000 0.0000000 0.0000000
> unix.time(chol(uu)) # regular Choleski (class need not be defined)
[1] 0.2200003 0.0200001 1.0000000 0.0000000 0.0000000
> unix.time(chol(uu)) # regular Choleski (class need not be defined)
[1] 0.2299995 0.0000000 0.0000000 0.0000000 0.0000000
> unix.time(Choleski.lu(uu)) #Choleski from symmetric indefinite
[1] 1.18000031 0.00999999 1.00000000 0.00000000 0.00000000
> unix.time(Choleski.lu(uu)) #Choleski from symmetric indefinite
[1] 1.17999935 0.00999999 2.00000000 0.00000000 0.00000000
> unix.time(Choleski.lu2(uu)) #faster Choleski from symmetric indefinite
[1] 0.46000004 0.01999998 1.00000000 0.00000000 0.00000000
> unix.time(Choleski.lu2(uu)) #faster Choleski from symmetric indefinite
[1] 0.4699993 0.0000000 0.0000000 0.0000000 0.0000000
> range(chol(uu)-Choleski.lu(uu)) #check if results are the same
[1] -3.667344e-13 2.220675e-12
> range(chol(uu)-Choleski.lu2(uu)) #check if results are the same
[1] -3.667344e-13 2.220675e-12
> ## almost 0
> range(chol(uu))
[1] -1.334690 7.851741

The first two values in the output of unix.time() are the user and system cpu times used by the
Splus process while executing the command. The user time may be the most relevant to
comparing computational algorithms. The LU decomposition should take about twice as long as
the Choleski decomposition, and above it takes a little longer than that. The difference may in
part be that lu() is doing some extra calculations, such as computing a norm for the Matrix.
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The symmetric indefinite decomposition is substantially faster than the LU decomposition, but is
still slower than direct calculation of the Choleski decomposition in the chol() function.
Choleski.lu(), which performs an O(p3) matrix multiplication to rescale the triangular factor
from lu(), is extremely slow. The faster version Choleski.lu2() is still noticeably slower than
just computing the symmetric indefinite factorization. 2

Next is an illustration of computing b′A−1b for a positive definite matrix A. Some effort is
required in Splus to invoke a routine for performing forward substitution to solve a lower
triangular system.

Example 2.4 > library(Matrix)
> u <- Matrix(runif(16),4,4)
> A <- crossprod(u)
> b <- runif(4)
> C <- chol(A)
> class(C) <- c(’UpperTriangular’,’Matrix’) # done so the next solve()
> # command invokes a routine for lower triangular matrices.
> sum(solve(t(C),b)^2) # b’A^{-1}b
[1] 1622.994
> #check
> sum(b*solve(A,b))
[1] 1622.994
> # if need to compute for many vectors b, stored as columns in B
> B <- Matrix(runif(40),nrow=4)
> t(c(1,1,1,1)) %*% (solve(t(C),B)^2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 67.73769 8676.919 3522.208 72.83364 7164.785 5261.729 32.75261 395.1495

[,9] [,10]
[1,] 5394.538 6.435748
attr(, "class"):
[1] "Matrix"

2

2.3 Matrix Norms, Condition Numbers, and Error Analysis

Matrix norms play an important role in error analysis for solutions of linear systems. A norm is a
function that in some sense measures the magnitude of its argument. For real numbers, the usual
norm is the ordinary absolute value function. For vectors x = (x1, . . . , xp)′, three common norms
are the 1-norm (or L1 norm) defined by

‖x‖1 =
p∑

i=1

|xi|,

the 2-norm (or L2 norm or Euclidean norm) defined by

‖x‖2 =

( p∑
i=1

x2
i

)1/2

,
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and the ∞-norm (or L∞ norm or sup norm) defined by

‖x‖∞ = max
i

|xi|.

There are many ways these norms could be generalized to matrices. The most useful turns out to
be to define the corresponding matrix norms from the definitions of the vector norms through

‖A‖j = sup
x 6=0

‖Ax‖j/‖x‖j , j = 1, 2,∞.

(This definition is equivalent to sup‖x‖j=1 ‖Ax‖j , and since the set {x : ‖x‖j = 1} is compact, the
sup is attained for some vector x.)

For the 1-norm,
‖A‖1 = max

j

∑
i

|aij |, (2.5)

which is the maximum of the vector 1-norms of the columns of A. To see this, suppose A is n× p,
again let e(i) be defined by e

(i)
i = 1 and e

(i)
j = 0 for j 6= i, and let E = {e(1), . . . , e(p)}. Note

‖e(i)‖1 = 1. Thus
sup
x 6=0

‖Ax‖1/‖x‖1 ≥ max
x∈E

‖Ax‖1/‖x‖1 = max
j

∑
i

|aij |. (2.6)

Also, for any x 6= 0, setting wj = |xj |/ ∑
j |xj |,

‖Ax‖1

‖x‖1
=

∑
i |

∑
j aijxj |∑

j |xj | ≤
∑

i

∑
j

|aij |wj ≤
∑
j

wj max
k

∑
i

|aik| = max
k

∑
i

|aik|,

since
∑

j wj = 1. Since this holds for any x 6= 0,

sup
x 6=0

‖Ax‖1/‖x‖1 ≤ max
k

∑
i

|aik|.

Combining this inequality with (2.6) gives the result.

Similarly, it can be shown that

‖A‖∞ = max
i

∑
j

|aij | = ‖A′‖1. (2.7)

Exercise 2.1 Derive (2.7).

It can also be shown that ‖A‖2 is the largest singular value of the matrix A; see equation (2.25),
below. Since the singular values are more difficult to compute, error analysis of linear systems
tends to focus more on the 1-norm and ∞-norm. The Splus Matrix library function
norm(A,type=’1’) will compute the 1-norm of a Matrix, and norm(A,type=’I’) will compute
the ∞-norm. (The function norm() is a generic function which calls the function norm.Matrix()
for objects of class Matrix. The default is type=’M’, which just computes maxij |aij |, which is less
useful. There are many other definitions of matrix norms which could be considered, but the
three given above are the most commonly used.)
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From the definitions of the norms, it is clear that for any matrix A and vector x,

‖A‖j‖x‖j ≥ ‖Ax‖j . (2.8)

The condition number of a square matrix with respect to one of the norms ‖ · ‖j is defined to be

κj(A) = ‖A−1‖j‖A‖j ,

with κj(A) = ∞ if A is singular. For the 2-norm it can be shown that the condition number is the
ratio of the largest singular value to the smallest singular value; see Section 2.7. Another
important relationship for estimating condition numbers is that

‖A−1‖j =
(

inf
x 6=0

‖Ax‖j/‖x‖j

)−1

. (2.9)

For nonsingular A this follows because the set {y 6= 0} = {Ax : x 6= 0}, so

‖A−1‖j = sup
y 6=0

‖A−1y‖j

‖y‖j
= sup

{y=Ax:x 6=0}
‖A−1y‖j

‖y‖j
= sup

x 6=0

‖A−1Ax‖j

‖Ax‖j
= sup

x 6=0

‖x‖j

‖Ax‖j
=

(
inf
x 6=0

‖Ax‖j

‖x‖j

)−1

.

From

κj(A) =

(
sup
x 6=0

‖Ax‖j/‖x‖j

) (
inf
x 6=0

‖Ax‖j/‖x‖j

)−1

, (2.10)

it follows that the condition number is ≥ 1. If A is singular then there is an x 6= 0 such that
Ax = 0, so the denominator of the expression above is 0, and this formula is infinite, consistent
with the original definition. The condition number of a permutation matrix P is 1, because for a
permutation matrix ‖Px‖j = ‖x‖j . For orthogonal matrices the 2-norm condition number is 1
(see Section 2.4, below), but in general this is not true for other norms. Also, note that if c 6= 0 is
a real number, then κj(cA) = κj(A), so the condition number is not related to the overall
magnitude of the elements of A.

Let x̂ be the computed solution to Ax = b, and let x0 be the exact solution. A measure of the
relative error in the solution is

‖x̂ − x0‖/‖x0‖,
where the specific norm has not been indicated. In error analysis of algorithms, it is often most
convenient to use ‖ · ‖∞, but it appears the solve() functions in the Splus Matrix library use
‖ · ‖1. Let b̂ = Ax̂. Then

‖x̂ − x0‖ = ‖A−1(b̂ − b)‖ ≤ ‖A−1‖‖b̂ − b‖ = κ(A)
‖b̂ − b‖
‖A‖ ,

using (2.8) and the definition of the condition number. Since ‖b‖ = ‖Ax0‖ ≤ ‖A‖‖x0‖, it follows
that

‖x̂ − x0‖
‖x0‖ ≤ κ(A)

‖b̂ − b‖
‖A‖‖x0‖ ≤ κ(A)

‖b̂ − b‖
‖b‖ . (2.11)

This relation bounds the relative error in the solution in terms of the condition number and the
relative error of Ax̂ as an estimate of b. For most reasonable algorithms in most problems,
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‖b̂ − b‖/‖b‖ is a small multiple of the relative machine precision εm (arguments to establish this
for particular algorithms often involve a form of backward error analysis, often working with the
∞-norm). Alternately, although b̂ cannot be calculated exactly, it could be estimated using a
computed approximation to Ax̂. If ‖b̂ − b‖/‖b‖ = O(εm), and if κ(A) = O(1/εm), then there may
be no significant digits in the computed solution (recall 1/εm

.= 1016 for double precision). If
κ(A) = O(1/ε

1/2
m ), then the computed solution (in double precision) could have about 8 significant

digits. More generally, if ‖b̂ − b‖/‖b‖ .= 10−q, then the number of significant digits in the
computed solution x̂ is about q − log10[κ(A)].

The value of the condition number is needed to make use of the bound (2.11). The norm of A is
easily computed for the 1- and ∞-norms. Unfortunately calculating the 1- or ∞-norm of A−1

requires computing A−1 first. This requires an extra 2p3/3 FLOPS, so is not an attractive option.
Algorithms have been developed for estimating the norm of A−1, based on formula (2.9). The
concept behind these algorithms is to find a vector x for which ‖Ax‖/‖x‖ is close to its minimum,
using only O(p2) FLOPS. Details are given in Golub and van Loan (1989), Section 3.5.4. The
function rcond() in Splus calculates one such approximation to the reciprocal condition number
(the reciprocal is used to avoid overflow for singular matrices). The LAPACK library also has
routines for estimating condition numbers (and in fact the Splus function ultimately relys on
these routines for its computations). Many of the solve() methods in the Splus Matrix library
automatically return estimates of condition numbers.

The bound (2.11) expresses the relative error in the solution in terms of the relative error in the
estimated b̂. The relative error in b̂ is usually small, but if it is not it can often be made very
small using a technique called iterative refinement. The idea is to first compute the solution x̂ as
usual. Then the system

Ay = Ax̂ − b

is solved giving a solution ŷ, and a new solution to the original problem, x̂(2) = x̂ − ŷ, computed.
Then the system

Ay = Ax̂(2) − b

is solved giving a new value ŷ, and a new solution to the original problem, x̂(3) = x̂(2) − ŷ,
computed. This process is continued until the changes become small. The relative error in Aŷ at
each step should be similar to that in the original problem, but the magnitude of Aŷ should be
decreasing, so the precision of Ax̂(j) should be improving. More details on this procedure are
given in Section 2.5 of Press et. al. (1992), and in Section 3.5.3 of Golub and van Loan (1989).
Note that this procedure need not improve the accuracy of x̂, but it does tend to reduce the
computed difference Ax̂ − b. This procedure could improve the precision of x̂ if the intermediate
calculations in computing Ax̂(k) − b were carried out in extended precision. LAPACK includes
routines for iterative refinement of solutions. If both A and its decomposition have been stored,
then each iteration requires roughly p2 FLOPS to update Ax̂(j) and another p2 for the forward
and backward substitutions to compute the adjustment to the solution.

Example 2.5 > # norms and condition numbers
> a <- Matrix(rnorm(9),3,3)
> norm(a,’1’) # one-norm
[1] 2.091627
> max(t(c(1,1,1)) %*% abs(a)) # max of column sums of abs(a)
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[1] 2.091627
> norm(a,’I’) # infinity-norm
[1] 1.991345
> max(abs(a) %*% c(1,1,1)) # max of row sums of abs(a)
[1] 1.991345
> norm(t(a),’1’)
[1] 1.991345
> norm(t(a),’I’)
[1] 2.091627
> au <- lu(a)
> ai <- solve(au)
> norm(ai,’1’)*norm(a,’1’) # one-norm condition number
[1] 5.780239
> 1/rcond(a) # estimated one-norm condition number
[1] 4.106333
> 1/rcond(au) # condition number estimate much more accurate when factored
[1] 5.780239
> 1/attr(ai,’rcond’) # from one-norm
[1] 5.780239
> norm(ai,’I’)*norm(a,’I’) # infinity-norm condition number
[1] 4.371721
> 1/rcond(a,F) # estimated infinity-norm condition number
[1] 3.66198
> b <- c(1,3,5)
> x <- solve(au,b)
> 1/attr(x,’rcond’)
[1] 5.780239
> x

[,1]
[1,] 2.452791
[2,] 1.300757
[3,] -6.688391
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "call"
> # check accuracy of ax
> range(a%*%x-b)
[1] -4.440892e-16 8.881784e-16
> norm(a%*%x-b,’1’)/sum(abs(b)) # norm(b,’1’) gives an error
[1] 1.480297e-16
>
> # a more singular system
> options(digits=12)
> as <- Matrix(rep(runif(4),rep(4,4)),4,4)
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> diag(as) <- diag(as)+1.e-9
> bs <- apply(as,1,sum) # if this sum were exact, true sol would=c(1,1,1,1)
> as

[,1] [,2] [,3] [,4]
[1,] 0.970216591445 0.346583154984 0.933693890925 0.45553969685
[2,] 0.970216590445 0.346583155984 0.933693890925 0.45553969685
[3,] 0.970216590445 0.346583154984 0.933693891925 0.45553969685
[4,] 0.970216590445 0.346583154984 0.933693890925 0.45553969785
attr(, "class"):
[1] "Matrix"
> bs
[1] 2.7060333342 2.7060333342 2.7060333342 2.7060333342
> asu <- lu(as)
> xs <- solve(asu,bs)
> 1/attr(xs,’rcond’)
[1] 4874972927.57
> xs

[,1]
[1,] 1.000000123279
[2,] 0.999999901235
[3,] 0.999999956746
[4,] 0.999999901235
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "call"
> range(as%*%xs-bs)
[1] -4.4408920985e-16 0.0000000000e+00
> norm(as%*%xs-bs,’1’)/sum(abs(bs))
[1] 4.10276921053e-17
> range(as%*%rep(1,4)-bs)
[1] 0 0
>
> # a singular system
> as <- Matrix(rep(runif(4),rep(4,4)),4,4)
> as[,1] <- as[,1]+1:4
> bs <- apply(as,1,sum) # if this sum were exact, a sol would=c(1,1,1,1)
> asu <- lu(as)
> xs <- solve(asu,bs)
> 1/attr(xs,’rcond’)
[1] 8.5522178561e+17
> xs

[,1]
[1,] 1.000000000000
[2,] 0.249450634867
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[3,] 16.000000000000
[4,] 0.000000000000
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "call"
> range(as%*%xs-bs)
[1] 0.0000000000e+00 4.4408920985e-16
> norm(as%*%xs-bs,’1’)/sum(abs(bs))
[1] 2.1757641057e-17
> range(as%*%rep(1,4)-bs)
[1] 0 0

In the next to last example (nearly singular), the estimated condition number is approximately
5 × 109 so κ1(a)εm

.= 5 × 10−7, suggesting at least 6 significant digits of accuracy. The computed
solution does appear to be accurate to about 7 digits. In the final example (singular), the
condition number is > 1/εm, suggesting no accuracy in the solution. A more precise description is
that since the matrix is singular, there are many solutions. The user must decide how small the
value of rcond can be for the solution to still be acceptable. The default is essentially 0. Note
that in all cases the computed solution gave a computed b̂ that was very close to the true b. 2

There are more refined versions of error analysis that allow approximate component-wise bounds
on the solution to be computed. Some LAPACK routines will compute estimates of these bounds;
see the LAPACK Users’ Guide for details.

2.4 Rotations and Orthogonal Matrices

A rotation in Rp is a linear transformation Q : Rp → Rp such that

‖Qx‖2 = ‖x‖2 (2.12)

for all x ∈ Rp. A rotation does not affect the length of vectors, but changes their orientation.
Rotations can be thought of as rotating the coordinate axes, but leaving the relative orientation
and lengths of the axes unchanged.

From ‖Qx‖2 = ‖x‖2 for all x, it follows that x′Q′Qx = x′x for all x, and hence that
x′[Q′Q − I]x = 0 for all x, which can only be true if Q′Q = I.

Now for square matrices, Q′Q = I implies QQ′ = I (caution: this is not true if Q is not square).
That is, if Q is square and Q′Q = I, then Q must have rank p (and be nonsingular). Thus any
x ∈ Rp can be represented as x = Qy for some y ∈ Rp. Then for any x ∈ Rp,
QQ′x = QQ′Qy = Q(Q′Q)y = Qy = x, so QQ′ = I.

When Q′Q = I, the columns of Q are mutually orthogonal and each has unit length, and when
QQ′ = I the rows of Q are mutually orthogonal and each has unit length. If Q is square, from the
previous result, either implies that the other is true. A square matrix satisfying either of these
properties is said to be orthogonal.
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From the above discussion, any rotation is given by an orthogonal matrix, and vice versa, so
rotations are also often referred to as orthogonal transformations. Note that a rotation as defined
here also includes the concept of a reflection, where the direction of one axis is reversed while the
others are left unchanged.

From the definition, it is clear that if Q is a rotation, then ‖Q‖2 = 1. Since Q−1 = Q′ is also a
rotation, ‖Q−1‖2 = 1 as well, so the 2-norm condition number of any orthogonal matrix (or
rotation) is 1.

If Q1 and Q2 are orthogonal matrices, then (Q1Q2)′(Q1Q2) = Q′
2Q

′
1Q1Q2 = Q′

2Q2 = I, so Q1Q2

is also orthogonal.

If Y is a random vector with Var(Y ) = σ2I, and Q is orthogonal, then Var(QY ) = σ2QQ′ = σ2I,
so orthogonal transformations can be used to simplify the mean structure of a random vector
while leaving the variance structure unchanged, which turns out to be useful in various contexts,
especially in linear regression analysis.

Two types of rotations are of special interest. The first is a plane rotation. In Rp, a plane
rotation keeps p − 2 of the axes fixed, and rotates the plane defined by the other 2 axes through a
fixed angle about the others (these are also referred to as Jacobi or Givens rotations). Suppose for
simplicity the first p − 2 coordinates are held fixed, and the plane of the last two coordinates is
rotated through an angle θ. Then the matrix of a plane rotation is

Qp =

 Ip−2,p−2 0p−2 0p−2

0′p−2 cos(θ) sin(θ)
0′p−2 − sin(θ) cos(θ)


To rotate the plane defined by the ith and jth coordinates, the cosines are put in the ii the jj
elements, and the sine terms in the ij and ji elements.

Suppose x is a vector. To rotate the plane of the p − 1 and pth coordinates so that in the new
coordinate system the pth coordinate is 0, set sin(θ) = xp/(x2

p−1 + x2
p)1/2 and

cos(θ) = xp−1/(x2
p−1 + x2

p)1/2. Then the first p − 2 components of Qpx are the same as those of x,
the (p− 1)st component is (x2

p−1 + x2
p)1/2, and the pth component is 0. (Note that fortunately the

angle θ need not be explicitly calculated.) A series of rotations of this type can be constructed in
such a way that when applied to a matrix X the resulting matrix will be upper triangular (for
example).

The other family of orthogonal transformations of special interest are the Householder
transformations. A Householder transformation has the form

H = I − 2
u′u

uu′,

where I is the identity matrix and u is any vector (of the proper length), interpreting H = I when
u = 0. Note that H ′ = H, and HH = I − 4uu′/u′u + 4uu′uu′/(u′u)2 = I, so H is a symmetric
orthogonal matrix.

An important application of Householder transformations is to transform matrices to upper
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triangular form. If x is an n-dimensional vector, and u is defined by

ui =


0, 0 < i < t,
xt + s, i = t,
xi, t < i ≤ n,

(2.13)

where

s = sign(xt)

 n∑
j=t

x2
j

1/2

,

then

Hx = x − 2u(u′x)/(u′u) = x − 2u
x2

t + xts +
∑

j>t x2
j

x2
t + 2xts + s2 +

∑
j>t x2

j

= x − 2u
xts + s2

2xts + 2s2
= x − u.

Thus (Hx)i = xi for i < t, (Hx)i = 0 for i > t, and (Hx)t = −s. (The sign of s is chosen so xt

and s will have the same sign.) Thus the last n − t components have been set to 0 in the
transformation Hx. A series of such transformations can be based on the columns of a matrix in
such a way as to leave the transformed matrix in upper triangular form.

The Householder transformation defined above for x, applied to another vector y, gives

Hy = y − 2u(u′y)/(u′u)

so the first t − 1 components of Hy are the same as y, and the other components are of the form
yi − fui, where f = 2

∑
j≥t yjuj/

∑
j≥t u2

j .

Calculating the transformation and applying it to x, and to k other vectors y, requires computing
s∗ =

∑n
j=t+1 x2

j (n − t multiplications), computing s from s∗ and xt (1 multiplication plus one
square-root), computing 2/u′u = 2/[s∗ + (s + xt)2] (1 multiplication plus one division), and for
each y computing the corresponding f (k(n − t + 2) multiplications) and finally the components
of Hy (k(n − t + 1) multiplications). This gives a total of

(n − t + 1)(2k + 1) + k + 1 (2.14)

multiplications plus one division and one square-root.

2.5 Linear Least Squares

A very common statistical problem is to fit a regression model

yi = β1 +
p∑

j=2

xijβj + εi, (2.15)

where the yi are the responses, the xij are the covariates, the βj are the unknown regression
coefficients, and the εi are unobserved errors assumed to be independent and identically
distributed. If the errors can be assumed to have mean 0 and finite variance σ2, then least squares
estimators are often used for the βj .
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The basic linear least squares problem is to determine the vector β = (β1, . . . , βp)′ that minimizes

‖y − Xβ‖2
2 = (y − Xβ)′(y − Xβ), (2.16)

where y = (y1, . . . , yn)′ and Xn×p = (xij) (usually with xi1 = 1 for all i, although models without
a constant term also fit in this framework). Thus least squares chooses the estimator β̂ that gives
the vector of fitted values ŷ = Xβ̂ that is closest (in the Euclidean norm) to the actual responses.

In regression analysis often many different models are fit, especially in systematic model search
algorithms such as stepwise regression, so it would be useful to have fast methods for updating
the fitted model when covariates are added or dropped. Also, along with computing β̂, usually it
is desirable to calculate quantities such as residuals, fitted values, regression and error sums of
squares, and diagonal elements of the projection operator X(X ′X)−1X ′ (which are useful in
assessing case influence). These factors should be kept in mind when comparing possible
algorithms for computing least squares estimators.

The most obvious way to find the least squares solution is to set the gradient of (2.16) equal to 0,
obtaining the normal equations

X ′Xβ = X ′y.

This is a system of linear equations, that can be solved using any of the methods discussed
previously. In particular, if rank(X) = p, then X ′X is positive definite, and the system can be
efficiently solved using the Choleski decomposition. This does not, however, give an easy way to
update solutions for adding and dropping variables, or for computing other derived quantities. A
different method for solving the normal equations is called the sweep operator. The sweep operator
actually is a particular way of implementing a variation on Gaussian elimination called the
Gauss-Jordan algorithm. By sequentially applying the sweep operator to the augmented matrix(

X ′X X ′y
y′X y′y

)
,

the least squares estimates and residual sums of squares corresponding to models with just the
first k covariates included, k = 1, . . . , p, are obtained. And the operator has an inverse, so from
any partial model it is easy to update the fit for adding or deleting a covariate. Thus, although it
is less efficient than the Choleski factorization for fitting a single model, the sweep operator is
probably used more frequently in regression analysis. For details on the sweep operator see
Section 3.4 of Thisted (1988) or Chapter 7 of Lange (1999).

It turns out, though, that it is possible to calculate the least squares estimates by applying a
matrix factorization directly to X, and that it is not necessary to compute X ′X or form the
normal equations. Applying a factorization directly to X tends to be a better conditioned
problem than factoring X ′X, so direct decomposition of X is usually preferred to calculating
X ′X and solving the normal equations. Two such decompositions will be discussed below: the
QR decomposition and the singular value decomposition.

2.6 QR Decomposition

Throughout this section it will be assumed that X has full column rank p.



2.6. QR DECOMPOSITION 47

The motivation for using the QR decomposition to solve least squares problems comes from the
property (2.12) of orthogonal matrices. For any n × n orthogonal matrix Q,

‖Q′y − Q′Xβ‖2
2 = ‖y − Xβ‖2

2,

so a β minimizing ‖Q′y − Q′Xβ‖2
2 solves the original least squares problem. Suppose a Q can be

found such that

Q′X =

(
Rp×p

0(n−p)×p

)
, (2.17)

where R is upper triangular and 0 is a matrix with all elements 0. Partition Q = (Q1, Q2) with
Q1 containing the first p columns of Q and Q2 the other columns. Then

‖Q′y − Q′Xβ‖2
2 =

∥∥∥∥∥
(

Q′
1y − Rβ
Q′

2y

)∥∥∥∥∥
2

2

= ‖Q′
1y − Rβ‖2

2 + ‖Q′
2y‖2

2, (2.18)

and ‖Q′
1y − Rβ‖2

2 is minimized by β̂ = R−1Q′
1y (since then ‖Q′

1y − Rβ̂‖2
2 = 0), which is thus the

least squares estimator.

Exercise 2.2 Use (2.17) to show directly that β̂ = R−1Q′
1y solves the normal equations.

A transformation Q satisfying (2.17) is easy to construct using the product of Householder
transformations. Let Xj be the jth column of X, j = 1, . . . , p. Let H1 be the Householder
transformation (2.13) with x = X1 and t = 1. Let X

(1)
j be the jth column of H1X. Then X

(1)
1 has

all elements except the first equal to 0. Next let H2 be the householder transformation (2.13)
with x = X

(1)
2 and t = 2, and let X

(2)
j be the jth column of H2H1X. Then X

(2)
2 has all elements

except possibly the first 2 equal to 0. Also, note that X
(2)
1 = X

(1)
1 ; that is, H2 did not change the

first column, so now the first two columns of H2H1X are in upper triangular form. Continuing in
this fashion, at the kth stage let Hk be the transformation (2.13) with x = X

(k−1)
k and t = k, and

let X
(k)
j be the j column of the matrix Hk · · ·H1X. Then X

(k)
j = X

(k−1)
j for j < k, and the first k

columns of the resulting matrix are in upper triangular form. After the pth step the matrix
Hp · · ·H1X is in the form (2.17), and thus Q′ = Hp · · ·H1 is an orthogonal transformation that
transforms X into the desired form. (This is not the only way a QR decomposition can be
computed; see Golub and Van Loan, 1989, Section 5.2 for other options.)

To calculate the least squares estimates, Q′
1y is also needed. It can be computed by applying each

of the Householder transformations to y. Then the least squares estimates are computed by using
the backward substitution algorithm to solve the upper triangular system

Rβ = Q′
1y.

The Householder transformations can either be applied to y at the same time as they are applied
to X, or they can be stored and applied later. The latter is particularly appropriate if least
squares estimates are to be computed for the same covariates for a number of response vectors,
not all of which may be available at the same time. For example, this could occur in a simulation
with X fixed and different response vectors y generated for each sample.
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Note that storing the Householder transformations only requires storing the u vectors in (2.13),
and does not require storing n × n matrices. The QR decomposition can be done “in place”,
overwriting the elements of X, with only one extra p-vector of storage needed. The elements of R
can be stored in the upper triangle of the first p rows of X. The other elements of X will be 0
following the transformations, and can be used to store the nonzero elements of the u vectors for
each transformation, except for the first nonzero element, which is stored in the extra vector.
This in place algorithm can be done column by column, as described earlier.

2.6.1 Constant Terms

Suppose the regression model contains a constant term, as in (2.15). Then the model can be
reparameterized to

yi = α +
p∑

j=2

(xij − xj)βj + εi, (2.19)

where α = β1 +
∑p

j=2 βjxj and xj =
∑

i xij/n. In this model α̂ = y. Subtracting α̂ from both
sides of (2.19), it follows that the least squares estimates for β2, . . . , βp can be computed by
regressing yi − y on the covariates xij − xj . This only involves a system with p− 1 unknowns, and
often gives a much better conditioned problem.

If the first column of X is a constant, then the first Householder transformation in the QR
decomposition essentially mean corrects the other terms (the actual formulas are more
complicated, though). Thus the first Householder transformation in the QR decomposition
automatically transforms the model as described above. In practice this is usually done explicitly,
rather than by applying the general Householder computations. (That is, it is not necessary, for
example, to explicitly compute the sum of squares of the elements of the first column if they are
known to all be equal.)

Exercise 2.3 Suppose all elements of x equal 1, and let H1 be the Householder transformation
(2.13) formed from x with t = 1. Give formulas for y

(1)
i , i = 1, . . . , n, the elements of H1y, and

show
n∑

i=1

(yi − y)2 =
n∑

i=2

(y(1)
i )2.

2.6.2 Variances, Sums of Squares, and Leverage Values

The error variance σ2 is usually estimated by

σ̂2 = ‖y − Xβ̂‖2
2/(n − p).

If adequate memory is available, then it is probably best to keep a copy of y and X instead of
overwriting them during the QR decomposition algorithm. Then once β̂ has been computed, the
fitted values ŷ = Xβ̂, the residuals y − ŷ, and the residual sum of squares ‖y − ŷ‖2

2 can be
computed directly using the X and y values. If copies of X and y are not available, the residual
sum of squares can still be computed directly from the transformed versions Q′y and Q′X
computed in the QR decomposition, since

‖y − Xβ̂‖2
2 = ‖Q′y − Q′Xβ̂‖2

2.
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In fact, substituting β̂ in (2.18), it follows that

‖Q′y − Q′Xβ̂‖2
2 = ‖Q′

2y‖2
2, (2.20)

which is just the sum of squares of the last n − p elements of Q′y.

The variance of any linear combination a′β̂ is given by σ2a′(X ′X)−1a, and the covariance of a′β̂
and d′β̂ is σ2a′(X ′X)−1d. Since X = Q1R, it follows that X ′X = R′Q′

1Q1R = R′R. (Since Q1

consists of the first p columns of Q, Q′
1Q1 = Ip. However, Q1Q

′
1 is not an identity matrix.) Thus

a′(X ′X)−1a = a′(R′R)−1a = ‖(R′)−1a‖2
2. (2.21)

Given the stored value of R, (2.21) is easily computed by using forward substitution to solve
R′w = a, and then computing w′w. Covariances can be computed similarly, by also solving
R′v = d and computing w′v.

Since R is an upper triangular matrix with R′R = X ′X, there is a close connection between R
and the Choleski decomposition of X ′X. The only difference between R and the Choleski factor is
in the signs of the elements. The Choleski factor is constrained to always have positive diagonal
elements, while the diagonal elements in R can be either positive or negative. Essentially, though,
the QR decomposition computes the Choleski factorization of X ′X, without actually computing
X ′X.

The matrix H = X(X ′X)−1X ′ is called the “hat” matrix, since it transforms the observations to
the fitted values ŷ = Hy. The diagonal elements hii of H are called leverage values, and are useful
in case influence diagnostics. Large leverage values indicate that the corresponding covariate
vector xi = (xi1, . . . , xip)′, by virtue of its location in the covariate space, has potentially large
influence on the least squares estimators. Since trace(H) = p, the average value of the hii is p/n,
and values substantially larger than this may indicate potentially troublesome data points.

Since hii = x′
i(X

′X)−1xi, if a copy of X is stored, then the hii can be computed from R and the
rows of X, as described above for computing variances. If a copy of X is not stored, it follows
from X = Q1R that H = Q1Q

′
1, so hii =

∑p
j=1 q2

ij . The elements of the jth column of Q1 can be
calculated by applying the Householder transformations in reverse order to the jth column of the
n × n identity matrix (that is, Q = QIn = H1 · · ·HpIn). The contributions to the hii from each
column can be accumulated, so the full Q1 matrix need not be stored. Since ŷ = Q1Q

′
1y, ŷ can

also be computed during this process, using the previously computed values of Q′
1y.

Regression packages often display a sequential regression sum of squares table as part of their
output. That is, the regression sum of squares from the full model is partitioned into S(β1), the
regression sum of squares when only the first column of X is in the model, and S(βj |β1, . . . , βj−1),
j = 2, . . . , p, the change in the regression sum of squares when each column of X is added to the
model. It turns out these sequential sums of squares are automatically computed in the QR
decomposition algorithm. Let y(j) = Hj · · ·H1y. First note that since the Hj are orthogonal
transformations, ‖y(j)‖2

2 = ‖y‖2
2. Then applying (2.20) to the model with just j covariates, it

follows that the residual sum of squares for this model is
∑n

i=j+1(y
(j)
i )2, so the regression sum of

squares, which is the difference between the total sum of squares and the residual sum of squares,
is

∑j
i=1(y

(j)
i )2. Noting that y

(j)
i = y

(j−1)
i for i < j, it follows that the regression sum of squares for

the model with the first j − 1 terms is
∑j−1

i=1 (y(j)
i )2, and hence S(βj |β1, . . . , βj−1) = (y(j)

j )2. Since
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these terms are not affected by the Hk for k > j, it then follows that after completing all p

transformations, S(βj |β1, . . . , βj−1) = (y(p)
j )2.

If the model has been mean corrected before applying the QR decomposition, then the total sum
of squares above is corrected for the mean. If the model has not been mean corrected and does
contain a constant as the first term, then the residual sum of squares after adding the constant is
the total sum of squares corrected for the mean, and (y(j)

1 )2 = ny2, the difference between the
corrected and uncorrected total sum of squares.

Note that an alternate method to (2.20) for computing the residual sum of squares for the model
with j terms is given by the formula ‖y‖2

2 −
∑j

i=1(y
(j)
i )2. Although this formula is algebraically

equivalent, it suffers from the same instability as the naive one-pass variance algorithm, and is not
recommended.

The following example illustrates the use of the QR decomposition in regression analysis.

Example 2.6 > library(Matrix)
> # produce data set
> .Random.seed
[1] 57 59 11 34 56 3 30 37 36 56 52 1

> n <- 100
> p <- 5
> X <- cbind(rep(1,n),Matrix(runif(n*(p-1)),nrow=n))
> beta <- c(10,1,1,-1,-1)
> Y <- X %*% beta +rnorm(n)
> data <- data.frame(Y,X=X[,-1])
> print(fit1 <- lm(Y~X,data))
Call:
lm(formula = Y ~ X, data = data)

Coefficients:
(Intercept) X1 X2 X3 X4

10.16435 1.592054 0.7286286 -1.109259 -1.110602

Degrees of freedom: 100 total; 95 residual
Residual standard error: 1.029967
> anova(fit1)
Analysis of Variance Table

Response: Y

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

X 4 41.5843 10.39607 9.799931 1.112035e-06
Residuals 95 100.7790 1.06083
> # QR decomposition
> X.qr <- qr(X)
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> print(b1 <- solve(X.qr,Y)) # computes LS solution
[,1]

[1,] 10.1643467
[2,] 1.5920543
[3,] 0.7286286
[4,] -1.1092590
[5,] -1.1106021
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "workspace" "call"
> 1/attr(b1,’rcond’)
[1] 6.385741
> QtY <- facmul(X.qr,’Q’,Y,transpose=T,full=F) #t(Q_*) %*% Y
> # direct calculation of parameter estimates
> solve(facmul(X.qr,’R’,full=F),c(QtY))

[,1]
[1,] 10.1643467
[2,] 1.5920543
[3,] 0.7286286
[4,] -1.1092590
[5,] -1.1106021
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "call"
> c(QtY)^2
[1] 10488.602249 15.025345 7.563192 8.699584 10.296167
> sum(Y^2)-QtY[1]^2 # corrected total SS; can be inaccurate
[1] 142.3632
> sum(Y^2)-sum(c(QtY)^2) # residual SS; can be inaccurate
[1] 100.779
> sum(c(QtY[-1])^2) # regression sum of squares (accuracy should be ok)
[1] 41.58429
> Yhat <- facmul(X.qr,’Q’,c(QtY),F,full=F) # Q_* %*% t(Q_*) %*% Y
> range(Yhat-X%*%b1) # previous line gave fitted values
[1] 5.329071e-15 8.348877e-14
> sum((Y-Yhat)^2) # residual SS
[1] 100.779
> QtY2 <- facmul(X.qr,’Q’,Y,transpose=T,full=T) #t(Q) %*% Y
> sum(c(QtY2[-(1:p)])^2) # residual SS, another way
[1] 100.779

2
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2.6.3 Updating Models

Adding a variable to a regression model fit using a stored QR decomposition is a simple process.
Each of the Householder transformations is applied to the new covariate vector (recall that only
the u vectors for the transformations need to be stored), and then the Householder
transformation for the new covariate is formed and applied to the response vector. Backward
substitution using the updated R matrix is then used to solve for the new estimates.

The QR decomposition is thus also easily extended to forward stepwise regression, where initially
only the constant term is in the model and at each step the most significant of the remaining
candidate variables is added. The Householder transformations for each variable added to the
model can be applied to all the remaining candidate variables at each step. The t statistics for
adding each remaining candidate variable to the model are also easily computed from the
transformed response and candidate covariates.

Exercise 2.4 Suppose k covariates have been included in a forward stepwise algorithm by
updating the QR decomposition as described above. Suppose z is another covariate being
considered for entry in the model at the next step. Let z(k) = Hk · · ·H1z and y(k) = Hk · · ·H1y be
the result of applying the Householder transformations used in fitting the current model to the
new covariate vector and the response vector. Also, let Hz be the Householder transformation
defined from (2.13) with x = z(k) and t = k +1, and let w be the (k +1)st element of Hzy

(k). Show
that the F -statistic for adding z to the model is given by (n − k − 1)w2/(

∑n
j=k+1(y

(k)
j )2 − w2).

Thus only the quantities needed to compute the (k + 1)st element of Hzy
(k) need to be computed

to determine the significance level for adding z to the current model. 2

Deleting variables is not quite as simple. The Householder transformations are symmetric, and
hence each is its own inverse. Thus applying the transformation for the last covariate entered a
second time updates the response vector and covariate matrix to delete this covariate from the
model. By stepping through the transformations in order, the last k covariates entered can be
removed from the model. To remove just the kth of p covariates entered in the model, all the
variables added after the kth plus the kth could be removed in this fashion, and then the others
added back in, but this is not necessarily a computationally efficient or numerically stable
procedure. A better approach is to use Givens rotations to update the R portion of the
decomposition (see Golub and van Loan, 1989, Section 12.6, and Seber, 1977, Section 11.9).
Basically, the kth column is dropped, and Givens rotations used to zero out the elements rjj for
j > k from the old R matrix. The Givens rotations can be applied to the transformed response,
and then the least squares estimates can be computed as before. If this approach is used
repeatedly, it can become increasingly difficult to keep track of the transformations forming the Q
matrix and to apply them to new vectors. Also, in a stepwise procedure with many variables
added and dropped during the model fitting process, the accuracy of the updated models will
gradually deteriorate. Thus it can be appropriate to periodically refit a model from scratch.

There are also methods for updating the QR decomposition for adding and deleting cases from
the data set. These methods also involve applying Givens rotations to the QR decomposition. For
details see Golub and van Loan (1989), Section 12.6, and Seber (1977), Section 11.8.
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2.6.4 Accuracy of Least Squares Estimators

To bound the accuracy of the solution of a least squares problem, a concept of a condition
number is needed for general rectangular matrices. The 2-norm condition number of a square
matrix is the ratio of the largest singular value to the smallest singular value of the matrix. For a
general rectangular matrix, the 2-norm condition number is defined to be the ratio of the largest
and smallest singular values. It can also be shown that for this definition, κ2(X) = κ2(X ′X)1/2.

Solving for the least squares estimates using the backward substitution algorithm breaks down if
the matrix is singular. The numerical algorithms tend to break down (in the sense of producing
no significant digits of accuracy) whenever the condition number approaches machine accuracy
εm. In the case of the QR decomposition, it is the condition number of X that is relevant. For
algorithms that first form the normal equations, it is the condition number of X ′X that
determines this breakdown point. Since κ2(X ′X) = κ2(X)2, it follows that the QR decomposition
can solve problems where normal equation based methods will fail. This might suggest that the
QR decomposition is generally superior. However, this issue is not quite that clear cut. The
following result, contained in Theorem 5.3.1 in Golub and van Loan (1989), shows that the
accuracy of computed least squares estimates is inherently related to κ2(X)2, regardless of the
algorithm used. Note that this result relates the exact solution to a least squares problem to the
exact solution solution of a perturbed problem, and thus deals with the conditioning of the least
squares problem, not with the accuracy of particular algorithms.

Theorem 2.1 Suppose β0 is the exact value minimizing ‖y − Xβ‖2
2, and β̂ is the exact minimum

of the perturbed system ‖y + δ − (X + E)β‖2
2. Let r = y − Xβ0, r̂ = y + δ − (X + E)β̂, and

ε = max {‖E‖2/‖X‖2, ‖δ‖2/‖y‖2} ,

and suppose ε < κ2(X) and ‖r‖2 < ‖y‖2. Then

‖β̂ − β0‖2

‖β0‖2
≤ εκ2(X) {2 + κ2(X)‖r‖2/‖y‖2} /(1 − ‖r‖2

2/‖y‖2
2)

1/2 + O(ε2), (2.22)

and ‖r̂ − r‖2

‖ŷ‖2
≤ ε {1 + 2κ2(X)}min{1, n − p} + O(ε2). (2.23)

Generally in statistical problems n > p and ‖r‖2 >> 0, so (2.22) shows that relative O(ε) errors in
storing X and y will alter the exact solution by O(εκ2(X)2), and (2.23) shows this perturbation
gives a relative error in the fitted values of only O(εκ2(X)).

Golub and van Loan (1989, p. 226) also state that for the QR algorithm, the computed β̂ exactly
minimizes a perturbed problem ‖y + δ − (X + E)β‖2

2 with
‖E‖2/‖A‖2 ≤ (6n − 3p + 41)p3/2εm + O(ε2m) and ‖δ‖2/‖y‖2 ≤ (6n − 3p + 40)pεm + O(ε2m). Thus
for this algorithm, ε in (2.22) and (2.23) is approximately 6np3/2εm.

For the normal equation approach, both the errors in calculating X ′X and the errors in solving
the system need to be taken into account. This will tend to produce an error of order of some
factor involving n and p times εmκ2(X ′X), even for problems where ‖r‖2 is very small. When
‖r‖2 is small, Theorem 2.1 indicates that the QR decomposition may be much more accurate.
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However, in large residual problems where neither approach breaks down, the accuracy of the two
methods can be similar. As will be seen below, the QR algorithm is slower than normal equation
methods, so choice of algorithm may not always be simple.

2.6.5 Computational Efficiency of QR

From (2.14), with k = p and t = 1, applying H1 to the other columns of X and to a single
response vector y requires (2p + 1)n + p + 1 multiplications, one division and one square root. In
general for the jth transformation Hj , (2.14) applies with k = p− j + 1 and t = j. Summing these
gives a total operation count for the QR decomposition of

p∑
j=1

[(2p − 2j + 3)(n − j + 1) + p − j + 2]

= p[(2p + 3)(n + 1) + p + 2] + 2
∑
j

j2 − 2(p + n + 3)
∑
j

j

= 2np2 + 3np + p(p + 1)(2p + 1)/3 − (p + n + 3)p(p + 1) + O(p2)
= np2 + 2np − p3/3 + O(p2),

multiplications plus p divisions and square roots. Solving for β̂ once the QR decomposition is
computed then adds another O(p2) operations. If n is much larger then p, then the total
operation count is approximately np2.

If the QR decomposition is used to solve a p × p linear system Ax = b, then using the above
formula with n = p gives on operation count of 2p3/3 + O(p2). The LU decomposition required
only p3/3 + O(p2) multiplications, and so requires only about half as much computation as the
QR decomposition.

In the least squares problem, if the normal equations are solved using the Choleski decomposition,
then np(p + 3)/2 multiplications are required to compute X ′X and X ′y, and p3/6 + O(p2) are
required for the Choleski factorization, with an additional O(p2) to solve for the least squares
estimators. Thus this approach requires about half the computations of the QR decomposition.
The QR decomposition is preferred for its numerical stability, not its computational efficiency at
fitting a single model (the QR decomposition also has advantages for calculating related
quantities needed in regression analysis, and for updating models, as described above).

2.7 Singular-Value Decomposition

The most stable method for calculating solutions to systems of linear equations and least squares
estimators is generally the singular value decomposition.

As before, the matrix of covariates X is n × p with n ≥ p. The singular value decomposition
(SVD) of X is of the form

X = UDV ′,

where Un×p has orthonormal columns, Dp×p is diagonal with dii ≥ 0, and Vp×p is orthogonal. The
dii are called the singular values of X. For convenience, it will be assumed throughout that
d11 ≥ · · · ≥ dpp. (There is an alternate form, where U is an n × n orthogonal matrix, and D is
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extended to an n × p matrix by appending n − p rows with all elements 0, but only the reduced
version will be considered here.)

Note that since the columns of U are orthonormal, U ′U = Ip (however, UU ′ 6= In unless n = p).
Since

X ′X = V DU ′UDV ′ = V D2V ′,

it follows that the columns of V are eigenvectors of X ′X, and that the d2
ii are the corresponding

eigenvalues.

If X is a square (p × p) nonsingular matrix, then both U and V are orthogonal matrices, and
X−1 = (V ′)−1D−1U−1 = V D−1U ′, so once the SVD is computed, inverting the matrix requires
only inverting a diagonal matrix and computing a matrix product. Also note that V D−1U ′ is the
SVD of X−1, so the singular values of X−1 are the inverse of the singular values of X.

For a general n × p matrix X with SVD UDV ′, the rank of X is the number of nonzero dii. A
generalized inverse of X is any matrix G satisfying XGX = X. Let D+ be the diagonal matrix
with diagonal elements

d+
ii =

{
1/dii dii > 0
0 dii = 0,

Then a particular generalized inverse for X is given by

X+ = V D+U ′. (2.24)

This generalized inverse is called the Moore-Penrose generalized inverse.

Exercise 2.5 Verify that X+ is a generalized inverse for X.

If d11 is the largest singular value of X, then

‖X‖2 = sup
a

‖Xa‖2/‖a‖2

= sup
a

(a′X ′Xa/a′a)1/2

= sup
a

(a′V D2V ′a/a′a)1/2

= sup
b

(b′V ′V D2V ′V b/b′V ′V b)1/2

= sup
b

(b′D2b/b′b)1/2

= sup
b

(
∑

i

b2
i d

2
ii/

∑
i

b2
i )

1/2

= d11, (2.25)

where the 4th line follows because V ′V = V V ′ = Ip, so any a ∈ Rp can be mapped to b = V ′a and
any b ∈ Rp to a = V b, and the final line follows because the previous line is maximized by
choosing b so that as much weight as possible is placed on the largest singular value.
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2.7.1 Computing SVDs

Computing the SVD of Xn×p can be thought of in terms of finding orthogonal matrices Ue and V
such that the upper p × p block of U ′

eXV is a diagonal matrix, with the rest of the matrix 0’s.
The Householder transformation (2.13) can be used to zero out elements in a column, and
applying analogous transformations to the columns of the transpose of the matrix can be used to
zero out elements in a row. It is not possible to reduce X to a diagonal form in this way. Suppose
that first all elements in the first column (except x11) have been set to 0 by H1. Then the
transformation to set all elements in the first row (except the first) to 0 would overwrite the first
column with nonzero elements. However, if instead the transformation which sets all elements in
the first row to 0 except for the first 2 is used, then the first column remains unchanged.
Proceeding in this way (alternating columns and rows), transformations Uh and Vh can be built
up as the product of Householder transformations so that U ′

hXVh = B is in bidiagonal form, with
the only nonzero elements bii and bi,i+1, i = 1, . . . , p. Computing the SVD then uses an iterative
algorithm to find the singular values and transformations Ub and Vb such that U ′

bBVb = D. The
details, which are a little complicated, are given in Section 8.3 of Golub and van Loan (1989); see
also Section 2.6 of Press et. al. (1992). The transformations for the full SVD are then given by
Ue = UhUb and V = VhVb (and U is given by the first p columns of Ue).

An alternate algorithm for reducing to bidiagonal form is to first use the QR decomposition to
reduce to an upper triangular matrix, and then to apply the above approach just to the upper
triangular matrix. This tends to be more efficient when n is substantially larger than p.

Since the columns of U and V have to be built up from a number of Householder transformations
and the construction of the Ub and Vb matrices, the computational efficiency of the SVD depends
on how many of these terms are actually needed. That is, if the SVD will only be used to solve a
linear system or a least squares problem, then U need never be explicitly computed (only applied
to the right hand side or response vector), resulting in considerable savings. D and V can be
computed in 2np2 + 4p3 FLOPS using the first algorithm above, and in np2 + 11p3/2 FLOPS by
first reducing to an upper triangular form (Golub and van Loan, 1989, p.239—note that they
define a FLOP to be any floating point operation, so their values are twice as large as those
reported here). If n >> p, then the second approach is comparable to the computations in the
QR decomposition. If the n × p matrix U is also needed, then the computation time increases to
7np2 + 4p3 for the first approach and 3np2 + 10p3 for the second.

In practice SVD algorithms do not return exact 0’s for 0 singular values, and the user must decide
when to treat singular values as 0. A rough guide is regard djj as 0 whenever djj/d11 approaches
machine precision εm (where d11 is the largest singular value). Thus numerically, the rank of the
matrix is the number of dii with dii/d11 > ε, for some ε ≥ εm.

2.7.2 Solving Linear Systems

Solving the linear system Ax = b using the SVD is straightforward when A is nonsingular. Since
A = UDV ′, the solution x̂ is given formally by V D−1U ′b. As noted above, it is often not
necessary to explicitly form U and multiply; instead, the individual transformations can be
applied to b as they are constructed. Since D is diagonal, multiplying U ′b by D−1 just requires p
divisions, and multiplying by V requires p2 multiplications.
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A more interesting problem occurs if A is singular. Then there are 2 cases to consider. If b is not
in the range space of A, then there is no solution to the system. If b is in the range space, then
there are an infinite number of solutions. The quantity A+b, where A+ is the Moore-Penrose
g-inverse, is one solution, since if b is in the range of A, then b = Af for some f , so

AA+b = AA+Af = Af = b, (2.26)

since A+ is a generalized inverse of A (this result is also easily verified by using the SVD formulas
for A and A+). To characterize all solutions, suppose d11, . . . , dkk > 0 and dk+1,k+1, . . . , dpp = 0,
and let Vj be the jth column of V . Then all solutions are of the form

A+b +
p∑

j=k+1

αjVj (2.27)

for any real αj , and any vector of this form is a solution.

It can be determined whether b is numerically in the range space of A by using SVDs to
determine the ranks of A and (A; b)p×(p+1) (A with b appended as an additional column). If these
ranks are equal, then b is in the range of A, and otherwise it is not. This test, as any numerical
test, is not foolproof, but only determines ranks to the accuracy of the calculations. (When the
matrix has more columns than rows, the SVD is still of the form UDV ′, with now U orthogonal
and V(p+1)×p having orthonormal columns.)

Exercise 2.6 Suppose b is in the range space of Ap×p, and that rank(A) < p. Show that A+b has
the minimum 2-norm of all solutions to Ax = b.

Formally, when b is not in the range space of A, then A+b is a solution to the least squares
problem minx ‖b − Ax‖2

2, as is any x of the form (2.27). This follows from the general
development given in the next section.

The following examples illustrate the use of the SVD in solving systems of equations.

Example 2.7 > # SVD with a square singular matrix
> A

[,1] [,2] [,3] [,4]
[1,] 1 2 1 2
[2,] 1 2 3 4
[3,] 1 2 -1 -1
[4,] -1 -2 3 4
attr(, "class"):
[1] "Matrix"
> b

[,1]
[1,] 5
[2,] 9
[3,] 1
[4,] 3
attr(, "class"):
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[1] "Matrix"
> A.svd <- svd(A)
> A.svd$val
[1] 7.542847e+00 4.472136e+00 3.247434e-01 1.722363e-16
> svd(cbind(A,b))$val # is b in the range space of A?
[1] 1.287793e+01 5.193904e+00 4.270761e-01 1.845964e-16
> svd(cbind(A,c(1,1,1,1)))$val
[1] 7.6883690 4.5584515 1.0233832 0.2493763
> x1 <- solve(A.svd,b)
> x1

[,1]
[1,] 5.212331e+00
[2,] -1.106166e+00
[3,] 2.000000e+00
[4,] -3.682369e-15
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "rank" "call"
> attr(x1,’rcond’)
[1] 2.283439e-17
> attr(x1,’rank’)
[1] 4
> x2 <- solve(A.svd,b,tol=1e-15)
Warning messages:

singular solve in: solve(A.svd, b, tol = 1e-15)
> x2

[,1]
[1,] 6.000000e-01
[2,] 1.200000e+00
[3,] 2.000000e+00
[4,] -4.440892e-16
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "rank" "call"
> attr(x2,’rcond’)
[1] 0.04305316
> attr(x2,’rank’)
[1] 3
> U <- A.svd$vectors$left
> V <- A.svd$vectors$right
> x3 <- V[,1:3] %*% ((1/A.svd$values[1:3]) * (t(U[,1:3]) %*% b))
> x3
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[,1]
[1,] 6.000000e-01
[2,] 1.200000e+00
[3,] 2.000000e+00
[4,] -4.440892e-16
attr(, "class"):
[1] "Matrix"
> V[,4] # basis for null space

[,1]
[1,] -8.944272e-01
[2,] 4.472136e-01
[3,] -8.361367e-16
[4,] 6.279699e-16
attr(, "class"):
[1] "Matrix"
> c(-2,1)/sqrt(5)
[1] -0.8944272 0.4472136
> A %*% V[,4]

[,1]
[1,] 7.528700e-16
[2,] 3.365364e-16
[3,] 5.412337e-16
[4,] -3.295975e-16
attr(, "class"):
[1] "Matrix"
> x4 <- x3+10*V[,4] # also a solution (can replace 10 by any real number)
> A %*% x4

[,1]
[1,] 5
[2,] 9
[3,] 1
[4,] 3
attr(, "class"):
[1] "Matrix"
>

> xx <- solve(A.svd,c(1,1,1,1),tol=1e-15)
Warning messages:

singular solve in: solve(A.svd, c(1, 1, 1, 1), tol = 1e-15)
> xx

[,1]
[1,] 0.03333333
[2,] 0.06666667
[3,] -1.50000000
[4,] 1.33333333
attr(, "class"):
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[1] "Matrix"

other attributes:
[1] "rcond" "rank" "call"
> A %*% xx

[,1]
[1,] 1.3333333
[2,] 1.0000000
[3,] 0.3333333
[4,] 0.6666667
attr(, "class"):
[1] "Matrix"
> ## Moore-Penrose least squares solution
> V[,1:3] %*% ((1/A.svd$values[1:3]) * (t(U[,1:3]) %*% c(1,1,1,1)))

[,1]
[1,] 0.03333333
[2,] 0.06666667
[3,] -1.50000000
[4,] 1.33333333
attr(, "class"):
[1] "Matrix"

2

2.7.3 SVD and Least Squares

Again consider the least squares problem (2.16). Suppose first rank(X) = p, and let UDV ′ be the
SVD of X. Then

X ′X = V D2V ′, (2.28)

and the only solution to (2.16) is

β̂ = (X ′X)−1X ′y = V D−2V ′V DU ′y = V D−1U ′y.

Thus computing the least squares estimators requires applying the orthogonal transformations
used to form U to y, dividing by the diagonal elements of D, and multiplying by V . From (2.28),
it also follows that variances of linear functions of the least squares estimators are easily
computed from V and D. Generally, easy computation of other quantities of interest in regression
analysis will require keeping a copy of X and y in addition to the SVD. For example, the leverage
values hii = x′

iV D−2V ′xi, where x′
i is the ith row of X.

For the general case where rank(X) ≤ p, X+y = V D+U ′y is a solution to the least squares
problem. To see this, note that even when rank(X) < p, a least squares estimate still satisfies the
normal equations

(X ′X)β = X ′y. (2.29)

This is a linear system of the form discussed in the previous section, and b = X ′y is in the range
space of A = X ′X. From (2.28), it follows that the SVD of X ′X is V D2V ′ where UDV ′ is the
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SVD of X. That is, the “U”, “D” and “V ” matrices of the SVD of X ′X are V , D2 and V ,
respectively. Thus the Moore-Penrose generalized inverse is (X ′X)+ = V (D+)2V ′. From (2.27),
all solutions to (2.29) are therefore of the form

(X ′X)+X ′y +
∑

j:djj=0

αjVj = V (D+)2V ′V DU ′y +
∑

j:djj=0

αjVj = V D+U ′y +
∑

j:djj=0

αjVj , (2.30)

where the αj are any real numbers, and the Vj are the columns of V . In particular, setting all
αj = 0, a solution is X+y.

Recall that a parametric function l′β is estimable if l is in the range space of X ′. Since the range
space of X ′ is the same as the range space of V D, it follows that the columns of V corresponding
to nonzero singular values are a basis for the space

{l : l′β is estimable}.

Also note that the columns of V corresponding to singular values of 0 are a basis for the null
space of X.

Exercise 2.7 Use (2.30) to show that the least squares estimate of of any estimable parametric
function l′β is unique.

Thisted (1988), p. 99, gives the following interpretation of the singular values. If the εi in the
regression model (2.15) are N(0, 1), then the Fisher information for β is σ−2X ′X = σ−2V D2V ′,
and in a sense the information for a parametric function l′β is σ−2l′V D2V ′l. If Vj is a column of
V , then since the columns of V are orthonormal, the information about V ′

j β is d2
jj/σ2. Thus the

d2
jj are proportional to the information in the sample about the parametric functions V ′

j β. V ′
1β is

the linear combination of the parameters about which the data is most informative, and V ′
pβ the

linear combination about which the data are least informative.

Below the SVD calculations for least squares are illustrated using the same example considered
for the QR decomposition.

Example 2.6 (continued)

> # SVD
> X.svd <- svd(X)
> print(b2 <- solve(X.svd,Y)) # solves for LS parameter estimates

[,1]
[1,] 10.1643467
[2,] 1.5920543
[3,] 0.7286286
[4,] -1.1092590
[5,] -1.1106021
attr(, "class"):
[1] "Matrix"

other attributes:
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[1] "rcond" "rank" "call"
> 1/attr(b2,’rcond’)
[1] 7.847564
> names(X.svd)
[1] "values" "vectors"
> names(X.svd$vectors)
[1] "left" "right"
> dim(X.svd$vectors$left) # reduced form
[1] 100 5
> dim(X.svd$vectors$right)
[1] 5 5
> X.svd$values
[1] 14.561409 3.159465 2.963923 2.672461 1.855532
> max(X.svd$values)/min(X.svd$values) # 2-norm condition number
[1] 7.847564
> U <- X.svd$vectors$left
> V <- X.svd$vectors$right
> range(U %*% (X.svd$values*t(V))-X) # can recover X
[1] -2.442491e-15 5.440093e-15
> w <- t(U) %*% Y
> V %*% ((1/X.svd$values)*w) # parameter estimates

[,1]
[1,] 10.1643467
[2,] 1.5920543
[3,] 0.7286286
[4,] -1.1092590
[5,] -1.1106021
attr(, "class"):
[1] "Matrix"
> Yhat2 <- U %*% w #fitted values without using original X
> range(Yhat-Yhat2)
[1] 3.552714e-15 7.105427e-14
> sum((Y-Yhat2)^2) # Residual SS
[1] 100.779

2

2.7.4 Some timing comparisons

The speed of the QR, SVD and Choleski approaches to computing least squares estimates in a
single model were compared in a Fortran program with all matrix operations performed using
LAPACK routines. The calculations were run on a SUN workstations (several years ago). Only
the least squares estimates were computed, with no associated calculations, so from the discussion
in Section 2.7.1, the computation time for the SVD and QR approaches should be similar. The
QR estimates were computed using the routine dgels, the SVD using dgelss, and for the
Choleski approach the normal equations were formed using dsyrk for X ′X, dgemm for X ′y, and
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dposv to solve the positive definite system of equations X ′Xβ = X ′y. The results are given in the
following table. (Entries are the average of two repeat runs.)

Timing comparison (in CPU seconds) of the QR, SVD and Choleski approaches to computing
least squares estimates.

n p np2 QR SVD Choleski
5000 50 1.25 × 107 4.88 5.08 2.27
10000 50 2.5 × 107 9.66 9.82 4.42
5000 100 5.0 × 107 15.66 17.42 7.06
10000 100 10.0 × 107 31.30 32.97 13.90

As expected, the QR and SVD are similar, and both take over twice the time of the normal
equation/Choleski method. Also note how the CPU times for different configurations are nearly
proportional to np2.

2.8 Some Iterative Methods

A linear system Ax = b can sometimes be solved using simple iteration schemes. If the matrix A
is sparse, these iterations can sometimes be substantially faster than the methods discussed above.

Simple iterations are of the following form. A is decomposed into two pieces M and N , with
A = M − N . At each step, the k + 1 iterate x(k+1) is calculated from the kth by solving

Mx = Nx(k) + b. (2.31)

Clearly if x(k) → x0, then Ax0 = b, so x0 is a solution. General theory states that such an iteration
converges if all eigenvalues λj of M−1N satisfy |λj | < 1 (see Theorem 10.1.1 of Golub and van
Loan, 1989, and Section 6.4 of Lange, 1999). Clearly for such an iteration to be reasonably fast,
the matrix M must be chosen so that x(k+1) can be easily computed at each iteration.

Let D be the diagonal matrix with the aii on the diagonal, U the matrix with elements uij = aij

for i < j and 0 otherwise (the elements above the main diagonal), and L the matrix with lij = aij

for i > j and 0 otherwise (the elements below the main diagonal), so A = L + D + U . The
Gauss-Seidel iteration is defined by setting M = D + L and N = −U in (2.31). The iterates
x

(k+1)
j , j = 1, . . . , p, are then easily computed by

x
(k+1)
j = a−1

jj

bj −
∑
l<j

ajlx
(k+1)
l −

∑
l>j

ajlx
(k)
l

 . (2.32)

Exercise 2.8 Show (2.32) solves (2.31) when M = D + L and N = −U .

It can be shown that if A is symmetric and positive definite, then the Gauss-Seidel iteration
converges (Golub and van Loan, 1989, Theorem 10.1.2).

If max |λj | is close to 1, the rate of convergence of the Gauss-Seidel iteration can be very slow.
Successive over-relaxation (SOR) is a variation that attempts to increase the rate of convergence
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by varying the step size. That is, if γ
(k+1)
j is defined by the right hand side of (2.32), then SOR

updates are given by x
(k+1)
j = ωγ

(k+1)
j + (1 − ω)x(k)

j . In general determining an appropriate value
for the relaxation parameter ω requires careful analysis of the eigenvalues of M−1N . For
references on this topic see Section 10.1 of Golub and van Loan (1989). Additional variations on
SOR are also discussed there.

Solving the system Ax = b can also be reformulated as finding the value of x that minimizes
x′Ax − x′b. Since this is a nonlinear minimization problem, iterative methods developed for such
problems can be applied to solving the linear system. Most do not lead to anything useful
(Newton’s method, for example, just gives that the minimization problem is solved by computing
the solution to Ax = b), but conjugate gradient algorithms can usefully be applied in some
problems. As with the iterative algorithms discussed above, conjugate gradient algorithms are
often most useful in sparse systems where the product Ax can be computed quickly. Conjugate
gradient algorithms attempt to construct a series of search directions d(j) for line minimizations,
with the directions satisfying (d(j))′Ad(k) = 0. Application of conjugate gradient algorithms to
solving linear systems is discussed in Sections 10.2 and 10.3 of Golub and van Loan (1989), and a
simple implementation is given in Section 2.7 of Press et. al. (1992). An interesting statistical
application is given in O’Sullivan (1990).

2.9 Nonparametric Smoothing Splines

The nonparametric smoothing spline is a problem that at first glance would appear to require
O(n3) computations, where n is the number of data points. However, by taking advantage of the
special structure of the problem, it is possible to compute all quantities needed in O(n)
computations. An excellent reference on smoothing splines is Green and Silverman (1994). Hastie
and Tibshirani (1990) give an elementary nonrigorous treatment of the basics. Also useful are the
books by Eubank (1988) and Wahba (1990), and the review articles of Wegman and Wright
(1983) and Silverman (1985).

Suppose (xi, yi), i = 1, . . . , n, are independent bivariate observations, with

yi = g(xi) + εi, E(εi) = 0, Var(εi) = σ2 < ∞. (2.33)

The xi are restricted to a finite interval [a, b]. The problem considered here is estimating the
unknown function g, without specifying a parametric form for g. Without any restriction on the
class of functions, it is impossible to construct useful estimates except at xi where there are
multiple observations. However, if g can be assumed to lie in a class of suitably smooth functions,
then a general solution can be given. In particular, let S2[a, b] be the space of functions f(x) on
[a, b] such that f(x) and f ′(x) are absolutely continuous on [a, b], such that f ′′(x) exists, in the
sense that there exists an integrable function f ′′ satisfying f ′(x) − f ′(a) =

∫ x
a f ′′(u) du for all

x ∈ [a, b], and such that f ′′(x) is square integrable. Note that any function with a continuous
second derivative on [a, b] is in S2[a, b].

Consider the problem of estimating g in (2.33) with the function in S2[a, b] that minimizes the
penalized least squares criterion

n∑
i=1

[yi − g(xi)]2 + λ

∫ b

a
[g′′(u)]2 du. (2.34)
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The integrated squared second derivative term is a penalty term to force some smoothness on the
estimate. If the least squares criterion with λ = 0 in (2.34) is minimized, the estimate would
interpolate the observed data points in some fashion. For a linear function g(x) = β0 + β1x, the
second derivative g′′(x) ≡ 0, so the penalty term does not restrict the slope of a linear function.
The penalty does restrict how quickly the slope can change (the second derivative is the rate of
change in the slope), so the penalty term penalizes functions whose slopes are changing quickly,
and forces the estimate towards smoother functions. Here λ plays the role of a smoothing
parameter. If λ is increased to a very large value, then any departure of g from linearity is given a
large penalty, so the estimate becomes the ordinary least squares line. As λ is decreased towards
0, the estimate becomes closer to a noisy interpolant of the observed data points.

For λ > 0, there is a general solution to (2.34). The solution takes the form of a spline function
with knots at the observed xi. In the following subsection, spline functions will be considered.
Then in Section 2.9.2, the solution to the penalized least squares problem will be given.
Section 2.9.3 considers used of cross validation for choosing the value of the smoothing parameter
λ.

2.9.1 Splines

Splines are piecewise polynomials between breakpoints or knots, that satisfy certain continuity
constraints at the knots. Specifying a spline model requires specifying the knot locations, the
degree of the polynomials, and the constraints at the knots. To define a spline on an interval
[a, b], let a ≤ t1 < t2 < · · · < tk ≤ b be the knot locations. A spline of order q + 1 is a qth degree
polynomial on each of the intervals (tl, tl+1). That is, let

Pl(x) = β0l + β1lx + · · · + βqlx
q.

Then the spline Q(x) = Pl(x) if x ∈ (tl, tl+1). For a spline of order q + 1, usually the continuity
constraints at the knots specify that the function is continuous, and that the derivatives through
order q − 1 are also continuous. These are the only types of constraints that will be considered
here. For a cubic spline (order 4, the most popular choice), the constraints are

β0,l−1 + β1,l−1tl + β2,l−1t
2
l + β3,l−1t

3
l = β0l + β1ltl + β2lt

2
l + β3lt

3
l

β1,l−1 + 2β2,l−1tl + 3β3,l−1t
2
l = β1l + 2β2ltl + 3β3lt

2
l

2β2,l−1 + 6β3,l−1tl = 2β2l + 6β3ltl.

When a statistical model is specified in terms of a spline, the βjl are unknown parameters to be
estimated.

If the knots are on the interior of the interval, then there is a polynomial piece P0 for the region
a ≤ x < t1, k − 1 polynomials Pl for the intervals (tl, tl+1), l = 1, . . . , k − 1, and an additional
polynomial Pk for the region b ≥ x > tk. For qth degree polynomials there would thus be
(q + 1) × (k + 1) parameters in the polynomials, and at each of the k knots there would be q
constraints, so the total dimension of (or degrees of freedom in) this model is
(q +1)× (k +1)− qk = q +1+k, which is the order of the spline plus the number of interior knots.

When working with splines, it is usually easier to first reparameterize to eliminate the constraints.
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One unconstrained reparameterization is

Q(x) = α0 + α1x + · · · + αqx
q +

k∑
l=1

αq+lI(x ≥ tl)(x − tl)q. (2.35)

This is a reparameterization because (a) (2.35) is a qth degree polynomial between each of the
knots; (b) (2.35) satisfies all the continuity constraints of the original model, since
I(x ≥ tl)(x− tl)q has q − 1 continuous derivatives; and (c) (2.35) has q + 1 + k free parameters, so
the dimensions of the models are the same. The functions I(x ≥ tl)(x − tl)q are often written
(x − tl)

q
+, where the ‘+’ subscript denotes that the function is 0 if the argument x − tl < 0. For

this reason the parameterization (2.35) is often said to use the plus function basis.

Although the terms in the plus function basis are fairly simple and reasonably interpretable, they
often lead to numerical problems because of near collinearity in the design matrix. More
numerically stable bases are usually used for computations. One of these is the B-spline basis,
which requires some additional notation to describe. Extend the knot sequence by letting ti = a
for i < 1, and ti = b for i > k. Set

Bl1(x) = I(tl < x ≤ tl+1), l = 0, . . . , k,

and set Bl1(x) ≡ 0 for l < 0 or l > k . Note that
∑k

l=0 αlBl1(x) is a piecewise constant function
that could be thought of as a 1st order (0th degree) spline. B-splines of higher order are related
to the Bl1 through the recursion

Blr(x) =
x − tl

tl+r−1 − tl
Bl,r−1(x) +

tl+r − x

tl+r − tl+1
Bl+1,r−1(x),

l = 1− r, . . . , k, where r = q + 1 is the order of the spline (and q is the degree of the polynomials).
The rth order spline is then

Q(x) =
k∑

l=1−r

αlBlr(x).

For a proof that this is a reparameterization of the plus function basis, and discussion of many
other properties of B-splines, see de Boor (1978). Two important properties of the B-splines are
that

∑
l Blr(x) ≡ 1, and that they have a local support property, in that only r of the basis

functions can be non-zero at any value of x. The first property is important because it is often
convenient to explicitly include a constant term in a model. The constant plus the r + k terms in
the full B-spline basis would be over parametrized. Because

∑
l Blr(x) ≡ 1, a constant plus any

k + r − 1 of the Blr give a basis for the space of rth order splines. The local support property is
important for numerical stability, and in some applications for computational speed.

There is a function bs() in Splus that will compute B-spline basis functions at specified values, as
given in the following. Specifying intercept=T tells the function to include all r + k basis terms.

> x_1:19
> u_bs(x,knots=c(4,8,12,16),degree=3,intercept=T)
> u

1 2 3 4 5 6 7 8
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[1,] 1.000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000 0.000
[2,] 0.296 0.5835 0.11585 0.00433 0.00000 0.00000 0.0000 0.000
[3,] 0.037 0.5729 0.35539 0.03463 0.00000 0.00000 0.0000 0.000
[4,] 0.000 0.3265 0.55659 0.11688 0.00000 0.00000 0.0000 0.000
[5,] 0.000 0.1378 0.59561 0.26404 0.00260 0.00000 0.0000 0.000
[6,] 0.000 0.0408 0.50139 0.43696 0.02083 0.00000 0.0000 0.000
[7,] 0.000 0.0051 0.34108 0.58350 0.07031 0.00000 0.0000 0.000
[8,] 0.000 0.0000 0.18182 0.65152 0.16667 0.00000 0.0000 0.000
[9,] 0.000 0.0000 0.07670 0.60559 0.31487 0.00284 0.0000 0.000

[10,] 0.000 0.0000 0.02273 0.47727 0.47727 0.02273 0.0000 0.000
[11,] 0.000 0.0000 0.00284 0.31487 0.60559 0.07670 0.0000 0.000
[12,] 0.000 0.0000 0.00000 0.16667 0.65152 0.18182 0.0000 0.000
[13,] 0.000 0.0000 0.00000 0.07031 0.58350 0.34108 0.0051 0.000
[14,] 0.000 0.0000 0.00000 0.02083 0.43696 0.50139 0.0408 0.000
[15,] 0.000 0.0000 0.00000 0.00260 0.26404 0.59561 0.1378 0.000
[16,] 0.000 0.0000 0.00000 0.00000 0.11688 0.55659 0.3265 0.000
[17,] 0.000 0.0000 0.00000 0.00000 0.03463 0.35539 0.5729 0.037
[18,] 0.000 0.0000 0.00000 0.00000 0.00433 0.11585 0.5835 0.296
[19,] 0.000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000 1.000
attr(, "knots"):
[1] 1 1 1 1 4 8 12 16 19 19 19 19

> apply(u,1,sum)
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note the local support, seen in the large numbers of 0’s in the design matrix. Also note that from
the output of apply(), the rows do sum to 1 as claimed.

It is also interesting to look at plots of basis functions. Figure 2.1 plots the odd numbered basis
functions (1,3,5,7) from the following.

> x1 _ 0:100/100
> x1.bs _ bs(x1,df=8,degree=3,intercept=T)
> attributes(x1.bs)$knots
[1] 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.0 1.0 1.0

Note that here specifying 8 degrees of freedom gave 4 interior knots.

A cubic spline Q(x) on an interval [a, b] with knots t1, . . . , tk (a < t1, tk < b) is a natural spline if
Q′′(a) = Q′′′(a) = Q′′(b) = Q′′′(b) = 0. If

Q(x) = β00 + β10x + β20x
2 + β30x

3, a ≤ x ≤ t1,

then clearly Q′′(a) = Q′′′(a) = 0 implies that β30 = β20 = 0, so that Q(x) is a straight line on the
interval [a, t1], and by a similar argument, on the interval [tk, b] as well. The continuity of the
second derivative then implies that Q′′(t1) = Q′′(tk) = 0. Since the natural spline has 4 more
constraints than the B-spline, it has 4 fewer terms in a basis, and thus there are k basis functions
in a natural spline with k interior knots.
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Figure 2.1: Cubic B-spline basis functions. The odd numbered functions are plotted, from a basis
with a total of 8 functions.

The function ns() in Splus will generate a natural spline basis at a specified set of points.
However, it implicitly treats the smallest and largest points as interior knots in the sense used
above, so the number of basis functions is only 2 fewer than for a call to bs() with the same
interior knots.

The second derivative of a cubic spline is a continuous piecewise linear function. That is

d2

dx2
(β0l + β1lx + β2lx

2 + β3lx
3) = 2β2l + 6β3lx.

Also, the third derivative is constant on each of the intervals [a, t1), (t1, t2), . . . , (tk−1, tk), (tk, b],
and generally does not exist at the knots. For a natural spline as defined formally above, the
second and third derivatives are 0 on [a, t1) and (tk, b].

2.9.2 Solution to the Penalized Least Squares Problem

For λ > 0, the unique minimizer of (2.34) is a natural cubic spline with knots at all the observed
xi. This follows from the following lemma.

Lemma: Let g(x) be a natural cubic spline on [a, b] with knots t1 < · · · < tn (n > 1, a < t1,
tn < b), and let f(x) be any other function in S2[a, b] with f(ti) = g(ti), i = 1, . . . , n. Then∫ b

a
[f ′′(x)]2 dx ≥

∫ b

a
[g′′(x)]2 dx,

with equality only if f(x) ≡ g(x).

Proof: First note that g ∈ S2[a, b], since it is a natural cubic spline. Then h(x) defined by
h(x) = f(x) − g(x) is also in S2[a, b]. Using integration by parts and the facts that
g′′(a) = g′′(b) = 0, g′′′(x) = 0 for x < t1 and x > tn, and g′′′(x) is constant between the knots, it
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follows that∫ b

a
g′′(x)h′′(x) dx = g′′(b)h′(b) − g′′(a)h′(a) −

∫ b

a
g′′′(x)h′(x) dx

= −
∫ b

a
g′′′(x)h′(x) dx

= −
∫ t1

a
g′′′(x)h′(x) dx +

n∑
j=2

∫ tj

tj−1

g′′′(x)h′(x) dx +
∫ b

tn
g′′′(x)h′(x) dx

=
n∑

j=2

g′′′(tj−)
∫ tj

tj−1

h′(x) dx

=
n∑

j=2

g′′′(tj−)[h(tj) − h(tj−1)]

= 0,

where the last equality is because h(x) = f(x) − g(x) is 0 at the knots, because f and g are
assumed to be equal there. Using this result, it then follows that∫ b

a
[f ′′(x)]2 dx =

∫ b

a
[g′′(x) + h′′(x)]2 dx

=
∫ b

a
[g′′(x)]2 dx + 2

∫ b

a
g′′(x)h′′(x) dx +

∫ b

a
[h′′(x)]2 dx

=
∫ b

a
[g′′(x)]2 dx +

∫ b

a
[h′′(x)]2 dx

≥
∫ b

a
[g′′(x)]2 dx,

as required. Equality can hold only if
∫ b
a [h′′(x)]2 dx = 0, which means h′′(x) = 0 (almost

everywhere) on [a, b], which together with the continuity of h′(x) means that h′(x) is constant,
and thus that h(x) is linear on [a, b]. But h(tj) = 0 for all j, so h(x) ≡ 0 on [a, b]. 2

Using this lemma, it is straightforward to argue that (2.34) is minimized by a natural spline. Let
f be any function in S2[a, b], and let g be a natural spline with with knots at all the xi, with
g(xi) = f(xi), i = 1, . . . , n. Then clearly∑

i

[yi − f(xi)]2 =
∑

i

[yi − g(xi)]2,

and from the lemma, ∫ b

a
[f ′′(x)]2 dx ≥

∫ b

a
[g′′(x)]2 dx,

with equality only if f ≡ g, so if λ > 0, for any f ∈ S2[a, b] there is a natural spline g which has a
smaller value of (2.34), unless f ≡ g, in which case f is already a natural spline. Thus to
minimize (2.34), only the family of natural splines needs to be considered.

Knowing this, the estimate can then be calculated by specifying a basis for the natural spline, and
solving for the coefficients of the basis functions to minimize (2.34). The algorithm discussed
below actually starts with a slightly larger family, the class of cubic splines with knots at all the
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data points, which can be represented using a B-spline basis. It turns out that the penalty still
forces the solution to be a natural spline, so the same solution is obtained, regardless. For a
slightly more efficient algorithm based directly on natural splines, see Green and Silverman (1994).

To specify the solution in matrix notation, let Bj(x) be the B-spline basis functions for a cubic
spline with knots at all the data points (the min and max of the xi are not regarded as interior
knots, so there are n + 2 such functions if there are n distinct values xi), and let X be the matrix
whose ijth element is bij = Bj(xi). Also let β be the vector of coefficients for the basis functions.
For this parameterization, the penalty function in (2.34) can be written λβtPβ, for some
non-negative definite matrix P that is just a function of the knot locations. Specifically, writing
the spline as g(u) =

∑
j βjBj(u), then∫

[g′′(u)]2 du =
∑
j

∑
k

βjβk

∫
B′′

j (u)B′′
k(u) du,

so
Pjk =

∫
B′′

j (u)B′′
k(u) du. (2.36)

Thus (2.34) becomes
(y − Xβ)t(y − Xβ) + λβtPβ, (2.37)

where yt = (y1, . . . , yn). Setting the gradient of (2.37) to 0 then gives

−2Xt(y − Xβ) + 2λPβ = 0,

which is equivalent to
(XtX + λP )β = Xty.

The advantage to using B-splines is their local support property. Since at most 4 cubic B-spline
basis functions are positive at any point, this is a narrowly banded system of equations (because
the matrices XtX and P are banded). Thus even though the number of parameters and equations
is large (and grows with the sample size), the estimates can be calculated in O(n) floating point
operations, for example by using a Cholesky decomposition for banded matrices and
backsubstitution to find the solution to the equations. Formally, the solution for β may be written

β̂ = (XtX + λP )−1Xty,

and the smoothed y’s by
ŷ = Xβ̂ = X(XtX + λP )−1Xty, (2.38)

although in practice one would not want to explicitly calculate the matrix inverse given in these
formulas.

The steps in this algorithm to compute the smoothing spline estimate for a fixed value of λ are
thus as follows. Methods for choosing λ will be discussed below, especially in Section 2.9.3.

1. Determine the knot locations. For the true nonparametric smoothing spline this would put
knots at all unique values of the covariate. In practice, it is often adequate to use a much
smaller number of knots, say at every 10th data point for sample sizes < 500, and using 50
knots for samples > 500. However, the algorithm is very fast even with knots at all data
points. In general suppose there are k interior knots.
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2. Evaluate the B-spline basis functions corresponding to the chosen knot sequence at the data
points. Since at most 4 basis functions are positive at any point, only a 4 × n array is
needed to store these. De Boor’s (1978) Fortran routines for calculating B-splines are
available at netlib.

3. Calculate the penalty matrix. Deriving closed form formulas is a bit of work. The
FORTRAN subroutine pencbc.f, given below, can perform the computations. Since P is a
symmetric band matrix it only requires a 4 × (k + 4) array for storage.

4. Calculate XtX. Because each row of X has at most 4 nonzero elements, this can be done
with 10 × n multiplications and additions, and again only requires an array of dimension
4 × (k + 4) for storage.

5. Calculate Xty. This requires 4 × n multiplications and additions, (and gives a vector of
length k + 4).

6. Form XtX + λP , and compute its Cholesky factorization. The Cholesky factor of a band
matrix is again a band matrix (and can be done in place in the band storage array used for
XtX + λP ; see the LAPACK subroutine dpbtrf). This requires O(k) operations.

7. Use forward and back substitution to solve for β̂ (again O(k) operations because of the
band structure).

8. Compute ŷ = Xβ̂ (again about 4n multiplications and additions).

Note that even with knots at all the data points, the entire algorithm takes O(n) operations, and
requires O(n) storage.

The following FORTRAN subrouting computes the components of P .

subroutine pencbc(nk,wk,penm)
c This subroutine calculates the penalty matrix for integrated squared
c second derivative penalty. On output the first row of penm will have the main
c diagonal, the 2nd row the first sub diag ... the 4th row the 3rd sub diag
c stored in lapack style symmetric band storage (lower triangle)
c actual row dim of penm is 4 (must have at least nk+4 cols)
c nk is # interior knots,
c wk is augmented knot sequence. That is, wk(-2), wk(-1),
c wk(0) all equal the lower limit of integration in the penalty function,
c wk(1) to wk(nk) are the interior knots in ascending order, and wk(nk+1),
c wk(nk+2), wk(nk+3) all equal the upper limit of integration.

double precision wk(-2:nk+3),penm(4,nk+4),tl(4),tu(4)
double precision u1,u2,u3
integer i,nk,l,j,ll,j2,k
do 10 i=1,nk+4

do 11 j=1,4
penm(j,i)=0

11 continue
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10 continue
tl(1)=6/((wk(1)-wk(-2))*(wk(1)-wk(-1)))
tl(2)=-6/(wk(1)-wk(-1))*(1/(wk(1)-wk(-2))+1/(wk(2)-wk(-1)))
tl(3)=6/((wk(2)-wk(-1))*(wk(1)-wk(-1)))
tl(4)=0
do 20 l=1,nk+1

c tl has the value of the 2nd deriv at the lower endpoint of the lth
c interval, tu at the upper (2nd derivs of basis fcns are linear on
c each interval

tu(1)=0
tu(2)=6/((wk(l+1)-wk(l-2))*(wk(l+1)-wk(l-1)))
tu(3)=-6/(wk(l+1)-wk(l-1))*(1/(wk(l+1)-wk(l-2))+

& 1/(wk(l+2)-wk(l-1)))
tu(4)=6/((wk(l+2)-wk(l-1))*(wk(l+1)-wk(l-1)))

c since integrating a quadratic, use Simpson’s rule:
c u1 and u2 are the integrand at the endpoints, u3 at the midpoint

do 22 j=1,4
ll=l+j-1
j2=j-1
do 23 k=j,4

u1=tl(j)*tl(k)
u2=tu(j)*tu(k)
u3=(tl(j)+tu(j))*(tl(k)+tu(k))/4
penm(k-j2,ll)=penm(k-j2,ll)+(wk(l)-wk(l-1))*

$ (u1+u2+4*u3)/3
23 continue
22 continue

tl(1)=tu(2)
tl(2)=tu(3)
tl(3)=tu(4)
tl(4)=0

20 continue
return
end

The matrix Sλ = X(XtX + λP )−1Xt is called the smoother matrix, since it maps the observed y
to the smoothed values. Sometimes it is also called the “hat” matrix, since it maps y to ŷ. The
matrix Sλ is thus the analog of the projection operator U(U tU)−1U t from ordinary least squares
regression with a design matrix U . However, Sλ is generally not a projection operator.

The smoother matrix Sλ satisfies S1n = 1n, where 1n is the n-dimensional vector of 1’s, and
Sλx = x, where x is the vector of the xi. To see this, let g(u, β) =

∑
j βjBj(u), and note that as β

varies this gives the full space of cubic splines with this set of knots (that is what it means for the
Bj(u) to be a basis for this space). Now constants and linear functions are subsets of the space of
cubic splines, so there is a β1 such that g(u, β1) ≡ 1, and a β2 such that g(u, β2) ≡ u. Then
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Xβ1 = 1n and Xβ2 = x. Also, g′′(u, βj) ≡ 0, j = 1, 2. Thus

0 =
∫ b

a
[g′′(u, βj)]2 du = βt

jPβj ,

so Pβj = 0, j = 1, 2. Then

SλXβj = X(XtX + λP )−1XtXβj

= X(XtX + λP )−1(XtX + λP )βj

= Xβj ,

where the third equality follows because Pβj = 0, and the result follows by recalling Xβ1 = 1n

and Xβ2 = x.

Since the expected value of the smoothing spline is

E(ŷ) = SλE(y)

it follows that smoothing splines are unbiased when the true g is a straight line.

The connection between the smoother matrix and the projection operator in ordinary parametric
regression can be used to motivate a definition of “degrees of freedom” or “equivalent number of
parameters” for smoothing splines. For the projection operator in least squares,
trace{U(U tU)−1U t} = rank(U), which is the number of parameters in the model. For smoothing
splines,

df = trace(Sλ) (2.39)

also gives a useful measure of model complexity. df → 2 as λ → ∞ (and the fit is forced toward a
2 parameter linear model), and increases towards the number of parameters as λ gets small.
Choosing λ to give a target degrees of freedom is one useful method for specifying the smoothing
parameter (at any rate the degrees of freedom is easier to interpret than λ itself). In many
applications “several” degrees of freedom would be a reasonable starting point, although different
values should be examined to see the effect on the fit. A more automated method for choosing a
smoothing parameter is discussed in Section 2.9.3. There are 2 other related definitions of degrees
of freedom for smoothers; see Section 3.5 of Hastie and Tibshirani (1990) for details.

Smoothing splines can be fit in Splus using the function smooth.spline(). The smoothing
parameter can be specified in one of three ways. One is to explicitly specify the value of the
smoothing parameter λ, using the argument spar. Since λ does not have a clear intuitive
interpretation, it is usually difficult to specify a reasonable value without substantial trial and
error. The second way is to specify an approximate degrees of freedom, as defined in (2.39), using
the argument df. The third method (the default) is to automatically choose the smoothing
parameter using generalized cross validation (there is also an option to specify ordinary cross
validation, instead). The meaning of cross validation in this setting will be discussed in the
following section.

2.9.3 Cross Validation and Smoothing Parameters

Ideally, the smoothing parameter would be chosen to maximize the accuracy of the estimated
curve. Often it is reasonable to focus on the accuracy at the observed data points, although this
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is not the only possibility. The average mean squared error (MSE) of an estimator ĝ(x) of g(x) is∑
i

E{ĝ(xi) − g(xi)}2/n.

The average predictive squared error (PSE) is∑
i

E[Y ∗
i − ĝ(xi)]2/n,

where the Y ∗
i are new observations taken at the same xi, independent of the original observations.

Since ∑
i

E[Y ∗
i − ĝ(xi)]2/n =

∑
i

E[Y ∗
i − g(xi)]2/n +

∑
i

E[ĝ(xi) − g(xi)]2/n −

2
∑

i

E{[ĝ(xi) − g(xi)][Y ∗
i − g(xi)]}/n

= σ2 +
∑

i

E[ĝ(xi) − g(xi)]2/n (2.40)

(the expectation of the cross product term is 0 because Y ∗
i is independent of ĝ(xi)), it follows that

minimizing the average predictive squared error is equivalent to minimizing the average MSE over
the data points.

The MSE and the PSE both involve the unknown function g, which makes them difficult to
estimate directly. Cross validation is a method for estimating the PSE. Essentially, the estimate
of g(xi) is calculated with the ith observation omitted, and then compared to the observed yi.
This is done in turn for each observation, and the error averaged over the observations. Denote
the smoothed estimate at xi with the ith observation omitted by ĝ−i(xi; λ), explicitly indicating
that this quantity depends on the smoothing parameter λ. Then the cross validated estimator of
the PSE is

CV(λ) =
∑

i

[yi − ĝ−i(xi; λ)]2/n.

Proceeding as in (2.40), it follows that

E[CV(λ)] = σ2 +
∑

i

E[ĝ−i(xi; λ) − g(xi)]2/n.

Thus if the difference between ĝ(xi; λ) and ĝ−i(xi; λ) is small, then CV(λ) should be a good
estimator of the PSE.

Direct computation of CV(λ) by deleting each point and recomputing the estimate would be very
time consuming. It turns out that there is a simple formula, though, based on the following
lemma.

Lemma: For fixed λ and i, let g−i be the vector with components ĝ−i(xj ; λ), j = 1, . . . , n, and let
V ∗ be the vector with components V ∗

j = yj for j 6= i and V ∗
i = ĝ−i(xi; λ). Then

g−i = SλV ∗.
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Proof: For any smooth curve g,

n∑
j=1

[V ∗
j − g(xj)]2 + λ

∫
g′′(u) du ≥

n∑
j 6=i

[V ∗
j − g(xj)]2 + λ

∫
g′′(u) du

≥
n∑

j 6=i

[V ∗
j − ĝ−i(xj ; λ)]2 + λ

∫
ĝ′′−i(u; λ) du

=
n∑

j=1

[V ∗
j − ĝ−i(xj ; λ)]2 + λ

∫
ĝ′′−i(u; λ) du,

since ĝ−i(x; λ) minimizes the right hand side of the first line, and because of the definition of V ∗
i .

Thus ĝ−i(x; λ) also minimizes the left hand side of the first line. But this has the same number of
observations and covariate values as the original data set (but a slightly different response vector),
and thus has the same smoother matrix Sλ as the original penalized least squares problem, and so
the minimizer of the left hand side of the first line (g−i) is given by SλV ∗, giving the result. 2

Writing sij(λ) for the elements of Sλ, it follows from this lemma and the definition of V ∗
i that

ĝ−i(xi; λ) − yi =
n∑

j=1

sij(λ)V ∗
j − yi

=
n∑

j=1

sij(λ)yj − yi + sii(λ)[ĝ−i(xi; λ) − yi]

= ĝ(xi; λ) − yi + sii(λ)[ĝ−i(xi; λ) − yi].

Thus
yi − ĝ−i(xi; λ) = [yi − ĝ(xi; λ)]/[1 − sii(λ)],

and

CV(λ) =
1
n

∑
i

[
yi − ĝ(xi; λ)
1 − sii(λ)

]2

. (2.41)

Thus the key to fast computation of CV(λ) is access to the diagonal elements of
Sλ = X(XtX + λP )−1Xt. Set A = XtX + λP . Although A is a band matrix, so its Cholesky
factorization is banded, A−1 is generally not a band matrix, and solving for A−1Xt by factoring
and using forward and backward substitution would take O(n2) operations, which would not
always be acceptable (recall estimating the curve itself only requires O(n). However, it turns out
a rather modest reorganization of the calculations leads to an O(n) algorithm. In general, for a
B-spline basis for a spline of order q + 1, the only nonzero elements of the ith row of X are
bij , bi,j+1, . . . , bi,j+q, for some j. Denoting the elements of A−1 by w(i, j), it follows that

sii(λ) =
q+j∑
u=j

biu

q+j∑
v=j

bivw(u, v),

so only the 2q + 1 central diagonals of A−1 are needed, or recalling that A is symmetric, only the
main diagonal and the next q above the main diagonal are needed. An O(n) algorithm for
calculating these diagonals is given in Section 2.9.4.
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Ordinary cross validation as described above is not invariant to certain types of transformations
of the problem, see Section 4.3 of Wahba (1990). This coupled with some computational issues
led to a modified cross validation criteria where sii in (2.41) is replaced by trace(Sλ)/n, the
average of the sii. This procedure is usually called generalized cross validation, although it is not
more general than ordinary cross validation, it is just a different procedure. This gives the GCV
function

GCV(λ) =
1
n

∑
i

[
yi − ĝ(xi; λ)

1 − trace(Sλ)/n

]2

.

Smoothing parameters chosen to minimize GCV and/or CV have been shown to have good
asymptotic properties, see Section 4.4 of Wahba (1990). Basically, the relative difference between
the estimated smoothing parameter and a suitably defined optimal value goes to 0 as n → ∞.
Unfortunately, the rate at which the difference goes to 0 tends to be very slow. Both ordinary and
generalized cross validation are thus not entirely reliable for choosing the smoothing parameter,
and sometimes have a tendency to undersmooth.

There has been considerable recent interest in fitting smoothing splines with correlated data.
Simulations in that setting have shown that a different criterion, called Generalized Maximum
Likelihood (GML), tends to perform better, although the extent to which that applies to
independent data is less clear. In the GML procedure, the smoothing parameter is treated as a
variance component in a mixed model, and its value estimated using a REML type procedure.
See Wang (1998), for example, for a description.

The algorithm given in Section 2.9 to fit a spline for fixed λ is easily extended to find the value of
λ that minimizes CV or GCV. The search can be done over a prespecified set of values (the
minimum need not be determined to high precision), or searched for using a standard line search
algorithm (it is usually recommended that a conservative algorithm, like the golden sections
search, be used). At each λ in the search, the spline is estimated as described in Section 2.9. Then
the diagonal elements of the smoother matrix are computed, as described above and in Section
2.9.4, and the CV or GCV score computed. Again everything can be done in O(n) operations.

The Splus function smooth.spline() has options for cross validation and generalized cross
validation. Either can be specified by setting spar=0 and omitting df, with the choice between
the two specified using the parameter cv.

2.9.4 Calculating the Central Diagonals of the Inverse of a Band Symmetric Positive Definite
Matrix

Let Ap×p be a band symmetric positive definite matrix with q nonzero diagonals above the main
diagonal. The goal is to calculate the main diagonal and first q diagonals above the main diagonal
for the matrix A−1. Note that A−1 is generally not a band matrix. The algorithm described
below is due to Hutchinson and de Hoog (1985); see also Green and Silverman (1994).

Let U tU = A be the Cholesky factorization of A. To solve for the components of A−1, we usually
consider the system of equations

U tUWp×p = Ip×p,

where I is the identity matrix, and the solution is W = A−1. Instead of first solving for (U t)−1,
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which would usually be the first step in solving this system, consider modifying the equations to

UW = (U t)−1. (2.42)

Why does this help? Since W is symmetric, we only need to consider the equations in the upper
triangle of this p × p array of equations. And since U t is lower triangular, (U t)−1 is also lower
triangular, so the only nonzero elements in the upper triangle of (U t)−1 are on the main diagonal,
and these elements are just 1/uii, where uij is the element in the ith row and jth column of U .
Thus the advantage in working with (2.42) is that we never need to calculate the rest of (U t)−1.

Since A is banded, so is its Cholesky factor, so the only nonzero elements in U are on the main
diagonal and on the next q diagonals above the main diagonal. Denoting the element of W in the
lth row and mth column by w(l, m), then the iith equation in the array of equations can be
written

min(i+q,p)∑
l=i

uilw(l, i) = 1/uii.

Noting that W is symmetric, this can be rewritten

min(i+q,p)∑
l=i

uilw(i, l) = 1/uii,

to express it entirely in terms of the elements of W of interest (the bands in the upper triangle).
Also, for i < j ≤ min(i + q, p) the ijth equation can be written

min(i+q,p)∑
l=i

uilw(l, j) = 0,

or again using the symmetry of W as

j∑
l=i

uilw(l, j) +
min(i+q,p)∑

l=j+1

uilw(j, l) = 0.

The algorithm then starts from the lower right corner of the array, and solves these equations in
the order (p, p), (p − 1, p), (p − 1, p − 1), (p − 2, p), (p − 2, p − 1), (p − 2, p − 2), . . . , (1, 1). The
(p, p) equation gives

uppw(p, p) = 1/up,p, so w(p, p) = 1/u2
pp.

The (p − 1, p) equation gives

up−1,p−1w(p − 1, p) + up−1,pw(p, p) = 0, so w(p − 1, p) = −up−1,pw(p, p)/up−1,p−1.

The (p − 1, p − 1) equation gives

up−1,p−1w(p − 1, p − 1) + up−1,pw(p − 1, p) = 1/up−1,p−1,

so
w(p − 1, p − 1) = 1/u2

p−1,p−1 − up−1,pw(p − 1, p)/up−1,p−1.
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Continuing in this fashion, from the equations in the ith row we find

w(i, min(i + q, p)) = − 1
uii

min(i+q,p)∑
l=i+1

uilw(l, min(i + q, p)),

w(i, j) = − 1
uii

 j∑
l=i+1

uilw(l, j) +
min(i+q,p)∑

l=j+1

uilw(j, l)

 , i < j < min(i + q, p),

w(i, i) = 1/u2
ii −

min(i+q,p)∑
l=i+1

uilw(i, l)/uii.

The values w(·, ·) needed at each stage in the recursion have already been determined at earlier
steps.

2.10 Additional Exercises

Exercise 2.9 Updating Choleski factorizations.

1. Suppose Ap×p is a positive definite matrix, and let U = (uij) be the Choleski factorization,
U ′U = A. Suppose A is augmented to a (p + 1) × (p + 1) matrix by adding a new row and
column with elements ap+1,j = aj,p+1, j = 1, . . . , p + 1 (assume this matrix is also positive
definite.) Let V = (vij) be the Choleski factor of this augmented matrix. Give formulas for
the vij in terms of the uij and aj,p+1.

This could arise, for example, if A were the X ′X matrix for a regression model, and a new
covariate were added to the model.

2. Suppose

A =


3 1 1 1
1 5 3 2
1 3 8 3
1 2 3 9

 .

(a) Compute the Choleski factor U of A = U ′U .

(b) Suppose that the second row and column are deleted from A, giving A∗
3×3. Then U can

be updated to be the Choleski factor of A∗ by dropping the second column of U , giving
U∗

4×3 = (u∗
ij), and using plane rotations (see Section 2.4) to zero-out the subdiagonal

elements u∗
32 and u∗

43.

i. First a rotation can be applied to 2nd and 3rd coordinates to zero-out u∗
32. Give

the matrix of this rotation G, and the result of applying this transformation to U∗.
ii. Next a rotation H of the 3rd and 4th coordinates can be applied to GU∗ to

zero-out (GU∗)43. Give the matrix H and the result of applying this
transformation to GU∗. The upper 3 × 3 portion of the result should be the
updated Choleski factor.

iii. Verify the result of the previous part by directly computing the Choleski factor of
A∗.
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Exercise 2.10 Solve the system of equations

Ax = b,

where

A =


5 2 3 5 3
3 2 6 7 4
5 2 7 9 1
9 4 8 3 10
3 2 2 3 a55

 and b =


4

−3
−4

9
5

 ,

for a55 = 6 − 10−k, k = 2, 4, 6, 8, 10. In each case estimate the accuracy of the solution x̂,
assuming the relative error in Ax̂ is approximately relative machine precision.

Exercise 2.11 Now consider the system of equations from Exercise 2.10 with a55 = 6. What is
the rank of A? Identify all solutions to the system of equations in this case. Also identify all
solutions if instead b = (5, 9, 3, 10, 3)′.

Exercise 2.12 The constrained least squares problem is to find β to minimize

(y − Xβ)′(y − Xβ)

subject to Cβ = b. Here y is n × 1, X is n × p, β is p × 1, C is m × p (m < p), and b is m × 1.
Assume rank(X) = p and rank(C) = m. Develop an algorithm to solve this problem. There are a
variety of ways this can be done. Discuss the speed and accuracy of possible approaches, and
explain why you make the particular choices you do in your algorithm.

Use your algorithm to solve for β̂ if

y =



5
5
1
6
6
1

10
2

12
7
5
1



, X =



2 11 12 4
14 10 12 6
15 14 10 9
4 7 12 2
8 8 9 1
7 13 6 8
4 7 9 2
6 9 7 3
8 2 4 1
6 10 6 13
4 11 2 3
4 11 7 4



,

C =

(
1.80 2.3 0.6 2.1
0.35 0.8 1.6 0.6

)
, b =

(
1
2

)
.

(Note that if this is thought of as a linear model, then the model does not contain a constant
term.)
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Exercise 2.13 The solution to a linear least squares problem with design matrix X can be
computed by (a) using the Choleski factorization of X ′X, (b) using the QR decomposition of X,
or (c) using the singular value decomposition of X. In each case, once the decomposition is
formed, it is still necessary to solve for the parameter estimates. For each method, determine the
approximate number of FLOPS required to solve for the parameter estimates, once the
decomposition has been computed. Include all additional calculations needed, including any
operations on the response vector, such as computing X ′y in method (a).

Exercise 2.14 It is easy to construct examples where methods based on the normal equations
fail, but direct decomposition of the design matrix X can be performed. Suppose the components
of the design matrix are defined by

xij =

{
1 i ≥ j,
1 − 10−7 i < j,

for i = 1, . . . , 100 and j = 1, . . . , 5, and suppose the response vector is 1:100 (in Splus notation).

1. Calculate both the QR and SVD estimates of the parameter values, and note the 1-norm
and 2-norm estimated condition numbers of X. Also compute the residual sum of squares
and R2 for this problem.

2. Calculate X ′X, and attempt to estimate the regression parameters from the Choleski
factorization of this matrix. Also use the SVD of X ′X (using both tol=0 and tol=1e-15)
to solve the normal equations. Calculate the residual sum of squares for both the SVD
solutions.

3. The model for the above problem can be written

yi = β1 + β2xi2 + · · · + β5xi5 + εi.

As discussed in Section 2.6.1, when the model contains a constant term (as is the case here),
it is often numerically advantageous to subtract off the means of the covariates, giving the
reparameterization

yi = α + β2(xi2 − x2) + · · · + β5(xi5 − x5) + εi,

where xj =
∑

i xij/n. For the reduced model with responses yi − y and covariates
xi2 − x2, . . . , xi5 − x5 (and no constant term), form the normal equations and estimate the
parameters using the Choleski factorization. How do the results compare with those from
the original QR decomposition? What is the condition number of X ′X in the reduced
model?

Exercise 2.15 In this problem, simulations are used to study the performance of spline
smoothing with the smoothing parameter selected using cross validation. All calculations can be
done in Splus, with the splines fit using the smooth.spline() function.

Let the covariate values xi be equally spaced over the interval (0, 1). Generate samples from the
model

yi = exp[−20(xi − .5)2] + εi, i = 1, . . . , 100,
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with εi ∼ N(0, .25). For each generated sample, fit a smoothing spline using ordinary cross
validation, and compute the quantities needed to answer the following questions. (This will need
to be repeated for many samples, with the answers given by summaries of the results from the
repeated samples. Some justification of the number of samples used should be given. In particular
you may want to calculate standard errors of estimated quantities.)

1. What is the expected value of the “degrees of freedom” of the spline smooth? How much
sample to sample variation is there in the degrees of freedom?

2. What are the bias, variance, and MSE of the spline estimate at x = .1, .25, .5, .8? (Note that
there is a function predict.smooth.spline().)
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Chapter 3

Unconstrained Optimization and
Solving Nonlinear Equations

3.1 One-Dimensional Problems

3.1.1 Solving a Single Nonlinear Equation

Problems that require solving a single nonlinear equation occur frequently in statistics.

Example 3.1 Let X be the observed number of responders out of n patients entered on a phase
II cancer clinical trial. Suppose X ∼ Binomial(n, p). Having observed X = r, the ‘exact’ 1 − α
upper confidence limit on p is defined as the value pu satisfying

α = P (X ≤ r|pu) =
r∑

i=0

(
n
i

)
pi

u(1 − pu)n−i,

and the 1 − α exact lower confidence limit is defined as the value pl of p satisfying

α = P (X ≥ r|pl) = 1 − P (X < r|pl),

(with pl defined to be 0 if r = 0 and pu defined to be 1 if r = n). Both cases give a nonlinear
equation to solve. 2

The simplest algorithm for solving a single equation is the bisection search. Implementation of a
bisection search requires specifying an initial bracketing interval. For a continuous function f , an
interval [a, b] brackets a solution to f(x) = c if f(a) − c and f(b) − c have opposite signs. The
following function implements a bisection search to solve for the lower confidence limit. This
function assumes that α will be a fairly small positive value, such as .05 or .10, so the root will be
< r/n, and the initial bracketing interval is thus chosen to be [0, r/n]. At each step in the
bisection search the midpoint of the current bracketing interval is determined, and one of the two
resulting subintervals must still bracket a solution. This subinterval becomes the new bracketing
interval, which is then split on the midpoint, and so on. The process continues until the width of
the bracketing interval has determined the solution to sufficient accuracy. In the function, the

83
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quantities pll and plu bracket the solution. At each step the midpoint of the current bracketing
interval is computed, and either pll or plu is replaced by the midpoint, keeping a solution
bracketed between the two values. The iteration terminates when the relative difference
(plu-pll)/plu < eps. Typically 2 or 3 significant digits are adequate for statistical purposes.

> blci <- function(r,n,alpha=.05,eps=1e-3) {
+ if(r <= 0) pl <- 0 else {
+ plu <- r/n
+ pll <- 0
+ pl <- (pll + plu)/2
+ u <- 1 - pbinom(r - 1, n, pl)
+ i <- 1
+ while ((plu-pll)/plu > eps) {
+ i <- i+1
+ if(u > alpha) {
+ plu <- pl
+ pl <- (pll + plu)/2
+ u <- 1 - pbinom(r - 1, n, pl)
+ } else {
+ pll <- pl
+ pl <- (pll + plu)/2
+ u <- 1 - pbinom(r - 1, n, pl)
+ }
+ }
+ }
+ c(lcl=pl,neval=i)
+ }
> blci(5,15,eps=1e-2)

lcl neval
0.141276 9

> blci(5,15,eps=1e-3)
lcl neval

0.1416423 13
> blci(5,15,eps=1e-4)

lcl neval
0.1416677 16

> blci(5,15,eps=1e-6)
lcl neval

0.141664 23
> blci(5,15,eps=1e-8)

lcl neval
0.141664 29

>

Note how the number of evaluations of the binomial CDF is nearly linear in the values of
log10(eps) (which is approximately the number of significant digits). This is typical of the
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bisection search, which is said to have linear convergence.

The bisection search used no information on the value of the function beyond whether it is
positive or negative. Splus and R have a function uniroot() which implements a more
sophisticated search algorithm (Brent’s method, discussed in Section 9.3 of Press et. al. (1992)).
This method uses local quadratic interpolation, which will converge much faster once the iteration
gets close to the root. To guarantee convergence, the method still keeps a bracket on the solution,
and if the quadratic interpolation does not produce an acceptable point it rejects it and uses a
bisection step instead.

To use uniroot(), the user must first create a function evaluating the equation to be solved. The
required arguments to uniroot() are the function evaluating the equation and an interval
bracketing a solution. The argument tol can be used to change the convergence criterion. The
description in the help file states that the iteration stops when the length of the bracketing
interval is <tol, which from the output apparently means the absolute length (this cannot be
verified from the code as the test is apparently done within a call to a FORTRAN routine). In
the calls below tol=eps*.142 to make the precision similar to that of the previous bisection
algorithm. Only part of the output is displayed (root giving the root, f.root giving the value of
f at the root, nf giving the number of function evaluations, and neg and pos giving the range of
the bracketing interval at termination. The unlist() command is used to collapse the list
returned by uniroot() into a vector. (See the help file for more details on uniroot().)

> # solve f(p)=0 for lower binomial confidence limit
> f <- function(p,r,n,alpha=.05) 1-pbinom(r-1,n,p) - alpha
> unlist(uniroot(f,c(0,5/15),r=5,n=15,tol=.142*1e-2)[c(1:4,6)])

root f.root nf neg pos
0.141602 -8.135718e-05 9 0.141602 0.142312

> unlist(uniroot(f,c(0,5/15),r=5,n=15,tol=.142*1e-3)[c(1:4,6)])
root f.root nf neg pos

0.141673 1.17973e-05 9 0.141602 0.141673
> unlist(uniroot(f,c(0,5/15),r=5,n=15,tol=.142*1e-4)[c(1:4,6)])

root f.root nf neg pos
0.1416632 -9.648463e-07 10 0.1416632 0.1416703

> unlist(uniroot(f,c(0,5/15),r=5,n=15,tol=.142*1e-6)[c(1:4,6)])
root f.root nf neg pos

0.141664 1.083704e-11 11 0.1416639 0.141664
> unlist(uniroot(f,c(0,5/15),r=5,n=15,tol=.142*1e-8)[c(1:4,6)])

root f.root nf neg pos
0.141664 1.083704e-11 11 0.141664 0.141664

Note that bisection and uniroot() need a similar number of function evaluations to reach about
3 significant digits. However, once uniroot() gets close to a solution, it gives much better
accuracy with only a little additional work, while the bisection method continues the slow (but
safe) linear rate from the early part of the algorithm.

Another widely used approach is Newton’s method, which in its basic form repeatedly solves the
tangent line approximation to the nonlinear problem. That is, given the current iterate or initial
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value x(i), Newton’s method approximates the equation f(x) = 0 with
f(x(i)) + f ′(x(i))(x − x(i)) = 0. The solution to the linear approximation is
x(i+1) = x(i) − f(x(i))/f ′(x(i)), which becomes the new guess at the solution. This iteration is
repeated until convergence. Unfortunately, this algorithm often diverges unless the starting value
is close to the solution. A modified version first starts with a bracketing interval and computes
new candidate points using Newton’s method, but only uses them if they fall within the interval.
If not, then a bisection step could be used instead. Regardless of how the new point is chosen, the
bracketing interval is updated at each iteration as before. See Section 9.4 of Press et. al. (1992)
for details. An alternate approach, which does not require specifying a bracketing interval, will be
described for the multiparameter setting in Section 3.6.

3.1.2 Rates of Convergence

Let x1, x2, . . . be a sequence converging to a value x∗. In particular, think of the values of pl given
at each iteration of one of the above algorithms. If there is a c, 0 ≤ c < 1, such that for all i
sufficiently large,

|xi+1 − x∗| < c|xi − x∗|,
then the sequence converges linearly. If there is a sequence ci → 0 such that

|xi+1 − x∗| < ci|xi − x∗|

(for i sufficiently large), then the sequence {xi} converges superlinearly. If there is a c, 0 ≤ c < 1,
and a p > 1 such that

|xi+1 − x∗| < c|xi − x∗|p,
then the sequence {xi} converges with order at least p. If this holds for p = 2 then the sequence
has quadratic convergence.

Since the width of the bounding interval is reduced by 1/2 at each iteration in a bisection search,
the sequence of values generated is guaranteed to converge linearly (with c = 1/2). Newton’s
method has quadratic convergence, when it converges.

Thisted (1988, Section 4.2) gives a number of other algorithms. One of these, the Illinois method,
is safe and improves substantially on the bisection search, having a convergence order of 1.442.

3.1.3 One-Dimensional Minimization

Given a function f(x), where x is a scalar, the one-dimensional minimization problem is to
determine x̂ such that f(x̂) ≤ f(x) for all x. If f has a continuous derivative, then a solution to
the minimization problem will satisfy f ′(x) = 0, and so methods described above for solving
equations can be applied to this problem as well, but this approach will not be discussed further
here. The focus in this section is on directly minimizing f without making use of derivative
information. Newton’s method and some other derivative based methods will be considered later
for multi-parameter problems.

Bracketing a minimum is more complicated than bracketing a solution to an equation, because to
be sure that an interval contains a minimum, the function must also be evaluated at an interior
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point that has a smaller function value than the endpoints. Thus keeping track of a bracketing
interval requires tracking 3 points. The safe, simple approach to locating a minimum, given a
bracketing interval, is the golden section search, which will be described next.

Golden Section Search

At any stage in the golden section search, there are 3 points x1 < x2 < x3, with the interval
thought to contain a (local) minimum. A new point x0 ∈ (x1, x3) is chosen, and a new bracketing
interval formed based on the values of f(x0) and f(x2). For example, if x0 < x2, then the new
bracketing interval is (x0, x3) if f(x0) > f(x2), and is (x1, x2) if f(x0) < f(x2).

The main question is how to choose the new point x0. If the point x2 had been chosen
appropriately, it is possible to make the proportionate reduction in the size of the interval the
same at every iteration. Let α be the proportion of the interval eliminated at each step. If
x0 < x2, then for this to happen regardless of the value of f(x0), the points must satisfy
x0 − x1 = x3 − x2 = α(x3 − x1), and to be able to get the same proportionate reduction at the
next iteration, the points must also satisfy x2 − x0 = α(x3 − x0) = α[α(x3 − x1) + (x2 − x0)], so
x2 − x0 = (x3 − x1)α2/(1 − α). Since (x0 − x1) + (x2 − x0) + (x3 − x2) = x3 − x1, it follows that
2α + α2/(1 − α) = 1, which is a quadratic equation whose only solution satisfying 0 < α < 1 is
α = (3 −√

5)/2. The proportion of the interval retained at each iteration,
1 − α = (

√
5 − 1)/2 .= .618, is known as the golden mean.

In the golden section search, given an interval [x1, x3] thought to contain a minimum, initially
interior points are located at x0 = x1 + α(x3 − x1) and x2 = x3 − α(x3 − x1). Then f(x0) and
f(x2) are evaluated. If f(x0) < f(x2) then the new interval is [x1, x2] and the next point added is
x1 + α(x2 − x1), and if f(x0) > f(x2) then the new interval is [x0, x3] and the next point added is
x3 −α(x3 − x0). The algorithm continues in this fashion until the width of the interval determines
the solution to sufficient precision. Note that it is not necessary to evaluate f at the endpoints of
the initial interval, and if this interval turns out not to contain a local minimum, then the
algorithm will converge to one of the endpoints.

A function implementing the golden section search is given below. Here f is a function whose first
argument is the variable of the minimization (x above), brack.int is the bracketing interval (a
vector of length 2), and ‘...’ are additional arguments to f. The iteration terminates when the
relative length of the interval is < eps.

golden <- function(f,brack.int,eps=1.e-4,...) {
g <- (3-sqrt(5))/2
xl <- min(brack.int)
xu <- max(brack.int)
tmp <- g*(xu-xl)
xmu <- xu-tmp
xml <- xl+tmp
fl <- f(xml,...)
fu <- f(xmu,...)
while(abs(xu-xl)>(1.e-5+abs(xl))*eps) {
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if (fl<fu) {
xu <- xmu
xmu <- xml
fu <- fl
xml <- xl+g*(xu-xl)
fl <- f(xml,...)

} else {
xl <- xml
xml <- xmu
fl <- fu
xmu <- xu-g*(xu-xl)
fu <- f(xmu,...)

}
}
if (fl<fu) xml else xmu

}

To illustrate the use of this function, the multinomial log likelihood

1997 log(2 + θ) + 1810 log(1 − θ) + 32 log(θ), (3.1)

where 0 < θ < 1, will be maximized. The probabilities of the three categories are actually
p1 = (2 + θ)/4, p2 = (1 − θ)/2 and p3 = θ/4, but the constant divisors have been dropped from
the likelihood. This likelihood is discussed by Thisted (1988, Section 4.2.6.1). Since the function
is designed to locate a minimum, the function f evaluates the negative of the log likelihood.

> f <- function(theta) -1997*log(2+theta)-1810*log(1-theta)-32*log(theta)
> golden(f,c(.001,.999))
[1] 0.03571247

Brent’s Method

The golden section search is safe, but has a slow linear rate of convergence. Methods based on
fitting quadratic interpolants to the evaluated points can converge much faster once they get close
to the solution. Details of implementation in a way that maintains a bracketing interval and
guarantees convergence are a little involved, and there is substantial bookkeeping involved in
keeping track of the points. A fairly standard algorithm, known as Brent’s method, is described
in Section 10.2 of Press et. al. (1992).

The Splus (and R) function optimize() will perform one-dimensional minimization (or optionally
maximization) using Brent’s method (although it is not clear how similar the algorithm is to that
in Press et. al. (1992)). The optimize() function does maintain a bracket on the minimum (the
initial bracket is supplied by the user as the interval argument), and uses a minimum of a local
quadratic approximation to choose the next point. If the new point does not meet certain criteria,
the algorithm reverts to a golden section step. As with the function uniroot() above,
optimize() has an argument tol that controls the precision needed at convergence. Again as in
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uniroot(), it appears the iteration stops when the absolute width of the bracketing interval is
<tol.

As an example, again consider the multinomial likelihood given in Section 4.2.6.1 (page 175) of
Thisted (1988), with log likelihood given by (3.1).

In the call to optimize() below, the function f returns the negative of the log likelihood, as
before. The initial lower and upper limits on the bracketing interval need to be > 0 and < 1. In
the output, nf gives the number of function evaluations used, and the interval values give the
bracketing interval at termination. (See the help file for more details on optimize().)

> f <- function(theta)
+ -1997*log(2+theta)-1810*log(1-theta)-32*log(theta)
> unlist(optimize(f,c(.001,.999),tol=1e-4)[1:4])

minimum objective nf interval1 interval2
0.03571547 -1247.105 12 0.03568214 0.03577505

> unlist(optimize(f,c(.001,.999),tol=1e-8)[1:4])
minimum objective nf interval1 interval2

0.0357123 -1247.105 15 0.0357123 0.0357123

The precision with 15 function evaluations is similar to that for the Newton-Raphson and scoring
algorithms given by Thisted (1988, p. 176) after 6–7 iterations. However, those algorithms require
both first and second derivative calculations, so the overall computational burden is not very
different.

If the initial bracketing interval does not contain a local minimum, the algorithm still works
correctly, in that it converges to the minimum within the specified interval, which will be one of
the endpoints. (If the function is decreasing as an endpoint of the initial interval is approached
from within the interval, it is possible for the algorithm to converge to the endpoint even if the
interval does contain a local minimum. In that case, though, the endpoint is still a local minimum
within the interval, even though the function may continue to decrease outside the interval, so the
algorithm is technically still converging to a local minimum within the interval.)

> unlist(optimize(f,c(.2,.999),tol=1e-8)[1:4])
minimum objective nf interval1 interval2

0.2 -1119.158 39 0.2 0.2

3.2 The Newton-Raphson Optimization Algorithm

Some Notation and Definitions:
For a function f : Rp → R1, the gradient is the vector

∇f(x) =

(
∂f(x)
∂x1

, · · · , ∂f(x)
∂xp

)′
,

and the Hessian matrix (or just Hessian) is the matrix of second partial derivatives

∇2f(x) =

(
∂2f(x)
∂xi∂xj

)
.
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For a transformation G : Rp → Rp, defined by G(x) = (g1(x), . . . , gp(x))′, the Jacobian is the
matrix of partial derivatives

JG(x) =

(
∂gi(x)
∂xj

)
.

(The ith row of JG is [∇gi(x)]′.). For f : Rp → R1, the Hessian is the Jacobian of the gradient;
that is, ∇2f(x) = J∇f (x).

The directional derivative of a function f : Rp → R1 at x in the direction d is defined by

lim
ε→0

f(x + εd) − f(x)
ε

=
∂

∂ε
f(x + εd)

∣∣∣∣
ε=0

= d′∇f(x).

A function f : Rp → R1 is convex on a set A if λf(a) + (1 − λ)f(b) ≥ f [λa + (1 − λ)b] for all
a, b ∈ A and 0 < λ < 1. The function is strictly convex if equality holds only when a = b. For
smooth functions, f is convex on A if ∇2f(x) is nonnegative definite (nnd) for all x ∈ A. If
∇2f(x) is positive definite (pd) for all x ∈ A, then f is strictly convex on A.

3.2.1 The Problem

The general unconstrained minimization problem for a smooth function f : Rp → R1 is to find an
x∗ such that

f(x∗) = min
x

f(x), (3.2)

where the minimum is over all x ∈ Rp. In general such an x∗ need not exist (the function could be
decreasing as x becomes infinite in some direction). Another problem is that there may be
multiple local minima. A local minimum is a point x∗ such that

f(x∗) ≤ f(x) (3.3)

for all x in some neighborhood of x∗. Generally it is impossible to guarantee convergence of a
numerical algorithm to a global minimum, unless the function is known to be everywhere convex.
For this reason, the problem considered will be that of trying to find a local minimum x∗.

If x∗ is a local minimum of f(x), then x∗ is a local maximum of c− f(x) for any constant c. Thus
there is no loss of generality in restricting attention to minimization. In particular, maximum
likelihood estimates for a log likelihood l(θ) can be found by minimizing −l(θ).

For a smooth function f , if x∗ is a local minimum, then ∇f(x∗) = 0. If ∇f(x∗) = 0 and ∇2f(x∗)
is nnd, then x∗ is a local minimum. Thus the search for a minimum can also focus on finding
points x∗ satisfying ∇f(x∗) = 0. Such points need not be local minima, since in general they
could also be local maxima or saddle points.

Many algorithms for searching for a local minimum are similar in structure to the following
general outline.

1. Given the current point x0, choose a direction d in which to move next.

2. Find a point x1 = x0 + λd such that f(x1) < f(x0).
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3. Set x0 = x1, and repeat (until convergence).

For algorithms of this type to be successful, it is important that the direction d chosen at each
stage be a descent direction for f ; that is, a direction in which f is decreasing. Formally, a
direction d is a descent direction for f at x0 if

f(x0 + λd) < f(x0) for 0 < λ < ε,

for some ε > 0. From the definition of a directional derivative above, it is clear that d is a descent
direction for f at x0 if and only if d′∇f(x0) < 0.

From the Cauchy-Schwarz inequality,

|d′∇f(x)|/‖d‖2 ≤ ‖∇f(x)‖2,

and taking d = ∇f(x) gives equality, so ∇f(x) (normalized) is the direction of most rapid
increase in f at x, and −∇f(x) is the direction of most rapid decrease. This suggests considering
d = −∇f(x) in the above algorithm. This is called the method of steepest descent. It turns out to
perform poorly for most functions, though; see Exercise 3.1.

3.2.2 The Basic Algorithm

Newton-Raphson is a method for iteratively searching for a local minimum, that can perhaps
most easily be thought of as searching for solutions to the system of nonlinear equations
∇f(x) = 0. In this method, given the current point x0, the gradient ∇f(x) is approximated by

∇f(x0) + ∇2f(x0)(x − x0),

the plane tangent to ∇f(x) at x0. The solution to the system of linear equations

∇f(x0) + ∇2f(x0)(x − x0) = 0

is then the next guess at the solution of the minimization problem. Formally, this solution can be
written

x1 = x0 − [∇2f(x0)]−1∇f(x0).

The algorithm continues computing updates from this formula until convergence is reached, or
since it often does not converge, until numerical errors occur or a maximum number of iterations
is exceeded.

Example 3.2 Consider the negative log likelihood for the logistic regression model for a binary
response yi and a single covariate zi,

f(β) = −
n∑

i=1

(yi[β0 + β1zi] − log[1 + exp(β0 + β1zi)]),

which has gradient

∇f(β) = −
∑

i

(
yi − pi

zi[yi − pi]

)
,
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where pi = P (yi = 1|zi) = exp(β0 + β1zi)/[1 + exp(β0 + β1zi)], and Hessian

∇2f(β) =
∑

i

(
1
zi

)
(1, zi)pi(1 − pi).

Provided the covariate is not everywhere constant, the Hessian is positive definite at all
parameter values, which follows from

(a1, a2)∇2f(β)(a1, a2)′ =
∑

i

(a1 + a2zi)2pi(1 − pi) > 0

unless a1 = a2 = 0. Thus this is a particularly well behaved problem. In spite of this the
Newton-Raphson iteration diverges unless the starting point is fairly close to the solution, as the
following calculations show.

> f1 <- function(b,r,z) {
+ ### function to compute logistic regression -log likelihood, -score and
+ ### information. b=parameters, r=binary response, z=covariate
+ u <- b[1]+b[2]*z
+ u2 <- exp(u)
+ l <- -sum(u*r-log(1+u2))
+ p <- u2/(1+u2)
+ s <- -c(sum(r-p),sum(z*(r-p)))
+ v <- matrix(c(sum(p*(1-p)),sum(z*p*(1-p)),0,sum(z*z*p*(1-p))),2,2)
+ v[1,2] <- v[2,1]
+ list(loglik=l,score=s,inf=v)
+ }
> n <- 100; beta <- c(0,4) # true beta
> # generate some data
> > z <- runif(n)>.1
> p <- exp(beta[1]+z*beta[2])
> p <- p/(1+p)
> r <- runif(n)<p
> table(r,z)

FALSE TRUE
FALSE 8 6
TRUE 6 80

> b <- c(1,2) # initial value
> for (i in 1:7) { # iteration
+ q <- f1(b,r,z)
+ ## since q$inf is pd, the following, written for general matrices, is not ideal
+ b <- b-solve(q$inf,q$score)
+ print(c(q$l,b))
+ }
[1] 34.5641759 -0.5384984 3.0439606
[1] 31.4487584 -0.2805269 2.8677997
[1] 31.3220062 -0.2876785 2.8779418
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[1] 31.3218934 -0.2876821 2.8779492
[1] 31.3218934 -0.2876821 2.8779492
[1] 31.3218934 -0.2876821 2.8779492
[1] 31.3218934 -0.2876821 2.8779492
> # converged after a small number of iterations
>
> b <- c(-1,-1) # initial value
> for (i in 1:7) { # iteration
+ q <- f1(b,r,z)
+ b <- b-solve(q$inf,q$score)
+ print(c(q$l,b))
+ }
[1] 181.301473 -0.188096 5.912660
[1] 44.2054842 -0.2871378 -14.4945353
[1] 1.192095e+03 -2.876821e-01 2.444489e+06
Error in .Fortran(if(!cmplx) "dqr" else "zqr",: subroutine dqr: 4 missing

value(s) in argument 1
Dumped
> f1(c(-.2876821,2.444489e+06),r,z)
$loglik:
[1] Inf

$score:
[1] NA NA

$inf:
[,1] [,2]

[1,] NA NA
[2,] NA NA

> # diverged until numerical errors occurred

In the second starting point above, the second variable keeps overshooting the minimum, and the
algorithm diverges. Also note that with a single binary covariate, the model is saturated, and it is
possible to solve for the MLEs directly from the tabulation of r by z. In particular,
β̂1 = log(80 ∗ 8/62) .= 2.877949. 2

3.2.3 Backtracking

The divergence problem with the Newton-Raphson iteration in Example 3.2 is easily fixed.
Instead of taking fixed steps at each iteration, the general outline for search algorithms given in
Section 3.2.1 can be applied. In particular, regard the Newton-Raphson step
−[∇2f(x0)]−1∇f(x0) as a direction in which to search for a better point. The modified
Newton-Raphson iteration then takes steps of the form

x1(λ) = x0 − λ[∇2f(x0)]−1∇f(x0), (3.4)
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where the multiplier λ to be used at each iteration remains to be determined.

As seen in Example 3.2, the unmodified Newton-Raphson iteration tends to converge very quickly
once it gets close to a solution. In fact, it has quadratic convergence in multi-dimensional
problems, just as it does in the univariate case. It would be be unfortunate if modifications to
improve convergence from distant points decreased the rate of convergence once the algorithm got
close to a solution, or made the calculations in the later stages substantially less efficient. These
considerations lead to the following strategy.

1. First compute the full Newton-Raphson step, corresponding to λ = 1 in (3.4). If
f(x1(1)) < f(x0), then keep the new point, and repeat.

2. (Backtracking step). If f(x1(1)) ≥ f(x0), then reject the new point and backtrack towards
x0 by computing x1(λ) for values λ < 1, until a better point is found.

It is technically possible to construct sequences where f(x1) < f(x0) at each step but where the
sequence never converges. For this reason a slightly stronger condition is usually used. Dennis
and Schnabel (1983) recommend requiring that λ satisfy

f [x1(λ)] < f(x0) + 10−4[x1(λ) − x0]′∇f(x0). (3.5)

It can be shown that if x1 − x0 is a descent direction, then this condition can always be satisfied.
(If x1 − x0 is a descent direction, then [x1 − x0]′∇f(x0) < 0, so this condition requires at least a
small decrease in f at each iteration.)

The remaining problem is how to choose the sequence of λ values in the backtracking step (step 2
above). A crude but usually effective strategy is simply to reduce the step length by a fixed
fraction δ each time. That is, if f(x1(1)) does not improve on f(x0), try x1(δ). If f(x1(δ)) does
not improve on f(x0), try x1(δ2), etc. When δ = 1/2 (a common choice), this procedure is called
step halving. In poorly behaved problems, smaller values of δ will sometimes lead to faster
convergence. A more sophisticated backtracking algorithm would use quadratic and cubic
interpolation based on previously computed function values and derivatives. An implementation
of backtracking using polynomial interpolation is given in the function lnsrch in Section 9.7 of
Press et. al. (1992). Note that even the lnsrch backtracking algorithm stops as soon as it finds a
point satisfying (3.5); it is not thought to be worthwhile to look for a precise minimum in this
direction. This is because the backtracking steps are only being used if the algorithm is far
enough away from a local minimum of f(x) for the full Newton-Raphson step to fail. But in this
case it is unlikely that the minimum in the search direction will be a very good point in a global
sense, either.

The following code implements step halving for the logistic regression example.

Example 3.2 continued.

> f2 <- function(b,r,z) { #like f1, except only returns -log(likelihood)
+ u <- b[1]+b[2]*z
+ u2 <- exp(u)
+ -sum(u*r-log(1+u2))
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+ }
> b <- c(-1,-1) # initial value
> for (i in 1:7) { # iteration
+ q <- f1(b,r,z)
+ print(c(q$l,b))
+ db <- -solve(q$inf,q$score)
+ bn <- b+db
+ ln <- f2(bn,r,z)
+ print(ln)
+ while (ln > q$l+1.e-4*sum(db*q$score)) {
+ db <- db/2 # cut the step in half
+ bn <- b+db
+ ln <- f2(bn,r,z)
+ print(ln)
+ }
+ b <- bn
+ }
[1] 181.3015 -1.0000 -1.0000
[1] 44.20548
[1] 44.205484 -0.188096 5.912660
[1] 1192.095
[1] 372.7729
[1] 50.84318
[1] 32.11035
[1] 32.1103513 -0.2004763 3.3617603
[1] 31.4125
[1] 31.4124967 -0.2872491 2.7018403
[1] 31.32232
[1] 31.3223245 -0.2876821 2.8655422
[1] 31.32189
[1] 31.3218934 -0.2876821 2.8778833
[1] 31.32189
[1] 31.3218934 -0.2876821 2.8779492
[1] 31.32189

In this example, backtracking was only needed at one iteration, and a better point was found at
the third backtracking step. This algorithm (with a few minor modifications) converges almost
universally for logistic regression problems with finite MLEs. 2

3.2.4 Positive Definite Modifications to the Hessian

There is still a problem with the modified Newton-Raphson iteration given above. In general,
there is nothing to guarantee that the Newton-Raphson step direction is a descent direction for f
at x0, and if it is not, the backtracking algorithm will not be able to find a better point satisfying
(3.5). Recall that d is a descent direction for f at x0 if d′∇f(x0) < 0. The Newton-Raphson
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iteration takes d = −[∇2f(x0)]−1∇f(x0), so

d′∇f(x0) = −[∇f(x0)]′[∇2f(x0)]−1∇f(x0). (3.6)

If ∇2f(x0) is positive definite, then (3.6) is negative at any x0 for which ∇f(x0) 6= 0. However, if
∇2f(x0) is indefinite (or even negative definite), then there is no guarantee that (3.6) will be
negative, and positive values are possible. (An example of this will be seen in a Weibull regression
model, later.) Since d = −A−1∇f(x0) is a descent direction for any positive definite matrix A
(that is, d′∇f(x0) < 0 in this case), the usual approach when ∇2f(x0) is not positive definite is to
use some other matrix A which is positive definite. Since ∇2f(x) is positive definite at a local
minimum, it will usually be pd in a neighborhood of a local minimum, and once the
Newton-Raphson iteration with backtracking gets close enough to a local minimum, the iteration
will converge quickly. Again it is not desirable to do anything which would disrupt this property.
The usual approach is to first check whether ∇2f(x0) is pd, and if it is, just use it. If not, then
modify it as little as possible to get a matrix which is pd. One such modification is to replace
∇2f(x0) with

∇2f(x0) + αI,

with α chosen large enough to make the matrix positive definite. (This is similar to the
Levenberg-Marquardt algorithm for nonlinear least squares, discussed in Section 4.5.3.3 of
Thisted, 1988.)

The function schol() below, which calls the FORTRAN subroutine dschol, gives a crude
implementation of this idea. The goal is to make sure the smallest diagonal element in the
factorization is roughly at least as large as a fraction ratm of the largest. Let
am = maxij{∇2f(x0)}ij .

√
am is an upper bound on the largest element on the diagonal of the

factorization. First, ∇2f(x0) is checked to make sure that no off diagonal elements are larger than
am, and that the smallest diagonal element is larger than am(ratm)2. If either is not true,
∇2f(x0) is replaced by H = ∇2f(x0) + cI, with c large enough so that both conditions are
satisfied. Then the Choleski factorization of H is attempted. If any diagonal element in the
factorization (prior to taking the √ ) is less than (am + c)(ratm)2, then H is replaced by
H + (am + c)(frac)I, where frac is a small positive value that can be specified by the user. If the
factorization still fails, the process repeated, doubling the magnitude of the value added to the
diagonal each time the factorization fails. The purpose is to get a safely positive definite matrix,
while perturbing the Hessian as little as possible. There is an efficiency tradeoff, since adding a
value that is too small will require many attempts at the Choleski factorization before the matrix
becomes positive definite, while adding a value that is too large will make the Newton-Raphson
updates behave like steepest descent updates, and many iterations of the Newton-Raphson
algorithm might be required to get close enough to the solution for ∇2f(x0) to become positive
definite. This strategy is also likely to be more successful if the variables have been defined on
similar scales. The values used as defaults for ratm and frac are arbitrary. The performance is
much more sensitive to frac than to ratm.

The code for the function schol() follows. If the rhs argument is supplied, then the solution to
the system of equations with coefficient matrix a, as modified by the algorithm above, and right
hand side given by the rhs vector, is computed. rhs can be either a vector or a matrix of multiple
right hand side vectors.

schol <- function(a,rhs=NULL,frac=.005,ratm=1.e-4) {
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## computes the upper triangle Choleski factor of a, or if a is not pd
## by a ’safe’ margin, computes the Choleski factor of a+cI for a
## scalar c chosen to make this matrix pd, and optionally computes the
## solution to (a+cI) %*% x = rhs
## a=symmetric matrix -- only the upper triangle of a is needed
## rhs: if given, the system of equations a %*% x = rhs will be solved
## for x. rhs should be a vector of length n or a matrix with n rows
## frac: the minimum value added to the diagonal of a when a does not
## meet the ratm criterion is roughly 2*frac*max(abs(a)).
## This is repeatedly doubled until the matrix is pd
## ratm: the minimum value allowed for any diagonal element of the
## factorization of a is roughly ratm*sqrt(max(abs(a))
## output: a list, with components
## $chol = Choleski factor of a + dinc I
## $sol = solution to (a+dinc I ) %*% x = b
## $dinc = amount added to diagonal of a
## $info: if 0, factorization successfully completed, if > 0 factorization
## failed, if =-2, a was replaced by an identity matrix.

da <- dim(a)
if (da[1] != da[2]) stop()
if (!is.null(rhs)) {
rhs <- as.matrix(rhs)
nrhs <- ncol(rhs)

} else {
rhs <- nrhs <- 0

}
u <- .C(’dschol_’,as.integer(da[1]), as.double(a),

as.double(ratm), as.double(frac), a=as.double(a),
rhs=as.double(rhs),as.integer(nrhs), dinc=double(1),
info=integer(1))[c(5,6,8,9)]

if (nrhs>0) list(chol=matrix(u$a,nrow=da[1]),
sol=matrix(u$rhs,ncol=nrhs),dinc=u$dinc,info=u$info)

else list(chol=matrix(u$a,nrow=da[1]),
sol=NULL,dinc=u$dinc,info=u$info)

}

Following is the source code for the FORTRAN subroutine dschol.

subroutine dschol( n, a, ratm, frac, wa, rhs, nrhs, dinc, info)
integer info, n, nrhs
double precision a(n,*), ratm, dinc, frac, wa(n,*), rhs(n,*)

*
* n (input) INTEGER The order of the matrix A.
*
* A (input/output) DOUBLE PRECISION array, dimension (N,N)
* On entry, the symmetric matrix A. On output, the diagonal
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* elements of A may have been increased to make A pd. Only the
* upper triangle is needed on input.
*
* ratm min ratio allowed of smallest to largest diag elements of
* U (the Choleski factor)
* frac fraction of largest element to add to diag when not pd
* wa (output) if INFO = 0, wa is the factor U from the Choleski
* factorization of the output matrix A, A = U’U (the lower
* triangle is completed with 0’s)
* dinc (output), the amount added to the diag of A
* INFO (output) INTEGER
* <= 0: wa=cholsky factor of output A
* -2 : all diagonal elements of A were <=0, so A was replaced by
* an identity matrix
* > 0: factorization could not be performed on the final A matrix.
*
* =====================================================================
*

double precision one, zero
parameter ( one = 1.0d+0, zero = 0.0d+0 )
integer i, j
double precision dma,dm2,dm3,dmi,doff
double precision ddot
external ddot
intrinsic max, min, sqrt
dinc=zero

* Quick return if possible
if( n.le.0 ) return
if (n.eq.1) then

if (a(1,1).gt.zero) then
wa(1,1)=sqrt(a(1,1))
go to 75

else
dinc=1-a(1,1)
wa(1,1)=1
a(1,1)=1
info=-2
go to 75

endif
endif

* determine max and min diag and max abs off-diag elements
dma=a(1,1)
dmi=a(1,1)
doff=zero
do 5 i=1,n

dma=max(dma,a(i,i))
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dmi=min(dmi,a(i,i))
do 6 j=1,i-1

doff=max(doff,abs(a(j,i)))
6 continue
5 continue

if (dma.le.zero) then
info=-2
do 7 i=1,n

do 8 j=1,n
wa(j,i)=zero
a(j,i)=zero

8 continue
wa(i,i)=one
a(i,i)=one

7 continue
go to 75

endif
c make sure dma > doff, and dmi >= dma*ratm*ratm

dinc=max(dma*ratm**2-dmi,doff-dma)/(1-ratm**2)
if (dinc.gt.zero) then

do 9 i=1,n
a(i,i)=a(i,i)+dinc

9 continue
dma=dma+dinc

else
dinc=zero

endif
c dm3=base amount to add to diagonal if not pd

dm3=dma*frac
c in ochol, diagonal elements of factorization required to be > sqrt(dm2)
c assuming largest diag element is approx sqrt(dma), and smallest
c should be > largest*ratm, need dm2=dma*ratm*ratm
988 dm2=dma*ratm*ratm

c since # rows = n ...
do 35 i=1,n*n

wa(i,1)=a(i,1)
35 continue

call ochol(wa,n,dm2,info)
if (info.gt.0) then

c not pd -- double dm3 and add it to diagonal of A
c adjust dma and dinc accordingly

dm3=dm3*2
dma=dma+dm3
dinc=dinc+dm3
do 50 i=1,n

a(i,i)=a(i,i)+dm3
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50 continue
go to 988

endif
75 if (nrhs.gt.0) then

c solve system of equations
do 80 j=1,nrhs

c forward substitution to solve U’y=b
do 82 i=1,n

rhs(i,j)=(rhs(i,j)-
$ ddot(i-1,wa(1,i),1,rhs(1,j),1))/wa(i,i)

82 continue
c backward substitution to solve Ux=y

do 84 i=n,1,-1
rhs(i,j)=(rhs(i,j)-

$ ddot(n-i,wa(i,i+1),n,rhs(i+1,j),1))/wa(i,i)
84 continue
80 continue

endif
return
end

c ordinary Choleski decomposition -- return info=j if jth diagonal element
c of factorization (prior to sqrt) is < damin

subroutine ochol(a,n,damin,info)
double precision a(n,n),ajj,ddot,damin
integer n,info,j,i
info=0
do 10 j = 1, n

* Update jth column
do 15 i=1,j-1

a(i,j)=(a(i,j)-ddot(i-1,a(1,i),1,a(1,j),1))/a(i,i)
a(j,i)=0

15 continue
* Compute U(J,J) and test for non-positive-definiteness.

ajj = a(j,j)-ddot(j-1,a(1,j),1,a(1,j),1)
if(ajj.le.damin) then

info=j
a(j,j)=ajj
return

endif
a(j,j)=sqrt(ajj)

10 continue
return
end

The function ddot used in the FORTRAN code is part of the Basic Linear Algebra Subroutine
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(BLAS) library, which is available at http://www.netlib.org. It is already included in the
compiled code of the current versions of Splus and R, and so does not need to be added to use
this function from within these programs. The first argument of ddot is the number of terms in
the inner product, the 2nd and 4th are the first elements of the two vectors, and the 3rd and 5th
are the increments in the indices between elements of the vectors. Note that in the backward
substitution algorithm, with an increment of n, the elements used in the inner product are from
the ith row of wa.

Here is an example.

> a
[,1] [,2] [,3] [,4]

[1,] -1.0 1.0 0.5 -1.0
[2,] 1.0 2.0 0.3 0.4
[3,] 0.5 0.3 -1.0 3.0
[4,] -1.0 0.4 3.0 100.0
> b <- schol(a)
> b
$chol:

[,1] [,2] [,3] [,4]
[1,] 1.004988 0.9950367 0.4975183 -0.9950367
[2,] 0.000000 1.7377868 -0.1122399 0.7999244
[3,] 0.000000 0.0000000 0.8659554 4.1397427
[4,] 0.000000 0.0000000 0.0000000 9.1237358

$sol:
NULL

$dinc:
[1] 2.010001

$info:
[1] 0

> t(b$chol) %*% b$chol
[,1] [,2] [,3] [,4]

[1,] 1.010001 1.000000 0.500000 -1.00
[2,] 1.000000 4.010001 0.300000 0.40
[3,] 0.500000 0.300000 1.010001 3.00
[4,] -1.000000 0.400000 3.000000 102.01
> eigen(a)$value
[1] 100.1002448 2.3568880 -0.8000132 -1.6571196
> eigen(t(b$chol) %*% b$chol)$value
[1] 102.1102458 4.3668890 1.2099878 0.3528814
> schol(a,1:ncol(a))$sol

[,1]
[1,] -1.64092900
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[2,] 0.62749724
[3,] 3.87320301
[4,] -0.09324122
> solve(t(b$chol) %*% b$chol,1:ncol(a))
[1] -1.64092900 0.62749724 3.87320301 -0.09324122

Since a matrix is positive definite if and only if all of its eigenvalues are positive, it can be seen
that the amount 2.01 added to the diagonal is slightly larger than the minimal value needed of
about 1.66, but not very much larger.

3.2.5 The Function nr()

The function nr() below gives a full modified Newton-Raphson algorithm using the modified
Choleski function schol() given above, in conjunction with proportional step reduction for
backtracking.

The convergence criterion stops the iteration when maxi |∂f(x)/∂xi| < gtol. Multiplying the
objective function by arbitrary constants will change the magnitude of the gradient, without
changing the location of the minimum, so the default value of gtol will be appropriate for all
problems. The user needs to choose an appropriate value based on the scaling of the particular
problem.

# Modified Newton’s method for minimization
# Arguments
# b=initial parameter values
# fn=function to calculate function being minimized, called as fn(b,...)
# must return the value of the function as a scalar value
# fhn=function to calc function, gradient, and hessian of function
# being minimized, called as fhn(b,...) fhn
# must return a list with the function value as the first component,
# the gradient as the second, and the hessian as the third.
# gtol= convergence criterion on gradient components (see below)
# iter=max # iterations (input),
# frac: the amount added to the diagonal of the hessian when it is not
# pd is roughly 2*frac*max(abs(hessian))
# ratm: the minimum value allowed for any diagonal element of the
# factored hessian is roughly ratm*sqrt(max(abs(hessian)))
# stepf=the fraction by which the step size is reduced in each step of
# the backtracking algorithm
# ... additional arguments to fn and fhn
# returns a list with components ’b’=minimizing parameter values,
# ’value’, ’score’ and ’hessian’ giving the value of these quantities
# at b, and ’comp’=a vector with components named
# ’iter’, giving the number of iterations used, an error
# code (’error’=0 no errors, =1 if error in directional search, =2 if
# max iterations exceeded), ’notpd’ giving the number of iterations
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# where the hessian was not pd, and ’steph’ giving the number of
# times the step length was reduced
# Should invoke the Matrix library before using
nr <- function(b,fn,fhn,gtol=1e-6,iter=30,frac=.005,ratm=.0001,stepf=.5,...) {

n <- length(b)
error <- 0
steph <- notpd <- 0
for (ll in 1:iter) {
z <- fhn(b,...)
if (max(abs(z[[2]])) < gtol) return(list(b=b,

value=z[[1]],score=z[[2]],hessian=z[[3]],
comp=c(iter=ll,error=0,notpd=notpd,steph=steph)))

# if true, iteration converged
h <- z[[3]]
hc <- schol(h,z[[2]],frac,ratm)
ut <- hc$info
if (ut>0) stop(’factorization failed’)
if (ut<0 | hc$dinc>0) notpd <- notpd+1
sc <- -hc$sol
bn <- b+sc
fbn <- fn(bn,...)

# backtracking loop
i <- 0
while (is.na(fbn) || fbn>z[[1]]+(1e-4)*sum(sc*z[[2]])) {

i <- i+1
steph <- steph+1
sc <- sc*stepf
bn <- b+sc
fbn <- fn(bn,...)
if (i>20) return(list(b=b,value=z[[1]],score=z[[2]],

comp=c(iter=ll,error=1,notpd=notpd,steph=steph)))
}
b <- c(bn)

}
z <- fhn(b,...)

# max number of iterations, but check for convergence again
if (max(abs(z[[2]])) < gtol)
list(b=b,value=z[[1]],score=z[[2]],hessian=z[[3]],

comp=c(iter=iter,error=0,notpd=notpd,steph=steph)) else
list(b=b,value=z[[1]],score=z[[2]],comp=c(iter=iter,error=2,

notpd=notpd,steph=steph))
}

Another point to note is the use of the is.na() function in the backtracking loop. This is
included so the algorithm can backtrack even if it took such a large step it resulted in serious
errors such as overflow in the calculations.
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3.2.6 Example: Weibull Regression

Consider the Weibull regression model with survivor function

S(t|z) = exp(−[t/ exp(β0 + β1z)]exp(α)),

where z is a covariate. The log of the shape parameter (α) is used to avoid restrictions on the
parameter space. If the observed data consist of independent observations (ti, δi, zi), i = 1, . . . , n,
where ti is the failure/censoring time and δi is the failure indicator, then the negative log
likelihood is

f(θ) = −
∑

i

{δi[α + log(vi)] − vi},

where vi = − log[S(ti|zi)] and θ = (α, β0, β1)′. Then ∂vi/∂α = vi log(vi), ∂vi/∂β0 = −vi exp(α),
and ∂vi/∂β1 = zi∂vi/∂β0. From these facts it is easily established that

∂f(θ)/∂α = −
∑

i

[δi + (δi − vi) log(vi)]

∂f(θ)/∂β0 = exp(α)
∑

i

(δi − vi)

∂f(θ)/∂β1 = exp(α)
∑

i

zi(δi − vi)

∂2f(θ)/∂α2 = −
∑

i

[(δi − vi) log(vi) − vi log(vi)2]

∂2f(θ)/∂α∂β0 = exp(α)
∑

i

[δi − vi − vi log(vi)]

∂2f(θ)/∂α∂β1 = exp(α)
∑

i

zi[δi − vi − vi log(vi)]

∂2f(θ)/∂β2
0 = exp(2α)

∑
i

vi

∂2f(θ)/∂β0∂β1 = exp(2α)
∑

i

zivi

∂2f(θ)/∂β2
1 = exp(2α)

∑
i

z2
i vi.

Below are functions to calculate these quantities, and the call to the nr() function to fit the
model. A copy of the data is in the file weibreg.dat. Following the initial fit, several additional
calls are made to explore the sensitivity of the algorithm to the the value of frac and stepf.

> d <- read.table("../data/weibreg.dat",col.names=c("ti","fi","z"))
> fw <- function(b,time,fi,z) { # -log likelihood for Weibull
+ # regression with single covariate
+ # b[1]=log(shape param), b[2]=constant term, b[3]=reg coef
+ v <- (time/exp(b[2]+b[3]*z))^exp(b[1])
+ -sum(fi*(b[1]+log(v))-v)
+ }
> wh <- function(b,time,fi,z) { # - log likelihood, gradient, and hessian
+ t4 <- exp(b[1])
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+ t6 <- t4*t4
+ v <- (time/exp(b[2]+b[3]*z))^t4
+ logv <- log(v)
+ f <- -sum(fi*(b[1]+logv)-v)
+ s <- -c(sum(fi+(fi-v)*logv),sum((v-fi))*t4,sum(z*(v-fi))*t4)
+ h <- matrix(0,3,3)
+ h[1,1] <- -sum((fi-v-v*logv)*logv)
+ h[2,1] <- h[1,2] <- -sum((-fi+v+v*logv))*t4
+ h[3,1] <- h[1,3] <- -sum(z*(-fi+v+v*logv))*t4
+ h[2,2] <- sum(v)*t6
+ h[3,2] <- h[2,3] <- sum(z*v)*t6
+ h[3,3] <- sum(z^2*v)*t6
+ list(f,s,h)
+ }
> survreg(Surv(ti,fi)~z,d,dist = "extreme") # the easy way
Call:
survreg(formula = Surv(ti, fi) ~ z, data = d, dist = "extreme")

Coefficients:
(Intercept) z

2.308685 0.02375108

Dispersion (scale) = 0.3575806
Degrees of Freedom: 200 Total; 197 Residual
-2*Log-Likelihood: 270.2396
> unix.time(u <- nr(c(0,0,0),fw,wh,time=d$ti,fi=d$fi,z=d$z))
[1] 0.24 0.00 0.00 0.00 0.00
> u
$b:
[1] 1.02839444 2.30868513 0.02375108

$value:
[1] 135.1198

$score:
[1] 1.969536e-13 4.160457e-13 -2.142325e-14

$hessian:
[,1] [,2] [,3]

[1,] 260.66437 -84.04584 16.47120
[2,] -84.04584 1329.53871 58.06808
[3,] 16.47120 58.06808 1327.63250

$comp:
iter error notpd steph

9 0 3 4
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> exp(-1.02839444)
[1] 0.3575806
> unix.time(u <- nr(c(0,0,0),fw,wh,frac=.0005,time=d$ti,fi=d$fi,z=d$z))
[1] 0.22 0.00 1.00 0.00 0.00
> u$comp
iter error notpd steph

8 0 3 3
> unix.time(u <- nr(c(0,0,0),fw,wh,frac=.05,time=d$ti,fi=d$fi,z=d$z))
[1] 0.3199999 0.0000000 1.0000000 0.0000000 0.0000000
> u$comp
iter error notpd steph

11 0 4 7
> unix.time(u <- nr(c(0,0,0),fw,wh,frac=.00005,time=d$ti,fi=d$fi,z=d$z))
[1] 0.21 0.00 0.00 0.00 0.00
> u$comp
iter error notpd steph

7 0 2 4
> unix.time(u <- nr(c(0,0,0),fw,wh,frac=.000005,time=d$ti,fi=d$fi,z=d$z))
[1] 0.23 0.00 0.00 0.00 0.00
> u$comp
iter error notpd steph

7 0 2 7
>

The results from nr() agree with the survreg() function. In the initial call, 9 iterations are
needed. The Hessian fails to be positive definite in 3 of the 9 iterations. The step size is reduced 4
times (but some of those could have been within the same iteration). As frac is varied, the
performance varies. The optimum value for this problem appears to be about .00005, but the
performance is reasonable over a considerable range of values.

Maximizing the Weibull likelihood is a deceptively difficult problem where the Newton-Raphson
iteration is very likely to fail without modification. The modified Newton-Raphson above required
only 9 iterations to successfully fit the model with the default settings, and so performed quite
well here.

An alternate approach to the problem of overshooting the solution in the Newton-Raphson
iteration is to maintain a model trust region. The steps in the Newton-Raphson iteration can be
thought of as based on a local quadratic approximation to f(x). The model trust region is a
region about the current point where the quadratic approximation should give a reasonable
approximation. In this approach the full Newton-Raphson step is again computed first (using a
positive definite modification of the Hessian if necessary), and if the new point falls within the
current model trust region then it is accepted and the algorithm proceeds, but if the new point
falls outside the region then an approximation to the minimum of the quadratic approximation
over the model trust region is used as the next update. In either case, the algorithm then checks
whether the new point gives an improved function value, and if not, the size of the trust region is
reduced. There are also options for expanding the trust region under certain conditions. The
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details are fairly involved, but can be found, for example, in Section 6.4 of Dennis and Schnabel
(1983).

There is a built-in Splus function nlminb(), which implements both a modified Newton-Raphson
algorithm and a BFGS algorithm (described in the next section), using a model trust region
approach. If the Hessian matrix is provided, the Newton-Raphson iteration is used. Below
nlminb() is applied to the Weibull regression example. The format of the functions needed is
slightly different than for the nr() function above. fw() is the same as before, but wgh()
computes just the gradient and Hessian, and to minimize storage, only the lower triangle of the
Hessian is needed, but with its components arranged in a vector in a particular order (row by
row). See the help file for additional details. By default nlminb() stops whenever either the
relative change in the values of x are small (<.Machine$double.eps^(1/2))or the relative change
in the function value is small (<1e-10). It is difficult to compare this directly with the criteria
used in nr(), but it appears it should give substantial precision in the results. (R does not
include the nlminb() function, but has a related function nlm().)

> wgh <- function(b,time,fi,z) { #gradient and hessian
+ # assign(’ng’,ng+1,frame=0)
+ t4 <- exp(b[1])
+ t6 <- t4*t4
+ v <- (time/exp(b[2]+b[3]*z))^t4
+ logv <- log(v)
+ s <- -c(sum(fi+(fi-v)*logv),sum((v-fi))*t4,sum(z*(v-fi))*t4)
+ h <- c(-sum((fi-v-v*logv)*logv),-sum((-fi+v+v*logv))*t4,
+ sum(v)*t6,-sum(z*(-fi+v+v*logv))*t4,sum(z*v)*t6,sum(z^2*v)*t6)
+ list(gradient=s,hessian=h)
+ }
> unix.time(u <- nlminb(c(0,0,0),fw,gradient=wgh,hessian=T,
+ time=d$ti,fi=d$fi,z=d$z)[1:8])
[1] 0.33999991 0.00999999 0.00000000 0.00000000 0.00000000
> u
$parameters:
[1] 1.02839444 2.30868513 0.02375108

$objective:
[1] 135.1198

$message:
[1] "RELATIVE FUNCTION CONVERGENCE"

$grad.norm:
[1] 8.633842e-09

$iterations:
[1] 6

$f.evals:
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[1] 9

$g.evals:
[1] 7

$hessian:
[,1] [,2] [,3]

[1,] 260.66437 -84.04584 16.47120
[2,] -84.04584 1329.53871 58.06808
[3,] 16.47120 58.06808 1327.63250

The values f.evals and g.evals give the number of times the routines fw() and wgh() were
called. These are slightly smaller than in nr() above, and the time needed is only a little longer
than most of the nr() calls.

Analytic formulas were used for the second derivatives above. The Hessian can also be
approximated with finite differences of the gradient, and this often gives reasonable performance
(generally using analytic gradient calculations is substantially better than using finite differences
for the gradient and second differences for the Hessian, though). Finite difference approximations
to derivatives are discussed in the following subsection.

3.2.7 Computing Derivatives

While development of symbolic mathematics packages has made it easier to derive and program
formulas for analytic derivatives, there can still be considerable effort involved, and there is
always the possibility of errors in the resulting code. Correctly evaluated analytic derivatives can
generally always give faster and more accurate results, but adequate performance can often be
obtained using other methods.

One relatively recent development is automatic differentiation. An automatic differentiation
program takes as input code for evaluating a function (generally either C or FORTRAN code),
and automatically generates code for evaluating the derivatives. This is possible because the code
for evaluating a function generally consists of a long sequence of binary operations together with
calls to intrinsic functions (that have known derivatives), so the derivatives can be evaluated via
recursive application of the chain rule. The resulting code is not necessarily numerically efficient,
and there can be problems at points where intermediate calculations in the derivatives lead to
singularities, and it is necessary to have the source code for any external routines that are called
(so the derivatives of those routines can also be evaluated), but automatic differentiation has been
used successfully in many applications. One source for more information and software is
http://www-unix.mcs.anl.gov/autodiff/index.html.

The remainder of this section considers use of finite difference approximations to derivatives.
These often give adequate, if somewhat slower, performance compared to use of analytic formulas.
It is possible to attain the same rates of convergence using a finite difference approximation as
when exact derivatives are used, but only if the step size in the finite difference → 0 at an
appropriate rate as the algorithm proceeds. In practice there are limits to how small the step size
can be made in floating point arithmetic, which are related to the precision with which f can be
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computed, so an arbitrarily small step size is not feasible. But often the modified Newton
algorithm will converge to sufficient accuracy before the step size in the finite difference
approximation needs to be reduced to a very small value.

For a function g(x), the forward difference approximation to ∂g(x)/∂xj is

[g(x + εe(j)) − g(x)]/ε

where e(j) is the unit vector in the jth coordinate direction, and the central difference
approximation is

[g(x + εe(j)) − g(x − εe(j))]/(2ε).

The central difference approximation can be more accurate, but requires roughly twice as many
function evaluations to evaluate the gradient of g.

Since the derivatives are obtained in the limit as ε → 0, better approximations should result for
small ε. However, due to errors in floating point computations, as ε decreases the number of
accurate digits in g(x + εe(j)) − g(x) also decreases. For example, if the algorithm for computing
g(x) is accurate to 10 significant digits, and ε is small enough so that the true value of

|g(x + εe(j)) − g(x)|/|gi(x)| < 10−10,

then the computed difference g(x + εe(j)) − g(x) will have no accurate significant digits, so the
forward difference approximation based on this ε would be useless.

A formal error bound can be given. To simplify notation, consider g : R1 → R1. If exact
calculations are done, by Taylor’s theorem,

[g(x + ε) − g(x)]/ε = g′(x) + g′′(x∗)ε/2,

for some x∗ between x and x + ε, so the absolute error in a forward difference approximation is
|g′′(x∗)|ε/2. However, as mentioned above, since the calculations cannot be done exactly, the error
in the computed forward difference approximation is larger. If δ is a bound in the relative error in
computing g(x), then the total error can be approximately bounded by

|[g(x + ε) − g(x)]/ε − g′(x)| ≤ |g′′(x∗)|ε/2 + 2δ|g(x)|/ε.

This expression is minimized by
ε = 2

√
δ|g(x)|/|g′′(x∗)|.

In the absence of other information, it could be assumed that δ is close to relative machine
precision εm, and that 2

√|g(x)|/|g′′(x∗)| is approximately 1 (in an order of magnitude sense),
giving the rule of thumb

ε =
√

εm.

If the error in computing g is substantially larger than εm, then a larger value of ε should be used.
This analysis also ignored errors in computing x + ε, which could be substantial if x is large, and
differences in the scale of different components of x (in the vector case). For these reasons, the
value ε = |x|√εm is also often recommended (|xj |√εm for approximating the jth partial derivative
of a function of several variables).

Below is a function fdjac() that will compute a forward difference approximation to a Jacobian
matrix. The argument G is a possibly vector valued function.
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fdjac <- function(PARAM,G,...,eps=sqrt(.Machine$double.neg.eps)) {
# Computes a finite difference approximation to the Jacobian of G
# G is a (possibly vector valued) function
# PARAM is the point where the Jacobian is approximated
# ... = additional arguments to G
# eps = step size in finite difference approximation
# (scaled by max(abs(PARAM[j]),1))

N <- length(PARAM)
G0 <- G(PARAM,...)
JAC <- matrix(0,length(G0),N)
for (j in 1:N) {
X1 <- PARAM
X1[j] <- PARAM[j] + eps*max(abs(PARAM[j]),1)
JAC[,j] <- (G(X1,...)-G0)/(X1[j]-PARAM[j]) #divide by actual difference

}
JAC

}

Since there is roundoff error in computing X1[j], it is generally true that X1[j]-PARAM[j] will
not be exactly equal to eps*max(abs(PARAM[j]),1). It is better in this case to divide by the
exact difference used, rather than the intended difference.

To illustrate, again consider the Weibull regression example. The functions fw() and wh() are the
same as before. The function wg() is similar to wh(), but it only computes the gradient. Note
that this provides a useful way to check functions that compute analytic derivatives.

> wg <- function(b,time,fi,z) { # just the gradient
+ t4 <- exp(b[1])
+ v <- (time/exp(b[2]+b[3]*z))^t4
+ logv <- log(v)
+ -c(sum(fi+(fi-v)*logv),sum((v-fi))*t4,sum(z*(v-fi))*t4)
+ }
> rbind(fdjac(c(.1,1.3,-.5),fw,time=d$ti,fi=d$fi,z=d$z),
+ wg(c(.1,1.3,-.5),time=d$ti,fi=d$fi,z=d$z))

[,1] [,2] [,3]
[1,] 600.0353 -522.8105 -478.8034
[2,] 600.0353 -522.8105 -478.8034
> rbind(fdjac(c(.1,1.3,-.5),wg,time=d$ti,fi=d$fi,z=d$z),
+ wh(c(.1,1.3,-.5),time=d$ti,fi=d$fi,z=d$z)[[3]])

[,1] [,2] [,3]
[1,] 2347.886 -1526.9009 -1592.4742
[2,] -1526.901 785.4334 538.2282
[3,] -1592.474 538.2282 1237.8493
[4,] 2347.886 -1526.9009 -1592.4742
[5,] -1526.901 785.4334 538.2282
[6,] -1592.474 538.2282 1237.8493
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Below the Newton-Raphson algorithm is applied to the Weibull regression problem using a finite
difference approximation to the Hessian matrix. This is slower, but still gives reasonable
performance.

> wh2 <- function(b,time,fi,z) { # - log likelihood, gradient, and hessian
+ t4 <- exp(b[1])
+ t6 <- t4*t4
+ v <- (time/exp(b[2]+b[3]*z))^t4
+ logv <- log(v)
+ f <- -sum(fi*(b[1]+logv)-v)
+ s <- wg(b,time,fi,z)
+ h <- fdjac(b,wg,time=time,fi=fi,z=z)
+ list(f,s,h)
+ }
> unix.time(u <- nr(c(0,0,0),fw,wh2,time=d$ti,fi=d$fi,z=d$z))
[1] 0.4900002 0.0000000 1.0000000 0.0000000 0.0000000
> u
$b:
[1] 1.02839444 2.30868513 0.02375108

$value:
[1] 135.1198

$score:
[1] 6.205036e-13 8.516518e-13 1.319548e-13

$hessian:
[,1] [,2] [,3]

[1,] 260.66437 -84.04581 16.47122
[2,] -84.04584 1329.53866 58.06806
[3,] 16.47120 58.06808 1327.63249

$comp:
iter error notpd steph

9 0 3 4

3.3 The BFGS Algorithm

The modified Newton-Raphson algorithms discussed above work well on many problems. Their
chief drawback is the need to compute the Hessian matrix at each iteration, and the need to solve
for [∇2f(x0)]−1∇f(x0) at each iteration. As discussed above (following (3.6)), d = −A−1∇f(x0)
is a descent direction for any pd matrix A. The desire to avoid computing the Hessian has led to
development of algorithms that use matrices other than the inverse Hessian in generating search
directions. These methods generally are referred to as quasi-Newton methods, in that they try to
mimic Newton’s method without directly calculating the Hessian matrix. The methods discussed
below are also referred to as variable metric methods. They are discussed in Section 4.3.3.4 and
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4.5.3.4 of Thisted (1988), and Section 10.7 of Press et. al. (1992).

One class of quasi-Newton algorithms are those based on a method proposed independently by
Broyden, Fletcher, Goldfarb and Shanno in 1970, which is a variant of a method due to Davidon,
Fletcher and Powell. These methods are based on the idea of starting with a positive definite
matrix A0, and at each iteration performing a low rank update of A0 that preserves positive
definiteness. Some variations update A and solve for A−1∇f(x0), while others update A−1

directly and compute the search direction using multiplication.

The general BFGS algorithm is as follows: (a) given the current point x0 and approximate
Hessian A0, compute the new search direction −A−1

0 ∇f(x0), (b) find a better point x1 in this
direction, and (c) update A0 to a new approximation A1, repeating until convergence. The
algebraic form of the BFGS update of A0 is

A1 = A0 +
1

y′s
yy′ − 1

s′A0s
A0ss

′A0, (3.7)

where y = ∇f(x1) −∇f(x0) and s = x1 − x0. The difference A1 − A0 is the sum of two rank 1
matrices, and is thus generally a rank 2 matrix. If A0 is positive definite, and if s′y > 0, then
(3.7) will guarantee that A1 is also positive definite.

It is easily verified by direct calculation that A1 in (3.7) satisfies

∇f(x1) −∇f(x0) = A1(x1 − x0). (3.8)

The Hessian ∇2f(x1) also satisfies (3.8) to first order, and will satisfy it exactly in the limit when
the algorithm converges.

If A1 is updated directly as in (3.7), it is necessary to solve for A−1
1 ∇f(x1) to get the next search

direction, which is an O(p3) operation, and part of the purpose of not using the Hessian was to
avoid such a calculation. However, it is possible to give a similar update for the Choleski
factorization of A0. The update does not lead to a triangular matrix, but the Choleski
factorization of A1 can be recovered from the updated factor using plane rotations, in only O(p2)
operations, so both the update and solving for the new search direction can be done in O(p2)
operations. Details are given in Dennis and Schnabel (1983). This is the preferred version of the
BFGS algorithm.

It is also possible to show that an algebraically equivalent update to (3.7) is given by

A−1
1 = A−1

0 +
1

y′s
[(s − A−1

0 y)s′ + s(s − A−1
0 y)′] − y′(s − A−1

0 y)
(y′s)2

ss′,

and with a bit more algebra this can be expressed

A−1
1 = A−1

0 +
1

y′s
ss′ − 1

y′A−1
0 y

A−1
0 yy′A−1

0 + (y′A−1
0 y)uu′, (3.9)

where

u =
1

y′s
s − 1

y′A−1
0 y

A−1
0 y,
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which is the form given in Section 10.7 of Press et. al. (1992). Using either of these last two
versions, given an initial positive definite approximation to the inverse Hessian, this
approximation can be updated at each iteration, and the new search direction calculated by
multiplying. This is easier to program than the direct update of the Choleski factorization of A0,
and is used in the function dfpmin of Press et. al. (1992), and in the function bfgs() given below.
The update (3.9) may not be as stable as updating the Choleski factorization of A0, though.

Because of the good convergence properties of the Newton-Raphson iteration once it gets close to
the solution, it would be desirable for the BFGS updates A1 to closely approximate ∇2f(x1) as
the algorithm converged. In fact, it can be shown that if the true function is a positive definite
quadratic, then the BFGS updates above converge to the Hessian in p iterations (this should be
believable from the relation (3.8)). Since smooth functions tend to be nearly quadratic in the
neighborhood of a local minimum, the BFGS updates (3.7) tend to converge to the Hessian as the
algorithm converges. However, accuracy of the A or A−1 matrix at convergence cannot be
guaranteed, and if the Hessian is needed for other purposes, such as estimating variances of
parameter estimates, it is recommended the Hessian be computed separately after convergence.

The two remaining problems are what to use for the initial positive definite matrix, and how to
choose the new point x1 once the search direction has been determined in each iteration. For the
initial matrix, usually a diagonal matrix is used. The most critical aspect of the choice is that the
matrix be scaled appropriately. If it differs by several orders of magnitude from the correct
Hessian, it will tend to create difficulties in the search for a better point at each iteration, since
the initial step based on this matrix will be scaled inappropriately. Also, it may take many
iterations of the BFGS updates to correct the poor initial scaling. In the function bfgs() below,
the initial A0 is set to a diagonal matrix with max(|f(x0)|, 1) on the diagonal. This supposes that
the magnitude of f is similar to that of ∇2f , which may not be true (but is more likely to be true
if irrelevant constants are dropped from f). There is also an implicit assumption that the scaling
of the variables is such that the magnitude of the curvature of f will be similar in different
directions. More advanced implementations allowing the user to specify different scaling factors
for different variables can be given. In statistical applications such as fitting regression models, it
is usually appropriate to rescale covariates to have similar length or variance before fitting the
model.

For the search at each iteration, the function bfgs() below simply starts by computing
x1 = x0 − A−1

0 ∇f(x0), and if that point does not satisfy (3.5), the algorithm backtracks towards
x0 until a point satisfying (3.5) is found. Again this is done using the crude proportional step
reduction used in the nr() function. The function dfpmin of Press et. al. (1992) uses a similar
strategy, but with a more sophisticated backtracking algorithm using polynomial interpolation.
The virtue of this general approach is that as the algorithm approaches a solution and the A−1

matrix approaches the inverse Hessian, the behavior of the algorithm becomes nearly identical to
the Newton-Raphson iteration, and converges rapidly. As with the modified Newton methods
discussed above, experience has indicated that more precise line searches early in the algorithm
are not worth the added computational expense.

One requirement for the update formula to give a positive definite matrix is that s′y > 0. The
strategy described in the previous paragraph is not guaranteed to produce new points that satisfy
this condition. This condition could be added to the convergence criterion for the backtracking
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algorithm, and it can be shown that points satisfying both (3.5) and s′y > 0 generally exist.
Checking s′y > 0 does involve some additional expense, though, and it turns out that s′y is
usually > 0 at points satisfying (3.5), so most implementations of the BFGS algorithm skip this
step. Instead, before updating A0 or A−1

0 , the programs check whether s′y is large enough, and if
it is not they skip the update and use the old matrix to compute the next search direction. This
approach is used in the function bfgs() below, and in the Press et. al. (1992) routine dfpmin.
However, earlier versions of dfpmin contained an error, in that the condition checked was

if (fac*fac > EPS*sumdg*sumxi) {

where fac = s′y, sumdg = ‖y‖2
2, and sumxi = ‖s‖2

2. This condition ignores the sign of s′y, and will
compute the update if s′y is either sufficiently negative or sufficiently positive. If s′y is sufficiently
negative the update can fail to be positive definite, and the algorithm will probably fail. This has
been corrected in the current online versions (http://www.nr.com).

A fairly simple function implementing the update (3.9), together with the proportional reduction
backtracking algorithm, is as follows (this function is based on dfpmin from Press et. al. (1992)).
The arguments are similar to nr(), except that gn only computes the gradient, and returns it as a
vector. The convergence criterion used is the same as for nr().

# bfgs method for minimization
# b=initial parameter values (input),
# fn=function to calculate function being minimized, called as fn(b,...)
# must return the value of the function as a scalar value
# gn=function to calc gradient, called as gn(b,...)
# gn must return the gradient as a vector
# gtol convergence on gradient components (see below)
# iter=max # iterations (input),
# stepf=the fraction by which the step size is reduced in each step of
# the backtracking algorithm
# h = initial approximation to the inverse hessian (see below for default)
# ... additional arguments to fn and gn
# returns a list with components b=minimizing parameter values,
# value=minimum value of fn, and comp=a vector with components named
# iter and error, giving the number of iterations used, an error
# code (error=0 no errors, =1 if error in directional search, =2 if
# max iterations exceeded), steph giving the number of times the step
# length was reduced, and nskip=# iterations where h was not updated
bfgs <- function(b,fn,gn,gtol=1e-6,iter=50,stepf=.5,h,...) {

n <- length(b)
steph <- nskip <- 0
eps <- .Machine$double.neg.eps
f1 <- fn(b,...)

# initial h (h=approx to the inverse hessian)
if (missing(h)) h <- diag(rep(1/max(abs(f1),1),n))
g1 <- gn(b,...)
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sc <- -c(h%*%g1)
for (ll in 1:iter) {
bn <- b+sc
f2 <- fn(bn,...)
i <- 0
while (is.na(f2) || f2>f1+(1e-4)*sum(sc*g1)) { #backtrack

i <- i+1
steph <- steph+1
sc <- sc*stepf
bn <- c(b+sc)
f2 <- fn(bn,...)
if (i>20) return(list(b=b,value=f1,score=g1,

comp=c(iter=ll,error=1,nskip=nskip,steph=steph)))
}
g2 <- gn(bn,...)
if (max(abs(g2)) < gtol)

return(list(b=b,value=f2,score=g2,hessinv=h,
comp=c(iter=ll,error=0,nskip=nskip,steph=steph)))

# if true, iteration converged
# if not, update inverse hessian
#
# b <- bn-b
# g1 <- g2-g1
# hg1 <- c(h %*% g1)
# t1 <- sum(g1*b)
# t2 <- sum(g1*hg1)
# if (t1 > 0 && t1*t1 > eps*sum(g1*g1)*sum(b*b)) {
# g1 <- b/t1-hg1/t2
# h <- h+outer(b/t1,b)-outer(hg1/t2,hg1)+outer(t2*g1,g1)
# } else nskip <- nskip+1
# sc <- -c(h%*%g2)
# if the FORTRAN routine is not available, replace the lines from here
# to the next comment with those above

sc <- .C(’bfgsup_’,as.integer(n),as.double(b),as.double(bn),
as.double(g1),as.double(g2),as.double(h),as.double(eps),
as.integer(nskip),double(n))[c(6,8:9)]

h <- matrix(sc[[1]],n,n)
nskip <- sc[[2]]
sc <- sc[[3]]

# end of lines to replace
g1 <- g2
b <- bn
f1 <- f2

}
return(list(b=b,value=f2,score=g2,hessinv=h,

comp=c(iter=iter+1,error=2,nskip=nskip,steph=steph)))# too many iterations
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}

Using a compiled routine for updating the approximation to the inverse hessian can substantially
speed up the calculations. The FORTRAN subroutine bfgsup is as follows.

c inputs are n, b, bn, g1, g2, h, eps, and nskip, as defined in the
c S function bfgs(). outputs are the updated approximation to the
c inverse hessian h, the new search direction h %*% g2, and nskip
c (updated if the update of h is skipped)
c assumes availability of the standard BLAS ddot for computing inner
c products

subroutine bfgsup(n,b,bn,g1,g2,h,eps,nskip,sc)
double precision b(n),bn(n),g1(n),g2(n),h(n,n),eps,sc(n)
integer n,nskip,i,j
double precision t1,t2,t3,t4,ddot
do 5 i=1,n

g1(i)=g2(i)-g1(i)
5 continue

do 10 i=1,n
bn(i)=bn(i)-b(i)
b(i)=ddot(n,g1,1,h(1,i),1)

10 continue
t1=ddot(n,g1,1,bn,1)
t2=ddot(n,g1,1,b,1)
t3=ddot(n,g1,1,g1,1)
t4=ddot(n,bn,1,bn,1)
if (t1.lt.0.or.t1*t1.le.eps*t3*t4) then

nskip=nskip+1
go to 50

endif
t3=sqrt(t1)
t2=sqrt(t2)
t1=t2/t3
do 15 i=1,n

bn(i)=bn(i)/t3
b(i)=b(i)/t2
g1(i)=bn(i)*t1-b(i)

15 continue
do 20 i=1,n

do 21 j=i,n
h(j,i)=h(j,i)+bn(i)*bn(j)-b(i)*b(j)+g1(i)*g1(j)
h(i,j)=h(j,i)

21 continue
20 continue
50 do 30 i=1,n

sc(i)=-ddot(n,g2,1,h(1,i),1)
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30 continue
return
end

Below bfgs() is applied to the Weibull regression example. fw() and wg() are the same as before.

> unix.time(u <- bfgs(c(0,0,0),fw,wg,time=d$ti,fi=d$fi,z=d$z))
[1] 0.25999999 0.01000001 0.00000000 0.00000000 0.00000000
> u
$b:
[1] 1.02839444 2.30868513 0.02375108

$value:
[1] 135.1198

$score:
[1] -1.915766e-08 9.339495e-08 1.010147e-07

$hessinv:
[,1] [,2] [,3]

[1,] 3.886858e-03 2.506445e-04 -5.531859e-05
[2,] 2.506445e-04 7.582680e-04 -4.876691e-05
[3,] -5.531859e-05 -4.876691e-05 7.423467e-04

$comp:
iter error nskip steph

16 0 0 9

> solve(u$hessinv)
[,1] [,2] [,3]

[1,] 263.02438 -86.04535 13.94762
[2,] -86.04535 1352.53909 82.44025
[3,] 13.94762 82.44025 1353.53457
> wh(u$b,time=d$ti,fi=d$fi,z=d$z)[[3]]

[,1] [,2] [,3]
[1,] 260.66437 -84.04584 16.47122
[2,] -84.04584 1329.53870 58.06806
[3,] 16.47122 58.06806 1327.63249

This algorithm also converges quickly to the correct results. The number of gradient evaluations
is iter+1, and the number of function evaluations is iter+1+steph. While more iterations and
function evaluations were needed than in nr(), this algorithm is nearly as fast and as accurate as
the Newton-Raphson algorithm on this problem. The approximation to the inverse Hessian is
fairly close, but not necessarily adequate for statistical inference. Next a finite difference
approximation to the gradient will be used instead of wg().
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> # finite difference gradient
> unix.time(u2 <- bfgs(c(0,0,0),fw,function(b,...) c(fdjac(b,fw,...)),
+ time=d$ti,fi=d$fi,z=d$z))
[1] 0.75999999 0.00999999 1.00000000 0.00000000 0.00000000
> u2
$b:
[1] 1.02839445 2.30868511 0.02375108

$value:
[1] 135.1198

$score:
[1] 1.311461e-05 0.000000e+00 1.348699e-05

$comp:
iter error nskip steph

18 1 1 48

> unix.time(u2 <- bfgs(c(0,0,0),fw,function(b,...) c(fdjac(b,fw,...)),
+ gtol=.0001,time=d$ti,fi=d$fi,z=d$z))
[1] 0.50999999 0.00999999 1.00000000 0.00000000 0.00000000
> u2
$b:
[1] 1.02839441 2.30868495 0.02375122

$value:
[1] 135.1198

$score:
[1] 7.868766e-06 -5.841850e-06 1.348699e-05

$hessinv:
[,1] [,2] [,3]

[1,] 0.0038843275 2.394380e-04 -4.666820e-05
[2,] 0.0002394380 7.606390e-04 -4.195437e-05
[3,] -0.0000466682 -4.195437e-05 7.273147e-04

$comp:
iter error nskip steph

15 0 0 9

> rbind(fdjac(u2$b,fw,time=d$ti,fi=d$fi,z=d$z),
+ wg(u2$b,time=d$ti,fi=d$fi,z=d$z))

[,1] [,2] [,3]
[1,] 5.245844e-06 -0.0002056331 0.0001888179
[2,] 8.976966e-06 -0.0002250105 0.0001803243
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In the first call, the algorithm failed to find a better point in the search direction in the final
iteration. With exact arithmetic, this should not be possible. However, as can be seen in the
comparison of the output of fdjac and wg following the second run, near the solution there is a
large relative error in the finite difference approximation to the gradient, and consequently the
search directions may or may not be descent directions. Also, the approximation to the Hessian
tends to break down with large relative errors in the gradient computations. For this reason, it is
not possible to iterate to as accurate a solution as with an analytic gradient.

The model trust region approach discussed in the previous section can also be used in BFGS
algorithms. The Splus function nlminb(), when not provided with a routine to calculate the
Hessian, uses an algorithm of this type. The following code applies this algorithm for the Weibull
regression problem. The functions fw() and wg() are the same as before. When the gradient is
not supplied, a finite difference approximation is used (possibly more reliable than fdjac()).

> unix.time(u <- nlminb(c(0,0,0),fw,gradient=wg,time=d$ti,fi=d$fi,z=d$z)[1:7])
[1] 0.71000004 0.00999999 0.00000000 0.00000000 0.00000000
> u
$parameters:
[1] 1.02839444 2.30868513 0.02375108

$objective:
[1] 135.1198

$message:
[1] "BOTH X AND RELATIVE FUNCTION CONVERGENCE"

$grad.norm:
[1] 3.541069e-06

$iterations:
[1] 21

$f.evals:
[1] 37

$g.evals:
[1] 22

> unix.time(u <- nlminb(c(0,0,0),fw,time=d$ti,fi=d$fi,z=d$z)[1:7])
[1] 1.73000002 0.00999999 2.00000000 0.00000000 0.00000000
> u
$parameters:
[1] 1.02839110 2.30868471 0.02375124

$objective:
[1] 135.1198
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$message:
[1] "RELATIVE FUNCTION CONVERGENCE"

$grad.norm:
[1] 0.0008823412

$iterations:
[1] 27

$f.evals:
[1] 42

$g.evals:
[1] 111

This also converged quickly, but required a few more gradient and function evaluations than
bfgs(). However, it required substantially more cpu time. This may have to do with the
particular way the algorithm is coded in this function, and inferences cannot really be made on
the relative performance of the underlying algorithms.

Using the finite difference gradient is again slower and less accurate (although the accuracy is
certainly adequate for most purposes). In this case, g.evals is the number of function
evaluations used in calculating the finite difference approximations to the gradient, so the total
number of function evaluations used is g.evals+f.evals=153.

3.3.1 Rank 1 Updates

The BFGS algorithm above uses a rank 2 update to the Hessian approximation at each iteration.
That is, the matrix added to the Hessian or Hessian inverse approximation at each step has rank
2. It has also been known for many years that rank 1 updates could be used, but these were
thought to be less stable numerically. As discussed by Lange (1999, Section 11.6), rank 1 updates
are coming back into vogue.

Given a current positive definite approximation to the Hessian A0, it can be shown that the
unique symmetric rank 1 update A1 satisfying the secant condition (3.8) is

A1 = A0 − [(y + A0s)′s]−1(y + A0s)(y + A0s)′,

where again y = ∇f(x1) −∇f(x0) and s = x1 − x0.

For A1 as above, it is easily verified that

A−1
1 = A−1

0 − [(A−1
0 y + s)′y]−1(A−1

0 y + s)(A−1
0 y + s)′,

so that as with the BFGS algorithm, the inverse Hessian can be updated directly as well. These
updates to initial guesses to the Hessian and inverse Hessian can be used in place of the rank 2
updates in the BFGS algorithm. It is very important to monitor that these rank 1 updates stay
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Figure 3.1: Possible steps in the simplex algorithm. P1, P2 and P3 are the initial simplex.

positive definite. Lange (1999, p. 137) shows that if A0 is positive definite, and

1 − [(y + A0s)′s]−1(y + A0s)A−1
0 (y + A0s) > 0,

then A1 (and hence A−1
1 ) is positive definite. He suggests carrying along the updates to both the

approximate Hessian and its inverse to make checking this condition easier.

For quadratic objective functions, Lange (1999, Proposition 11.6.1) also gives sufficient conditions
for the rank 1 update to the inverse Hessian to converge to the true inverse Hessian in p steps.

3.4 The Nelder-Mead Simplex Method

The Nelder-Mead simplex algorithm for unconstrained minimization is a pattern search algorithm
that only uses information on the function values themselves. No information on derivatives is
used, so no derivative calculations (analytical or numerical) are needed. (The simplex method
discussed here should not be confused with the simplex method for linear programming, which is
unrelated.)

To minimize a function f of p variables, the simplex method starts with p + 1 rather arbitrarily
chosen points. The only requirement is that the span of the set of p + 1 points be all of Rp (the
region bounded by this collection of points is called a simplex). Figure 3.1 illustrates this idea for
p = 2. The points P1, P2, and P3 are the initial simplex. The function is evaluated at each of
the p + 1 points. The point with the highest function value (say P1 if Figure 3.1) is then reflected
through the center of mass C of the other points, and the function evaluated at the new point.
This new point is P4 in Figure 3.1. There are then 4 cases.

1. If f(P4) is somewhere between the best and worst of the values at the other points in the
simplex, then the new point is retained (the simplex becomes {P2, P3, P4}), and the
process is repeated.

2. If P4 is better than all of the other points in the simplex, then a longer step (twice as far
from C) in the same direction is attempted. In Figure 3.1, this give P5. The better of P4
and P5 becomes the new point.

3. If the new point P4 is worse than the other p remaining points in the simplex, but better
than P1, then a shorter step (half as far from C) in this direction is attempted. In
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Figure 3.1, this gives P6. If P6 is still worse than the rest of the points in the simplex, then
the entire simplex is shrunk towards the current best point by a factor of 1/2, and the
process repeated.

4. If the new point P4 is worse than P1, then the point half way between C and P1 (P7 in
Figure 3.1) is tried. If P7 is worse than the rest of the points in the simplex, then the entire
simplex is again shrunk towards the current best point, and the process repeated.

This process continues until the relative difference between the highest and lowest function values
in the current set of points is small (less than the argument ftol in the function simplex()
below).

The simplex method is quite robust, and can successfully minimize functions that are not very
smooth, where methods based on derivatives may fail. It can also be useful if there is some noise
in the function evaluations, such as when evaluating the function requires Monte-Carlo
integration, or when derivatives are difficult to compute. It is not particularly fast in most
applications, though.

The main difficulty that can occur is that as the simplex stretches and contracts in different
directions, it can collapse into a lower dimensional subspace, and will then only be able to find
the minimum within that subspace. For this reason, it is often advised to restart the algorithm
after it terminates, using a new full rank simplex, to make sure false convergence did not occur.

The following function is based on the C function amoeba of Press et. al. (1992).

simplex <- function(b,fun,del=1,ftol=1e-8,itmax=1000,...) {
# minimization using the Nelder-Mead simplex method, based on num-rec amoeba
# output gives the minimizing parameter value (b), the minimum value
# of fun, and comp giving the number of function evaluations and an
# error code (1=did not converge)
# b=initial values, fun=function to be minimized, called as fn(b,...)
# del=the step used from b in each coordinate direction to set up the
# initial simplex, ftol=convergence criterion--max relative difference
# between highest and lowest point in the simplex
# if ... is used to pass arguments to fun, then the arguments of fun must
# not use any of the names of the arguments to smtry (p,y,psum,fun,ihi,fac)
# setup

iter <- 0
np <- length(b)
p <- rep(b,np)
dim(p) <- c(np,np)
p <- t(p)
diag(p) <- diag(p)+del
p <- rbind(b,p)
y <- rep(0,np+1)
for (i in 1:(np+1)) y[i] <- fun(p[i,],...)

#
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psum <- apply(p,2,sum)
while (iter <= itmax) {
o <- order(y) # don’t need a full sort, only smallest and two largest
p <- p[o,] # so could be done more efficiently
y <- y[o]
ilo <- 1
ihi <- np+1
inhi <- np
rtol <- 2*abs(y[ihi]-y[ilo])/(abs(y[ihi])+abs(y[ilo])+1e-8)
if (rtol < ftol) return(list(b=p[ilo,],value=y[ilo],comp=

c(iter=iter,error=0)))
if (iter >= itmax) return(list(b=p[ilo,],value=y[ilo],comp=

c(iter=iter,error=1)))
iter <- iter+2

# new point chosen by reflecting the worst current through the plane
# of the others

z <- smptry(p,y,psum,fun,ihi,-1,...)
if (z[[1]] <= y[ilo]) { # new point is best--try going further

z <- smptry(z[[4]],z[[2]],z[[3]],fun,ihi,2,...)
y <- z[[2]]; psum <- z[[3]]; p <- z[[4]]

} else if (z[[1]] >= y[inhi]) {
ysave <- z[[2]][ihi] #new point is still worst, try smaller step
z <- smptry(z[[4]],z[[2]],z[[3]],fun,ihi,0.5,...)
y <- z[[2]]; psum <- z[[3]]; p <- z[[4]]
if (z[[1]] >= ysave) { # still bad, shrink simplex

for (i in (1:(np+1))[-ilo]) {
psum <- (p[i,]+p[ilo,])/2
p[i,] <- psum
y[i] <- fun(psum,...)

}
iter <- iter+np
psum <- apply(p,2,sum)

}
} else {

y <- z[[2]]; psum <- z[[3]]; p <- z[[4]]
iter <- iter-1

}
}
return(list(b=p[ilo,],value=y[ilo],comp=c(iter=iter,error=1)))

}

smptry <- function(p,y,psum,fun,ihi,fac,...) {
ndim <- ncol(p)
fac1 <- (1-fac)/ndim
fac2 <- fac1-fac
ptry <- psum*fac1-p[ihi,]*fac2
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ytry <- fun(ptry,...)
if (ytry < y[ihi]) {
y[ihi] <- ytry
psum <- psum-p[ihi,]+ptry
p[ihi,] <- ptry

}
list(ytry,y,psum,p)

}

Applying this to the Weibull regression example gives the following. fw() is the same as before.

> unix.time(u <- simplex(c(0,0,0),fw,time=d$ti,fi=d$fi,z=d$z))
[1] 1.139999 0.000000 2.000000 0.000000 0.000000
> u
$b:
[1] 1.02834543 2.30864089 0.02376035

$value:
[1] 135.1198

$comp:
iter error
132 0

> unix.time(u <- simplex(c(0,0,0),fw,ftol=1e-12,time=d$ti,fi=d$fi,z=d$z))
[1] 1.46 0.00 2.00 0.00 0.00
> u
$b:
[1] 1.02839421 2.30868513 0.02375152

$value:
[1] 135.1198

$comp:
iter error
176 0

Unlike modified Newton-Raphson, and methods which attempt to mimic it such as BFGS, the
simplex method continues to converge slowly as it approaches the solution. For a few digits of
accuracy the simplex method can perform nearly as well as other methods, but if high accuracy is
needed it can be quite slow, and if the minimum is located in a region where the function is fairly
flat, high accuracy may be impossible.
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3.5 A Neural Network Classification Model

Consider the problem of classifying objects into K classes based on an observed p-dimensional
feature vector x. Given a training set of m cases, where both the feature vectors
xi = (xi1, . . . , xip)′ and the class indicators yi, with yi = k if object i is in class k, are observed,
the problem is to build a rule for determining the class of future objects based only on their
feature vectors. For example, in diagnosing medical problems, the classes would be different
possible diagnoses, and the feature vector would consist of the patient’s symptoms and history,
lab test results, etc. In the example to be analyzed below (a classic classification data set), the
classes are 3 species of iris, and the feature vector consists of measurements on the 4 variables
sepal length, sepal width, petal length, and petal width. The problem is to develop a rule for
determining the species based on these measurements.

There are many methods for developing classification rules, including linear discriminant analysis,
logistic regression (and polytomous extensions), nearest neighbor methods, recent extensions of
linear discriminant analysis, such as flexible discriminant analysis and penalized discriminant
analysis (see Hastie, Tibshirani and Buja, 1994), and many others. Given a model for the
conditional distribution of x given the class, the optimal Bayes rule when all errors have equal
costs is to classify cases with features x in class k if the posterior class probabilities satisfy
P (y = k|x) > P (y = j|x) for all j 6= k.

Neural networks have also been widely applied to classification problems. Neural networks have
mostly been developed outside the field of statistics, and because of their connections with
cognitive science, some very picturesque terminology has been developed to describe these models
and the process of fitting them. Brief introductions to neural networks are given by Cheng and
Titterington (1994), Warner and Misra (1996), and Venables and Ripley (1997, Sections 11.4 and
17.2), and a more extensive treatment in Ripley (1996). A fictional (ie false) account of neural
network applications was given by Powers (1995).

The classic feed-forward neural network consists of a set of input nodes, a set of outputs, and one
or more hidden layers of nodes. In the classification problem, there are p input nodes, each
corresponding to one of the p features. Each of these is passed on to each of the hidden nodes in
the next layer, where they are combined into new values using node specific weights, wjn for node
n; that is, the new value computed at node n from an input vector xi is

zin = w0n +
p∑

j=1

wjnxij .

These are then transformed by an activation function, which is almost always the logistic function
g(z) = 1/{1 + exp(−z)}, and then are sent on to each of the nodes in the next layer. The role of
the activation function is to facilitate approximation of nonlinear effects, and to keep rescaling all
the outputs to a common scale (the range of g(z) is (0, 1)). In a similar vein, there is some
advantage to scaling the input features to lie in this interval, too. At the next layer of nodes, the
outputs from the previous layer are again comined using node specific weights, transformed, and
sent on to the nodes in the next layer. The outputs from the final layer consist of one or more
different weighted combinations of the outputs from the previous layer, which are then
transformed by an output function. The most common output functions are the linear function
(no transformation), the logistic function g(z), and a threshold function, which equals 1 if its
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argument is greater than some cutoff, and equals 0 otherwise.

It is known that a single layer of hidden nodes is sufficient to uniformly approximate continuous
functions over compact sets, with the degree of approximation improving as the number of hidden
nodes is increased. In the classification problem, if K output nodes are used to represent the
probabilities of each of the K classes, a single hidden layer with N nodes is used, and the logistic
function is applied to the outputs, then the resulting model for the class probabilities is

P (yi = k|xi) = p(k, xi, v, w) = g

v0k +
N∑

n=1

vnkg

w0n +
p∑

j=1

wjnxij

 ,

where the weights wjn for each hidden node and the output weights vnk can be thought of as
unknown parameters to be estimated from the training data set. There are thus
N(p + 1) + K(N + 1) unknown parameters. For a problem with p = 4 and K = 3 (as in the iris
data), N(p + 1) + K(N + 1) = 8N + 3, so each hidden node adds 8 additional parameters. Neural
networks thus provide very flexible models for classification problems. One additional extension
sometimes used is to replace v0k by v0k + x′βk at the output layer, so the model includes the
linear logistic model as a special case. Then the hidden layer models nonlinearities in the effects.
Generally the probabilities in this model do not satisfy the constraint that

∑
k P (y = k|x) = 1,

but they can be renormalized when this is important.

The process of fitting the model is often referred to as training the network, or more
imaginatively, as the machine learning how to classify the data. Powers (1995, p. 30), writes of a
neural network trained to produce verbal output from text input:

No one told it how. No one helped it plough through the dough. The cell connections,
like the gaps they emulated, taught themselves, with the aid of iterated reinforcement.
Sounds that coincided with mother speech were praised. The bonds behind them
tightened, closing in on remembrance like a grade-schooler approximating a square
root. All other combinations died away in loneliness and neglect.

What this refers to in the traditional approach to training a neural network, is that the features
from the training set are fed into the network one at a time. The outputs are then compared with
the true classification, and information sent back through the network that allows the weights at
each node to be updated in a way that should increase the probability of the correct class and
decrease the probabilities of the other classes. This is usually done through a procedure called the
back propagation algorithm.

The back propagation algorithm requires an objective function that can be used to compare the
fit of different weights. Often the least squares function

∑
i

K∑
k=1

{I(yi = k) − p(yi, xi, v, w)}2 (3.10)

is used, although criteria based on likelihood functions can also be given. In the usual process of
training the network, the weights are updated by computing an update to the gradient of the
objective function, and moving the weights at each node a small step in the direction of the
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negative of the gradient. The back propagation algorithm for training a neural network classifier
is thus essentially a steepest descent algorithm for minimizing (3.10).

With the large number of parameters in a typical neural network model, overfitting the training
data is a serious problem. That is, weights can be found that fit the training data very well, but
are fitting random variation in the training data, and so do poorly at classifying new
observations. Of an overtrained network, Powers (1995, p. 79) writes

‘Autistic,’ I remember saying. Particulars overwhelmed it. Its world consisted of this
plus this plus this. Order would not striate out. Implementation A had sat paralyzed,
a hoary, infantile widow in a house packed with undiscardable mementos, no more
room to turn around. Overassociating, overextending, creating infinitesimal, worthless
categories in which everything belonged always and only to itself.

Because of the problem of overfitting the training data, the standard paradigm for training a
neural network splits the training data into two parts, and uses one part for training, and the
second part (referred to as the ‘test data’) for estimating the error rate of the network at each
step in the training. When the error rate on the test data stops decreasing, then the training is
stopped. When very large data sets are not available (which is usually the case), the error rate can
be estimated from cross validation, instead of using a separate test data set. In leave one out cross
validation, the fitting process is conducted with one observation omitted, and the fitted model
used to predict the omitted observation. This is repeated with each observation omitted in turn,
and the error rate estimated by averaging over the omitted observations. (Instead of just omitting
one observation, small randomly selected subsets can be omitted.) The main drawback to cross
validation is the need to repeat the fitting process many times. Thus the traditional process of
training the network does not attempt to minimize (3.10), but tries to find arbitrary v and w that
give good predictions in test data set or under cross validation. The actual values of v and w will
depend heavily on the starting values, although similar classification may result from quite
different wets of weights. Even if the iteration is continued to a local optimum, neural network
models tend to have many local optima, not all of which would give equivalent performance.

Another way to control the problem of overfitting is through penalty functions. In particular, an
objective function of the form

F (v, w) =
m∑

i=1

K∑
k=1

{I(yi = k) − p(yi, xi, v, w)}2 + λ
N∑

n=1

 p∑
j=0

w2
jn +

K∑
k=1

v2
nk

 (3.11)

could be used, where λ is a smoothing parameter, with larger values of λ forcing smaller weights,
and hence smoother fits. Note that the constants in the output units (v0k) have not been
penalized. For (3.11), a search for local minima can be conducted using any of the techniques
discussed in this chapter. The problem of multiple local minima still remains, and repeat runs
from different starting values should always be done. Venables and Ripley (1997, p. 491) suggest
averaging the probabilities over different local optima. In the penalized version, there is also the
problem of choosing the penalty parameter λ. This could be based on minimizing classification
errors in a test data set, or on cross validation.

Setting rik = I(yi = k) − p(yi, xi, v, w), uin = g(zin), ui0 = 1, and xi0 = 1, the components of the



128 CHAPTER 3. OPTIMIZATION AND NONLINEAR EQUATIONS

gradient of (3.11) are easily seen to be

∂F (v, w)
∂vhl

= −2
m∑

i=1

rilg
′
(

v0l +
N∑

n=1

vnluin

)
uih + 2λvhlI(h > 0),

h = 0, . . . N , l = 1, . . . , K, and

∂F (v, w)
∂wjh

= −2
m∑

i=1

K∑
k=1

rik g′
(

v0k +
N∑

n=1

vnkuin

)
vhk g′(zih)xij + 2λwjh,

j = 0, . . . , p and h = 1, . . . , N . Since there is no intrinsic interest in the v’s and w’s, and hence in
their variances, the second derivative matrix is not of independent interest, and a BFGS
algorithm seems like an appropriate choice for minimizing (3.11) for a fixed value of λ. The
function nnfit() given below does this. (There is a function nnet() in the library distributed by
Venables and Ripley, that is superior for practical work.) nnfit() uses a sample from a U(0, 1)
distribution as the default initial values of the weights. The functions nnf() and nng() compute
the objective function (3.11) and its gradient, the function nnp() computes the estimated
classification probabilities, and nn.classif() computes the estimated probabilities and
determines which class has the highest estimated probability. Classification based on the highest
estimated class probability is motivated by the optimal Bayes rule. However, since a point
estimate of the parameters is used, rather than an average over priors, these are not Bayes
estimates, and this is not an optimal rule (although it should be asymptotically consistent for the
optimal rule). As discussed in Hastie, Tibshirani and Buja (1994), a classification rule which
takes the output from the neural network (usually without the final logistic transformation), and
applies a post processor, such as linear discriminant analysis, to determine the final classification,
can perform better.

nng <- function(b,y,x,lambda) {
# computes the gradient of the least squares classification neural
# network objective function.
# b is the vector of weights (first the output unit weights, then
# the weights for the hidden units)
# y[i]=k if the ith case is in class k
# x is the m x p matrix of feature vectors
# lambda=the penalty parameter

x <- as.matrix(x)
p <- ncol(x)
k <- max(y)
n <- (length(b)-k)/(p+k+1)
gpen <- 2*lambda*b
gpen[seq(1,(n+1)*k,by=n+1)] <- 0
unlist(.C(’nng_’,as.integer(nrow(x)),as.integer(p),as.integer(n),

as.integer(k),as.double(t(x)),as.integer(y),
as.double(b[1:((n+1)*k)]),
as.double(b[(((n+1)*k)+1):length(b)]),
obj=double(1),gv=double(n*k+k),gw=double(n*p+n),
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double(n))[c(10,11)])+gpen
}
nnf <- function(b,y,x,lambda) {
# computes the least squares classification neural
# network objective function.
# b is the vector of weights (first the output unit weights,
# then the weights for the hidden units)
# y[i]=k if the ith case is in class k
# x is the m x p matrix of feature vectors
# lambda=the penalty parameter

x <- as.matrix(x)
p <- ncol(x)
k <- max(y)
n <- (length(b)-k)/(p+k+1)
pen <- lambda*sum(b[-seq(1,(n+1)*k,by=n+1)]^2)
.C(’nnf_’,as.integer(nrow(x)),as.integer(p),

as.integer(n),as.integer(k),as.double(t(x)),
as.integer(y),as.double(b[1:((n+1)*k)]),
as.double(b[(((n+1)*k)+1):length(b)]),
obj=double(1),double(n))$obj+pen

}
nnp <- function(nnobj,x) {
# computes the estimated class probabilities for a neural
# network classification model fit
# nnobj=output from nnobj
# x=matrix of feature vectors where probabilities are to be calculated
# output = K x nrow(x) matrix whose ith column gives the estimated
# probabilities that the feature vector in the ith row of x is in
# each of the K classes

x <- as.matrix(x)
p <- nnobj$dims[1]
if (ncol(x) != nnobj$dims[1]) stop(’wrong # covs’)
for (i in 1:p) {
x[,i] <- (x[,i]-nnobj$covtran[i,1])/

(nnobj$covtran[i,2]-nnobj$covtran[i,1])
}
k <- nnobj$dims[2]
n <- nnobj$dims[3]
i1 <- (n+1)*k
nwt <- length(nnobj$weights)
probs <- .C(’nnp_’,as.integer(nrow(x)),as.integer(p),

as.integer(n),as.integer(k),as.double(t(x)),
as.double(nnobj$weights[1:i1]),
as.double(nnobj$weights[(i1+1):nwt]),
probs=double(k*nrow(x)),double(n))$probs

dim(probs) <- c(k,nrow(x))
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probs
}
nn.classif <- function(nnobj,xx) {
# determine class with highest estimated class probability
# (not necessarily the best classification rule)
# nnobj = output from nnfit
# xx = matrix of feature vectors (rows) for cases to be classified
# output is a list with components
# $probs = the matrix of estimated class probabilities
# (K x nrow(x) -- see nnp())
# $predclass=the vector of class indicators (=k if predicted to be in class k)

ap <- nnp(nnobj,xx)
u <- apply(ap,2,function(u) (1:length(u))[u == max(u)][1])
list(probs=ap,predclass=u)

}
nnfit <- function(y,x,lambda=0,N=5,maxiter=2000,init=NULL) {
# fits a neural network classification model by minimizing a
# penalized least squares objective function
# y[i]=k if the ith case is in class k
# x is the m x p matrix of feature vectors
# lambda is the penalty parameter
# N= # nodes in the hidden layer
# maxiter=maximum iterations in the BFGS algorithm
# init=initial values of weights. If not given, initial values
# are generated from a U(0,1) distribution
# note that features are transformed to the interval [0,1]
# output = list with components $weight giving the estimated weights
# (first from the output units, then from the hidden units), $dims
# giving the values of the number of features p, the number of classes
# K, the number of hidden units N, and the number of observations m,
# $covtran giving the values needed for transforming the feature
# vectors, and $perf giving the number of iterations and other info.

x <- as.matrix(x)
rr <- NULL
for (i in 1:ncol(x)) {
u <- range(x[,i])
rr <- rbind(rr,u)
x[,i] <- (x[,i]-u[1])/(u[2]-u[1])

}
p <- ncol(x)
m <- nrow(x)
K <- max(y)
u <- table(y)
if (length(u) != K | min(u)<2 | length(y) != m) stop(’problems with y’)
nwt <- N*(p+K+1)+K
if (is.null(init) || length(init) != nwt) init <- runif(nwt)
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# use the following 4 lines in place of the last 3
# for nlminb (sometimes faster than bfgs)
# u <- nlminb(init,nnf,nng,control=nlminb.control(maxiter,maxiter),
# y=y,x=x,lambda=lambda)
# list(weights=u[[1]],dims=c(p=p,K=K,N=N,m=m),message=u[[3]],
# covtran=rr,perf=unlist(u[c(2,4:7)]))
#
# use the following 3 lines for bfgs()

u <- bfgs(init,nnf,nng,iter=maxiter,y=y,x=x,lambda=lambda)
list(weights=u[[1]],dims=c(p=p,K=K,N=N,m=m),message=NULL,

covtran=rr,perf=c(u$comp,score=sqrt(sum(u$score*u$score))))
}

Most of the work in nnf(), nng() and nnp() is done in the following FORTRAN routines, which
substantially speeds up these computations.

c m = (input) # obs
c np = (input) # covs (not including constant)
c n = (input) # nodes in hidden layer
c k = (input) # classes
c x = (input) covariate matrix, covariates in rows, cases in columns
c iy = (input) iy(i)=kk if ith case in class kk
c v = (input) v weights
c w = (input) w weights
c obj= (output) objective function value at input weights
c gv = (output) gradient of f wrt v
c gw = (output) gradient of f wrt w
c z = working vector of length n
c assumes standard BLAS ddot is available (computes inner product)
c note: if g(u)=1/(1+exp(-u)), then g’(u)=g(u)(1-g(u))

subroutine nng(m,np,n,k,x,iy,v,w,obj,gv,gw,z)
double precision x(np,m),v(0:n,k),w(0:np,n),gv(0:n,k),gw(0:np,n)
double precision obj,z(n)
integer m,np,n,k,iy(m),i,j,l,j2
double precision ddot,rl,ql,t1
obj=0
do 10 i=1,n

do 11 j=0,k
gv(i,j)=0

11 continue
do 12 j=0,np

gw(j,i)=0
12 continue
10 continue

do 20 i=1,m
do 21 j=1,n
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z(j)=w(0,j)+ddot(np,w(1,j),1,x(1,i),1)
z(j)=1/(1+exp(-z(j)))

21 continue
do 30 l=1,k

ql=v(0,l)+ddot(n,v(1,l),1,z,1)
ql=1/(1+exp(-ql))
if (iy(i).eq.l) then

rl=1-ql
else

rl=-ql
endif
obj=obj+rl*rl
ql=ql*(1-ql)
ql=-2*ql*rl
gv(0,l)=gv(0,l)+ql
do 40 j=1,n

gv(j,l)=gv(j,l)+ql*z(j)
t1=ql*v(j,l)*z(j)*(1-z(j))
gw(0,j)=gw(0,j)+t1
do 42 j2=1,np

gw(j2,j)=gw(j2,j)+t1*x(j2,i)
42 continue
40 continue
30 continue
20 continue

return
end

c like above, but only evaluates obj fcn
subroutine nnf(m,np,n,k,x,iy,v,w,obj,z)
double precision x(np,m),v(0:n,k),w(0:np,n)
double precision obj,z(n)
integer m,np,n,k,iy(m),i,j,l
double precision ddot,rl,ql
obj=0
do 20 i=1,m

do 21 j=1,n
z(j)=w(0,j)+ddot(np,w(1,j),1,x(1,i),1)
z(j)=1/(1+exp(-z(j)))

21 continue
do 30 l=1,k

ql=v(0,l)+ddot(n,v(1,l),1,z,1)
ql=1/(1+exp(-ql))
if (iy(i).eq.l) then

rl=1-ql
else
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rl=-ql
endif
obj=obj+rl*rl

30 continue
20 continue

return
end

c calculates estimated probabilities at arbitrary covariates x
subroutine nnp(m,np,n,k,x,v,w,prob,z)
double precision x(np,m),v(0:n,k),w(0:np,n)
double precision z(n),prob(k,m)
integer m,np,n,k,i,j,l
double precision ddot,ql
do 20 i=1,m

do 21 j=1,n
z(j)=w(0,j)+ddot(np,w(1,j),1,x(1,i),1)
z(j)=1/(1+exp(-z(j)))

21 continue
do 30 l=1,k

ql=v(0,l)+ddot(n,v(1,l),1,z,1)
prob(l,i)=1/(1+exp(-ql))

30 continue
20 continue

return
end

3.5.1 Application to Fisher’s Iris Data

The iris data set (available in the s/.Datasets subdirectory in the Splus search path) consists of
50 observations on the sepal length, sepal width, petal length, and petal width from each of 3
species of iris (Setosa, Versicolor, Virginica). Here the first 33 observations from each species will
be used as the training set (xx1 and yy1 below) and the other 17 observations as a test set (xx2
and yy2 below). The following commands set up the data and fit the neural network model with
5 nodes in the hidden layer (and hence 43 unknown parameters).

> dim(iris)
[1] 50 4 3
> xx <- rbind(iris[,,1],iris[,,2],iris[,,3])
> xx1 <- rbind(iris[1:33,,1],iris[1:33,,2],iris[1:33,,3])
> xx2 <- rbind(iris[34:50,,1],iris[34:50,,2],iris[34:50,,3])
> dim(xx1)
[1] 99 4
> yy <- c(rep(1,50),rep(2,50),rep(3,50))
> yy1 <- c(rep(1,33),rep(2,33),rep(3,33))
> yy2 <- c(rep(1,17),rep(2,17),rep(3,17))
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> a <- nnfit(yy1,xx1,lambda=.1)
> a[[5]]
iter error nskip steph score
303 0 9 2 3.124937e-05

> a[[2]]
p K N m
4 3 5 99

The BFGS algorithm needed 303 iterations to meet the convergence criterion. Generally in these
examples, fewer iterations were needed if nlminb() was used instead of bfgs(). The following
looks at the classification error in the training set (left side) and test set (right side).

> tmp1 <- nn.classif(a,rbind(xx1,xx2))
> cbind(table(tmp1$predclass[1:99],yy1),table(tmp1$predclass[100:150],yy2))

1 2 3 1 2 3
1 33 0 0 17 0 0
2 0 31 0 0 16 2
3 0 2 33 0 1 15

Only 2/99 cases in the training set and 3/51 in the test set were misclassified. Decreasing λ can
give a perfect fit on the training data, but not on the test data, as follows.

> a <- nnfit(yy1,xx1,lambda=.001)
> a[[5]]
iter error nskip steph score
984 0 414 24 4.433492e-07

> tmp1 <- nn.classif(a,rbind(xx1,xx2))
> cbind(table(tmp1$predclass[1:99],yy1),table(tmp1$predclass[100:150],yy2))

1 2 3 1 2 3
1 33 0 0 17 0 0
2 0 33 0 0 16 1
3 0 0 33 0 1 16

Repeating this last run with different (random) starting values (but the same λ) converged to
superficially quite different weights, but give similar estimated probabilities (there is no guarantee
that all local minima will give similar probabilities, though). In fact the w’s in the example below
can be seen to be nearly the same in the two runs (with different random starting values), except
for permuting the order of the nodes in the hidden layer, and sign changes. The differences in the
v0k then are explained by the fact that g(−zin) = 1 − g(zin), so when the sign of z changes in a
hidden node, there needs to be a corresponding shift in the constant terms in the output layer.

> # weights from the previous run
> a[[1]]
[1] 7.0936628 -3.3158273 -0.2511496 -3.3158794 -3.3157866 -3.3157193
[7] -7.6710601 4.0802830 -16.2833373 4.0803637 4.0803526 4.0802773
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[13] -10.2328227 0.5611847 16.6704100 0.5611336 0.5612029 0.5611675
[19] -1.0412576 1.0914919 -1.7996024 3.0516115 3.1463228 -14.4668813
[25] -1.8711734 -5.4136442 12.6672366 13.3805759 -1.0413502 1.0915204
[31] -1.7995113 3.0516819 3.1463718 -1.0412965 1.0913711 -1.7995869
[37] 3.0516824 3.1464454 -1.0412297 1.0913732 -1.7996240 3.0516300
[43] 3.1463600
> a <- nnfit(yy1,xx1,lambda=.001)
> a[[5]]
iter error nskip steph score
571 0 6 26 1.375081e-06

> tmp2 <- nn.classif(a,rbind(xx1,xx2))
> summary(tmp1$probs-tmp2$probs)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.406e-06 -3.897e-08 3.524e-09 -1.835e-08 1.005e-08 8.572e-07

> cbind(table(tmp2$predclass[1:99],yy1),table(tmp2$predclass[100:150],yy2))
1 2 3 1 2 3

1 33 0 0 17 0 0
2 0 33 0 0 16 1
3 0 0 33 0 1 16
> a[[1]]
[1] 3.7776828 -0.2510077 -3.3157990 -3.3155459 3.3159455 -3.3159144
[7] -3.5906640 -16.2833610 4.0803057 4.0802354 -4.0803482 4.0803571

[13] -9.6717878 16.6704108 0.5612308 0.5609241 -0.5612391 0.5615104
[19] -14.4668706 -1.8711746 -5.4136404 12.6672279 13.3805672 -1.0412896
[25] 1.0914676 -1.7995930 3.0517861 3.1462479 -1.0411609 1.0914274
[31] -1.7996984 3.0515710 3.1463002 1.0413374 -1.0913078 1.7995014
[37] -3.0516416 -3.1464935 -1.0413625 1.0914902 -1.7995685 3.0515236
[43] 3.1465673

Using a larger value of λ than in the original fit gives the following.

> a <- nnfit(yy1,xx1,lambda=.3)
> a[[5]]
iter error nskip steph score
200 0 8 5 0.0001279832

> tmp1 <- nn.classif(a,rbind(xx1,xx2))
> cbind(table(tmp1$predclass[1:99],yy1),table(tmp1$predclass[100:150],yy2))

1 2 3 1 2 3
1 33 1 0 17 1 0
2 0 9 0 0 3 0
3 0 23 33 0 13 17

The fact that there is so much improvement between λ = .3 and λ = .1 in both the training and
test data sets, but little improvement beyond λ = .1, gives some indication that the model with
λ = .1 might give a reasonable classification rule. However, the test set is probably too small to
be certain of this.
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Interestingly, when λ = 0, the algorithm can converge to very different local minima, as shown
below.

> a <- nnfit(yy1,xx1,lambda=0)
> a[[5]]
iter error nskip steph score
1580 0 1493 9 3.12263e-07

> tmp1 <- nn.classif(a,rbind(xx1,xx2))
> cbind(table(tmp1$predclass[1:99],yy1),table(tmp1$predclass[100:150],yy2))

1 2 3 1 2 3
1 33 20 0 17 12 0
2 0 4 0 0 2 0
3 0 9 33 0 3 17
> a <- nnfit(yy1,xx1,lambda=0)
> a[[5]]
iter error nskip steph score

85 0 10 5 4.142313e-09
> tmp2 <- nn.classif(a,rbind(xx1,xx2))
> summary(tmp1$probs-tmp2$probs)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1 -2.949e-20 -2.939e-39 -0.1133 6.446e-83 5.836e-08
> cbind(table(tmp2$predclass[1:99],yy1),table(tmp2$predclass[100:150],yy2))

1 2 3 1 2 3
1 33 0 0 17 0 0
2 0 33 0 0 16 1
3 0 0 33 0 1 16

3.6 Newton’s Method for Solving Nonlinear Equations

Suppose G(x) = (g1(x), . . . , gp(x))′, where each gj : Rp → R1 is a smooth function. Consider the
problem of finding a solution x∗ to the equations

G(x) = 0.

As discussed in Section 3.2.2, Newton’s method for solving nonlinear equations is based on
repeatedly solving the linear system given by the tangent plane approximation to G at the
current point. The tangent plane approximation is

G(x) .= G(x0) + J(x0)(x − x0),

and the Newton updates are of the form

x1 = x0 − J(x0)−1G(x0),

where J(x) is the Jacobian matrix of G at x,

J(x) =

(
∂gi(x)
∂xj

)
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(ith row, jth column).

As in the minimization problem, Newton’s method usually has quadratic convergence when
started close enough to a solution, but often diverges otherwise. Unlike the minimization problem,
here there is not an objective function to monitor to check if the new point is better. The usual
approach is similar, though, in that the Newton directions are used, and the magnitude of the
components of G are monitored to see if they are getting closer to 0. In particular, the value of

f(x) = G(x)′G(x)/2

can be monitored. The Newton direction is

d = −J(x0)−1G(x0).

Since ∇f(x) = J(x)′G(x), it follows that

d′∇f(x0) = −G(x0)′[J(x0)−1]′J(x0)′G(x0) = −G(x0)′G(x0) < 0,

so d is a descent direction for f at x0.

As in the minimization problem, to preserve the good convergence rate of Newton’s method, at
each iteration the full Newton step is tried first. If the full step sufficiently improves on f(x0),
then the new point is retained, and the iteration proceeds. If not, then backtracking is used to
locate a better point in the same direction. Such a point exists because d is a descent direction for
f . The new point then is

x1(λ) = x0 − λJ(x0)−1G(x0),

for some 0 < λ ≤ 1, where x0 is the current point (and where λ = 1 corresponds to the full
Newton step). To guarantee minimal progress, the condition

f [x1(λ)] < f(x0) + 10−4[x1(λ) − x0]′∇f(x0) = f(x0) − 10−4λG(x0)′G(x0),

(or something similar) should again be required to declare a new point to be better. Alternately,
a model trust region approach could be implemented (see Dennis and Schnabel, 1983, for details).

Below is a function neq() which implements a backtracking version of Newton’s method, using
proportional step reduction for backtracking. Polynomial interpolation could also be used instead.
neq() requires separate functions for evaluating G(x) (gn) and the Jacobian of G (jn). The
convergence criterion used stops when maxi |gi(x1)| < gtol. Of course, appropriate values of gtol
depend on the scaling of the equations. It is the user’s responsibility to choose a value that makes
sense for the scaling used (and to use appropriate scaling). The iteration also terminates when
the relative change in x between successive iterations is < steptol. This can happen for example
if f(x) = G(x)′G(x)/2 has a local minimum which is not at a solution to G(x) = 0. If this
happens the function returns an error code of 3.

# Modified Newton’s method for solving nonlinear equations
# Arguments
# b=initial parameter values
# gn=function to calculate vector of nonlinear equations, called as
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# gn(b,...)
# jn=function to calc Jacobian of the nonlinear equations,
# called as jn(b,...) should return a matrix
# gtol solution identified if max(abs(gn(b,...)))<gtol
# iter=max # iterations (input),
# stepf=the fraction by which the step size is reduced in each step of
# the backtracking algorithm
# steptol--if step size is smaller than this then algorithm has stalled
# ... additional arguments to gn
# returns a list with components b=approx solution, f=||gn(b)||^2/2,
# and comp=a vector with components named
# iter, giving the number of iterations used, an error
# code (error=0 no errors, =1 if error in directional search, =2 if
# max iterations exceeded, error=3 if iteration has stalled at a
# point that is not a solution), and steph giving the number of
# times the step length was reduced

neq <- function(b,gn,jn,gtol=1e-6,iter=50,stepf=.5,steptol=1e-8,...) {
n <- length(b)
steph <- 0
g0 <- gn(b,...)
f0 <- sum(g0*g0)/2
for (ll in 1:iter) {

# new direction
j <- jn(b,...)
sc <- -c(solve(j,g0))
bn <- b+sc
g1 <- gn(bn,...)
f1 <- sum(g1*g1)/2

# backtracking loop
i <- 0
lam <- -2*f0
while (is.na(f1) || f1>f0+(1e-4)*lam) {

i <- i+1
steph <- steph+1
sc <- sc*stepf
lam <- lam*stepf
bn <- b+sc
g1 <- gn(bn,...)
f1 <- sum(g1*g1)/2
if (i>20) return(list(b=b,f=f0,comp=c(iter=ll,error=1,steph=steph)))

}
if (max(abs(g1))<gtol) # if true, iteration converged

return(list(b=bn,f=f1,comp=c(iter=ll,error=0,steph=steph)))
if (max(abs(b-bn)/pmax(abs(b),1))<steptol)

return(list(b=bn,f=f1,comp=c(iter=ll,error=3,steph=steph)))
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b <- bn
g0 <- g1
f0 <- f1

}
# max number of iterations exceeded

list(b=bn,f=f1,comp=c(iter=ll,error=2,steph=steph))
}

Since solve() is a generic function, the algorithm used to compute J−1G in the solve()
command is under the control of the user. If the Matrix library has been invoked, then the
method for whatever class J is defined as in the routine jn() will be invoked. Since in general J
is not symmetric, the LU decomposition would often be appropriate.

Problems can result if points are encountered where the Jacobian matrix is poorly conditioned. A
more sophisticated version of the algorithm would check for a poorly conditioned Jacobian
matrix, and make some modification if necessary. One such modification is to use the direction

d∗(α) = −[J(x0)′J(x0) + αI]−1J(x0)′G(x0),

where α is a small positive number, instead of the Newton direction; see Section 6.5 of Dennis and
Schnabel (1983). (Note that d∗(α) reduces to the Newton direction at α = 0.)

As in optimization problems, finite difference approximations to the Jacobian, such as given by
the fdjac() function, can be used. In addition to using finite difference approximations, there are
also methods based on updates to secant approximations, which do not directly require
information on the Jacobian. Broyden’s method in Section 9.7 of Press et. al. (1992) is an
example of such a method. Additional details on such methods can be found in Chapter 8 of
Dennis and Schnabel (1983).

3.6.1 Example: Estimating Equations with Missing Covariate Data

Consider logistic regression of a binary response yi on vectors of covariates xi and zi. The true
model is assumed to be

P (yi = 1|xi, zi)
1 − P (yi = 1|xi, zi)

= exp(α + x′
iβ + z′iγ),

for unknown parameters θ′ = (α, β′, γ′). Suppose θ has length m. The components of zi are not
always observed. Let Ri = 1 if all components of zi are observed, = 0 otherwise. Cases with
Ri = 1 are called complete cases. Set π = P (Ri = 1) marginally, and suppose

P (Ri = 1|yi, xi, zi) = P (Ri = 1) = π, (3.12)

that is, the data are missing completely at random. In this case the scores for the likelihood using
only the complete cases form unbiased estimating equations for θ. Although it is unbiased, the
complete case analysis ignores the information in the partially complete cases, and so is
inefficient. There is considerable interest in how best to include information from the partially
complete cases in the analysis.
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Define p(xi, zi, θ) = P (yi = 1|xi, zi). The complete data scores are
∑

i RiU(yi, xi, zi, θ), where

U(y, x, z, θ) =

 1
x
z

 [y − p(x, z, θ)].

As already mentioned, the scores for the observed complete cases are unbiased, because

Eθ[U(yi, xi, zi, θ)|Ri = 1] = Eθ[U(yi, xi, zi, θ)] = 0,

by (3.12) and the fact that U(yi, xi, zi, θ) is the usual logistic regression score vector contribution,
which has marginal mean 0.

Any equation of the form

∑
i

Ri

π
U(yi, xi, zi, θ) +

(
1 − Ri

π

)
φ(yi, xi, θ) = 0

is also an unbiased estimating equation for θ, where φ is any m-vector of functions of yi and xi.
This follows since

E
[(

1 − Ri

π

)
φ(yi, xi, θ)

]
= Eyi,xi

[
φ(yi, xi, θ)ERi|yi,xi

(
1 − Ri

π

)]
= 0.

For certain patterns of missingness, Robins, Rotnitzky and Zhao (1994) have shown the optimal
choice of φ is

φ∗(yi, xi, θ) = Ezi|yi,xi
[U(yi, xi, zi, θ)] ,

the conditional expectation of the complete data score.

Calculating this conditional expectation requires knowledge of the joint distribution of (yi, xi, zi),
and if zi is continuous it would likely require numerical integration to compute. Thus simpler
approximations are of interest. The choice of φ will only effect the efficiency, though, since the
estimating equations remain unbiased regardless.

One simple approximation that could be considered is to set

φ(yi, xi, θ) = U(yi, xi, E[zi|yi, xi], θ).

The conditional expectation E[zi|yi, xi] could be estimated from the complete cases using any
convenient approximation, such as linear regression. This crude approximation will be used below.

For the linear regression to estimate E[zi|yi, xi], the model

zij = µ0j + µ1jyi + µ′
2jxi + ei

can be used, with the parameters estimated using only the complete cases. Ordinary least squares
might be appropriate for calculating the estimates. More complex models incorporating
interactions and nonlinear effects could also be considered. Whatever model is used, the estimates
of E[zi|yi, xi] are just the predicted values from the regression. These are needed for both the
complete cases used in fitting the regression model, and for the incomplete cases which were not
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included. Denote the predicted value for case i by z∗i . The estimating equations for θ are then
given by ∑

i

Ri

π̂
U(yi, xi, zi, θ) +

(
1 − Ri

π̂

)
U(yi, xi, z

∗
i , θ) = 0, (3.13)

with π̂ set to the observed proportion of complete cases.

For arbitrary functions φ, the estimating equations would generally not be representable as the
derivatives of an objective function. In this particular case, the functions on the left hand side of
(3.13) are the partial derivatives of a common function. However, minimizing this turns out not
to be very useful (it is NOT a likelihood), probably because it is sometimes minimized in the
limit as combinations of parameters become infinite. For this reason it appears better to directly
solve the system of nonlinear equations without utilizing an objective function.

Below the function neq() is used to compute the solution to these estimating equations for some
simulated data.

> mlrsc <- function(b,resp,comp,miss,cov.pred,mi) {
+ # resp=response (y), comp=matrix of always observed covs (x)
+ # miss=matrix of incomplete covs (z), cov.pred=predicted values of miss
+ # from linear regressions, mi=1 if any data missing (1-r)
+ # compute estimating equations
+ n <- length(resp)
+ pihat <- table(mi)[1]/n #prob not missing
+ z1 <- cbind(rep(1,n)[!mi],comp[!mi,],miss[!mi,])
+ pr1 <- exp(z1 %*% b)
+ pr1 <- pr1/(1+pr1)
+ u <- apply(c(resp[!mi]-pr1)*z1,2,sum)/pihat
+ z1 <- cbind(rep(1,n),comp,cov.pred)
+ pr1 <- exp(z1 %*% b)
+ pr1 <- pr1/(1+pr1)
+ u+apply((pihat-1+mi)*c(resp-pr1)*z1,2,sum)/pihat
+ }
> mlrjac <- function(b,resp,comp,miss,cov.pred,mi) {
+ # compute Jacobian of estimating equations
+ n <- length(resp)
+ pihat <- table(mi)[1]/n #prob not missing
+ z1 <- cbind(rep(1,n)[!mi],comp[!mi,],miss[!mi,])
+ pr1 <- exp(c(z1 %*% b))
+ pr1 <- pr1/(1+pr1)^2
+ u <- -t(z1)%*%(pr1*z1)/pihat
+ z1 <- cbind(rep(1,n),comp,cov.pred)
+ pr1 <- exp(c(z1 %*% b))
+ pr1 <- pr1/(1+pr1)^2
+ u - t(z1) %*% ((pihat-1+mi)*pr1*z1)/pihat
+ }
>
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> # generate some data: 4 covariates, pairwise correlation rho
> .Random.seed
[1] 17 12 2 22 23 0 55 14 41 4 41 1

> rho <- .5
> n <- 200
> p <- 4
> nmis <- 2 # # covariates with some values missing
> alpha <- -1 #constant term
> beta <- c(1,-1,1,-1) # true regression coefficients
> miss.prob <- .5 # prob cov value is missing for each case
> a <- matrix(rho,p,p)
> diag(a) <- 1
> a <- chol(a)
> Z <- t(a) %*% matrix(rnorm(n*p),nrow=p)
> cor(t(Z))

[,1] [,2] [,3] [,4]
[1,] 1.0000000 0.5058296 0.5109325 0.4887334
[2,] 0.5058296 1.0000000 0.5157523 0.5055901
[3,] 0.5109325 0.5157523 0.9999999 0.4875875
[4,] 0.4887334 0.5055901 0.4875875 1.0000000
> rp <- exp(alpha+c(beta%*%Z))
> rp <- rp/(1+rp)
> resp <- ifelse(runif(n)<rp,1,0)
> comp <- t(Z[1:(p-nmis),])
> miss <- t(Z[(p-nmis+1):p,])
> miss[runif(nmis*n)<miss.prob] <- NA
>
> # identify missing values
> mi <- is.na(apply(miss,1,sum))
> table(mi)
FALSE TRUE

42 158
> # regression to estimate conditional expectations
> newd <- data.frame(comp,resp)
> names(newd) <- c(’comp1’,’comp2’,’resp’)
> cov.pred <- predict(lm(miss~comp+resp,subset=!mi),newdata=newd)
> # (computed predicted values for all data points)
> # estimate logistic parameters
> neq(rep(0,p+1),mlrsc,mlrjac,resp=resp,comp=comp,miss=miss,
+ cov.pred=cov.pred,mi=mi)
$b:
[1] -1.937627 1.970884 -2.131761 2.421421 -2.943655

$f:
[1] 2.396976e-24
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$comp:
iter error steph

7 0 0

> # different starting value
> neq(rnorm(p+1),mlrsc,mlrjac,resp=resp,comp=comp,miss=miss,
+ cov.pred=cov.pred,mi=mi)
$b:
[1] -1.937627 1.970884 -2.131761 2.421421 -2.943655

$f:
[1] 2.122109e-13

$comp:
iter error steph

6 0 0

> # complete cases analysis
> glm(resp~comp+miss,subset=!mi, family=binomial)
Call:
glm(formula = resp ~ comp + miss, family = binomial, subset = !mi)

Coefficients:
(Intercept) comp1 comp2 miss1 miss2

-2.224338 1.667093 -1.875632 2.210221 -2.696877

Degrees of Freedom: 42 Total; 37 Residual
Residual Deviance: 27.41509
> neq(rep(0,p+1),mlrsc,mlrjac,resp=resp[!mi],comp=comp[!mi,],
+ miss=miss[!mi,],cov.pred=cov.pred[!mi,],mi=mi[!mi])
$b:
[1] -2.224705 1.667337 -1.875895 2.210749 -2.697571

$f:
[1] 5.119976e-15

$comp:
iter error steph

6 0 0

> # finite difference approximation to Jacobian
> mlrfdjac <- function(b,resp,comp,miss,cov.pred,mi)
+ fdjac(b,mlrsc,resp,comp,miss,cov.pred,mi)
> mlrjac(c(alpha,beta),resp,comp,miss,cov.pred,mi)

[,1] [,2] [,3] [,4] [,5]
[1,] -34.3292050 -0.5134052 1.833713 -6.846105 6.644404
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[2,] -0.5134052 -32.8026178 -20.856771 -16.139398 -13.589402
[3,] 1.8337132 -20.8567711 -33.751099 -15.542784 -8.124899
[4,] -6.8461052 -16.1393975 -15.542784 -20.417583 -8.416443
[5,] 6.6444042 -13.5894017 -8.124899 -8.416443 -20.769636
> mlrfdjac(c(alpha,beta),resp,comp,miss,cov.pred,mi)

[,1] [,2] [,3] [,4] [,5]
[1,] -34.3292051 -0.5134054 1.833712 -6.846105 6.644404
[2,] -0.5134057 -32.8026179 -20.856772 -16.139397 -13.589402
[3,] 1.8337133 -20.8567709 -33.751099 -15.542784 -8.124900
[4,] -6.8461052 -16.1393975 -15.542784 -20.417583 -8.416443
[5,] 6.6444046 -13.5894014 -8.124899 -8.416443 -20.769636
> neq(rep(0,p+1),mlrsc,mlrfdjac,resp=resp,comp=comp,miss=miss,
+ cov.pred=cov.pred,mi=mi)
$b:
[1] -1.937627 1.970884 -2.131761 2.421421 -2.943655

$f:
[1] 2.221429e-24

$comp:
iter error steph

7 0 0

> unix.time(neq(rep(0,p+1),mlrsc,mlrfdjac,resp=resp,comp=comp,miss=miss,
+ cov.pred=cov.pred,mi=mi))
[1] 3.78 0.00 4.00 0.00 0.00
> unix.time(neq(rep(0,p+1),mlrsc,mlrjac,resp=resp,comp=comp,miss=miss,
+ cov.pred=cov.pred,mi=mi))
[1] 0.9799995 0.0000000 1.0000000 0.0000000 0.0000000

neq() converged quite rapidly in this example, even though there was a substantial proportion of
cases with incomplete data, with moderate correlation among the covariates. In roughly a dozen
similar data sets, no convergence problems were encountered. There is some sensitivity to the
starting point in the performance of the algorithm.

The results of the complete cases analysis were not very close to those from the estimating
equations, but that is not very surprising since only 21% of the cases were complete.

Performance using the finite difference approximation to the Jacobian is nearly identical to that
for the analytical Jacobian, except with respect to cpu time. The difference in cpu time may be in
part due to the extra overhead in the loops and nested function calls, which might give a larger
difference in Splus than in other languages. The difference may be smaller in a pure FORTRAN
or C implementation.

Since the Matrix library was not invoked, the default QR decomposition was used in the solve()
commands. When the Matrix library was used, and the class of the analytical Jacobian was set
to c(’Hermitian’,’Matrix’), to invoke the symmetric indefinite version of solve(), the cpu
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time was slightly longer than for the version above. In general, the Matrix library functions are
not a particularly efficient implementation of the algorithms used.

3.7 Nonlinear Gauss-Seidel Iteration

The basic idea of the Gauss-Seidel iteration for solving linear equations can also be applied to
non-linear problems (see eg Section 4.3.4 of Thisted, 1988). In this method, to solve

G(x) = (g1(x), . . . , gp(x))′ = (0, . . . , 0)′,

given an initial point x(0) = (x(0)
1 , . . . , x

(0)
p )′, first the equation

g1(x1, x
(0)
2 , . . . , x(0)

p ) = 0

is solved for x1 = x
(1)
1 , keeping the other components fixed. Then

g2(x
(1)
1 , x2, x

(0)
3 , . . . , x(0)

p ) = 0

is solved for x2 = x
(1)
2 , again keeping the other components fixed. This process is continued until

finally
gp(x

(1)
1 , . . . , x

(1)
p−1, xp) = 0

is solved for xp = x
(1)
p . Then x(0) is replaced by x(1), and the entire process repeated, until

convergence. The exact order the equations are processed is arbitrary, and can be varied from one
pass to the next.

This method can be quite useful in some problems, and is used routinely in problems like fitting
generalized additive models. However, the rate of convergence depends heavily on how strong the
dependencies among the equations are. If the jth equation is nearly independent of the other
variables, then convergence will be very fast, while otherwise it can be quite slow. The method
also only converges at a linear rate near the solution, so may be more useful when high precision
is not needed.

Below is a modification of mlrsc() to return just the jth equation. This is called in combination
with uniroot() to solve the jth equation, giving a crude implementation of the Gauss-Seidel
iteration. This particular implementation is quite slow in terms of cpu time, but illustrates that
the method converges, although quite a few iterations can be needed.

> # Gauss Seidel
> mlrsc1 <- function(x,b,j,resp,comp,miss,cov.pred,mi) {
+ # compute jth estimating equation
+ b[j] <- x
+ n <- length(resp)
+ pihat <- table(mi)[1]/n #prob not missing
+ z1 <- cbind(rep(1,n)[!mi],comp[!mi,],miss[!mi,])
+ pr1 <- exp(z1 %*% b)
+ pr1 <- pr1/(1+pr1)
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+ u <- sum((resp[!mi]-pr1)*z1[,j])/pihat
+ z1 <- cbind(rep(1,n),comp,cov.pred)
+ pr1 <- exp(z1 %*% b)
+ pr1 <- pr1/(1+pr1)
+ u+sum((pihat-1+mi)*c(resp-pr1)*z1[,j])/pihat
+ }
> b <- rep(0,(p+1))
> for (k in 1:20) {
+ for (j in 1:(p+1))
+ b[j] <- uniroot(mlrsc1,c(-5,5),b=b,j=j,resp=resp,comp=comp,
+ miss=miss,cov.pred=cov.pred,mi=mi)[[1]]
+ print(b)
+ }
[1] -0.7537806 0.5504519 -0.6482014 0.6544366 -0.9458477
[1] -0.9461827 0.9801123 -1.0161491 1.0989794 -1.4090325
[1] -1.138037 1.186189 -1.275633 1.405184 -1.702155
[1] -1.291558 1.332846 -1.462370 1.617214 -1.923521
[1] -1.409850 1.451551 -1.599529 1.769575 -2.100687
[1] -1.502706 1.548543 -1.702731 1.884346 -2.245064
[1] -1.577033 1.627066 -1.782199 1.974400 -2.363419
[1] -1.637391 1.690202 -1.844622 2.047130 -2.460700
[1] -1.686884 1.740855 -1.894431 2.107039 -2.540878
[1] -1.727840 1.781618 -1.934743 2.156889 -2.607170
[1] -1.761795 1.814547 -1.967636 2.198616 -2.662079
[1] -1.790063 1.841277 -1.994673 2.233657 -2.707679
[1] -1.813657 1.863097 -2.017020 2.263131 -2.745640
[1] -1.833387 1.881004 -2.035569 2.287945 -2.777312
[1] -1.849914 1.895768 -2.051016 2.308844 -2.803789
[1] -1.863774 1.907992 -2.063911 2.326452 -2.825959
[1] -1.875412 1.918148 -2.074698 2.341292 -2.844550
[1] -1.885192 1.926609 -2.083737 2.353801 -2.860158
[1] -1.893418 1.933674 -2.091319 2.364347 -2.873275
[1] -1.900340 1.939585 -2.097688 2.373241 -2.884307
> b <- rep(0,(p+1))
> for (k in 1:10) {
+ for (j in 1:(p+1))
+ b[j] <- uniroot(mlrsc1,c(-5,5),b=b,j=j,resp=resp,comp=comp,
+ miss=miss,cov.pred=cov.pred,mi=mi)[[1]]
+ for (j in p:1) #reverse direction
+ b[j] <- uniroot(mlrsc1,c(-5,5),b=b,j=j,resp=resp,comp=comp,
+ miss=miss,cov.pred=cov.pred,mi=mi)[[1]]
+ print(b)
+ }
[1] -1.0275617 0.9429030 -0.9373084 1.0871376 -0.9458477
[1] -1.253645 1.170589 -1.294156 1.528826 -1.439667
[1] -1.409932 1.331468 -1.499171 1.780198 -1.775423
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[1] -1.522369 1.453633 -1.636888 1.940715 -2.019265
[1] -1.606288 1.549350 -1.737205 2.051020 -2.203048
[1] -1.670577 1.625678 -1.813534 2.130561 -2.345016
[1] -1.720873 1.687204 -1.873127 2.189888 -2.456601
[1] -1.760719 1.737159 -1.920441 2.235307 -2.545491
[1] -1.792638 1.777917 -1.958409 2.270685 -2.616936
[1] -1.818421 1.811412 -1.989159 2.298622 -2.674795

In the second implementation, alternating between forward and backward sweeps did not result in
much improvement.

3.8 Exercises

Exercise 3.1 Consider the function f(x, y) = x2 + 10y2. Starting from the point (1, 1)′, show
that computing the minimum in the direction of the gradient at each step leads to long sequence
of short steps converging only slowly to the global minimum of (0, 0)′.

Exercise 3.2 Consider minimizing the function

f(θ1, θ2, θ3, θ4) = (θ1 + 10θ2)2 + 5(θ3 − θ4)2 + (θ2 − 2θ3)4 + (θ1 − θ4)4,

starting from the values (θ1, θ2, θ3, θ4) = (3,−1, 0, 1) (this is Powell’s quartic, a standard test
problem). Compare the performance of the Nelder-Mead simplex method, the BFGS algorithm,
and a modified Newton algorithm in solving this problem (use exact derivative formulas in all
algorithms that require them). Compare performance with respect to accuracy of solutions,
number of iterations, number of function evaluations, and number of gradient evaluations (where
relevant).

Exercise 3.3 Consider the quadratic function f(θ) = θ′Aθ/2 + b′θ + c, where A is positive
definite. Show that if for all θ0, f(θ0 − λ∇f(θ0)) is minimized (over λ) at the global minimum of
f(θ), then A is a constant times the identity matrix, and that the converse also holds. (Hint:
consider that for this function, from any point θ0, the minimum always lies in the direction
−[∇2f(θ0)]−1∇f(θ0).)

Exercise 3.4 File t1.dat contains data values (yi, xi, zi, ri), i = 1, . . . , n = 200, with yi in the
first column in the file, xi in the second, zi in the third, and ri in the fourth. In this data, yi is a
binary response and xi and zi are binary covariates. The value of zi is not always observed, and
ri = 1 indicates that zi is observed and ri = 0 indicates zi is missing (zi is coded −1 when it is
missing). Assume the sampled vectors (Yi, Xi, Zi, Ri) are iid, and that Ri and Zi are independent
given (Yi, Xi) (this is sometimes referred to as missing at random, although it is not identical to
Rubin’s definition of that term). The interest here is in estimating the parameters of the logistic
regression of yi on the covariates xi and zi; that is

log
(

P (Yi = 1|Xi = xi, Zi = zi)
P (Yi = 0|Xi = xi, Zi = zi)

)
= β0 + β1xi + β2zi.
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Let θx = P (Zi = 1|Xi = x), x = 0, 1, and assume P (Ri|Xi, Yi) does not depend on
(β0, β1, β2, θ0, θ1).

In this model, the log likelihood for estimating (β0, β1, β2, θ0, θ1) can be written∑
i

ri{yi(β0 + β1xi + β2zi) − log[1 + exp(β0 + β1xi + β2zi)] + log[θzi
xi

(1 − θxi)
1−zi ]}

+
∑

i

(1 − ri) log

(
1∑

u=0

exp[yi(β0 + β1xi + β2u)]θu
xi

(1 − θxi)
1−u

1 + exp(β0 + β1xi + β2u)

)
.

1. Derive formulas for the gradient of the log likelihood. (The parameters θ0 and θ1 should
probably be transformed to eliminate constraints, before proceeding with this step.)

2. Write functions in Splus to evaluate the negative log likelihood and its gradient. (I might be
helpful to check the gradient formulas by comparing the output of the gradient function to a
finite difference approximation.) Also, write a function to evaluate the second derivatives
using finite differences of the gradient (the function fdjac() may be used here).

3. Find the maximum likelihood estimates (i) using the Nelder-Mead simplex method, (ii)
using a BFGS method with gradient calculated from analytical formulas, (iii) a modified
Newton-Raphson algorithm. In the Newton-Raphson algorithm, use the finite difference
approximation to the Hessian (which may need to be symmetrized for the chol() function),
but use the analytic gradient formulas. In Splus, for (ii) and (iii) either nlminb() or bfgs()
and nr() can be used.

4. Compare the algorithms in (c) with respect to the number of iterations, function
evaluations, gradient evaluations, and Hessian evaluations.

5. Compare the inverse Hessian at the MLE (computed using finite differences of the analytic
gradient) to the approximate inverse Hessian from the final iteration of the BFGS algorithm.
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Chapter 4

The EM Algorithm

4.1 Introduction

The EM Algorithm is not an algorithm in the usual mathematical or computational sense, but is
a general approach to finding maximum likelihood estimators in incomplete data problems.
Considerable work can still be required to implement the general approach in particular problems.
Also, there are many variations on how the details can be implemented. Two examples of
incomplete data problems follow. Then the main ideas of the EM algorithm will be described.

Example 4.1 Censored Data Linear Regression. Suppose the true model for responses Ti is

Ti = β′zi + σεi, i = 1, . . . , n,

where zi = (1, zi1, . . . , zip)′ is a vector of fixed covariates, β = (β0, β1, . . . , βp)′ and σ > 0 are
unknown parameters, and the εi are iid N(0,1). Suppose also that there are independent variates
C1, . . . , Cn, and that the observed data consist of (Yi, δi, zi), i = 1, . . . , n, where Yi = min{Ti, Ci}
and δi = I(Ti ≤ Ci), so Yi is the observed right-censored response. When δi = 0, it is only known
that Ti > Yi.

If the Ti were all observed, then the log likelihood would be

lcomp(θ) = −n log(σ) −
n∑

i=1

(Ti − β′zi)2/(2σ2), (4.1)

where θ = (β′, σ2)′. lcomp(θ) is maximized by β̂c = (Z ′Z)−1Z ′(T1, . . . , Tn)′ and
σ̂2

c =
∑

i(Ti − β̂′
czi)2/n, where

Z =

 z′1
...

z′n

 .

In the terminology of the EM algorithm, lcomp(θ) is the complete data log likelihood.

With censored data, the likelihood contribution of the ith subject is the same as above if the case
is not censored, and if the case is censored the likelihood contribution is∫ ∞

Yi

σ−1φ([u − β′zi]/σ) du = 1 − Φ([Yi − β′zi]/σ),

150
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where φ(·) and Φ(·) are the standard normal density and CDF. Thus the log likelihood for the
observed data is

lobs(θ) =
∑

i

{δi[− log(σ) − (Yi − β′zi)2/(2σ2)] + (1 − δi) log(1 − Φ([Yi − β′zi]/σ))}.

In the terminology of the EM algorithm, lobs(θ) is the observed data log likelihood. With censored
data the likelihood no longer has a closed form solution for the maximum, and an iterative search
is required to find the MLE. Although direct maximization of lobs(θ) is not particularly difficult in
this problem, the EM algorithm will provide a simple iterative method for calculating the MLE
based on repeatedly calculating modified versions of the complete data estimators. 2

Example 4.2 A Mixed Effects Linear Model. Suppose the true model for responses Yij is

Yij = β′xij + bj + σεij , i = 1, . . . , nj , j = 1, . . . , N, (4.2)

where the εij are iid N(0, 1), the bj are iid N(0, σ2
b ) (and the bj and εij are independent),

xij = (xij1, . . . , xijp)′ is a vector of fixed covariates, which would usually include a constant term
(eg xij1 = 1), and β = (β1, . . . , βp)′, σb > 0 and σ > 0 are unknown parameters. This model is
called a mixed effects model because it contains both fixed effects (the xij) and random effects
(the bj). The data might have arisen from a clinical trial with N participating centers, with nj

patients entered from the jth center. The model allows for correlation among the patients from
the same center. The random effects structure in this model is particularly simple, but the
methods are easily extended to more complicated models, such as crossed and nested structures.

The observed data consist of (Yij , xij), i = 1, . . . , nj , j = 1, . . . , N . Let

Yj =

 Y1j
...

Ynjj

 , Xj =


x′

1j
...

x′
njj

 , and Vj = σ2Inj×nj + σ2
b1nj1

′
nj

,

where Ik×k is the k × k identity matrix and 1k is a k-vector of ones. It is easily verified that Yj

has a multivariate normal distribution with mean Xjβ and covariance matrix Vj . The log
likelihood for the observed data is therefore

lobs(θ) =
N∑

j=1

− log(|Vj |)/2 − (Yj − Xjβ)′V −1
j (Yj − Xjβ)/2,

where in general |A| denotes the determinant of a matrix A, and θ = (β′, σ2, σ2
b )

′. The simple
form of Vj allows explicit formulas to be given for |Vj | and V −1

j . In particular,
|Vj | = (σ2)nj−1(σ2 + njσ

2
b ) and

V −1
j = σ−2(Inj×nj − [σ2

b/(σ2 + njσ
2
b )]1nj1

′
nj

) (4.3)

(V −1
j is an example of the Sherman-Morrison-Woodbury formula, see eg Section 2.7 of Press et.

al., 1992, or Thisted, 1988, p. 117.) (Explicit formulas may not exist for more general random
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effects structures.) Thus lobs(θ) can be written

lobs(θ) =
1
2

∑
j

(
−(nj − 1) log(σ2) − log(σ2 + njσ

2
b ) −

1
σ2

∑
i

(Yij − x′
ijβ)2

+
σ2

b

σ2(σ2 + njσ2
b )

[
∑

i

(Yij − x′
ijβ)]2

)
. (4.4)

As in Example 1, it is not difficult to directly maximize lobs(θ), although again this requires an
iterative search algorithm.

The random variables bj are a device used to induce a correlation structure for the responses, and
would generally not be observable quantities. However, if their values were known, the analysis
would be much simpler. Conditional on the bj , the Yij are independent normal random variables
with means x′

ijβ and common variance σ2. Letting n =
∑

j nj , the log likelihood for this
augmented data is

lcomp(θ) = −n log(σ2)/2 −
∑
i,j

(Yij − x′
ijβ − bj)2/(2σ2) − N log(σ2

b )/2 −
∑
j

b2
j/(2σ2

b ), (4.5)

which is maximized by
β̂c = (

∑
j

X ′
jXj)−1

∑
j

X ′
j(Yj − bj1nj ),

σ̂2
c =

∑
i,j(Yij − x′

ij β̂ − bj)2/n and σ̂2
bc =

∑
j b2

j/N . Here augmenting the observed data with
additional data leads to simple closed form estimators. For purposes of the terminology of the
EM algorithm, the ‘complete data’ consist of the observed data augmented by (b1, . . . , bN ). As in
Example 1, the EM algorithm will give a simple method for calculating the MLEs for the
observed data by repeatedly calculating modified versions of the complete data estimators. 2

In general, suppose the observed data Yobs can be augmented with additional information Ymis

(the missing data) to give ‘complete’ data Ycomp = (Yobs, Ymis). Let fobs(Yobs; θ) be the observed
data likelihood, and fcomp(Yobs, Ymis; θ) be the complete data likelihood. Roughly,

fobs(yobs; θ) =
∫

fcomp(yobs, ymis; θ) dymis,

although it is not always easy to give a precise definition to this integral in particular settings. In
Example 1, Ymis consists of the values of the Ti for the censored observations, and in Example 2
Ymis = (b1, . . . , bN ).

The EM algorithm consists of repeatedly applying two steps. In the first step, called the E-step,
the expectation of the complete data log likelihood conditional on the observed data is computed
at the parameter values from the previous iteration (or the initial starting values for the first
iteration). That is, the E-step computes

Q(θ|θ0) = Eθ0 [log{fcomp(Yobs, Ymis; θ)}|Yobs],

where θ0 denotes the parameter values from the previous iteration. Note that θ0 is only used in
computing the expectation; it is not substituted for θ in the complete data log likelihood, which
should be viewed as a function of θ.
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The second step of the EM algorithm, called the M-step, is to maximize Q(θ|θ0) as a function of θ.
The maximizing value of θ then replaces the old θ0, and the steps are repeated, until convergence.

Example 4.1 (continued). From (4.1),

Q(θ|θ0) = E(lcomp(θ)|Yobs)

= −n log(σ) − 1
2σ2

n∑
i=1

E[(Ti − β′zi)2|(Yi, δi, zi)]

= −n log(σ) − 1
2σ2

n∑
i=1

(w∗
i − 2β′ziy

∗
i + [β′zi]2), (4.6)

where
y∗i = δiYi + (1 − δi)Eθ0 [Ti|Ti > Yi, zi]

and
w∗

i = δiY
2
i + (1 − δi)Eθ0 [T

2
i |Ti > Yi, zi].

From φ(z) = (2π)−1/2 exp(−z2/2), it is easily verified that φ′(z) = −zφ(z), and hence that∫ ∞
a zφ(z) dz = φ(a) and

∫ ∞
a z2φ(z) dz = aφ(a) + 1 − Φ(a) (using integration by parts for the last

expression). Given θ0, Ti ∼ N(β′
0zi, σ

2
0), so setting ei0 = (Yi − β′

0zi)/σ0,

Eθ0 [Ti|Ti > Yi, zi] =
∫ ∞

Yi

u

σ0
φ

(
u − β′

0zi

σ0

)
du/[1 − Φ(ei0)]

=
∫ ∞

ei0

(σ0u + β′
0zi)φ(u) du/[1 − Φ(ei0)]

= β′
0zi + σ0φ(ei0)/[1 − Φ(ei0)].

Similarly,
Eθ0 [T

2
i |Ti > Yi, zi] = σ2

0 + (β′
0zi)2 + σ0(Yi + β′

0zi)φ(ei0)/[1 − Φ(ei0)].

The E-step consists of computing these conditional expectations, using them to obtain y∗i and w∗
i ,

and substituting these expressions into (4.6).

The M-step consists of finding the parameter values that maximize Q(θ|θ0). It is easily seen that
β is maximized by the ordinary least squares estimate with responses y∗i ; that is

β̂ = (Z ′Z)−1Z ′(y∗1, . . . , y
∗
n)′.

Then

σ̂2 =
n∑

i=1

(w∗
i − 2β̂′ziy

∗
i + [β̂′zi]2)/n.

Note that σ̂2 differs from
∑

i(y
∗
i − β̂′zi)2/n by

∑
i(w

∗
i − y∗2i )/n. Schmee and Hahn (1979) omitted

this correction, which was pointed out by Aitkin (1981).

For this example, it is straightforward to implement the EM algorithm in Splus. The updates for
β̂ could be calculated using a linear regression function such as lm() with responses y∗i , but that
would require a lot of unnecessary repeated calculations. With a little extra work a more efficient
version can be given, as follows (although the version given here only works for a single covariate).
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> ## generate data
> .Random.seed
[1] 41 58 29 42 54 1 52 44 55 36 18 0

> z <- runif(100)
> y <- rnorm(100)+z-2
> ct <- runif(100)*3-2.5
> failind <- ifelse(ct<y,0,1)
> y <- pmin(y,ct)
> table(failind)

0 1
43 57

>
> zbar <- mean(z)
> zc <- z-zbar
> z2 <- sum(zc^2)
> ## EM
> b <- c(0,0,1); bold <- c(-9,-9,-9)
> xb <- b[1]+b[2]*z
> while(sum((bold-b)^2)/sum(b^2) > .00001^2) {
+ # E step
+ e0 <- (y-xb)/b[3]
+ t1 <- b[3]*dnorm(e0)/(1-pnorm(e0))
+ ystar <- failind*y+(1-failind)*(xb+t1)
+ wstar <- failind*y*y+(1-failind)*(b[3]^2+xb^2+t1*(y+xb))
+ # M step
+ bold <- b
+ b[2] <- sum(ystar*zc)/z2
+ b[1] <- mean(ystar)-b[2]*zbar
+ xb <- b[1]+b[2]*z
+ b[3] <- sqrt(sum(wstar-2*ystar*xb+xb^2)/length(y))
+ print(b)
+ }
[1] -2.005234 1.681141 1.297397
[1] -2.289998 1.831539 1.128622
[1] -2.340482 1.749140 1.014409
[1] -2.3564801 1.6703821 0.9476251
[1] -2.3634256 1.6177400 0.9094215
[1] -2.3668774 1.5857778 0.8878729
[1] -2.3686839 1.5671733 0.8758312
[1] -2.369650 1.556585 0.869139
[1] -2.370173 1.550636 0.865431
[1] -2.3704575 1.5473184 0.8633798
[1] -2.3706136 1.5454764 0.8622462
[1] -2.370699 1.544456 0.861620
[1] -2.3707467 1.5438919 0.8612742
[1] -2.3707727 1.5435801 0.8610832
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[1] -2.3707871 1.5434078 0.8609777
[1] -2.3707950 1.5433127 0.8609195
[1] -2.3707994 1.5432601 0.8608874
[1] -2.3708018 1.5432311 0.8608696
[1] -2.3708031 1.5432151 0.8608598
>

Note that the rate of convergence as the algorithm approaches the solution is quite slow. It turns
out that the rate of convergence is slower when there is more missing data, faster when there is
less.

Of course, in this example it is also easy to directly maximize the likelihood in Splus (see also the
survreg() function).

> # function to evaluate -log(likelihood) directly
> assign(’i’,0,0) #to count # calls to ff
NULL
> ff <- function(b) {
+ assign(’i’,i+1,0)
+ e0 <- (y-b[1]-b[2]*z)/abs(b[3])
+ sum(ifelse(failind == 1, log(abs(b[3]))+e0^2/2,-log(1-pnorm(e0))))
+ # sum(ifelse(failind == 1, log(b[3]^2)/2+e0^2/2,-log(1-pnorm(e0))))
+ }
> out <- nlmin(ff,c(0,0,1))
> out
$x:
[1] -2.3708047 1.5431954 0.8608478

$converged:
[1] T

$conv.type:
[1] "relative function convergence"

> i
[1] 71
> options(digits=12)
> ff(b)
[1] 43.6168197992
> ff(out$x)
[1] 43.6168197851

nlmin() uses a BFGS-type algorithm, with the gradient approximated by numerical differences,
similar to nlminb() when a gradient function is not included in the call. However, nlmin() does
more of the work inside a C routine, and can execute more quickly than nlminb() with this
option. nlmin() only uses a finite difference gradient, though. In the example above, the finite
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difference gradient approximations and line searches together required a total of 71 function
evaluations.

In this problem either approach is easy to program and reasonably fast to execute, and both gave
identical results to the accuracy used. 2

Example 4.2 (continued). Let

b∗j = Eθ0(bj |Yj) and c∗j = Varθ0(bj |Yj).

From (4.5),

Q(θ|θ0) = Eθ0(lcomp(θ)|Yobs)

= Eθ0{−n log(σ2)/2 −
∑
i,j

[(Yij − x′
ijβ)2 − 2bj(Yij − x′

ijβ) + b2
j ]/(2σ2) − N log(σ2

b )/2

−
∑
j

b2
j/(2σ2

b ) |Yobs}

= −n log(σ2)/2 −
∑
i,j

[(Yij − x′
ijβ)2 − 2b∗j (Yij − x′

ijβ) + b∗2j + c∗j ]/(2σ2) − N log(σ2
b )/2

−
∑
j

(b∗2j + c∗j )/(2σ2
b )

= −n

2
log(σ2) −

∑
i,j

(Yij − x′
ijβ − b∗j )2 + c∗j
2σ2

− N

2
log(σ2

b ) −
∑
j

b∗2j + c∗j
2σ2

b

, (4.7)

so the E-step consists of computing b∗j and c∗j (note: the expectations in b∗j and c∗j are computed
at the current θ0, while the other parameters in (4.7) are left as the free parameters θ).

The M-step consists of maximizing (4.7). The only difference in the structure of (4.7) and the
complete data likelihood is the addition of the c∗j terms, which only affect the variance estimates.
Thus the maximizers are

β̂ = (
∑
j

X ′
jXj)−1

∑
j

X ′
j(Yj − b∗j1nj ),

σ̂2 =
∑
j

[njc
∗
j +

∑
i

(Yij − x′
ij β̂ − b∗j )

2]/n and σ̂2
b =

∑
j

(b∗2j + c∗j )/N. (4.8)

The EM algorithm consists of calculating b∗j and c∗j at the current parameter values, and then
updating the estimates using the formulas above, repeating until convergence.

To do this, formulas are needed for b∗j and c∗j . From (4.2), (Y ′
j , bj)′ has a multivariate normal

distribution with mean(
Xjβ

0

)
, and covariance matrix

(
Vj σ2

b1nj

σ2
b1

′
nj

σ2
b

)
.

Thus from standard formulas and (4.3), the conditional distribution of bj |Yj is normal with mean

b∗j = 0 + σ2
b1

′
nj

V −1
j (Yj − Xjβ) =

σ2
b

σ2 + njσ2
b

1′
nj

(Yj − Xjβ) (4.9)
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and variance

c∗j = σ2
b − σ4

b1
′
nj

V −1
j 1nj =

σ2
bσ

2

σ2 + njσ2
b

. (4.10)

As in the previous example, the EM algorithm is straightforward to implement. Instead of using
lm() to calculate β̂, the QR decomposition of the matrix X = (X ′

1 · · ·X ′
N )′ is computed once, and

the least squares estimates of β obtained from the QR decomposition in each iteration using the
updated response vector. The data used are in the file exmix.dat. The commands used to
generate the data are given below.

> # generate data
> options(digits=12)
> n <- 100
> ng <- 10
> x <- rnorm(n)
> g <- sample(ng,n,replace=T)
> y <- 10+x+rnorm(n)+rnorm(ng)[g]
>
> nj <- table(g)
> X <- cbind(1,x)
> Xqr <- qr(X)
>
> #fit model
> emup <- function(beta0,sig0,sigb0){
+ # E step
+ bstar <- tapply(y-X%*%beta0,g,sum)/(nj+sig0/sigb0)
+ cj <- sigb0*sig0/(sig0+nj*sigb0)
+ # M step
+ ystar <- y-bstar[g]
+ beta <- qr.coef(Xqr,ystar)
+ sig <- (sum((ystar-X %*% beta)^2)+sum(nj*cj))/n
+ sigb <- sum(bstar^2+cj)/length(nj)
+ list(beta=beta,sig=sig,sigb=sigb)
+ }
> # initial values
> beta <- c(mean(y),rep(0,ncol(X)-1))
> sig <- 1
> sigb <- 1
> err <- 10
> i <- 0
> while(err>1.e-5){
+ i <- i+1
+ u <- emup(beta,sig,sigb)
+ err <- sqrt(sum(c(u$beta-beta,u$sig-sig,u$sigb-sigb)^2))
+ beta <- u$beta
+ sig <- u$sig
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+ sigb <- u$sigb
+ print(c(i,err,beta))
+ }

x
1 0.949843894712 10.0919147446 0.90402815552

x
2 0.353776667546 10.0674145089 1.05837358894

x
3 0.0654376874088 10.0555500833 1.08498905088

x
4 0.0165017986074 10.0466468929 1.08956839248

x
5 0.00842823437663 10.0390983495 1.0904090053

x
6 0.00668542018088 10.0325493911 1.09060278779

x
7 0.00574170211 10.0268462393 1.09067690898

x
8 0.00498575993387 10.0218774471 1.09072401586

x
9 0.00433774622566 10.017548805 1.09076149343

x
10 0.003775656728 10.0137783351 1.09079322052

x
11 0.00328688660694 10.0104944152 1.09082049456

x
12 0.00286159731258 10.0076344836 1.09084403948

x
13 0.00249145705788 10.0051439343 1.09086439754

x
14 0.00216927362678 10.0029751377 1.0908820165

x
15 0.00188880890312 10.0010865707 1.09089727595

x
16 0.00164464438034 9.99944204767 1.09091050022

x
17 0.00143207040279 9.99801004306 1.09092196718

x
18 0.00124699177004 9.99676309675 1.09093191536

x
19 0.00108584650998 9.99567729296 1.09094054981

x
20 0.000945535732669 9.99473180481 1.09094804702

x
21 0.00082336293512 9.99390849645 1.09095455909

x
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22 0.000716981412176 9.99319157601 1.09096021726
x

23 0.00062434864376 9.99256729296 1.09096513487
x

24 0.000543686701138 9.99202367437 1.09096940989
x

25 0.000473447855931 9.99155029516 1.09097312709
x

26 0.000412284693267 9.99113807797 1.09097635987
x

27 0.000359024128894 9.99077911893 1.09097917184
x

28 0.000312644813103 9.99046653587 1.09098161812
x

29 0.0002722574752 9.9901943362 1.09098374654
x

30 0.000237087822272 9.98995730189 1.09098559862
x

31 0.000206461658094 9.98975088934 1.09098721039
x

32 0.000179791932159 9.98957114211 1.09098861315
x

33 0.00015656746734 9.98941461508 1.09098983409
x

34 0.00013634314783 9.98927830832 1.09099089686
x

35 0.000118731377489 9.98915960954 1.09099182199
x

36 0.000103394643786 9.98905624397 1.09099262735
x

37 9.00390438826e-05 9.98896623078 1.09099332848
x

38 7.84086480999e-05 9.98888784506 1.09099393889
x

39 6.82805924762e-05 9.98881958475 1.09099447034
x

40 5.9460805667e-05 9.98876014184 1.09099493305
x

41 5.17802885016e-05 9.98870837732 1.09099533592
x

42 4.50918743298e-05 9.98866329932 1.09099568671
x

43 3.92674081483e-05 9.9886240441 1.09099599214
x

44 3.41952902929e-05 9.9885898595 1.0909962581
x
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45 2.97783375547e-05 9.98856009054 1.09099648968
x

46 2.59319207207e-05 9.98853416683 1.09099669132
x

47 2.25823426953e-05 9.98851159167 1.09099686691
x

48 1.96654262847e-05 9.98849193253 1.09099701981
x

49 1.71252843249e-05 9.98847481274 1.09099715295
x

50 1.49132488106e-05 9.98845990429 1.09099726889
x

51 1.29869383204e-05 9.98844692155 1.09099736985
x

52 1.13094459137e-05 9.98843561576 1.09099745777
x

53 9.84863197933e-06 9.98842577032 1.09099753432
> c(beta,sig,sigb)

x
9.98842577032 1.09099753432 1.11164062315 0.742579099161

Again the rate of convergence is quite slow after the first few iterations. It is also straightforward
to directly maximize the observed data likelihood (4.4) here. Note that to avoid range restrictions,
the parameters log(σ2) and log(σ2

b ) are used in the argument to the function fclik() below.

> #direct maximization of observed data likelihood
> fclik <- function(b) {
+ assign(’i’,i+1,0)
+ beta <- b[1:2]
+ sig <- exp(b[3])
+ sigb <- exp(b[4])
+ r <- y-X %*% beta
+ rg2 <- tapply(r,g,sum)^2
+ (sum(nj-1)*b[3]+sum(log(sig+nj*sigb))+sum(r*r)/sig-sum(rg2*sigb/
+ (sig+nj*sigb))/sig)/2
+ }
> assign(’i’,0,0)
NULL
> z <- nlmin(fclik,c(mean(y),rep(0,3)))
> z
$x:
[1] 9.988359604686 1.090998071265 0.105836732789 -0.297623535749

$converged:
[1] T
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$conv.type:
[1] "relative function convergence"

> exp((z$x)[3:4])
[1] 1.111640367267 0.742580842274
> i
[1] 71

As in the previous example, this required exactly 71 evaluations of the likelihood, and gave nearly
identical results to the EM algorithm. 2

4.2 Some General Properties

An important relationship in the EM algorithm is that the score function of the observed data
likelihood is equal to the expectation of the score function of the complete data likelihood,
conditional on the observed data. A heuristic argument for this result is as follows.

∂

∂θ
lobs(θ) =

∂

∂θ
log

(∫
fcomp(yobs, ymis; θ) dymis

)
=

∫
∂fcomp(yobs, ymis; θ)/∂θ dymis/fobs(yobs; θ)

=
∫

∂fcomp(yobs, ymis; θ)/∂θ

fcomp(yobs, ymis; θ)
fcomp(yobs, ymis; θ)

fobs(yobs; θ)
dymis

=
∫

(∂lcomp(θ)/∂θ)f(yobs, ymis|yobs; θ) dymis

= Eθ(∂lcomp(θ)/∂θ|Yobs). (4.11)

Thus in many applications it is no harder to compute the score vector for the likelihood of the
observed data than to compute Q(θ|θ0), since they will involve similar expectations.

Note also that
Eθ(∂lcomp(θ)/∂θ|Yobs) =

∂

∂θ
Q(θ|θ0)

∣∣∣∣
θ0=θ

. (4.12)

Using these relationships, it can be shown that if the EM algorithm converges, it converges to a
solution to the score equations for the likelihood of the observed data. To see this, first note that
if the EM algorithm converges to a value θ̂, then Q(θ|θ̂) is maximized by θ̂ (that is, convergence
means that applying additional iterations continues to return the same value). Thus

∂

∂θ
Q(θ|θ̂)

∣∣∣∣
θ=θ̂

= 0.

But from (4.12) and (4.11) this implies

∂

∂θ
lobs(θ̂) = 0,

so a stationary point of the EM algorithm is a solution to the observed data score equations.

It is also possible to show that at each iteration, if θ1 is such that Q(θ1|θ0) > Q(θ0|θ0), then
lobs(θ1) > lobs(θ0) as well. Since the EM updates are chosen to maximize Q(θ|θ0), this means that
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each iteration of the EM algorithm gives a value of θ which increases the value of the likelihood of
the observed data from the previous iteration. (Note that it is not necessary to maximize Q(θ|θ0)
at each iteration to achieve this property; it is sufficient to just find a better point.) A heuristic
argument for this property follows. Note that

lobs(θ) = Q(θ|θ0) − H(θ|θ0), (4.13)

where
H(θ|θ0) = Eθ0{log[fcomp(Yobs, Ymis; θ)/fobs(Yobs; θ)] |Yobs}.

By Jensen’s inequality, since − log(·) is a convex function,

−H(θ|θ0) + H(θ0|θ0) = Eθ0

(
− log

[
fcomp(Yobs, Ymis; θ)fobs(Yobs; θ0)
fobs(Yobs; θ)fcomp(Yobs, Ymis; θ0)

]∣∣∣∣∣ Yobs

)

≥ − log

(
Eθ0

[
fcomp(Yobs, Ymis; θ)fobs(Yobs; θ0)
fobs(Yobs; θ)fcomp(Yobs, Ymis; θ0)

∣∣∣∣∣ Yobs

])

= − log
∫ [

fcomp(yobs, ymis; θ)fobs(yobs; θ0)
fobs(yobs; θ)fcomp(yobs, ymis; θ0)

]
fcomp(yobs, ymis; θ0)

fobs(yobs; θ0)
dymis

= − log
(∫

fcomp(yobs, ymis; θ) dymis/fobs(yobs; θ)
)

= − log (fobs(yobs; θ)/fobs(yobs; θ))
= 0,

so
H(θ|θ0) ≤ H(θ0|θ0).

Thus if θ1 is such that Q(θ1|θ0) ≥ Q(θ0|θ0), then from (4.13),

lobs(θ1) − lobs(θ0) = [Q(θ1|θ0) − Q(θ0|θ0)] + [H(θ0|θ0) − H(θ1|θ0)] ≥ 0,

since both terms in [ ] are ≥ 0, so
lobs(θ1) ≥ lobs(θ0).

Since the EM algorithm moves to a better point at each iteration, and if it converges it converges
to a solution of the observed data score equations, it is certainly believable that the EM algorithm
generally will converge to such a solution. However, this line of reasoning is not sufficient to prove
this result. Dempster, Laird and Rubin (1977) give more details, but it turns out their argument
is also not sufficient. Wu (1983) gives a correct proof for convergence of the EM algorithm to a
solution to the observed data score equations. (Such a solution need not be the global MLE,
though.) Lange (1999, Chapter 13) also derives some convergence results for the EM algorithm.

Equation (4.13) has another interesting consequence. Differentiating twice gives

− ∂2lobs(θ)
∂θ∂θ′

= −∂2Q(θ|θ0)
∂θ∂θ′

+
∂2H(θ|θ0)

∂θ∂θ′

= Eθ0

(
−∂2lcomp(θ)

∂θ∂θ′

∣∣∣∣∣ Yobs

)
− Eθ0

(
− ∂2

∂θ∂θ′
log

[
fcomp(Yobs, Ymis; θ)

fobs(Yobs; θ)

]∣∣∣∣∣ Yobs

)
.(4.14)
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Setting both θ and θ0 to the true value of the parameters, the left hand side is the observed
information matrix in the sample and the first term on the right is the conditional expected value
of the complete data information given the observed data. In the second term on the right,
fcomp/fobs is essentially the conditional likelihood of the missing data given the observed data, so
this term can be thought of as the information in the missing data, conditional on the observed
data. Thus (4.14) gives the interesting relationship that the information in the observed data
equals the information in the complete data minus the information in the missing data. This was
called the missing information principle by Orchard and Woodbury (1972).

4.3 An Accelerated EM Algorithm

There have been a variety of proposals for speeding up the convergence of the EM algorithm. One
simple approach due to Jamshidian and Jennrich (1997) will be discussed below. That paper
discusses several other approaches, and gives a number of additional references on this topic.
Some of the discussion in Meng and van Dyk (1997) is also relevant.

Jamshidian and Jennrich (1997) propose two accelerated versions of the EM algorithm based on
quasi-Newton methods for solving equations and minimizing functions. Their second proposal is
based on the BFGS minimization algorithm, and can be very fast computationally, but requires
evaluating the observed data likelihood and score. Since part of the point of using EM is to avoid
those computations, and because if the observed data likelihood and score can be easily computed
then the BFGS algorithm (and several other minimization algorithms) can be applied directly,
only Jamshidian and Jennrich’s first proposal will be discussed here. This approach is based on
Broyden’s method for solving systems of nonlinear equations, which was briefly mentioned in
Section 3.6, although no details were given.

Details of Broyden’s method for solving nonlinear equations are discussed in Section 9.7 of Press
et. al. (1992). This method builds up an approximation to the Jacobian of the system of
equations, much the same way the BFGS algorithm builds up an approximation to the Hessian in
minimization problems. For solving the system of equations G(x) = 0, Broyden’s method uses
search directions of the form −AiG(xi). In Newton’s method Ai is the inverse of the Jacobian of
G(x), while in Broyden’s method an approximation is used. As with the BFGS minimization
algorithm, the updates to Ai are chosen to satisfy a secant condition, and there is both a version
for updating the approximation to the Jacobian and for updating its inverse. The inverse
Jacobian updating formula is

Ai+1 = Ai + (s′Aih)−1(s − Aih)(s′Ai) (4.15)

where s = xi+1 − xi and h = G(xi+1) − G(xi).

Let M(θ0) be the value of θ given by one EM update from the current value θ0; that is, the value
maximizing Q(θ|θ0). Then M(θ) is the mapping defined by the EM algorithm updates. The
objective of the EM algorithm can be expressed as finding a solution to g(θ) = M(θ) − θ = 0, so
here g(θ) takes the role of G(x) in the above discussion. In Jamshidian and Jennrich’s approach,
the Broyden update step is applied to this function, as follows. First initialize by setting θ = θ0,
g0 = g(θ0), and A = −I (the negative of an identity matrix). Then

1. Compute s = −Ag0 and h = g(θ + s) − g0.
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2. Update A using (4.15) and s and h from step 1.

3. Replace θ by θ + s and g0 by g0 + h, and return to step 1, repeating until convergence.

Note that each cycle through this algorithm computes one standard EM algorithm update
(M(θ)), and all other calculations are straightforward. Also note that at the initial step, with
A = −I, the update is just a standard EM update. Thus this algorithm is easy to implement.
There are two potential problems. One is that this modified version is not guaranteed to always
move to a better point, unless some form of testing and backtracking is incorporated. This would
be a substantial complication that would make this algorithm less appealing. In practice, running
a few steps of the standard EM algorithm first often moves close enough to a solution that the
above algorithm will converge without modification. The second problem is that the
approximation A to the inverse Jacobian may deteriorate, and in some applications it could be
necessary to occasionally reset A = −I.

The calculations for this accelerated EM algorithm are illustrated in the following example.

Example 4.2 (continued).
The algorithm above is easily implemented for the mixed effects linear model. Note that in the
following emup is the same as before, and emqn1 implements one cycle of the accelerated
algorithm. Also, note that only the call to emup and the initialization of theta is specific to this
particular application.

> emqn1 <- function(theta,A,gg) {
+ # gg=M(theta)-theta on input
+ # components of theta are in the order (beta, sig, sigb)
+ deltheta <- -A %*% gg #=s above
+ thet2 <- theta+deltheta
+ thetaem <- emup(thet2[1:np],thet2[np1],thet2[np2])
+ delgg <- unlist(thetaem)-thet2-gg #=h above
+ adgg <- A %*% delgg
+ A <- A+outer(c(deltheta-adgg)/sum(deltheta*adgg),c(t(A)%*%deltheta))
+ list(thet2,A,gg+delgg)
+ }
> #initialize
> theta <- c(mean(y),rep(0,ncol(X)-1),1,1)
> np <- ncol(X)
> np1 <- np+1
> np2 <- np+2
> A <- -diag(length(theta))
> gg <- unlist(emup(theta[1:np],theta[np1],theta[np2]))-theta
> err <- 10
> i <- 0
> # accelerated iteration loop
> while(err>1.e-5) {
+ i <- i+1
+ u <- emqn1(theta,A,gg)
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+ err <- sqrt(sum((u[[1]]-theta)^2))
+ theta <- u[[1]]
+ A <- u[[2]]
+ gg <- u[[3]]
+ print(c(i,err,theta))
+ }
[1] 1.0000000 0.9498439 10.0919147 0.9040282 1.2491022 1.1119228
[1] 2.0000000 0.3875182 10.0650778 1.0730943 1.1139159 0.7916238
[1] 3.00000000 0.04831467 10.05280778 1.09117128 1.10951595 0.74875634
[1] 4.000000000 0.009988417 10.043655540 1.090790445 1.111614303
[6] 0.745371546
[1] 5.00000000 0.03158347 10.01251726 1.09072925 1.11222393 0.74012297
[1] 6.00000000 0.01262663 9.99996740 1.09093529 1.11163882 0.74136717
[1] 7.00000000 0.01280706 9.98720088 1.09101940 1.11158907 0.74238061
[1] 8.000000000 0.002238957 9.989433650 1.090994868 1.111627516 0.742540497
[1] 9.0000000000 0.0008156216 9.9886185174 1.0909977266 1.1116356038
[6] 0.7425673947
[1] 1.000000e+01 2.471474e-04 9.988372e+00 1.090998e+00 1.111640e+00
[6] 7.425798e-01
[1] 1.100000e+01 1.161950e-05 9.988360e+00 1.090998e+00 1.111640e+00
[6] 7.425807e-01
[1] 1.200000e+01 7.854155e-07 9.988359e+00 1.090998e+00 1.111640e+00
[6] 7.425807e-01

Note that only 12 iterations of this accelerated algorithm were required, versus 53 for the
standard EM algorithm above. 2

4.4 Calculating the Information

While the EM algorithm gives a simple method of calculating MLEs in many incomplete data
problems, it does not automatically provide any of the other quantities needed to draw inferences
on the parameters, such as standard errors and test statistics. The inverse information matrix is
the usual estimator of the covariance matrix of the MLEs, so this matrix is also often of interest.

From (4.11), the observed data score vector can be obtained as the conditional expectation of the
complete data score, a calculation that is often no harder than computing Q(θ|θ0). Differentiating
the observed data score then gives the observed data information. Since differentiation can be
done in symbolic mathematics programs, this would often be a feasible way to obtain the
information. However, differentiating a complicated expression does introduce the potential for
errors. Formulas for the first and second derivatives of the complete data likelihood are often
already available. Louis (1981) gave a formula for the observed data information just in terms of
conditional expectations of functions of the complete data first and second derivatives. This
formula will be described next.
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4.4.1 Louis’ Formula

Louis’ formula is easily derived by differentiating

lobs(θ) = log
(∫

fcomp(Yobs, ymis; θ) dymis,

)
twice with respect to θ, differentiating lcomp(θ) = log[fcomp(Yobs, Ymis; θ)] twice, comparing terms,
and using the definition of the conditional expectation. The result is that

− ∂2lobs(θ)
∂θ∂θ′

= Eθ

(
−∂2lcomp(θ)

∂θ∂θ′

∣∣∣∣∣ Yobs

)
−Eθ

(
∂lcomp(θ)

∂θ

⊗2
∣∣∣∣∣ Yobs

)
+Eθ

(
∂lcomp(θ)

∂θ

∣∣∣∣ Yobs

)⊗2

, (4.16)

where in general for a column vector a, a⊗2 = aa′. Thus the observed data information can be
computed in terms of expectations of derivatives of the complete data likelihood. If the complete
data have a distribution in a regular exponential family, then the log likelihood is linear in the
sufficient statistics of the exponential family, and it turns out the conditional expectations needed
for the first and third terms on right hand side of (4.16) involve exactly the same expectations
required for computing Q(θ|θ0). (Also note that the third term is 0 when evaluated at the MLE,
from (4.11)). However, the middle term involves higher order moments of the sufficient statistics.

Comparing (4.14) and (4.16), it follows that the missing data information is

− ∂2H(θ|θ0)
∂θ∂θ′

= Eθ

(
∂lcomp(θ)

∂θ

⊗2
∣∣∣∣∣ Yobs

)
− Eθ

(
∂lcomp(θ)

∂θ

∣∣∣∣ Yobs

)⊗2

. (4.17)

4.4.2 The SEM Algorithm

The methods described above for obtaining the observed data information all involve extra
analytical calculations beyond those needed to compute the MLEs. Meng and Rubin (1993)
proposed a supplemented EM algorithm (SEM) that provides a numerical approximation to the
information as a bi-product of the EM calculations themselves. This approach is based on the
derivative of the mapping defined by the iterations of the EM algorithm. Again define M(θ0) to
be the value of θ that maximizes Q(θ|θ0). Then one iteration of the EM algorithm from θ0 gives
the value θ1 = M(θ0). The derivative of this mapping is the Jacobian matrix of M(θ). Dempster,
Laird and Rubin (1977) observed that this Jacobian satisfies

∂

∂θ
M(θ̂)′ = −∂2H(θ|θ̂)

∂θ∂θ′

∣∣∣∣∣
θ=θ̂

(
−∂2Q(θ|θ̂)

∂θ∂θ′

∣∣∣∣∣
θ=θ̂

)−1

, (4.18)

the missing data information times the inverse of the complete data information. Defining
Iobs = −∂2lobs(θ)/∂θ∂θ′, Icomp = Eθ

(−∂2lcomp(θ)/∂θ∂θ′
∣∣ Yobs

)
and Imis = −∂2H(θ|θ0)/∂θ∂θ′, the

observed, complete and missing data information (in the sense used previously), and writing I for
the identity matrix of order equal to the number of components in θ, it follows from (4.14) and
(4.18) that

Iobs = Icomp − Imis

= (I − ImisI
−1
comp)Icomp

= [I − ∂M(θ)/∂θ]′Icomp,
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when θ is evaluated at θ̂. Thus if ∂M(θ̂)′/∂θ can be estimated and Icomp computed, then the
observed information can be estimated without further computation.

To see why (4.18) should be true, use ∂/∂θ1 to denote derivatives with respect to the first vector
argument in Q(·|·), and ∂/∂θ2 to denote derivatives with respect to the second vector argument.
Since M(θ0) maximizes Q(θ|θ0), generally (∂/∂θ1)Q(M(θ)|θ) = 0. Taking a Taylor series in both
arguments of Q(θ1|θ2) about (θ1, θ2) = (θ̂, θ̂) (where θ̂ is the MLE), gives that

0 =
∂Q(M(θ)|θ)

∂θ1
=

∂Q(θ̂|θ̂)
∂θ1

+
∂2Q(θ̂|θ̂)

∂θ1θ′1
[M(θ) − θ̂] +

∂2Q(θ̂|θ̂)
∂θ1∂θ′2

(θ − θ̂) + · · · .

Using the fact that M(θ̂) = θ̂, and recalling that ∂Q(θ̂|θ̂)/∂θ1 = 0, it follows that

0 =
∂2Q(θ̂|θ̂)

∂θ1θ′1
[M(θ) − M(θ̂)] +

∂2Q(θ̂|θ̂)
∂θ1∂θ′2

(θ − θ̂) + · · · .

Separately setting θ = θ̂ + εe(j) for each j, where e(j) is the unit vector in the jth coordinate
direction, dividing by ε, and taking the limit as ε → 0, it follows that

0 =
∂2Q(θ̂|θ̂)

∂θ1θ′1

(
∂M(θ̂)

∂θ

)
+

∂2Q(θ̂|θ̂)
∂θ1∂θ′2

Formula (4.18) then follows by showing

∂2Q(θ̂|θ̂)
∂θ1∂θ′2

= −∂2H(θ̂|θ̂)
∂θ1θ′1

.

This follows from differentiating

Q(θ1|θ2) =
∫

lcomp(θ1)
fcomp(Yobs, ymis; θ2)

fobs(Yobs; θ2)
dymis,

and using (4.17).

In the SEM algorithm, the derivatives in the Jacobian ∂M(θ̂)′/∂θ are approximated with
numerical differences. Given the EM algorithm maximizer θ̂ = (θ̂1, . . . , θ̂p), and some
θ = (θ1, . . . , θp)′, with θj 6= θ̂j for all j, the row vector ∂M(θ̂)′/∂θj is approximated as follows. Set
θ(j) = (θ̂1, . . . , θ̂j−1, θj , θ̂j+1, . . . , θ̂p)′. Use the EM algorithm to compute M(θ(j)). Approximate
∂M(θ̂)′/∂θj with

[M(θ(j))′ − M(θ̂)′]/(θj − θ̂j). (4.19)

Repeating these steps for j = 1, . . . , p, then gives the full Jacobian matrix. Since at the exact
solution, M(θ̂) = θ̂, this substitution could also be made in the previous expression. However,
usually the EM algorithm is terminated a little short of the exact maximizer, so M(θ̂) will not be
exactly equal to θ̂, and a small difference between M(θ̂) and θ̂ can affect the accuracy of the
results (Meng and Rubin, 1993, seem to have overlooked this point).

The remaining question is how to choose the step θ − θ̂ for the differences. Numerical differences
as approximations to derivatives can be quite sensitive to the size of the difference used, and the
appropriate step size can be different for different components of θ. Meng and Rubin (1993)
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proposed starting the EM algorithm from some arbitrary point, running it for a moderate number
of iterations, then using the current value for θ in (4.19). The advantage of this is that the
components of θ − θ̂ tend to be scaled in a way that takes into account differences in the slopes of
M(θ) in the different directions. They also suggest continuing to run the EM algorithm for a
number of additional iterations, recomputing the Jacobian approximation at each iteration, until
the Jacobian approximation stabilizes. Of course other sequences of perturbations of θ̂ could be
used, too.

The EM algorithm has a linear rate of convergence in the neighborhood of the maximum, unlike
say Newton’s method and quasi-Newton methods that have quadratic (or at least super-linear)
convergence. The magnitude of the linear rate of convergence for the EM algorithm is related to
the Jacobian of the algorithmic map, ∂M(θ)′/∂θ. Assuming the eigenvalues of this matrix are all
< 1, which should usually be the case, the largest eigenvalue gives the rate of convergence. Since
from (4.18), ∂M(θ)′/∂θ = ImisI

−1
comp, it follows that the rate of convergence of the EM algorithm

is related to the fraction of the complete data information which is missing in the observed data.

Example 4.2 (continued). Direct calculation of the observed information matrix and using the
SEM algorithm will now be illustrated. First, the formulas for the observed data scores and
information and the conditional expectation of the complete data information are given. From
(4.5),

∂lcomp(θ)
∂β

=
1
σ2

∑
i,j

(Yij − x′
ijβ − bj)xij ,

∂lcomp(θ)
∂(σ2)

= − n

2σ2
+

1
2σ4

∑
i,j

(Yij − x′
ijβ − bj)2

(note this is one derivative with respect to the parameter σ2, not two derivatives with respect to
σ), and

∂lcomp(θ)
∂(σ2

b )
= − N

2σ2
b

+
1

2σ4
b

∑
j

b2
j .

From (4.11), the observed data scores can be obtained from these by taking their expectations
conditional on the observed data. Using (4.9) and (4.10), the observed data scores are thus

∂lobs(θ)
∂β

=
1
σ2

∑
i,j

(Yij − x′
ijβ)xij − 1

σ2

∑
j

σ2
b

σ2 + njσ2
b

(∑
i

(Yij − x′
ijβ)

) (∑
i

xij

)
,

∂lobs(θ)
∂(σ2)

= −n − N

2σ2
− 1

2

∑
j

(
1

σ2 + njσ2
b

− 1
σ4

∑
i

(Yij − x′
ijβ)2

+
σ2

b (2σ2 + njσ
2
b )

σ4(σ2 + njσ2
b )2

[
∑

i

(Yij − x′
ijβ)]2

)
,

and
∂lobs(θ)
∂(σ2

b )
=

1
2

∑
j

(
− nj

σ2 + njσ2
b

+
[
∑

i(Yij − x′
ijβ)]2

(σ2 + njσ2
b )2

)
.

To obtain analytical expressions for the observed data information, either the derivatives of the
observed data scores can be calculated, or the complete data derivatives and expectations in
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Louis’ formula (4.16) can be calculated. Note that here Louis’ formula would require calculating
E[b4

j |Yj ] (which is not that difficult, since bj and Yj have a joint normal distribution). Directly
differentiating the observed data scores yields the following formulas:

−∂2lobs(θ)
∂β∂β′ =

1
σ2

∑
j

(
X ′

jXj − σ2
b

σ2 + njσ2
b

(
∑

i

xij)(
∑

i

x′
ij)

)
,

−∂2lobs(θ)
∂β∂(σ2)

=
1
σ2

∂lobs(θ)
∂β

−
∑
j

σ2
b

σ2(σ2 + njσ2
b )2

[
∑

i

(Yij − x′
ijβ)](

∑
i

xij),

−∂2lobs(θ)
∂β∂(σ2

b )
=

∑
j

[
∑

i

(Yij − x′
ijβ)](

∑
i

xij)/(σ2 + njσ
2
b )

2,

−∂2lobs(θ)
∂(σ2)2

= −n − N

2σ4
+

∑
j

(
− 1

2(σ2 + njσ2
b )2

+
1
σ6

∑
i

(Yij − x′
ijβ)2 +

[
σ2

b

σ4(σ2 + njσ2
b )2

−

σ2
b (2σ2 + njσ

2
b )

2

σ6(σ2 + njσ2
b )3

]
[
∑

i

(Yij − x′
ijβ)]2

)
,

−∂2lobs(θ)
∂(σ2

b )2
=

∑
j

(
− n2

j

2(σ2 + njσ2
b )2

+ [
∑

i

(Yij − x′
ijβ)]2

nj

(σ2 + njσ2
b )3

)
,

− ∂2lobs(θ)
∂(σ2

b )∂(σ2)
=

∑
j

(
− nj

2(σ2 + njσ2
b )2

+ [
∑

i

(Yij − x′
ijβ)]2

1
(σ2 + njσ2

b )3

)
.

The conditional expectations of the complete data second derivatives given the observed data are

−E

(
∂2lcomp(θ)

∂β∂β′

∣∣∣∣∣ Yobs

)
=

1
σ2

∑
j

X ′
jXj ,

−E

(
∂2lcomp(θ)
∂β∂(σ2)

∣∣∣∣∣ Yobs

)
=

1
σ4

∑
i,j

(Yij − x′
ijβ)xij − 1

σ4

∑
j

b∗j (
∑

i

xij),

−E

(
∂2lcomp(θ)
∂β∂(σ2
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∣∣∣∣∣ Yobs

)
= −E

(
∂2lcomp(θ)
∂(σ2

b )∂(σ2)
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)
= 0,

−E

(
∂2lcomp(θ)

∂(σ2)2
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)
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2σ4
+

∑
i,j

(Yij − x′
ijβ)2

σ6
+

∑
j

−2b∗j
∑

i(Yij − x′
ijβ) + nj(b∗2j + c∗j )
σ6

,

−E

(
∂2lcomp(θ)

∂(σ2
b )2

∣∣∣∣∣ Yobs

)
= − N

2σ4
b

+
1
σ6

b

∑
j

(b∗2j + c∗j ),

where the parameters in b∗j and c∗j are evaluated at the same θ used elsewhere in the formulas.
(These formulas are obtained by differentiating the complete data scores and taking the
conditional expectations of bj and b2

j .)

Below is an S function to compute the observed data information, based on the formulas above.
Note that the data and related quantities are assumed to be in the working directory. Also, the
variance terms need to be input, not their logarithms.
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> z
$x:
[1] 9.9883596 1.0909981 0.1058367 -0.2976235

$converged:
[1] T

$conv.type:
[1] "relative function convergence"

> # function to compute likelihood score and observed information for
> # the observed data
> fclik2 <- function(b) {
+ beta <- b[1:2]
+ sig <- b[3]
+ sigb <- b[4]
+ v2 <-sig+nj*sigb
+ r <- y-X %*% beta
+ rg2 <- tapply(r,g,sum)
+ x2 <- matrix(0,ncol=ncol(X),nrow=length(rg2))
+ for (i in 1:length(rg2)) x2[i,] <- rep(1,nj[i]) %*% X[g==i,]
+ l <- -(sum(nj-1)*log(b[3])+sum(log(sig+nj*sigb))+sum(r*r)/sig-
+ sum(rg2^2*sigb/v2)/sig)/2
+ # scores: sb is beta, s2 is sigma^2, s3 is sigma_b^2
+ sb <- (apply(c(r)*X,2,sum)-apply(c((sigb/v2)*rg2)*x2,2,sum))/sig
+ s2 <- (-sum((nj-1)/sig+1/v2)+sum(r*r)/sig^2-sum(rg2^2*sigb*
+ (sig+v2)/(sig*v2)^2))/2
+ s3 <- sum(-nj/v2+(rg2/v2)^2)/2
+ # information ib for beta, ibs for betaxsigma^2 ibs2 for betaxsigma_b^2
+ # is for sigma^2, is2 for sigma_b^2, is3 for sigma^2xsigma_b^2
+ ib <- (t(X)%*%X-t(x2) %*% diag(sigb/v2) %*% x2)/sig
+ ibs <- (sb-apply(c((sigb/v2^2)*rg2)*x2,2,sum))/sig
+ ibs2 <- apply(c((1/v2^2)*rg2)*x2,2,sum)
+ is <- -sum((nj-1)/sig^2+1/v2^2)/2+sum(r*r)/sig^3+sum(rg2^2*sigb*
+ (sig*v2-(sig+v2)^2)/(sig*v2)^3)
+ is2 <- sum((-nj/(2*v2)+(rg2/v2)^2)*nj/v2)
+ is3 <- sum((-nj/(2*v2)+(rg2/v2)^2)/v2)
+ list(lik=l,score=c(sb,s2,s3),inf=cbind(rbind(ib,ibs,ibs2),
+ c(ibs,is,is3),c(ibs2,is3,is2)))
+ }
> bb <- c((z[[1]])[1:2],exp((z[[1]])[3:4]))
> z2 <- fclik2(bb)
> z2
$lik:
[1] -65.36781
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$score:
x

-2.516083e-06 -2.174082e-06 1.085196e-06 -1.032213e-06

$inf:
x

11.62765249 1.8197904 -0.09724661 0.1455744
x 1.81979042 82.0244773 -0.32338890 0.4841089

-0.09724661 -0.3233889 36.64068459 0.4897123
0.14557437 0.4841089 0.48971226 7.0961166

If only the observed data scores were available, the forward difference approximation (or even
better a central difference approximation) could be used. The forward difference approximation
from the function fdjac() gives the following. It gives quite close agreement with the analytical
results above.

> fcs <- function(b) fclik2(b)[[2]]
> -fdjac(bb,fcs)

[,1] [,2] [,3] [,4]
[1,] 11.62765250 1.8197907 -0.09724664 0.1455744
[2,] 1.81979042 82.0244775 -0.32338888 0.4841089
[3,] -0.09724631 -0.3233867 36.64068360 0.4897116
[4,] 0.14557437 0.4841088 0.48971230 7.0961166

The conditional expectation of the complete data information is given next. The Jacobian of the
algorithmic map will then be estimated from the SEM algorithm, to obtain an alternate estimate
of the observed information.

> # conditional expectation of complete data information
> r <- y-X%*%beta
> bstar <- tapply(r,g,sum)/(nj+sig/sigb)
> cj <- sigb*sig/(sig+nj*sigb)
> ib <- t(X)%*%X/sig
> ibs <- c(t(X)%*%r - apply(X*(bstar[g]),2,sum))/sig^2
> is <- -n/(2*sig^2)+(sum(r*r)+sum(bstar*bstar*(nj-2*sig/cj)+nj*cj))/sig^3
> is2 <- -length(cj)/(2*sigb^2)+sum(bstar*bstar+cj)/sigb^3
> ic <- cbind(rbind(ib,ibs,rep(0,ncol(X))),c(ibs,is,0),c(rep(0,ncol(X)),0,is2))
> ic

x
8.995713e+01 9.818038e+00 -6.932212e-04 0.000000

x 9.818038e+00 9.846385e+01 -6.981834e-05 0.000000
-6.932212e-04 -6.981834e-05 4.046142e+01 0.000000
0.000000e+00 0.000000e+00 0.000000e+00 9.067442

Note that this suggests that the complete data would have much more information about the
constant term, but only a little more about the other terms.
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Recall that the EM algorithm required 53 iterations to reach convergence, but after the first few
iterations the parameters were close to the final values. Below, after every 10 iterations of the EM
algorithm, the approximation to the Jacobian from the SEM algorithm is computed.

> # function to compute the Jacobian of the EM algorithm mapping
> fdm <- function(b,s,sb,beta,sig,sigb,nrep=10) {
+ # b,s,sb mles from em
+ # beta,sig,sigb starting values for sem
+ # unlike Meng and Rubin, using M(mle) instead of assuming this is
+ # =mle. This seems to work better for small increments
+ # nrep is the # reps of EM at which to approximate the Jacobian
+ us <- emup(b,s,sb)
+ for (j in 1:nrep) {
+ u <- emup(beta,sig,sigb)
+ beta <- u$beta
+ sig <- u$sig
+ sigb <- u$sigb
+ dm <- matrix(0,length(beta)+2,length(beta)+2)
+ for (i in 1:length(beta)) {
+ bb <- b
+ bb[i] <- beta[i]
+ u <- emup(bb,s,sb) # only perturb one component of mle at a time
+ dm[i,] <- c(u$beta-us$beta,u$sig-us$sig,u$sigb-us$sigb)/(bb[i]-b[i])
+ }
+ u <- emup(b,sig,sb)
+ dm[length(beta)+1,] <- c(u$beta-us$beta,u$sig-us$sig,u$sigb-us$sigb)/
+ (sig-s)
+ u <- emup(b,s,sigb)
+ dm[length(beta)+2,] <- c(u$beta-us$beta,u$sig-us$sig,u$sigb-us$sigb)/
+ (sigb-sb)
+ print(dm)
+ }
+ list(dm=dm,beta=beta,sig=sig,sigb=sigb)
+ }
> # run a few iterations of EM from the initial starting value
> bb <- list(beta=c(mean(y),rep(0,ncol(X)-1)),sig=1,sigb=1)
> for (j in 1:10) bb <- emup(bb$beta,bb$sig,bb$sigb)
> w <- fdm(beta,sig,sigb,bb$beta,bb$sig,bb$sigb,1)

[,1] [,2] [,3] [,4]
[1,] 0.871359206 -0.005654803 0.002420528 0.0005174388
[2,] 0.071467412 0.159832398 0.007971319 -0.0534126775
[3,] 0.000723939 0.003211234 0.094429755 -0.0540090387
[4,] -0.001083199 -0.004806531 -0.012099036 0.2173713377
> for (j in 1:10) bb <- emup(bb$beta,bb$sig,bb$sigb)
> w <- fdm(beta,sig,sigb,bb$beta,bb$sig,bb$sigb,1)

[,1] [,2] [,3] [,4]
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[1,] 0.8713592057 -0.005654803 0.002407766 -0.01186342
[2,] 0.0714674123 0.159832398 0.007986871 -0.05338475
[3,] 0.0007239027 0.003211260 0.094429905 -0.05400955
[4,] -0.0010839546 -0.004807739 -0.012106584 0.21742746
> for (j in 1:10) bb <- emup(bb$beta,bb$sig,bb$sigb)
> w <- fdm(beta,sig,sigb,bb$beta,bb$sig,bb$sigb,1)

[,1] [,2] [,3] [,4]
[1,] 0.871359206 -0.005654803 0.002404567 -0.01496695
[2,] 0.071467412 0.159832398 0.007990658 -0.05337795
[3,] 0.000723893 0.003211268 0.094429950 -0.05400970
[4,] -0.001083757 -0.004807423 -0.012104608 0.21741277
> for (j in 1:10) bb <- emup(bb$beta,bb$sig,bb$sigb)
> w <- fdm(beta,sig,sigb,bb$beta,bb$sig,bb$sigb,1)

[,1] [,2] [,3] [,4]
[1,] 0.8713592057 -0.005654803 0.002403765 -0.01574515
[2,] 0.0714674116 0.159832398 0.007991601 -0.05337626
[3,] 0.0007238922 0.003211270 0.094429962 -0.05400974
[4,] -0.0010836821 -0.004807305 -0.012103870 0.21740729
> for (j in 1:10) bb <- emup(bb$beta,bb$sig,bb$sigb)
> w <- fdm(beta,sig,sigb,bb$beta,bb$sig,bb$sigb,1)

[,1] [,2] [,3] [,4]
[1,] 0.8713592054 -0.005654803 0.002403564 -0.01594032
[2,] 0.0714674524 0.159832393 0.007991835 -0.05337584
[3,] 0.0007238967 0.003211277 0.094429966 -0.05400974
[4,] -0.0010836605 -0.004807273 -0.012103671 0.21740580

Except for the upper right corner, the estimated Jacobian matrix is very stable over the entire
range. Using the last update, the estimated information is as follows.

> # compute the estimated information
> dm2 <- -w$dm
> diag(dm2) <- diag(dm2)+1
> dm2 %*% ic

x
[1,] 11.62767741 1.8197940 -0.09734119 0.1445379
[2,] 1.81979577 82.0244664 -0.32337014 0.4839823
[3,] -0.09727587 -0.3233652 36.64065385 0.4897302
[4,] 0.14467259 0.4839812 0.48973067 7.0961278

This agrees closely with the values obtained above.

In this example explicit formulas can be given for the mapping M(θ), and hence also for its
derivatives. For example, from (4.8), the σ2

b component of M(θ0) is

∑
j

(b∗2j + c∗j )/N =
1
N

∑
j

[
σ2

b0

∑
i(Yij − x′

ijβ0)
σ2

0 + njσ2
b0

]2

+
σ2

b0σ
2
0

σ2
0 + njσ2

b0

 .
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Differentiating this expression gives the elements in the last column of the Jacobian. In
particular, the derivative with respect to the constant term, which is the slowly converging
element in the upper right corner above, is

− 2
N

∑
j

[
σ2

b0

σ2
0 + njσ2

b0

]2

nj

∑
i

(Yij − x′
ijβ0).

Evaluating this expression at the MLE gives a value of −0.015956, in close agreement with the
numerical value above at the 50th iteration. 2

In general it is not clear that the SEM algorithm has any advantage over calculating the observed
data scores and using numerical differences to approximate the information. That is, both make
use of numerical approximations to derivatives, and one requires computing Eθ[∂lcomp(θ)/∂θ|Yobs]
and the other requires computing Eθ[∂2lcomp(θ)/∂θ∂θ′|Yobs]. In any case using analytical formulas,
either by differentiating the observed data scores or by using Louis’ formula, will be more reliable.

4.5 The ECM Algorithm

In many applications (unlike the examples above), the M-step would require iterative search
methods for finding the maximum. Recall though that generally it is not necessary to find the
exact maximum in the M-step for the EM algorithm to converge. In applications where iterative
search methods are needed, sometimes subsets of the parameters can be maximized much more
easily than the full parameter vector. Suppose that θ = (α′, β′)′, and that Q(α, β|α0, β0) is easy to
maximize over either α or β with the other held fixed, but that jointly maximizing over both is
more difficult. In these settings Meng and Rubin (1993) proposed using a generalization of the
EM algorithm called the Expectation/Conditional Maximization (ECM) algorithm. Given the
parameter values from the previous iteration (or the initial values), the algorithm proceeds by
computing Q(α, β|α0, β0) in the E-step as before. Next Q(α, β0|α0, β0) is maximized over α to
obtain α1. Then Q(α1, β|α0, β0) is maximized over β to obtain β1. Then the algorithm returns to
the E-step, computing the expectation at the new parameter values (α1, β1), with the steps
repeated until convergence.

The two maximizations within the M-step could be iterated, to get improved M-step estimates
before returning to the next E-step (often such iteration would converge to the joint maximizers
of Q(α, β|α0, β0), in which case this algorithm would be an EM algorithm with a special type of
computations in the M-step). However, since the EM algorithm often requires many iterations
through both the E- and M-steps, there is often little advantage to further iteration within each
M-step.

The phrase ‘Conditional maximization’ in ECM is used to denote the process of maximizing over
a subset of the parameters with the other parameters held fixed. This is an unfortunate choice of
terminology. It would be better in statistical contexts to limit the word ‘conditional’ to
conditional probabilities and conditional distributions. ‘Conditional maximization’ sounds like it
means maximizing the likelihood for a conditional distribution, but all that is meant is fixing the
values of some of the parameters.

The algorithm as described above has an obvious generalization to settings where there are three
or more different subsets of parameters, each of which is easy to maximize when the others are
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held fixed.

Example 4.3 Multivariate normal regression with incomplete response data. Suppose
the complete data response vectors Yi are independent with

Yi ∼ N(Xiβ, V ), i = 1, . . . , n,

where Yi = (Yi1, . . . , Yik)′, Xi is a k × p matrix of covariates (usually including a constant term), β
is a p × 1 vector of unknown parameters, and the covariance matrix V is only required to be
positive definite (which means it has k(k + 1)/2 unknown parameters).

Suppose that Yi is incomplete for some cases. For example, the components of Yi could be
longitudinal measurements, and some subjects may drop out before completing all measurements
(the missing data is assumed to be missing at random, though).

Let θ consist of the components of β and the free parameters in V . The complete data likelihood
is

lcomp(θ) = −n

2
log |V | − 1

2

∑
i

(Yi − Xiβ)′V −1(Yi − Xiβ)

= −n

2
log |V | − 1

2
trace[V −1

∑
i

(Yi − Xiβ)(Yi − Xiβ)′]

= −n

2
log |V | − 1

2
trace[V −1

∑
i

(YiY
′
i − Yi(Xiβ)′ − XiβY ′

i + Xiββ′X ′
i)]. (4.20)

Let Si be the matrix of zeros and ones which ‘selects’ the elements of Yi which are actually
observed; that is, the product SiYi gives the observed components of Yi. For example, if k = 4
and only Yi1 and Yi3 are observed, then

Si =

(
1 0 0 0
0 0 1 0

)
,

giving SiYi = (Yi1, Yi3)′. If all components of Yi are observed, then Si is the k × k identity matrix.

Since the trace is the sum of the diagonal elements, the expectation operator can be taken inside
the trace, so from (4.20), the E-step of the EM algorithm will consist of computing

Y ∗
i = Eθ0(Yi|SiYi)

and
W ∗

i = Eθ0(YiY
′
i |SiYi),

and replacing unobserved components in (4.20) by the corresponding conditional expectations.
These conditional expectations are functions of the means and variances of the conditional normal
distribution of the unobserved components, given the observed components. The calculations are
somewhat similar to those in Example 2, and are left as an exercise.

The M-step then consists of maximizing

−n

2
log |V | − 1

2
trace[V −1

∑
i

(W ∗
i − Y ∗

i (Xiβ)′ − XiβY ∗′
i + Xiββ′X ′

i)]

= −n

2
log |V | − 1

2
trace[V −1

∑
i

(W ∗
i − Y ∗

i Y ∗′
i )] − 1

2

∑
i

(Y ∗
i − Xiβ)′V −1(Y ∗

i − Xiβ).
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In general iterative methods are required to calculate the joint maximizing parameter values.
However, for fixed V it is easily seen that the maximizer of β is

(
∑

i

X ′
iV

−1Xi)−1
∑

i

X ′
iV

−1Y ∗
i , (4.21)

and not quite so easily it can be shown that for β fixed the maximizer of V is

1
n

∑
i

(W ∗
i − Y ∗

i (Xiβ)′ − XiβY ∗′
i + Xiββ′X ′

i). (4.22)

Starting from initial values β0 and V0, a series of ECM updates can be given by first computing
Y ∗

i and W ∗
i , then using these to compute a new value of β from (4.21), and using Y ∗

i , W ∗
i and the

new value of β to calculate a new value of V from (4.22). These new parameter values are then
used to compute new values of Y ∗

i and W ∗
i , with the process repeated until convergence.

Although joint maximizers are not computed at each iteration, generally this algorithm will still
converge to the maximizers of the observed data likelihood.

For comparison, the observed data log likelihood is

lobs(θ) = −1
2

∑
i

log |SiV S′
i| −

1
2

∑
i

(SiYi − SiXiβ)′(SiV S′
i)
−1(SiYi − SiXiβ).

Maximizing this would require an iterative search with possibly lots of determinant and matrix
inversion calculations within each step. 2

4.6 Comments

The EM algorithm provides a convenient framework to approach estimation in incomplete data
problems. It is widely used in the statistical literature, and there are many other extensions and
variations than those discussed above. For example, Liu and Rubin (1994) extend the ECM
algorithm to an ECME algorithm, where in some of the substeps the observed data likelihood is
directly maximized over a subset of the parameters, and Wei and Tanner (1990) proposed an
MCEM algorithm, where the E step in the EM algorithm is carried out using Monte Carlo
integration. Other recent extensions are discussed in Meng and van Dyk (1997).

The EM algorithm is most useful when (1) computing the conditional expectation of the complete
data log likelihood is easier than directly computing the observed data likelihood, and (2)
maximizing Q(θ|θ0), or at least finding sufficiently improved values of θ through the ECM
algorithm or other means, is sufficiently fast. Since the EM algorithm usually converges at a fairly
slow rate, individual iterations have to be fast or it will not be competitive with directly
maximizing the observed data likelihood.

Another important reason for using the EM algorithm (possibly the main reason) is to compute
MLEs from incomplete data using available software for fitting complete data. As has been seen
in the examples above, in many problems the M-step involves complete data estimates computed
from a modified data set, or simple modifications of such estimates. Provided the E-step
calculations can be programmed, it is then often straightforward to compute the steps in the EM
algorithm without much additional work. Of course, there is still the problem computing the
inverse information or other variance estimates.
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In some (probably many) incomplete data problems, the EM algorithm gives no advantage at all.
Suppose the complete data T1, . . . , Tn are a random sample from a Weibull distribution with
density

f(t; α, γ) = α−1γ(t/α)γ−1 exp[−(t/α)γ ].

If the observed data are a right censored sample (Yi, δi), i = 1, . . . , n, where as in Example 1,
δi = 1 indicates that Yi is the observed failure time Ti, and δi = 0 indicates only that Ti > Yi,
then the complete and observed data likelihoods are

lcomp =
∑

i

[log(γ) + γ log(Ti/α) − (Ti/α)γ ],

and
lobs =

∑
i

[δi{log(γ) + γ log(Yi/α)} − (Yi/α)γ ]

The complete data likelihood is no easier to maximize than the observed data likelihood, and the
E-step would require computing E(T γ

i |Ti > Yi) and E(log[Ti]|Ti > Yi). The second of these is not
a closed form integral. Thus the EM algorithm appears to be substantially harder than direct
maximization of lobs in this example.

4.7 Exercises

Exercise 4.1 In the usual case where the data consist of independent observations, Louis’
formula (4.16) simplifies. Let lc,i(θ) be the complete data log likelihood contribution from the ith
subject. When the subjects are independent, lcomp(θ) =

∑n
i=1 lc,i(θ). Show that in this case,

Eθ

(
∂lcomp(θ)

∂θ

⊗2
∣∣∣∣∣ Yobs

)
− Eθ

(
∂lcomp(θ)

∂θ

∣∣∣∣ Yobs

)⊗2

=
n∑

i=1

[
Eθ

(
∂lc,i(θ)

∂θ

⊗2
∣∣∣∣∣ Yobs

)
− Eθ

(
∂lc,i(θ)

∂θ

∣∣∣∣ Yobs

)⊗2
]

,

so the last two terms in Louis’ formula can be replaced by the right hand side of this expression,
which is usually more straightforward to evaluate than the left hand side.

Exercise 4.2 Suppose y1, . . . , yn are a random sample from a finite mixture model with density
r∑

l=1

πlf(y; µl, σl),

where f(y; µl, σl) is the normal density with mean µl and variance σ2
l . The πl, µl, σl, l = 1, . . . , r,

are unknown parameters, but assume r is known (also note
∑

l πl = 1). One way to think of this
is that each yi is drawn from one of the normal populations with density f(y; µl, σl), but we don’t
know which one (and different y’s may be drawn from different populations). The πl are the
marginal probabilities that yi is actually from population l. Finite mixture models also provide a
convenient flexible family that gives a good approximation to many non-normal distributions.

A natural augmented data model in this problem is to let zik = 1 if yi is drawn from population k
and zik = 0 otherwise, k = 1, . . . , r. The zik are not observed, but if they were the analysis would
be considerably simplified.
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1. Give the joint distribution of (yi, zi1, . . . , zir).

2. (E step) Give a formula for Q(θ|θ0), the expectation (at θ0) of the complete data log
likelihood conditional on the observed data. (θ represents all the unknown parameters.)

3. (M step) Give formulas for the values θ1 of θ which maximize Q(θ|θ0).

4. Using the formulas derived for the previous parts, write a program to implement the EM
algorithm for arbitrary r and (y1, . . . , yn).

5. The file mix.data contains data drawn from a finite mixture model. Assume r = 2, and use
your EM algorithm program to find the MLE for this data. Repeat assuming r = 3.

6. Apply the accelerated EM algorithm from Section 4.3 to fitting the model with r = 2.

7. Calculate the observed data information matrix at the MLE when r = 2, using the following
methods:

(a) Use formula (4.11) to give expressions for the observed data scores, and analytically
differentiate these formulas to obtain formulas for the information;

(b) Louis’ method (4.16) (this is not too hard using the result from Exercise 4.1, and
taking advantage of the fact that the zik are binary and

∑
k zik = 1);

(c) the SEM algorithm.

Exercise 4.3 Consider the missing covariate data problem from Exercise 3.4.

1. Using the same model, formulate the steps in the EM algorithm for maximizing the
likelihood.

2. For the same data (file t1.dat) as before, fit the model using the EM algorithm from part 1.

3. Apply the accelerated EM algorithm from Section 4.3 to this problem. How does the
computational burden compare with the ordinary EM algorithm?

(Note: the M step updates do not have closed form solutions here, so the basic EM algorithm
might not be an ideal approach.)
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Chapter 5

Laplace Approximations

5.1 Introduction

The Laplace approximation is a method for approximating integrals using local information about
the integrand at its maximum. As such it is most useful when the integrand is highly
concentrated about its maxizing value. A common application is to computing posterior means
and variances of parametric functions in Bayesian analyses. In these settings, the posterior
becomes increasingly concentrated about the posterior mode as the sample size increases, and the
Laplace approximation converges to the correct value as the sample size approaches infinity. The
Laplace approximation is related to the large sample normal approximation to the posterior, but
is generally more accurate. The Laplace approximation is also useful for approximating the
likelihood in various nonlinear random effects models, when the integrals in the likelihood do not
have closed form solutions, and in other models with similar structures.

Example 5.1 Stanford heart transplant data. Turnbull, Brown and Hu (1974) give data on
survival times for a series of patients registered in a heart transplant program. (This data set is
used as an example by Tierney and Kadane (1986) and Tierney, Kass and Kadane (1989).) Let Yi

be the time from entry until transplant and Xi the time from entry until death. The primary
interest is in modeling mortality as a function of transplant. The time to transplant Yi has a
hypothetical value even for patients who died before transplant, or who are still awaiting
transplant at the time of analysis, and the analysis is conducted conditional on these times to
transplant. The mortality hazard for patient i at time t is assumed to be

φiτ
I(Yi≤t),

where φi is the mortality hazard rate for subject i in the absence of transplant. When transplant
occurs the hazard is shifted by a factor τ , which then represents the effect of transplant. To allow
heterogeneity in the baseline mortality rates φi, suppose the φi are a random sample from a
gamma distribution with shape p and rate λ. Set

ai(t) =
∫ t

0
τ I(Yi≤u) du = min(t, Yi) + I(t > Yi)(t − Yi)τ.

180
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Then the integrated hazard conditional on φi is φiai(t), and

P (Xi > t) =
∫ ∞

0
exp[−φai(t)]λpφp−1 exp(−λφ) dφ/Γ(p)

=
(

λ

λ + ai(t)

)p ∫ ∞

0
[λ + ai(t)]pφp−1 exp(−φ[λ + ai(t)]) dφ/Γ(p)

=
(

λ

λ + ai(t)

)p

.

Note that

ai(Xi) =

{
Xi, Xi ≤ Yi,
Yi + τZi, Xi > Yi,

and a′i(Xi) =

{
1, Xi ≤ Yi,
τ, Xi > Yi,

where Zi = Xi − Yi. Suppose there are N patients who do not get transplants, and M who do.
The observed data consist of censored survival times (xi, δi), i = 1, . . . , N , for patients who do not
receive transplant (δi = 0 if censored), and (xi, δi, yi), i = N + 1, . . . , N + M for patients who do,
where yi is the observed time to transplant and (xi, δi) are again the censored survival times
(measured from entry in the program). Set zi = xi − yi, i = N + 1, . . . , N + M . (In the actual
data, N = 30 and M = 52.) From the above formulas, the log-likelihood is easily seen to be

l(θ) = (N+M)p log(λ)+
N∑

i=1

[δi log(p)−(p+δi) log(λ+xi)]+
N+M∑
i=N+1

[δi log(pτ)−(p+δi) log(λ+yi+τzi)],

(5.1)
where for convenience define θ = (p, λ, τ). As a first step towards Bayesian inference in this
setting, it might be desired to compute the means and variances of the posterior distribution. If
flat priors are used, this requires evaluating expressions of the form∫

g(θ) exp[l(θ)] dθ∫
exp[l(θ)] dθ

, (5.2)

where g(θ) = θk
j for j = 1, 2, 3 and k = 1, 2. If a prior distribution with density p(θ) was used, then

the integrand in the numerator and denominator would be multiplied by p(θ). Calculation of (5.2)
for the first and second moments of all 3 parameters requires evaluating several 3 dimensional
integrals. Naylor and Smith (1982) discuss the use of Gauss-Hermite quadrature in this example.
Below their results will be compared with the results from the Laplace approximation. 2

Example 5.2 Matched pair Poisson data. The NCI conducted a study of cancer deaths in
regions near nuclear power plants. For each of N counties containing a nuclear power plant, they
obtained the number of cancer deaths. For each of the N counties, they also selected a control
county with similar demographics, but without a nuclear power plant, and obtained the number
of cancer deaths for each of the control counties. Let yi1, i = 1, . . . , N , be the number of cancer
deaths in the counties with nuclear power plants, and yi2 be the number of cancer deaths in the
corresponding control counties. A reasonable model for such data might be that
yi1 ∼ Poisson(mean = Ei1ρi exp(θi)) and yi2 ∼ Poisson(mean = Ei2ρi), where Eij is the expected
number of cancer deaths in each county, based on U.S. national rates, the ρi allow for variation
from national rates within each pair, and exp(θi) represents the cancer relative risk for the ith
pair.
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The unknown parameters ρi can be eliminated by conditioning. In particular, the conditional
distribution of yi1 given yi1 + yi2 is

Binomial(ni = yi1 + yi2, pi = Ei1 exp(θi)/[Ei1 exp(θi) + Ei2]).

It is probably not reasonable to expect that the θi will all be equal, but there would be particular
interest in the question of whether on average they tend to be greater than 0. One way to proceed
is to use a random effects model. Suppose

θi = θ + εi,

where the εi are iid N(0, σ2). Dropping factors that do not involve unknown parameters, the
conditional likelihood contribution for the ith pair can be written

Qi =
∫

exp(yi1[θ + ε])(Ei1 exp(θ + ε) + Ei2)−yi1−yi2σ−1φ(ε/σ) dε, (5.3)

where φ(·) is the standard normal density function. The conditional log-likelihood is then
l(θ, σ) =

∑
i log(Qi). The integral in Qi does not have a closed form expression. It could be

approximated using Gauss-Hermite quadrature methods. A simple alternative is provided by the
Laplace approximation, as discussed by Liu and Pierce (1993). Here the integral is more peaked
for small σ and less peaked for large σ, and it will turn out that the Laplace approximation is
more accurate for small σ. 2

5.2 Definition and Theory

For the most part the discussion of the Laplace approximation which follows will be confined to
the one-dimensional case. Formulas for Laplace approximations for positive functions of several
dimensions are given at (5.8) and (5.9) below.

For one-dimensional integrals of positive functions, the Laplace approximation in its simplest
form is ∫

exp[h(θ)] dθ =
√

2π exp[h(θ̂)]/[−h′′(θ̂)]1/2, (5.4)

where θ̂ maximizes h(θ). Note that this form of the approximation only applies to positive
integrands. This is sometimes called the “fully exponential” approximation, since the integrand
can be written in the form exp[h(θ)]. The idea for this approximation comes from a second order
Taylor series expansion of h(θ) about θ = θ̂. That is, for θ near θ̂,

h(θ) .= h(θ̂) + h′(θ̂)(θ − θ̂) + h′′(θ̂)(θ − θ̂)2/2,

and h′(θ̂) = 0 since θ̂ maximizes h. Thus∫
exp[h(θ)] dθ

.=
∫

exp[h(θ̂) + h′′(θ̂)(θ − θ̂)2/2] dθ

= exp[h(θ̂)]

√
2π

−h′′(θ̂)

∫ √
−h′′(θ̂)

2π
exp[−(−h′′(θ̂)/2)(θ − θ̂)2] dθ

= exp[h(θ̂)]

√
2π

−h′′(θ̂)
,
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since the integrand in the middle line is the density function of a normal distribution with mean θ̂
and variance −1/h′′(θ̂).

Suppose that the function h is part of a sequence of functions indexed by a parameter n, such
that qn(θ) = hn(θ)/n converges to a well behaved function q(θ) as n → ∞. For computing
posterior moments as in Example 5.1, usually hn(θ) = log[g(θ)] + ln(θ) + log[p(θ)] for a fixed
function g, where ln and p are the log-likelihood and prior density, and qn(θ) = hn(θ)/n converges
to the expected log likelihood per subject as n → ∞ (log[g(θ)]/n and log[p(θ)]/n both → 0 as
n → ∞). In Example 5.2, the parameter 1/σ2 plays the role of n in the expansions.

For sequences hn with the properties given above, a more careful analysis gives the result∫
exp[hn(θ)] dθ =

∫
exp[nqn(θ)] dθ =

√
2π

−nq′′n(θ̂)
exp[nqn(θ̂)](1 + an/n + O(1/n2)), (5.5)

where
an = (1/8)q(4)

n (θ̂)/q′′n(θ̂)2 + (5/24)q(3)
n (θ̂)2/[−q′′n(θ̂)3].

Since the derivatives q′′n, q
(3)
n and q

(4)
n are generally O(1), the relative error in the Laplace

approximation is O(1/n). It is also generally true that the higher order derivatives in the formula
for an can be used to obtain an approximation with a relative error of O(1/n2); see Tierney, Kass
and Kadane (1989) and Section 3.3 of Barndorff-Nielsen and Cox (1989).

Computing posterior moments requires evaluating the ratio of two related integrals. It turns out
that the errors in the two integrals tend to be similar, so the Laplace approximation to the ratio
is more accurate than for either integral by itself. Again letting ln(θ) be the log likelihood and
p(θ) the prior density, writing

dn(θ) = {ln(θ) + log[p(θ)]}/n (5.6)

and qn(θ) = log[g(θ)]/n + dn(θ), and letting θ̂q be the maximizer of qn and θ̂d be the maximizer of
dn, and applying (5.4), the Laplace approximation to the posterior mean of a positive function
g(θ) is given by

∫
g(θ) exp[ndn(θ)] dθ∫

exp[ndn(θ)] dθ
=

∫
exp[nqn(θ)] dθ∫
exp[ndn(θ)] dθ

.=

(
−d′′n(θ̂d)
−q′′n(θ̂q)

)1/2

exp[nqn(θ̂q) − ndn(θ̂d)]. (5.7)

More precisely, setting

an = (1/8)q(4)
n (θ̂q)/q′′n(θ̂q)2 + (5/24)q(3)

n (θ̂q)2/[−q′′n(θ̂q)3]

and
bn = (1/8)d(4)

n (θ̂d)/d′′n(θ̂d)2 + (5/24)d(3)
n (θ̂d)2/[−d′′n(θ̂d)3],

then from (5.5),

∫
exp[nqn(θ)] dθ∫
exp[ndn(θ)] dθ

=

(
−d′′n(θ̂d)
−q′′n(θ̂q)

)1/2

exp[nqn(θ̂q) − ndn(θ̂d)]
1 + an/n + O(1/n2)
1 + bn/n + O(1/n2)

=

(
−d′′n(θ̂d)
−q′′n(θ̂q)

)1/2

exp[nqn(θ̂q) − ndn(θ̂d)][1 + (an − bn)/n + O(1/n2)],
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and since qn and dn differ only by the term log[g(θ)]/n, typically an − bn = Op(1/n), so the
Laplace approximation to the ratio is accurate to O(1/n2).

In Example 5.2, Qi in (5.3) can be rewritten

1√
2πσ

∫
exp[log(g(ε)) − ε2/(2σ2)] dε,

where
g(ε) = exp[yi1(θ + ε)]/[Ei1 exp(θ + ε) + Ei2]yi1+yi2 .

Then −ε2/(2σ2) is similar to the term ndn above, with 1/σ2 as ‘n’. Thus applying (5.5), the
Laplace approximation to

∫
exp[log(g(ε)) − ε2/(2σ2)] dε has relative accuracy of O(σ2). However,

for a ratio of the likelihood evaluated at different θ, σ values, generally the accuracy improves to
O(σ4). That is, the likelihood ratio has ratios of such integrals, and as before the leading terms in
the errors of the approximations to the integrals in the ratios roughly cancel. Since the likelihood
is only determined to a constant of proportionality, which does not depend on the parameters (θ
and σ in Example 5.2), the likelihood itself can be thought of as including the ratio of each
Qi(θ, σ) to Qi(θ0, σ0) at a fixed (θ0, σ0). This suggests that for any practical purpose (such as
computing the MLEs), the Laplace approximation to the likelihood is accurate to O(σ4).

Similar results are available for p-dimensional integrals of positive functions. The Laplace
approximation is ∫

exp[h(θ)] dθ = (2π)p/2det

(
−∂2h(θ̂)

∂θ∂θ′

)−1/2

exp[h(θ̂)], (5.8)

where θ̂ maximizes h(·), and det(A) denotes the determinant of a matrix A. The only differences
from the univariate case are that the second derivative of h has been replaced by the determinant
of the matrix of second derivatives, and the power of 2π. For approximating the posterior mean of
a parametric function g(θ), using notation analogous to that used in (5.7),∫

exp[nqn(θ)] dθ∫
exp[ndn(θ)] dθ

.=

(
det[−∂2dn(θ̂d)/∂θ∂θ′]
det[−∂2qn(θ̂q)/∂θ∂θ′]

)1/2

exp[nqn(θ̂q) − ndn(θ̂d)]. (5.9)

As in the univariate case, this approximation is usually accurate to O(1/n2).

Tierney and Kadane (1986) also give an approximation for marginal posterior densities. If
θ = (θ1, θ

′
2)

′, then the marginal posterior density of θ1 is∫
exp{ln(θ1, θ2) + log[p(θ1, θ2)]} dθ2∫

exp{ln(θ) + log[p(θ)]} dθ
,

where the integrands are the same in the numerator and denominator, but the integral in the
numerator is only over the components in θ2 with θ1 fixed. Applying (5.8) to the integrals in the
numerator and denominator then gives an approximation to the posterior density at θ1. To get an
approximation to the full posterior density, this approximation needs to be computed at a number
of different θ1 values. The resulting approximation generally only has a pointwise accuracy of
O(1/n), because of the different dimensions of the integrals in the numerator and denominator.
However, renormalizing the approximate density to integrate to 1 can substantially improve the
resulting approximation.
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All of the previous discussion applies to positive functions. Tierney, Kass and Kadane (1989)
consider general Laplace approximations for computing posterior moments of the form∫

g(θ) exp(ndn(θ)) dθ∫
exp(ndn(θ)) dθ

,

where g(θ) can take on negative values, and where typically ndn is the sum of the log-likelihood
and the log-prior density, as in (5.6). Applying a quadratic expansion to dn in both the numerator
and denominator does not lead to the same accuracy as when g is positive. By explicitly
correcting for higher order terms they obtain an approximation which is accurate to O(1/n2)
((5.13) below is a special case). They also consider using (5.7) or (5.8) to approximate the moment
generating function of g(θ), which has a strictly positive integrand. Evaluating the derivative of
the approximation to the moment generating function at 0 then gives an approximation to the
posterior mean of g(θ). They showed that the moment generating function approach is equivalent
to the explicit correction, so it is also accurate to O(1/n2). They seem to prefer the moment
generating function approach in practice, and it will now be described in more detail.

The moment generating function of the posterior distribution of g(θ) is given by

M(s) =
∫

exp[sg(θ) + ndn(θ)] dθ∫
exp[ndn(θ)] dθ

,

with dn as in (5.6). Applying (5.4) to the numerator and denominator, as in (5.7), then gives an
approximation

M̃(s) =

(
nd′′n(θ̂d)

sg′′(θ̂s) + nd′′n(θ̂s)

)1/2

exp[sg(θ̂s) + ndn(θ̂s) − ndn(θ̂d)], (5.10)

where θ̂s maximizes sg(θ) + ndn(θ) and θ̂d maximizes dn(θ). Then

E[g(θ)] .= M̃ ′(0).

Analytic differentiation of (5.10) requires an expression for dθ̂s/ds. Since θ̂s satisfies
sg′(θ̂s) + nd′n(θ̂s) = 0, and differentiating this expression with respect to s gives

g′(θ̂s) + [sg′′(θ̂s) + nd′′n(θ̂s)]dθ̂s/ds = 0,

it follows that

dθ̂s/ds = − g′(θ̂s)
sg′′(θ̂s) + nd′′n(θ̂s)

.

Using this result it is possible to give an explicit formula for M̃ ′(0). In the special case where
g(θ) = θ some simplification results, since then g′(θ) = 1, g′′(θ) = 0 and

dθ̂s/ds = −[nd′′n(θ̂s)]−1. (5.11)

In this case, differentiating (5.10) gives

M̃ ′(s) = [−nd′′n(θ̂d)]1/2 exp[sθ̂s + ndn(θ̂s) − ndn(θ̂d)]
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×
(
−1

2
−nd′′′n (θ̂s)

[−nd′′n(θ̂s)]3/2

dθ̂s

ds
+

1
[−nd′′n(θ̂s)]1/2

[
θ̂s + s

dθ̂s

ds
+ nd′n(θ̂s)

dθ̂s

ds

])

= M̃(s)

(
θ̂s +

[
s + nd′n(θ̂s) − 1

2
nd′′′n (θ̂s)
nd′′n(θ̂s)

]
dθ̂s

ds

)

= M̃(s)

(
θ̂s − 1

2
nd′′′n (θ̂s)
nd′′n(θ̂s)

dθ̂s

ds

)
,

since θ̂s is determined by solving s + nd′n(θ) = 0. Substituting for dθ̂s/ds then gives

M̃ ′(s) = M̃(s)

(
θ̂s +

nd′′′n (θ̂s)
2[nd′′n(θ̂s)]2

)
. (5.12)

Note that M̃(0) = 1. Also, since θ̂s and θ̂d are determined by s + nd′n(θ̂s) = 0 and nd′n(θ̂d) = 0,
generally lims→0 θ̂s = θ̂d. Thus

M̃ ′(0) = θ̂d +
nd′′′n (θ̂d)

2[nd′′n(θ̂d)]2
(5.13)

(for g(θ) = θ). Formula (5.13) approximates the posterior mean with the posterior mode plus a
correction term. The correction term is related to the asymmetry in the distribution in the
neighborhood of the mode (if the posterior is symmetric, then d′′′n (θ̂d) = 0).

Evaluating d′′′n (θ) is sometimes substantial work, so in some settings it is more convenient to
approximate M̃ ′(0) with the numerical difference

[M̃(δ) − M̃(−δ)]/(2δ), (5.14)

for some small δ.

For vector parameters, the second derivatives in (5.10) are again replaced by determinants of
matrices of second derivatives, and similar formulas can be obtained.

To calculate the posterior variance of g(θ), the second moment is also needed. Since g(θ)2 is
always nonnegative, the second moment can often be approximated directly from (5.7). Tierney,
Kass and Kadane (1989) also proposed computing the second moment directly from the
approximation to the moment generating function. Recall that if M(s) is the moment generating
function of g(θ), then E[g(θ)2] = M ′′(0) and Var[g(θ)] = d2 log[M(0)]/ds2. Thus the variance can
be approximated by either M̃ ′′(0) − M̃ ′(0)2 or d2 log[M̃(0)]/ds2.

For the special case g(θ) = θ, it is again straightforward to give an explicit formula for M̃ ′′(0).
Differentiating (5.12) gives

M̃ ′′(s) = M̃ ′(s)

(
θ̂s +

nd′′′n (θ̂s)
2[nd′′n(θ̂s)]2

)
+ M̃(s)

dθ̂s

ds

(
1 +

nd
(4)
n (θ̂s)

2[nd′′n(θ̂s)]2
− [nd′′′n (θ̂s)]2

[nd′′n(θ̂s)]3

)

= M̃(s)

(
θ̂s +

nd′′′n (θ̂s)
2[nd′′n(θ̂s)]2

)2

− 1
nd′′n(θ̂s)

− nd
(4)
n (θ̂s)

2[nd′′n(θ̂s)]3
+

[nd′′′n (θ̂s)]2

[nd′′n(θ̂s)]4

 ,



5.3. EXAMPLES 187

using (5.11). Thus

M̃ ′′(0) =

(
θ̂d +

nd′′′n (θ̂d)
2[nd′′n(θ̂d)]2

)2

− 1
nd′′n(θ̂d)

− nd
(4)
n (θ̂d)

2[nd′′n(θ̂d)]3
+

[nd′′′n (θ̂d)]2

[nd′′n(θ̂d)]4
. (5.15)

The first term in this expression is the square of the approximation to the mean, so the remaining
terms give the approximation to the variance. As with the mean, the Laplace approximation to
the moment generating function gives a variance approximation consisting of the large sample
approximation to the variance (−[nd′′n(θ̂d)]−1) plus a correction term. If the posterior was exactly
normal, then dn would be a quadratic, and d′′′n (θ̂d) and d

(4)
n (θ̂d) would both be 0.

Second difference approximations can also be used for the variance, although their accuracy is
questionable. Since M̃(0) = 1, the second derivative M̃ ′′(0) could be approximated by

[M̃(δ) − 2M̃(0) + M̃(−δ)]/δ2 = [M̃(δ) + M̃(−δ) − 2]/δ2,

and d2 log[M̃(0)]/dθ2 could be approximated by

(log[M̃(δ)] − 2 log[M̃(0)] + log[M̃(−δ)])/δ2 = log[M̃(δ)M̃(−δ)]/δ2. (5.16)

In the setting of the continuation of Example 5.1, below, these approximations seemed sensitive
to the choice of δ and to the accuracy of the maximizations used, and in some cases led to
negative values for the estimated variances.

It is important to remember that the Laplace approximation only uses information about the
integrand and its derivatives at a single point. If the integrand is not highly concentrated about
that point, then the Laplace approximation is unlikely to be very accurate. This is especially true
for multimodal functions.

5.3 Examples

It is instructive to consider how the Laplace approximations perform in an example where the
true values are known.

Example 5.3 Moments of a beta distribution. Suppose X has a beta distribution with
density

f(x) ∝ xα−1(1 − x)β−1,

with α > 1 and β > 1. Then

E(Xk) =
∫ 1
0 xk+α−1(1 − x)β−1 dx∫ 1
0 xα−1(1 − x)β−1 dx

=
∫ 1
0 exp[(k + α − 1) log(x) + (β − 1) log(1 − x)] dx∫ 1

0 exp[(α − 1) log(x) + (β − 1) log(1 − x)] dx

=
(k + α − 1) · · ·α

(k + α + β − 1) · · · (α + β)
, (5.17)

from the definition of the beta function. (The notation is somewhat confusing relative to the
earlier discussion, but α and β are fixed values and x plays the role of θ above.)
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Since g(x) = xk is positive on the domain of X, the approximation (5.7) can be applied. The role
of n here is played by α + β, but it is not necessary to explicitly factor out this term to use the
approximation. The quantity nqn(x) = (k + α − 1) log(x) + (β − 1) log(1 − x) is maximized by
x̂q = (k + α − 1)/(k + α + β − 2) (which can be verified by solving nq′n(x) = 0). Also, as a special
case, ndn(x) = (α − 1) log(x) + (β − 1) log(1 − x) is maximized by x̂d = (α − 1)/(α + β − 2).
Further,

−nq′′n(x) = (k + α − 1)/x2 + (β − 1)/(1 − x)2,

so

−nq′′n(x̂q) =
(k + α + β − 2)3

(k + α − 1)(β − 1)

and

− nd′′n(x̂d) =
(α + β − 2)3

(α − 1)(β − 1)
. (5.18)

Thus the Laplace approximation to E(Xk) is(
(α + β − 2)3(k + α − 1)
(α − 1)(k + α + β − 2)3

)1/2 (
k + α − 1

k + α + β − 2

)k+α−1 (
β − 1

k + α + β − 2

)β−1

×
(

α + β − 2
α − 1

)α−1 (
α + β − 2

β − 1

)β−1

=
(α + β − 2)α+β−1/2(k + α − 1)k+α−1/2

(k + α + β − 2)k+α+β−1/2(α − 1)α−1/2
. (5.19)

To analyze this rather complicated expression, it is somewhat easier to think in terms of the
parameters γ = α + β and p = α/(α + β). Then (5.19) can be expressed(

γ − 2
γ + k − 2

)γ−1/2 (
pγ + k − 1

pγ − 1

)pγ−1/2 (
pγ + k − 1
γ + k − 2

)k

=
(

1 − 2/γ

1 + (k − 2)/γ

)γ−1/2 (
1 + (k − 1)/(pγ)

1 − 1/(pγ)

)pγ−1/2 (
p + (k − 1)/γ

1 + (k − 2)/γ

)k

.

In the limit as γ → ∞ with p held fixed, this expression converges to

pk. (5.20)

To see this note that using the first order approximation log(1 + u) .= u, which is valid in the limit
as u → 0, or alternately using L’Hospital’s rule, it follows that

(γ − 1/2)[log(1 − 2/γ) − log(1 + (k − 2)/γ)] .= (γ − 1/2)[−2/γ − (k − 2)/γ] → −k

as γ → ∞, so (
1 − 2/γ

1 + (k − 2)/γ

)γ−1/2

→ e−k.

Similarly (
1 + (k − 1)/(pγ)

1 − 1/(pγ)

)pγ−1/2

→ ek.
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Then the result follows from (
p + (k − 1)/γ

1 + (k − 2)/γ

)k

→ pk.

At first glance (5.20) may look a bit different from (5.17). However, in the limit as
γ = α + β → ∞, (5.17) → pk as well. Thus the Laplace approximation gives the correct result in
the limit. The following calculations give some idea of the accuracy of the approximation for
finite γ when k = 1, so the true value is E(X) = p.

> k <- 1
> p <- .1
> g <- trunc(1/p+1):40 # g=gamma; recall alpha=p*g must be > 1
> ((g-2)/(k+g-2))^(g-.5)*((k+p*g-1)/(p*g-1))^(p*g-.5)*((p*g+k-1)/(k+g-2))^k
[1] 0.1534 0.1278 0.1180 0.1129 0.1098 0.1077 0.1062 0.1052 0.1044 0.1037

[11] 0.1032 0.1028 0.1025 0.1022 0.1020 0.1018 0.1016 0.1015 0.1014 0.1012
[21] 0.1011 0.1011 0.1010 0.1009 0.1009 0.1008 0.1007 0.1007 0.1007 0.1006
> p <- .5
> g <- trunc(1/p+1):40 # recall alpha=p*g must be > 1
> ((g-2)/(k+g-2))^(g-.5)*((k+p*g-1)/(p*g-1))^(p*g-.5)*((p*g+k-1)/(k+g-2))^k
[1] 0.3977 0.4562 0.4757 0.4846 0.4894 0.4922 0.4940 0.4953 0.4962 0.4969

[11] 0.4974 0.4978 0.4981 0.4983 0.4985 0.4987 0.4988 0.4990 0.4991 0.4991
[21] 0.4992 0.4993 0.4993 0.4994 0.4994 0.4995 0.4995 0.4996 0.4996 0.4996
[31] 0.4996 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998

For small values of γ, the integrand is not very concentrated about the mode, and the
approximation is not very good. As γ increases, the accuracy of the approximation quickly
improves.

Even though g(x) is positive in this example, the moment generating function method can also be
applied. First consider the case k = 1, so g(x) = x. For the notation in (5.10),
ndn = (α− 1) log(x) + (β − 1) log(1− x), and x̂d = (α− 1)/(α + β − 2), as above. Also, g′′(x) = 0.
x̂s is the solution to s + nd′n(x) = 0. It will be convenient to modify the notation. Let v = α − 1
and w = α + β − 2, so β − 1 = w − v. Then

s + nd′n(x) = s + v/x − (w − v)/(1 − x) = 0

yields the quadratic equation
sx2 + (w − s)x − v = 0.

The roots are
[
(s − w) ± √

(s − w)2 + 4sv
]
/(2s). Since w > v > 0 and s is arbitrarily close to 0,

the roots are real. The root

x̂s =
[
(s − w) +

√
(s − w)2 + 4sv

]
/(2s) ∈ (0, 1), (5.21)

and thus is the relevant solution. Substituting these expressions into (5.10) then gives the Laplace
approximation to the moment generating function. Since this will be an explicit function of s, the
moments can be determined by differentiation. However, the expression will be complicated, and
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this direct approach is not for the algebraically challenged (evaluating the limit as s → 0 is also
not completely trivial). It is substantially simpler to use (5.13) and (5.15) here.

First note that applying L’Hospital’s rule,

lim
s→0

x̂s = lim
s→0

(1 + [(s − w)2 + 4sv]−1/2[2(s − w) + 4v]/2)/2 = v/w = x̂d,

as is needed to use (5.13). Also, from (5.18), −nd′′n(x̂d) = w3/[v(w − v)]. Further

nd′′′n (x) = 2vx−3 − 2(w − v)(1 − x)−3,

so

nd′′′n (x̂d) = 2w3 (w − v)2 − v2

v2(w − v)2
= 2w4 w − 2v

v2(w − v)2
.

Substituting in (5.13) then gives that the approximation for E(X) is

v/w +
w4(w − 2v)
v2(w − v)2

v2(w − v)2

w6
=

vw + w − 2v

w2
=

α2 + αβ − 4α + 2
(α + β − 2)2

=
pγ(γ − 4) + 2

(γ − 2)2
,

where again γ = α + β and p = α/γ. When p = 1/2, this formula is exactly 1/2 (the correct
value). For p = .1, it gives the following values for different values of γ.

> p <- .1
> g <- trunc(1/p+1):40
> (p*g*(g-4)+2)/(g-2)^2
[1] 0.1198 0.1160 0.1132 0.1111 0.1095 0.1082 0.1071 0.1062 0.1055 0.1049

[11] 0.1044 0.1040 0.1036 0.1033 0.1030 0.1028 0.1026 0.1024 0.1022 0.1020
[21] 0.1019 0.1018 0.1017 0.1016 0.1015 0.1014 0.1013 0.1012 0.1012 0.1011

In this case the Laplace approximation to the moment generating function is more accurate than
the fully exponential form given earlier for small γ, but less accurate as γ increases.

To use (5.15) to approximate Var(X), it is also easily verified that

nd(4)
n (x) = −6[v/x4 + (w − v)/(1 − x)4],

so
nd(4)

n (x̂d) = −6w4[1/v3 + 1/(w − v)3].

Using these expressions, and some algebra, (5.15) gives

Var(X) .=
α2β + αβ2 − 9αβ + 6α + 6β − 5

(α + β − 2)4
.

2

As a more realistic example of using the Laplace approximation, it will be applied to computing
posterior moments in Example 5.1.
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Example 5.1 (continued). First formula (5.9) will be used to give approximations for the
posterior moments (5.2). In the notation of (5.9),

nqn(θ) = k log(θj) + l(θ)

for k = 1, 2, and
ndn(θ) = l(θ),

where the log-likelihood l(θ) is given by (5.1) (recall that flat priors are being used in this
example).

The derivatives of (5.1) are

∂l(θ)
∂p

= (N + M) log(λ) +
N∑

i=1

[δi/p − log(λ + xi)] +
N+M∑
i=N+1

[δi/p − log(λ + yi + τzi)],

∂l(θ)
∂λ

= (N + M)p/λ −
N∑

i=1

(p + δi)/(λ + xi) −
N+M∑
i=N+1

(p + δi)/(λ + yi + τzi),

∂l(θ)
∂τ

=
N+M∑
i=N+1

[δi/τ − (p + δi)zi/(λ + yi + τzi)],

∂2l(θ)
∂p2

= −
N+M∑
i=1

δi/p2,

∂2l(θ)
∂p∂λ

= (N + M)/λ −
N∑

i=1

1/(λ + xi) −
N+M∑
i=N+1

1/(λ + yi + τzi),

∂2l(θ)
∂p∂τ

= −
N+M∑
i=N+1

zi/(λ + yi + τzi)],

∂2l(θ)
∂λ2

= −(N + M)p/λ2 +
N∑

i=1

(p + δi)/(λ + xi)2 +
N+M∑
i=N+1

(p + δi)/(λ + yi + τzi)2,

∂2l(θ)
∂λ∂τ

=
N+M∑
i=N+1

(p + δi)zi/(λ + yi + τzi)2,

∂2l(θ)
∂τ2

=
N+M∑
i=N+1

[−δi/τ2 + (p + δi)z2
i /(λ + yi + τzi)2].

The second derivatives of nqn(θ) are given by

∂2nqn(θ)/∂θ2
j = −k/θ2

j + ∂2l(θ)/∂θ2
j

and
∂2nqn(θ)/∂θj∂θr = ∂2l(θ)/∂θj∂θr

for r 6= j.

The standard large sample approximation to the posterior distribution is that θ is normally
distributed with

E(θ) = θ̂ and Var(θ) = −H−1, (5.22)
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where θ̂ is the posterior mode and H is the matrix of second derivatives of the log-posterior
evaluated at θ = θ̂. Here, with flat priors, H = ∂2l(θ̂)/∂θ∂θ′ and θ̂ is just the MLE.

In the Splus code which follows, x and sx are the vectors of survival times and status variables
(δi) for nontransplant patients, and y, z and sz are the times to transplant, survival beyond
transplant, and survival status for transplant patients. First the standard large sample
approximation to the posterior mean and variance will be obtained, then the approximations
based on (5.9).

> # x=survival for nontransplant patients; sx= status
> # y=days to transplant
> # z=survival from transplant; sz=status
> x <- c(49,5,17,2,39,84,7,0,35,36,1400,5,34,15,11,2,1,39,8,101,2,148,1,68,31,
+ 1,20,118,91,427)
> sx <- c(1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0)
> y <- c(0,35,50,11,25,16,36,27,19,17,7,11,2,82,24,70,15,16,50,22,45,18,4,1,
+ 40,57,0,1,20,35,82,31,40,9,66,20,77,2,26,32,13,56,2,9,4,30,3,26,4,
+ 45,25,5)
> z <- c(15,3,624,46,127,61,1350,312,24,10,1024,39,730,136,1379,1,836,60,1140,
+ 1153,54,47,0,43,971,868,44,780,51,710,663,253,147,51,479,322,442,65,
+ 419,362,64,228,65,264,25,193,196,63,12,103,60,43)
> sz <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,0,1,1,1,1,0,0,1,0,1,0,0,1,
+ 1,1,0,1,0,1,0,0,1,1,1,0,1,0,0,1,1,0,0,0)
>
> ff <- function(b) { # calculate -log likelihood - input values are log(params)
+ p <- exp(b[1]); l <- exp(b[2]); tau <- exp(b[3]);
+ -sum(p*log(l/(l+x))+sx*log(p/(l+x)))-sum(
+ p*log(l/(l+y+tau*z))+sz*log(tau*p/(l+y+tau*z)))
+ }
> ff2 <- function(b) {# - second derivatives of log likelihood
+ p <- exp(b[1]); l <- exp(b[2]); tau <- exp(b[3]);
+ v <- matrix(0,3,3)
+ v[1,1] <- sum(c(sx,sz))/p^2
+ w <- y+tau*z
+ N <- length(sx)+length(sz)
+ v[1,2] <- v[2,1] <- -N/l+sum(1/(l+x))+sum(1/(l+w))
+ v[1,3] <- v[3,1] <- sum(z/(l+w))
+ v[2,2] <- N*p/l^2-sum((p+sx)/(l+x)^2)-sum((p+sz)/(l+w)^2)
+ v[2,3] <- v[3,2] <- -sum((p+sz)*z/(l+w)^2)
+ v[3,3] <- sum(sz)/tau^2-sum((p+sz)*(z/(l+w))^2)
+ v
+ }
> w <- nlmin(ff,c(0,0,0),rfc.tol=1e-14)
> exp(w$x) # first order estimate of mean
[1] 0.4342928 21.8721078 0.8135526
> wd <- ff2(w$x)
> sqrt(diag(solve(wd))) # first order estimate of standard deviations
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[1] 0.1101879 10.2539312 0.3322589
>
> wl <- -ff(w$x) #nd_n
> wsdet <- prod(diag(chol(wd))) # sqrt of det of 2nd derivs of nd_n
>
> # Laplace approx to E(theta_j) and Var(theta_j)
> gg <- function(b) ff(b)-b[j] #-l-log(theta_j)
> gg2 <- function(b) {
+ v <- ff2(b)
+ v[j,j] <- v[j,j]+exp(-2*b[j]) # +1/theta_j^2
+ v
+ }
> gg3 <- function(b) ff(b)-2*b[j] #-l-2log(theta_j)
> gg4 <- function(b) {
+ v <- ff2(b)
+ v[j,j] <- v[j,j]+2*exp(-2*b[j]) # +2/theta_j^2
+ v
+ }
>
> for (j in 1:3) {
+ u <- nlmin(gg,w$x,rfc.tol=1e-14)
+ ul <- -gg(u$x) #nq_n for theta_j
+ ud <- gg2(u$x)
+ usdet <- prod(diag(chol(ud))) # sqrt of det of nq_n
+ pm <- (wsdet/usdet)*exp(ul-wl) #mean
+ u <- nlmin(gg3,w$x,rfc.tol=1e-14)
+ ul <- -gg3(u$x) #nq_n for theta_j^2
+ ud <- gg4(u$x)
+ usdet <- prod(diag(chol(ud))) # sqrt of det of nq_n
+ pvar <- (wsdet/usdet)*exp(ul-wl)-pm^2 #var
+ print(c(pm,sqrt(pvar)))
+ }
[1] 0.4926045 0.1380890
[1] 32.10656 16.08997
[1] 1.0439007 0.4943295

Note that there are substantial differences between the Laplace approximations and the first order
results (these differences would be smaller, though, if the logs of the parameters were used instead
of the parameters themselves). Naylor and Smith (1982), using Gauss-Hermite quadrature
methods, determined the posterior means to be .50, 32.5 and 1.04 and the posterior standard
deviations to be .14, 16.2 and .47, for p, λ, and τ , so the Laplace approximation is very close here.

The moment generating function method can also be used in this example. It would be possible
to give formulas analogous to (5.13) and (5.15) for the multiparameter case. Instead though, the
Laplace approximation will be used to approximate the moment generating function, as in (5.10),
and numerical differences will be used to approximate the derivatives, as in (5.14) and (5.16).
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In the following, w, wd, wl, ff, ff2, etc., are as defined earlier. The values of s used are of the
form ε/σjj , where σjj is the estimated posterior standard deviation for the jth parameter
obtained from the standard large sample first order approximation (by inverting the second
derivative matrix). The reason for scaling the differences by 1/σjj is that the curvature in the
moment generating function is quite different for the different parameters, making different step
sizes appropriate.

> hh <- function(b) ff(b)-s*exp(b[j]) #-l-s*theta_j
> wdi <- 1/sqrt(diag(solve(wd))) #1/\sigma_{jj}
> wdi
[1] 9.07540899 0.09752357 3.00970128
> for (j in 1:3) {
+ for (D in c(.1,.01,.001,.0001)) { # actually D=epsilon
+ s <- D*wdi[j]
+ u1 <- nlmin(hh,w$x,rfc.tol=1e-14)
+ if (u1$conve) {
+ u1l <- -hh(u1$x)
+ u1d <- ff2(u1$x)
+ u1sdet <- prod(diag(chol(u1d)))
+ m1 <- (wsdet/u1sdet)*exp(u1l-wl)
+ s <- -s
+ u2 <- nlmin(hh,w$x,rfc.tol=1e-14)
+ if (u2$conve) {
+ u2l <- -hh(u2$x)
+ u2d <- ff2(u2$x)
+ u2sdet <- prod(diag(chol(u2d)))
+ m2 <- (wsdet/u2sdet)*exp(u2l-wl)
+ pm <- (m2-m1)/(2*s)
+ pvar <- log(m1*m2)/s^2
+ print(c(j,D,pm,pvar,sqrt(pvar)))
+ }
+ }
+ }
+ }
[1] 1.00000000 0.10000000 0.50709367 0.01729363 0.13150523
[1] 1.00000000 0.01000000 0.48733590 0.01725193 0.13134660
[1] 1.00000000 0.00100000 0.48714124 0.01672953 0.12934269
[1] 1.0000000 0.0001000 0.4865873 -1.2092876 NA
[1] 2.00000 0.10000 30.99081 196.13113 14.00468
[1] 2.00000 0.01000 30.21429 195.24472 13.97300
[1] 2.00000 0.00100 30.20651 192.81457 13.88577
[1] 2.00000 0.00010 30.20565 516.53107 22.72732
[1] 3.0000000 0.1000000 1.0338185 0.1916737 0.4378055
[1] 3.0000000 0.0100000 1.0077132 0.1906006 0.4365783
[1] 3.0000000 0.0010000 1.0074374 0.1997018 0.4468801
[1] 3.000000 0.000100 1.007411 -0.386718 NA
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From these calculations .001 < ε < .01 seems to work well in this example. The values in this
range are stable, and not too different from the results obtained earlier. A more careful analysis
appears to indicate the values of the difference approximations are close to the correct derivatives
of the moment generating function approximation. In this example the moment generating
function approach is a little less accurate than the direct Laplace approximation given previously.

In discussing finite differences to approximate derivatives in connection with optimization
methods, it was suggested that ε

1/2
m , where εm is the relative machine precision, would often be a

reasonable choice for the step size in the finite difference. That recommendation assumed that the
error in evaluating the function was O(εm). Here the errors may be larger, and ε

1/2
m

.= 10−8

appears to be too small. The value ε
1/2
m was also only recommended for the finite difference

approximation to the first derivative. A similar analysis for the finite difference approximation to
the second derivative suggests a value of ε

1/4
m

.= 10−4 for that case. Again here ε
1/4
m is too small to

give good results for approximating the second derivative.

This example also illustrates the general difficulty with using numerical differences to
approximate derivatives. The values obtained can be quite sensitive to the step size used, and the
appropriate step size tends to be heavily dependent on the particular problem. If the step size is
too large, then the slope over the step may be a poor approximation to the derivative at the point
of interest, while if the step is too small, the difference in the function values can be the same
order as the accuracy of the function evaluations, leading to meaningless results (like the negative
variances with ε = .0001 above). Part of the error in the function evaluations here is the accuracy
with which the maximizing values of the integrands are determined.

Another way to estimate the derivatives of the approximation to the moment generating function
is to calculate it at a number of values of s, fit a parametric curve to the values, and use the
derivatives of the fitted curve to estimate the derivatives. In particular, if we fit a qth degree
polynomial r(s) = β0 + β1s + · · · + βqs

q, then r′(0) = β1 and r′′(0) = 2β2. The degree of the
polynomial needs to be chosen large enough to model the function well over the range considered,
but small enough to smooth out inaccuracies in the evaluation of the function. Below this idea is
applied to estimating the mean and variance of the posterior distribution of p from the moment
generating function. The method in this example does not seem very sensitive to the degree of
the polynomial or the width of the interval used. (There are better ways to fit the polynomials,
but the method used below was adequate to illustrate the idea.)

> j <- 1
> D <- .1
> ss <- seq(-D,D,length=11)*wdi[j]
> mm <- ss
> for (i in 1:length(ss)) {
+ s <- ss[i]
+ u1 <- nlmin(hh,w$x,rfc.tol=1e-14)
+ u1l <- -hh(u1$x)
+ u1d <- ff2(u1$x)
+ u1sdet <- prod(diag(chol(u1d)))
+ mm[i] <- (wsdet/u1sdet)*exp(u1l-wl)
+ }
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> a <- coef(lm(mm~ss+ss^2+ss^3+ss^4+ss^5+ss^6+ss^7+ss^8+ss^9+ss^10))
> c(a[2],sqrt(2*a[3]-a[2]^2))

ss I(ss^2)
0.4871398 0.1313269

> a <- coef(lm(mm~ss+ss^2+ss^3+ss^4+ss^5+ss^6+ss^7+ss^8))
> c(a[2],sqrt(2*a[3]-a[2]^2))

ss I(ss^2)
0.4871385 0.1313297

> a <- coef(lm(mm~ss+ss^2+ss^3+ss^4+ss^5+ss^6))
> c(a[2],sqrt(2*a[3]-a[2]^2))

ss I(ss^2)
0.4871403 0.1313767

> a <- coef(lm(mm~ss+ss^2+ss^3+ss^4))
> c(a[2],sqrt(2*a[3]-a[2]^2))

ss I(ss^2)
0.487041 0.1315763

> a <- coef(lm(mm~ss+ss^2))
> c(a[2],sqrt(2*a[3]-a[2]^2))

ss I(ss^2)
0.5013096 0.09625772

> j <- 1
> D <- .01
> ss <- seq(-D,D,length=11)*wdi[j]
> mm <- ss
> for (i in 1:length(ss)) {
+ s <- ss[i]
+ u1 <- nlmin(hh,w$x,rfc.tol=1e-14)
+ u1l <- -hh(u1$x)
+ u1d <- ff2(u1$x)
+ u1sdet <- prod(diag(chol(u1d)))
+ mm[i] <- (wsdet/u1sdet)*exp(u1l-wl)
+ }
> a <- coef(lm(mm~ss+ss^2+ss^3+ss^4+ss^5+ss^6+ss^7+ss^8+ss^9+ss^10))
> c(a[2],sqrt(2*a[3]-a[2]^2))

ss I(ss^2)
0.4871405 0.1268419

> a <- coef(lm(mm~ss+ss^2+ss^3+ss^4+ss^5+ss^6+ss^7+ss^8))
> c(a[2],sqrt(2*a[3]-a[2]^2))

ss I(ss^2)
0.487139 0.1305032

> a <- coef(lm(mm~ss+ss^2+ss^3+ss^4+ss^5+ss^6))
> c(a[2],sqrt(2*a[3]-a[2]^2))

ss I(ss^2)
0.4871373 0.1315923

> a <- coef(lm(mm~ss+ss^2+ss^3+ss^4))
> c(a[2],sqrt(2*a[3]-a[2]^2))
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ss I(ss^2)
0.48714 0.1310105

> a <- coef(lm(mm~ss+ss^2))
> c(a[2],sqrt(2*a[3]-a[2]^2))

ss I(ss^2)
0.4872798 0.1309879

In the second case, with a smaller interval, the 10th degree polynomial overfits noise in the
function evaluations, while in the first case, with a larger interval, the quadratic fit is not flexible
enough to give a good fit over the range of the points, and the estimated curvature at 0 is
distorted by the influence of distant points.

5.4 Exercises

Exercise 5.1

1. The gamma function is defined by

Γ(a) =
∫ ∞

0
ua−1 exp(−u) du

(recall that for integers Γ(n + 1) = n!). Apply the Laplace approximation to this formula
and show that the result is Stirling’s formula:

Γ(a + 1) .= (2π)1/2aa+1/2 exp(−a).

2. Suppose that X has a gamma distribution with density proportional to xa−1 exp(−λx).
Recall that E(Xk) = Γ(k + a)/[Γ(a)λk]. Apply (5.7) to the ratio∫ ∞

0
xk+a−1 exp(−λx) dx/

∫ ∞

0
xa−1 exp(−λx) dx

to find the Laplace approximation to E(Xk). Show that the only difference between the
Laplace approximation and the exact formula is that in the Laplace approximation the
gamma functions have been replaced by Stirling’s approximation.

3. Use (5.10) to find the Laplace approximation to the moment generating function of the
distribution in (b) (again pretend you do not know the normalizing constant for the
density). Show that in this case the approximation is exact.

Exercise 5.2 The standard large sample approximation usually performs better if the
parameters are transformed to a reasonably symmetric scale first. In Example 5.1, instead of
(p, λ, τ), suppose the parameters (log(p), log(λ), log(τ)) are used.

1. Find the large sample approximations for the posterior means and standard deviations of
(log(p), log(λ), log(τ)). The data can be found in the file stanford.s.
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2. Since the distributions of the new parameters have mass on negative values, approximation
(5.7) is not appropriate. Apply the Laplace approximation to the moment generating
function, as in (5.10), to approximate the posterior means and standard deviations.

Exercise 5.3 In Example 5.3, plot the integrand xk+α−1(1 − x)β−1 for k = 0, 1, 2, for (a)
p = α/(α + β) = .5 and γ = α + β = 3, 5, 10, 20, 40, and (b) p = .1 and γ = 11, 20, 40.

Exercise 5.4 The following questions refer to Example 5.2. The integrand of Qi in (5.3) can be
written as the product of

Ai(ε) = exp[yi1(θ + ε)][Ei1 exp(θ + ε) + Ei2]−yi1−yi2

and
B(ε) = σ−1φ(ε/σ).

There is not an explicit solution for the maximizing value ε̂i of the integrand Ai(ε)B(ε).

1. Give a formula for the Laplace approximation to Qi in terms of ε̂i. (Give explicit formulas
except for the maximizing value ε̂i.)

2. Using the result of part 1, give a formula for the approximate log-likelihood l(θ, σ).

3. Give formulas for the scores based on the approximate likelihood in part 2, keeping in mind
that ε̂i is a function of θ and σ. (Express the scores in terms of the ε̂i and their derivatives).

4. Using reasoning similar to that leading to (5.11), give formulas for ∂ε̂i/∂θ and ∂ε̂i/∂σ.

5. Exact calculation of the approximate likelihood and scores (and information, if that is also
calculated) requires iterative searches to compute ε̂i for each term in the likelihood at each
set of parameter values where these quantities are evaluated. Since this is a lot of iterative
searches, Liu and Pierce (1993) proposed an approximation to ε̂i, which is easier to
compute. There approximation was based noting that each of the factors Ai(ε) and B(ε)
has an explicit maximizing value of ε, say ε̂ia and ε̂b, and approximating ε̂i with a weighted
average of ε̂ia and ε̂b. (Liu and Pierce also suggest using a one-step Newton update from
this weighted average.)

(a) Give formulas for ε̂ia and ε̂b.
(b) There are various possibilities for the weights in the weighted average. Roughly, Ai

could be thought of as a likelihood for ε and Bi as a prior, in which case it would
roughly be appropriate to weight the two components proportionately to the
information in each component (where information refers to the usual statistical sense
of the negative of the second derivative of the log of the density or likelihood—this is
more or less weighting inversely proportional to the variances of the two components).
This leads to the formula

ε̂i
.= (iaε̂ia + ibε̂b)/(ia + ib),

where ia = −∂2 log[Ai(ε̂ia)]/∂ε2 and ib = −∂2 log[Bi(ε̂ib)]/∂ε2. Give a formula for this
approximation to ε̂i.

6. Suppose yi1 = 100, yi2 = 205, Ei1 = 85, Ei2 = 200. Plot the integrand Ai(ε)B(ε) for
combinations of θ = 0, log(1.25), log(1.5) and σ2 = .1, 1, 10. Which combinations are more
concentrated?
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Chapter 6

Quadrature Methods

This section of the course is concerned with the numerical evaluation of integrals that do not have
closed form antiderivatives. The main topic is numerical quadrature rules. Intractable integrals
occur in many different contexts in statistics, including in Bayesian inference problems, nonlinear
mixed effects models, measurement error models, and missing data problems.

Initially standard methods for one-dimensional integrals, such as the trapezoidal rule and
Simpson’s rule, will be considered, followed by a discussion of Gaussian quadrature rules in the
one-dimensional case, and then by extensions to multi-dimensional integrals.

In addition to the methods discussed below, there have been special algorithms developed for a
variety of problems that are encountered frequently in statistics, such as computing the CDFs for
standard probability distributions. Many of these approximations are based on series expansions,
continued fraction expansions, or rational function approximations. Some examples are given in
Chapters 2 and 3 of Lange (1999) and Chapter 6 of Press et. al. (1992). The Statistical
Algorithms section of the journal Applied Statistics gives many useful algorithms of this type, and
source code for many of these is available in STATLIB (http://lib.stat.cmu.edu).

6.1 Newton-Cotes Rules

Consider the problem of evaluating ∫ x1

x0

f(x) dx.

If the integrand f(x) is expanded in a Taylor series about m = (x0 + x1)/2, then

f(x) = f(m) +
k−1∑
j=1

f (j)(m)(x − m)j/j! + Rk(x), (6.1)

where Rk(x) = f (k)(m∗(x))(x − m)k/k! for some m∗(x) between x and m, and
f (j)(x) = djf(x)/dxj . Assume k is even. Since x1 − m = m − x0 = (x1 − x0)/2, integrating the
Taylor series gives the midpoint formula∫ x1

x0

f(x) dx = f(m)(x1 − x0) +
k/2−1∑
j=1

f (2j)(m)
(2j + 1)!

[(x1 − m)2j+1 − (x0 − m)(2j+1)] +
∫ x1

x0

Rk(x) dx

200
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= f(m)(x1 − x0) +
k/2−1∑
j=1

f (2j)(m)2−2j(x1 − x0)2j+1/(2j + 1)! +
∫ x1

x0

Rk(x) dx.(6.2)

Also, direct substitution in (6.1) gives

[f(x0) + f(x1)]/2 = f(m) +
k/2−1∑
j=1

f (2j)(m)2−2j(x1 − x0)2j/(2j)! + [Rk(x1) + Rk(x0)]/2.

Multiplying the last expression by (x1 − x0) and subtracting from (6.2) gives

∫ x1

x0

f(x) dx − f(x0) + f(x1)
2

(x1 − x0) = −
k/2−1∑
j=1

f (2j)(m)(x1 − x0)2j+1j

22j−1(2j + 1)!
+ R̃k, (6.3)

where R̃k is the difference in the remainder terms from the two expressions, which satisfies

|R̃k| ≤ sup
x∈[x0,x1]

|f (k)(x)|(x1 − x0)k+1(2k + 3)
2k(k + 1)!

.

With k = 2, (6.3) gives∫ x1

x0

f(x) dx =
f(x0) + f(x1)

2
(x1 − x0) + O((x1 − x0)3 sup |f ′′(x)|). (6.4)

Dividing [a, b] into n intervals [xj−1, xj ] of equal size, so that xj = a + j(b − a)/n, and applying
(6.4) to each interval, gives the approximation

∫ b

a
f(x) dx =

[f(a) + f(b)]/2 +
n−1∑
j=1

f(xj)

 (b − a)/n + O((b − a)3n−2 sup |f ′′(x)|), (6.5)

which is known as the trapezoidal rule.

A substantially better approximation can be obtained with only slightly more work. Adding 2
times (6.2) to (6.3), with k = 4 in both cases, gives

3
∫ x1

x0

f(x) dx − f(x0) + f(x1)
2

(x1 − x0) = 2f(m)(x1 − x0) + O((x1 − x0)5 sup |f (4)(x)|),

since the f ′′(m) terms cancel, so∫ x1

x0

f(x) dx =
1
6
[f(x0) + 4f(m) + f(x1)](x1 − x0) + O{(x1 − x0)5 sup |f (4)(x)|}. (6.6)

This formula can also be obtained by fitting a quadratic approximation to f through the points
(x0, f(x0)), (m, f(m)), and (x1, f(x1)). It is interesting that this formula is exact when f is a
cubic function (since the error depends only on the 4th derivative), even though it is obtained
from a quadratic approximation. Also note that if T1 is the two point trapezoidal approximation
and T2 is the 3 point trapezoidal approximation, then the approximation in (6.6) can be obtained
from (4T2 − T1)/3.
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Again dividing [a, b] into n intervals (where n is even), with xj = a + j(b − a)/n, and applying
(6.6) to each of the n/2 intervals [x2j , x2j+2], so mj = x2j+1, gives∫ b

a
f(x) dx = [f(a) + 4f(x1) + 2f(x2) + 4f(x3) + · · · + 2f(xn−2) + 4f(xn−1) + f(b)]

(b − a)
3n

+O((b − a)5n−4 sup |f (4)(x)|). (6.7)

This formula is known as Simpson’s rule. The alternating multipliers of 4 and 2 are a curiosity of
this approach. In Section 4.1 of Press et. al. (1992), it is noted that applying cubic interpolants
to groups of 4 points leads to the formula∫ b

a
f(x) dx = [3{f(a) + f(b)}/8 + 7{f(x1) + f(xn−1)}/6 + 23{f(x2) + f(xn−2)}/24 +

f(x3) + · · · + f(xn−3)](b − a)/n + O(n−4).

This has the same order of error as Simpson’s rule, but the form is similar to the trapezoidal rule,
except for the weights given to the points near the end of the interval.

The trapezoidal rule and Simpson’s rule are part of a general family of quadrature rules based on
approximating the function with interpolating polynomials over an equally spaced grid of points.
These quadrature rules are generally known as Newton-Cotes formulas.

The trapezoidal rule and Simpson’s rule above are known as closed formulas, since they require
evaluation of the function at the endpoints of the interval. There are analogous open formulas
based on (6.2), that do not require evaluating the function at the endpoints, which could be used
if the function value is not defined (except in a limiting sense) at an endpoint of the interval; see
Sections 4.1 and 4.4 of Press et. al. (1992), and (6.9), below.

Since analytic bounds on the higher order derivatives of the integrand can be difficult to obtain,
the formal error bounds above are not often very useful. In practice these rules are often applied
by evaluating the rules for an increasing sequence of values of n. Since the rules use equally
spaced points, if the number of intervals is doubled at each step, then the function evaluations
from the previous steps can be reused in the current step; only the function values at the
midpoints of the old intervals need to be evaluated. The sequence is usually terminated when the
change from one step to the next is small enough. This does not guarantee a good approximation
to the integral, since it is possible to construct functions where doubling the number of intervals
at some step will give the same value, so the algorithm will terminate, but where the integral is
poorly approximated (eventually adding more intervals would lead to a better approximation, if
the function is smooth, but the algorithm could terminate before then).

As noted above, Simpson’s rule can be obtained from two successive evaluations of the trapezoidal
rule. This leads to the following stepwise algorithm for calculating Simpson’s rule for evaluating∫ b
a f(x) dx:

Algorithm 6.1
Iterative Evaluation of Simpson’s Rule

1. Set T1 = (b − a)(f(b) + f(a))/2, h = (b − a)/2, T2 = T1/2 + f((a + b)/2)h, and n = 2.
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Figure 6.1: The trapezoidal rule (dots) for evaluating
∫ 2
0 exp(−x) dx, for n = 1, 2, 4, 8, 16 intervals

(h2 = 4, 1, 1/4, 1/16, 1/64). The extrapolation to 0 of the line through the first two trapezoidal
approximations (h2 = 4, 1) gives Simpson’s rule with 3 points (dot at h2 = 0).

2. Set S1 = (4T2 − T1)/3 and T1 = T2.

3. Set h = h/2 and then evaluate T2 = T1/2 + (
∑n

i=1 f(a + (2i − 1)h)) h.

4. Set S2 = (4T2 − T1)/3.

5. If |S2 − S1| < ε(|S1| + δ), where δ > 0, then return S2 as the approximate value of the
integral; otherwise set n = 2n, T1 = T2 and S1 = S2 and go to step 3.

At steps 3 and 4, T1 and T2 are the previous and current evaluations of the trapezoidal rule, and
S1 and S2 are the previous and current evaluations of Simpson’s rule.

6.1.1 Romberg Integration

There is another interpretation of the Simpson’s rule formula S = (4T2 − T1)/3 used in
Algorithm 6.1. If the integrand f(x) is a sufficiently smooth function, and if T (h) is the
trapezoidal approximation with interval length h, then the exact value of the integral is given by
T (0) = limh↓0 T (h). Think of T1 and T2 as being the points (h2, T (h)) and (h2/4, T (h/2)), and
use linear extrapolation to (0, T (0)) to estimate T (0). The result is T (0) .= (4T (h/2) − T (h))/3,
giving the formula for Simpson’s rule. As was seen above, this difference cancels the leading error
term in the expansion (6.3). The reason for using the square of interval width instead of the
interval width itself as the ordinate in the extrapolation is because the terms in the error
expansion (6.3) only depend on powers of h2.

This is illustrated if Figure 6.1. For
∫ 2
0 exp(−x) dx (used in Example 6.1, below), the first 5 steps

in sequential evaluation of the trapezoidal rule (doubling the number of intervals at each step) are
plotted against h2, as is the linear extrapolation to 0 from the first 2 steps. This extrapolant gives
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Simpson’s rule based on the same set of points, and substantially improves on the trapezoidal
approximation. The code used for generating Figure 6.1 is as follows.

> f <- function(x) exp(-x)
> a <- 0
> b <- 2
> h <- b-a
> n <- 1
> TR <- mean(f(c(a,b))) * h
> for (i in 1:4) {
+ h <- c(h[1]/2,h)
+ TR <- c(TR[1]/2+sum(f(seq(a+h[1],b-h[1],length=n)))*h[1],TR)
+ n <- n*2
+ }
> h <- rev(h)^2
> TR <- rev(TR)
> plot(h,TR,xlab=’h^2’,ylab=’Trapezoidal approximation T(h)’)
> b <- (TR[1]-TR[2])/(h[1]-h[2])
> abline(a=TR[1]-b*h[1],b=b)
> points(0,TR[1]-b*h[1])
> TR[1]-b*h[1] # extrapolation to 0
[1] 0.868951
> (4*TR[2]-TR[1])/3 # 3 point Simpson’s rule
[1] 0.868951

Since a linear extrapolation from two points substantially decreases the error in the trapezoidal
rule, it might be hoped that a quadratic extrapolation from three successive evaluations would
lead to further improvement. This turns out to be the case. If the intervals are again split in two,
the point (h2/16, T (h/4)) results (the point at h2 = 1/4 in Figure 6.1. Fitting a quadratic to the
two earlier points and this new point, and extrapolating to (0, T (0)), will cancel the h4 error term
and give an approximation accurate to h6. Adding more points and and using higher order
extrapolations continues to cancel higher order terms in the error. This suggests evaluating∫ b
a f(x) dx by sequentially evaluating trapezoidal rules as in Algorithm 6.1, and after each

evaluation performing a polynomial extrapolation as described above. This is known as Romberg
integration, and is implemented in the Splus function rint() below. The polynomial
extrapolation is done in the function polint(), which is adapted from the routine of the same
name in Press et. al. (1992).

rint <- function(f,a,b,eps=1.e-5,mk=20,dm=5,prt=F) { # Romberg integration
# f= univariate function to be integrated (given a vector of values
# x, f(x) must return a vector giving the values of f at x), a to b is
# interval of integration (finite). stops when relative change < eps
# mk=max number Romberg iterations, dm=max degree in the interpolation
# alternative interpolation: {u <- poly(c(0,h2),min(k,dm));
# R1 <- sum(lm(Q~u[-1,])$coef*c(1,u[1,]))} (slower and less accurate)

h <- b-a
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h2 <- h^2
Q <- mean(f(c(a,b)))*h
R0 <- Q
j <- 1
for (k in 1:mk){
h <- h/2
h2 <- c(h2,h2[j]/4)
i <- sum(f(seq(a+h,b-h,length=2^(k-1))))
Q <- c(Q,Q[j]/2+h*i)
if (k>dm) {h2 <- h2[-1]; Q <- Q[-1]}
R1 <- polint(h2,Q,0)
j <- length(Q)
if(prt) print(c(k,trapezoid=Q[j],Simpson=(4*Q[j]-Q[j-1])/3,Romberg=R1))
if (abs(R1-R0)<eps*(abs(R1)+1e-8)) break
R0 <- R1

}
R1

}
polint <- function(xa,ya,x){ #polynomial interpolation
# given a vector of points xa and ya=f(xa) for some function f,
# computes the length(xa)-1 degree polynomial interpolant at x
# based on numerical recipes polint
n <- length(xa)
ns <- 1
cc <- d <- ya
u <- abs(x-xa)
dif <- min(u)
ns <- match(dif,u)
y <- ya[ns]
ns <- ns-1
for (m in 1:(n-1)) {
ii <- 1:(n-m)
ho <- xa[ii]-x
hp <- xa[ii+m]-x
w <- cc[ii+1]-d[ii]
den <- w/(ho-hp)
d[ii] <- hp*den
cc[ii] <- ho*den
if (2*ns<n-m) {

dy <- cc[ns+1]
} else {

dy <- d[ns]
ns <- ns-1

}
y <- y+dy

}
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y
}

The following is a simple example using these functions.

Example 6.1 Again consider numerically evaluate
∫ 2
0 exp(−x) dx. The true value is 1− exp(−2).

Note that the function f() has to be able to evaluate the integrand at a vector of values in a
single call. As part of the calculations for Romberg integration, it is trivial to evaluate the
stepwise trapezoidal and Simpson’s approximations as well.

> # simple example
> i <- 0
> f <- function(x) { # integrand
+ assign(’i’,i+length(x),where=1)
+ exp(-x)
+ }
> u <- rint(f,0,2,eps=1.e-7,prt=T)

trapezoid Simpson Romberg
1 0.9355471 0.868951 0.868951

trapezoid Simpson Romberg
2 0.882604 0.8649562 0.8646899

trapezoid Simpson Romberg
3 0.8691635 0.8646833 0.8646648

trapezoid Simpson Romberg
4 0.8657903 0.8646659 0.8646647

> u
[1] 0.8646647
> i
[1] 17
> truval <- 1-exp(-2)
> u-truval
[1] 1.548361e-11

2

6.1.2 Singularities

The methods above require the range of integration to be a finite interval. Many integrals
encountered in statistics have infinite limits. These can often be dealt with through an
appropriate transformation. For example, to evaluate∫ ∞

1
exp(−u)u−1/2 du (6.8)

the transformations x = exp(−u) or x = 1/u could be considered. The first leads to∫ 1/e

0
{− log(x)}−1/2 dx,
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Figure 6.2: f(x) = {− log(x)}−1/2, the integrand following the first transformation

and the second to ∫ 1

0
exp(−1/x)x−3/2 dx.

Note that both transformations have given an integrand that cannot be evaluated at 0, although
in both cases the limit of the integrand as x → 0 is 0. Thus the singularity at 0 can be removed
by defining the function to be 0 at 0, or an open formula (see Sections 4.1 and 4.4 of Press et. al.
(1992), and (6.9) below) or Gaussian quadrature methods (see Section 6.2, below), which do not
require evaluating the integrand at the endpoints of the interval, could be used. The integrand
after the first transformation has a very steep slope near 0 (see Figure 6.2), which could require a
large number of intervals to get a good approximation.

Applying the Romberg algorithm to both transformations gives the following.

> # int_1^Inf u^(-.5)exp(-u)
> # transformation to a finite interval
> # x=exp(-u)
> f <- function(x) {
+ assign(’i’,i+length(x),where=1)
+ ifelse(x==0,0,1/sqrt(-log(x)))
+ }
> i <- 0
> u <- rint(f,0,exp(-1),prt=T)

trapezoid Simpson Romberg
1 0.2333304 0.2497939 0.2497939

trapezoid Simpson Romberg
2 0.2572495 0.2652226 0.2662511

trapezoid Simpson Romberg
3 0.2686219 0.2724127 0.2729975

trapezoid Simpson Romberg
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4 0.2739905 0.27578 0.2760659
trapezoid Simpson Romberg

5 0.2765225 0.2773666 0.2775027
trapezoid Simpson Romberg

6 0.2777193 0.2781182 0.2781827
trapezoid Simpson Romberg

7 0.2782869 0.2784761 0.2785068
trapezoid Simpson Romberg

8 0.2785571 0.2786471 0.2786618
trapezoid Simpson Romberg

9 0.2786861 0.2787292 0.2787362
trapezoid Simpson Romberg

10 0.278748 0.2787686 0.278772
trapezoid Simpson Romberg

11 0.2787778 0.2787877 0.2787893
trapezoid Simpson Romberg

12 0.2787921 0.2787969 0.2787977
trapezoid Simpson Romberg

13 0.2787991 0.2788014 0.2788017
trapezoid Simpson Romberg

14 0.2788024 0.2788035 0.2788037
> truval <- (1-pgamma(1,shape=.5))*gamma(.5)
> c(i,u,u-truval)
[1] 1.638500e+04 2.788037e-01 -1.868625e-06
>
> # can split into two parts
> i <- 0
> u1 <- rint(f,.01,exp(-1))
> i
[1] 65
> u2 <- rint(f,0,.01)
> c(i,u1+u2,u1,u2)
[1] 3.283400e+04 2.788055e-01 2.745401e-01 4.265423e-03
> u1+u2-truval
[1] -8.471474e-08
>
> # 2nd transformation to a finite interval
> # x=1/u
> f <- function(x) {
+ assign(’i’,i+length(x),where=1)
+ ifelse(x==0,0,exp(-1/x)*x^(-1.5))
+ }
> i <- 0
> u <- rint(f,0,1,prt=T)

trapezoid Simpson Romberg
1 0.2833629 0.3165039 0.3165039
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trapezoid Simpson Romberg
2 0.2797713 0.2785741 0.2760454

trapezoid Simpson Romberg
3 0.2784363 0.2779914 0.2779828

trapezoid Simpson Romberg
4 0.2787456 0.2788487 0.2789246

trapezoid Simpson Romberg
5 0.2787906 0.2788056 0.2788005

trapezoid Simpson Romberg
6 0.2788018 0.2788056 0.2788056

trapezoid Simpson Romberg
7 0.2788046 0.2788056 0.2788056

> c(i,u,u-truval)
[1] 1.290000e+02 2.788056e-01 -1.092346e-10

As expected, the second transformation worked much better.

A semi-automated method for dealing with endpoint singularities and semi-infinite intervals can
be given by using ‘open’ Newton-Cotes formulas. An open formula does not require evaluating
the function at the endpoints of the interval. An open trapezoidal rule, similar to (6.5), can be
obtained by applying the midpoint formula (6.2) to successive intervals, giving∫ b

a
f(x) dx =

(
n∑

i=1

f(xi)

)
(b − a)/n + O

(
(b − a)3

n2

)
, (6.9)

where xi = a + (i − 1/2)(b − a)/n. Also, higher order error terms again involve only even powers
of n−1. Thus a Romberg polynomial extrapolation algorithm can be applied, that will reduce the
error by an order of n−2 at each step. This is implemented in the S function rinto() below. This
function triples the number of points at each step, because tripling allows both reusing the points
already computed and maintaining the relative spacing in (6.9), while doubling would not.

The function rinto() also automates the transformation x = 1/u for semi-infinite intervals, by
redefining the function appropriately. Note that rinto() only allows intervals of the form
(−∞,−b) (b > 0), (a,∞) (a > 0), or (a, b) (−∞ < a < b < ∞). Other intervals of integration can
be handled by making multiple calls over separate intervals. For example,∫ ∞
−∞ f =

∫ −a
−∞ f +

∫ b
−a f +

∫ ∞
b f .

rinto <- function(f,aa,bb,eps=1e-5,mk=13,dm=5,prt=F) {
# Romberg integration using the open trapezoidal formula
# triples the number of points at each step
# f= univariate function to be integrated (given a vector of values
# x, f(x) must return a vector giving the values of f at x), (aa,bb) is
# interval of integration; only aa=-Inf and bb<0, aa>0 and bb=Inf, or
# aa<bb both finite, are allowed. Stops when relative change < eps
# mk=max number Romberg iterations, dm=max degree in the interpolation

if (aa >= bb) stop(’aa must be < bb’)
if (is.inf(aa)) {
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if (bb >= 0) stop(’bb must be <0 when aa=-Inf’)
ff <- function(x,f) f(1/x)/x^2
b <- 0
a <- 1/bb

} else if (is.inf(bb)) {
if (aa <= 0) stop(’aa must be >0 when bb=Inf’)
ff <- function(x,f) f(1/x)/x^2
b <- 1/aa
a <- 0

} else {
ff <- function(x,f) f(x)
a <- aa
b <- bb

}
h <- b-a
h2 <- h^2
R0 <- Q <- h*ff((a+b)/2,f)
j <- 1
for (k in 1:mk){
h2 <- c(h2,h2[j]/9)
x <- c(seq(a+h/6,b,by=h),seq(a+5*h/6,b,by=h))
i <- sum(ff(x,f))*h
Q <- c(Q,(Q[j]+i)/3)
h <- h/3
if (k>dm) {h2 <- h2[-1]; Q <- Q[-1]}
R1 <- polint(h2,Q,0)
j <- length(Q)
if(prt) print(c(k,trapezoid=Q[j],Romberg=R1))
if (abs(R1-R0)<eps*(abs(R1)+1e-8)) break
R0 <- R1

}
R1

}

Applying this function to (6.8) gives the following.

> f <- function(x) {assign(’i’,i+length(x),where=1); exp(-x)/sqrt(x)}
> i <- 0
> print(u <- rinto(f,1,Inf))
[1] 0.2788056
> c(i,u-truval)
[1] 2.430000e+02 -1.319426e-10

This used about twice as many function evaluations (243 versus 129) as the closed rule Romberg
integration required on this problem.
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Another type of problem is when the integrand is infinite at one or both endpoints. In this case
use of an open formula or Gaussian quadrature methods (below) can be essential.

6.2 Gaussian Quadrature

The basic form of a Gaussian quadrature rule is∫ b

a
W (x)f(x) dx

.=
n∑

j=1

ωjf(xj), (6.10)

where both the weights ωj and the abscissas xj are determined to give an accurate approximation.
In the Newton-Cotes rules with a grid of n equally spaced points, it is possible to give a formula
that is exact when the integrand is a polynomial of degree n − 1. In Gaussian quadrature, by
varying both the weights and abscissas, formulas are obtained which are exact when f(x) is a
polynomial of degree 2n − 1. Another advantage of Gaussian quadrature methods is that the
weight function W (x) in the integrand can be chosen to deal with various types of singularities.

The key to determining the weights and abscissas of Gaussian quadrature rules are systems of
orthogonal polynomials. Consider the space of functions {u(x) :

∫ b
a W (x)u(x)2 dx < ∞}. A

polynomial basis {pj(x), j = 0, 1, 2, . . .} can be given for this space of functions such that pj(x) is
a polynomial of degree j, and the pj(x) are orthogonal in the sense that

∫ b
a W (x)pj(x)pk(x) dx = 0

for j 6= k. There are in fact simple recurrence formulas for the pj(x), starting from p0(x) ∝ 1. It
can be shown that each pj(x) will have j distinct real roots.

Given any set of possible abscissas x1, . . . , xn for (6.10), the weights ωj , j = 1, . . . , n, can be
chosen to make (6.10) exact for the functions p0(x), . . . , pn−1(x). In principle, this can be done by
solving the system of equations∫ b

a
W (x)pi(x) dx =

n∑
j=1

ωjpi(xj), i = 0, . . . , n − 1,

for the ωj , although in practice there are better methods than direct solution of this system
(which tends to be poorly conditioned). (In this system,∫

W (x)pi(x) dx ∝ ∫
W (x)pi(x)p0(x) dx = 0 for i > 0.) The abscissa values can then be varied to

make (6.10) exact for pj(x), j = n, . . . , 2n − 1 as well. It turns out that the solution is to take the
abscissas to be the roots of pn(x). See Section 16.6 of Lange (1999) and Section 4.5 of Press et.
al. (1992) for additional details. The roots of the polynomials are always in the interior of the
interval, so the integrand need not be evaluated at the limits of integration.

The quantity actually evaluated in (6.10) is
∫

W (x)q(x) dx, where q(x) =
∑n−1

i=0 αipi(x) is an
interpolating polynomial through the points (xj , f(xj)), j = 1, . . . , n, since then the αi satisfy∑n−1

i=0 αipi(xj) = f(xj), and

n∑
j=1

ωjf(xj) =
n∑

j=1

ωj

n−1∑
i=0

αipi(xj)

=
n−1∑
i=0

αi

n∑
j=1

ωjpi(xj)
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Table 6.1: Weight functions in Gaussian quadrature rules

Name W (x) (a, b) S function
Legendre 1 (a, b) gauleg()
Laguerre xα exp(−x) (0,∞) gaulag()
Hermite exp(−x2) (−∞,∞) gauher()
Jacobi (1 − x)α(1 + x)β (−1, 1) —

=
n−1∑
i=0

αi

∫
W (x)pi(x) dx

=
∫

W (x)q(x) dx (6.11)

(recall that the ωj were chosen to make (6.10) exact for the pi, i = 0, . . . , n − 1). Thus the success
of a Gaussian quadrature rule will depend on how closely f(x) is approximated by the
interpolating polynomial q(x). (Actually, the requirement is somewhat weaker, since it is a
remarkable fact that any polynomial q∗(x) of degree 2n − 1 or less, which interpolates this same
set of n points, will have the same value of

∫
W (x)q∗(x) dx, since the Gaussian quadrature rule is

exact for all such polynomials, so all that is needed is for W (x)q∗(x) to be close enough to
W (x)f(x) for some such q∗.)

S functions to calculate the abscissas and weights for several standard weight functions are given
in the Appendix, below. These functions are based on the corresponding routines in Press et. al.
(1992). They use nested loops, and will tend to be quite slow if n is very large. The algorithms
execute much faster in FORTRAN or C programs.

Some standard weight functions are given in Table 6.1. The weights and abscissas returned by the
S functions can be used as indicated in (6.10). By using a few simple transformations, it is
possible to fit a variety of integrals into this framework. For example

∫ 1
0 f(v)[v(1 − v)]−1/2 dv can

be put in the form of a Gauss-Jacobi integral with the transformation v = x2.

Since Gaussian quadrature rules give a higher order approximation than in Newton-Cotes rules
with the same number of points, they tend to give better accuracy with a smaller number of
points than is achieved with Romberg integration.

One disadvantage of Gaussian quadrature rules is that the abscissas from an n-point formula
generally cannot be used in higher order formulas, so for example if the rule with n and 2n points
are to be computed, the calculations from the first cannot be used in the second. However, given
n points from a Gaussian quadrature rule, it is possible to choose n + 1 additional points and
choose weights for all 2n + 1 points in a way that will make the resulting formula exact for
polynomials of degree 3n + 1. The pair of rules consisting of the original n point Gaussian
quadrature rule and the optimal n + 1 point extension are known as Gauss-Kronrod pairs.
Evaluating the extension in these pairs gives a check on the accuracy of the original Gaussian
quadrature rule. The function gaukron() below implements the (7, 15) point Gauss-Kronrod pair
(7 initial points plus 8 in the extension) for an arbitrary finite interval. Because the weights are
symmetric, some multiplications could be saved by adding terms with the same weights before
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multiplying, but with greater complexity in the Splus code.

gaukron <- function(f,a,b) {
# compute 7-15 Gauss-Kronrod rule for the function f on the
# finite interval (a,b)
# x=abscissas of 7 point Gauss-Legendre rule on (-1,1)

x <- c(-0.949107912342758524526189684047851,
-0.741531185599394439863864773280788,
-0.405845151377397166906606412076961,
0,
0.405845151377397166906606412076961,
0.741531185599394439863864773280788,
0.949107912342758524526189684047851)

# w=weights of 7 point G-L rule on (-1,1)
w <- c(0.129484966168869693270611432679082,

0.279705391489276667901467771423780,
0.381830050505118944950369775488975,
0.417959183673469387755102040816327,
0.381830050505118944950369775488975,
0.279705391489276667901467771423780,
0.129484966168869693270611432679082)

# xk=additional abscissas for 15 point Kronrod extension
xk <- c(-0.991455371120812639206854697526329,

-0.864864423359769072789712788640926,
-0.586087235467691130294144838258730,
-0.207784955007898467600689403773245,
0.207784955007898467600689403773245,
0.586087235467691130294144838258730,
0.864864423359769072789712788640926,
0.991455371120812639206854697526329)

# wk=weights of 15 point Kronrod rule, corresponding to c(x,xk)
wk <- c(0.063092092629978553290700663189204,

0.140653259715525918745189590510238,
0.190350578064785409913256402421014,
0.209482141084727828012999174891714,
0.190350578064785409913256402421014,
0.140653259715525918745189590510238,
0.063092092629978553290700663189204,
0.022935322010529224963732008058970,
0.104790010322250183839876322541518,
0.169004726639267902826583426598550,
0.204432940075298892414161999234649,
0.204432940075298892414161999234649,
0.169004726639267902826583426598550,
0.104790010322250183839876322541518,
0.022935322010529224963732008058970)
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# transform to interval (a,b)
p1 <- (a+b)/2
p2 <- (b-a)/2
x <- p2*x+p1
xk <- p2*xk+p1
y <- f(x)
yk <- f(xk)
p2*c(sum(w*y),sum(wk*c(y,yk)))

}

Here is a simple example.

> gaukron(function(x) x^4*exp(-x),0,10)
[1] 23.29599 23.29794
> integrate(function(x) x^4*exp(-x),0,10)[1:4]
$integral:
[1] 23.29794

$abs.error:
[1] 2.055201e-06

$subdivisions:
[1] 2

$message:
[1] "normal termination"

Gauss-Kronrod pairs can be used in adaptive quadrature schemes. The integrate() function,
which comes with Splus, implements such an algorithm. It is based on algorithms given in the
QUADPACK FORTRAN library, available from Netlib (http://www.netlib.org/). For
evaluating

∫ b
a f(x) dx, integrate() first evaluates the (7, 15) Gauss-Kronrod pair, and stops if

the difference is small enough. If not, the interval is subdivided and the (7, 15) pair is applied
within each subinterval. The process continues until the difference is small enough within each
subinterval. Semi-infinite intervals are handled via an automated transformation, such as
u = 1/x. In the example above, the initial call to gaukron() indicates larger error than the
default error bound in integrate(), so the interval needed to be divided to guarantee sufficient
accuracy in the call to integrate(). It is also easy to implement an adaptive Gauss-Kronrod
integration algorithm directly in Splus. The function agk() below does this for integration over
finite intervals. The algorithm could be combined with automated transformations for infinite
intervals to give a general routine for evaluating one-dimensional integrals. In agk(), the interval
with the largest difference between the 7 and 15 point rules is split in half at each step, with the
iteration continuing until the sum of the absolute differences is less than eps times the absolute
value of the integral.

agk <- function(f,a,b,eps=1e-6,maxint=50) {
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# adaptive Gauss-Kronrod integration of the function f over
# the finite interval (a,b)
# the subinterval with the largest abs difference between the 7 and 15
# point rules is divided in half, and the 7-15 rule applied to each half,
# continuing until the sum of the absolute differences over all
# subintervals is < eps*|Integral|, to a maximum of maxint subintervals.

intervals <- matrix(c(a,b),ncol=1)
tmp <- gaukron(f,a,b)
error <- abs(tmp[1]-tmp[2])
integral <- tmp[2]
while (sum(error)>eps*(abs(sum(integral))+1e-8) & length(error)<=maxint) {
split <- (1:length(error))[error == max(error)]
aa <- intervals[1,split]
bb <- intervals[2,split]
tmp <- (aa+bb)/2
i1 <- gaukron(f,aa,tmp)
i2 <- gaukron(f,tmp,bb)
error <- c(error[-split],abs(i1[1]-i1[2]),abs(i2[1]-i2[2]))
intervals <- cbind(intervals[,-split],c(aa,tmp),c(tmp,bb))
integral <- c(integral[-split],i1[2],i2[2])

}
c(value=sum(integral),error=sum(error),nsubint=ncol(intervals))

}

Here are two simple examples.

> agk(function(x) x^4*exp(-x),0,10)
value error nsubint

23.29794 1.642814e-06 2
> agk(function(x) sin(x)*exp(-x),0,20)
value error nsubint

0.5 1.42681e-08 3
> integrate(function(x) sin(x)*exp(-x),0,20)[1:4]
$integral:
[1] 0.5

$abs.error:
[1] 7.66039e-09

$subdivisions:
[1] 3

$message:
[1] "normal termination"

The QUADPACK routines, and hence probably integrate(), use a more sophisticated error
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estimate, and the termination criterion and possibly the splitting algorithm are a little different
than in agk(), so the two functions do not produce identical results.

Experience suggests that in Gaussian quadrature it is generally better to use only a moderate
number of points in the quadrature rule, and to subdivide the interval and apply the rule within
subintervals if more accuracy is needed, as in the adaptive algorithms discussed above, than to
keep using ever larger values of n. This is because it is generally easier to get good local
approximations using moderate degree polynomials on short intervals than using a high degree
polynomial over a long interval.

To further illustrate, again consider the simple integral from Example 6.1,
∫ 2
0 exp(−x) dx. Here

5-point and 10-point Gauss-Legendre quadrature will be considered, as will the (7, 15)
Gauss-Kronrod algorithm from the gaukron() and integrate() functions.

> f <- function(x) {
+ assign(’i’,i+length(x),where=1)
+ exp(-x)
+ }
> truval <- 1-exp(-2)
> u <- gauleg(5,0,2)
> u2 <- sum(u$w*f(u$x))
> c(u2,u2-truval)
[1] 8.646647e-01 -3.034261e-10
> u <- gauleg(10,0,2)
> u3 <- sum(u$w*f(u$x))
> c(u3,u3-truval,u2-u3)
[1] 8.646647e-01 -8.437695e-15 -3.034176e-10
> i <- 0
> u <- integrate(f,0,2)[1:4]
> u
$integral:
[1] 0.8646647

$abs.error:
[1] 9.599707e-15

$subdivisions:
[1] 1

$message:
[1] "normal termination"

> i
[1] 15
> u[[1]]-truval
[1] -1.110223e-16
> i <- 0
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> u <- gaukron(f,0,2)
> u
[1] 0.8646647 0.8646647
> i
[1] 15
> u-truval
[1] -7.771561e-16 1.110223e-16

Here 5-point Gaussian quadrature is almost as accurate as Romberg integration after evaluating
the integrand at 17 points, and the 10-point Gauss-Legendre rule is accurate to 14 significant
digits. In integrate(), the interval is not subdivided, and the result from the (7, 15)
Gauss-Kronrod pair was essentially accurate to machine precision.

Next Gaussian quadrature methods are applied to evaluating
∫ ∞
1 u−1/2 exp(−u) du.

> # int_1^Inf u^(-.5)exp(-u)
> # transformation to a finite interval
> # x=exp(-u)
> f <- function(x) {
+ assign(’i’,i+length(x),where=1)
+ ifelse(x==0,0,1/sqrt(-log(x)))
+ }
> truval <- (1-pgamma(1,shape=.5))*gamma(.5)
> # Gauss-Legendre of transformed integral
> for (n in c(10,20,40,80)) {
+ u <- gauleg(n,0,exp(-1))
+ u <- sum(u$w*f(u$x))
+ print(c(u,u-truval))
+ }
[1] 2.788540e-01 4.837192e-05
[1] 2.788157e-01 1.006516e-05
[1] 2.788077e-01 2.100210e-06
[1] 2.788060e-01 4.426965e-07
>
> # adaptive integration of transformed integral
> i <- 0
> u <- integrate(f,0,exp(-1))[1:4]
> u
$integral:
[1] 0.2788056

$abs.error:
[1] 5.469256e-05

$subdivisions:
[1] 8
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$message:
[1] "normal termination"

> i
[1] 225
> u[[1]]-truval
[1] 4.720109e-08
>
> # Gauss-Laguerre, x=u-1 in original integral (so interval is 0,infty)
> f <- function(x) 1/sqrt(x+1)
> for (n in c(5,10,20)) {
+ u <- gaulag(n,0)
+ u <- sum(u$w*f(u$x))/exp(1)
+ print(c(u,u-truval))
+ }
[1] 0.2786623754 -0.0001432099
[1] 2.788022e-01 -3.350869e-06
[1] 2.788056e-01 -1.631527e-08
>
> # adaptive integration of original integral
> i <- 0
> u <- integrate(function(u) {assign(’i’,i+length(u),where=1);
+ exp(-u)/sqrt(u)},1,Inf)[1:4]
> u
$integral:
[1] 0.2788056

$abs.error:
[1] 1.189216e-06

$subdivisions:
[1] 3

$message:
[1] "normal termination"

> i
[1] 75
> u[[1]]-truval
[1] 1.327549e-11
>
> # transformation to a finite interval
> # x=1/u
> f <- function(x) {
+ assign(’i’,i+length(x),where=1)
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+ ifelse(x==0,0,exp(-1/x)*x^(-1.5))
+ }
> # Gauss-Legendre of transformed integral
> for (n in c(5,10,20)) {
+ u <- gauleg(n,0,1)
+ u <- sum(u$w*f(u$x))
+ print(c(u,u-truval))
+ }
[1] 0.2784703115 -0.0003352738
[1] 2.787817e-01 -2.387048e-05
[1] 2.788056e-01 2.738277e-08
> # adaptive integration of transformed integral
> i <- 0
> u <- agk(f,0,1)
> u

value error nsubint
0.2788056 1.177239e-07 3

> i
[1] 75
> u[1]-truval

value
1.327549e-11

Note that integrate() applied to the original semi-infinite interval worked quite well, as did
Gauss-Legendre and agk() applied to the second transformation. The values for integrate() on
the original interval and agk() on the second transformation were identical, suggesting that
integrate() used this same transformation. Generally the Gaussian quadrature methods give
better accuracy for a smaller number of points than seen previously for Romberg integration.

6.2.1 Gauss-Hermite Quadrature

A critical aspect of applying quadrature rules is that points need to be located in the main mass
of the integrand. Adaptive rules try to do this automatically, but in general this can require
careful thought. This is especially true for Gauss-Hermite quadrature. Gauss-Hermite quadrature
is a natural method for many statistical applications, especially for integrals arising in Bayesian
calculations, since the Gauss-Hermite weight function is proportional to a normal density. In
Bayesian inference, the posterior distribution is often approximately normal, and this
approximation improves as the sample size increases.

It is always possible to put a doubly infinite integral into the form of the Gauss-Hermite integral,
through ∫ ∞

−∞
g(x) dx =

∫ ∞

−∞
exp(−x2)f(x) dx, (6.12)

where f(x) = g(x) exp(x2). However, if g(x) is concentrated about a point far from 0, or if the
spread in g(x) is quite different than for the weight function exp(−x2), then applying
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Gauss-Hermite quadrature directly to the right hand side of (6.12) can give a very poor
approximation, because the abscissas in the quadrature rule will not be located where most of the
mass of g is located. Recalling from (6.11) that Gaussian quadrature really evaluates∫

W (x)q∗(x) dx for an interpolating polynomial q∗ through the points (xj , f(xj)), another way to
think of this is that such a q∗ may provide a poor approximation to the integrand over an
important region, if the xj are in region where f is say nearly constant.

To illustrate, suppose g(x) = exp[−(x − µ)2/(2σ2)], which is proportional to the normal density
with mean µ and variance σ2. If the change of variables u = (x − µ)/(σ

√
2) is made, then∫ ∞

−∞
g(x) dx =

√
2σ

∫ ∞

−∞
exp(−u2) du

so the function f(x) is constant in (6.12), and a one-point formula should give an exact result. If
the change of variables is not made, f(x) = exp[x2 − (x − µ)2/(2σ2)] in (6.12), which might be
difficult to approximate with the polynomial interpolating the points in a Gauss-Hermite
quadrature rule if µ is far from 0 or 2σ2 is far from 1.

More generally, the transformation u = (x − x̂)/(σ̂
√

2) could be considered, where x̂ is the mode
of g(x) and σ̂2 = −1/[d2 log{g(x̂)}/dx2]. This is based on approximating g with a normal density
in the neighborhood of the mode of g. Note the similarity to the Laplace approximation. In a
sense, Gauss-Hermite quadrature is a generalization of the Laplace approximation. Applying
Gauss-Hermite quadrature with this transformation gives∫ ∞

−∞
g(x) dx =

√
2σ̂

∫ ∞

−∞
exp(−u2)g(

√
2σ̂u + x̂) exp(u2) du

.=
√

2σ̂
n∑

i=1

ωig(
√

2σ̂xi + x̂) exp(x2
i ).

The success of this formula will depend on how close g is to a normal density times a low order
polynomial.

In the context of Bayesian inference, using a parameter value θ for the argument of the integrand,
g(θ) would often be of the form g(θ) = q(θ) exp[l(θ) + log{π(θ)}], where l(θ) is the log-likelihood
and π(θ) is the prior density. Often several such integrals will be evaluated. For example, to
compute the posterior mean and variance of θ, integrals of this form with q(θ) = 1, θ and (θ − θ̃)2

would need to be evaluated, where θ̃ is the posterior mean, given by the ratio of the integrals with
the first two values of q(θ). In this case it might sometimes be reasonable to determine θ̂ and σ̂
just from the exp[l(θ) + log{π(θ)}] portion of the integrand. Then θ̂ is just the posterior mode,
and σ̂2 is the large sample approximation to the posterior variance. If this is done the same
abscissas and weights could be applied to calculating moments of various parametric functions.
This approach is used in the following example.

Example 6.2 Suppose X ∼ Binomial(20, p) is observed to have the value X = 18. Let
θ = log(p/(1 − p)). The log-likelihood is

l(θ) = Xθ − n log{1 + exp(θ)}.

Suppose the prior is N(0, 100), so

log{π(θ)} ∝ −θ2/200.
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Quantities that might be of interest are the posterior mean and variance of θ, and the posterior
mean and variance of p. Let

I(q) =
∫ ∞

−∞
q(θ) exp{l(θ)}π(θ) dθ.

Then the posterior mean of θ is I(θ)/I(1), and the posterior mean of p is
I[exp(θ)/{1 + exp(θ)}]/I(1), with similar formulas for the variances.

In the following calculations, first the normalizing constant I(1) is computed using both the naive
approach (6.12) and using Gauss-Hermite quadrature following transformation, which is more
accurate, even though θ̂ is not terribly far from from 0 and 2σ̂2 is close to 1. Also, direct
application of integrate() seems to work well here, too.

> # one sample binomial
> X <- 18
> n <- 20
> mu <- 0
> sig2 <- 100
> # f1 is proportional to -log posterior
> f1 <- function(theta) -X*theta+n*log(1+exp(theta))+(theta-mu)^2/(2*sig2)
> # normalizing constant--naive approach
> for (k in c(5,10,20,40)) {
+ u <- gauher(k)
+ post <- exp(-f1(u$x)+u$x^2)
+ u1 <- sum(u$w*post)
+ print(u1)
+ }
[1] 0.001906739
[1] 0.002729944
[1] 0.002826549
[1] 0.002829062
> # more accurate approach
> theta.hat <- nlmin(f1,0)[[1]]
> theta.hat
[1] 2.185144
> sig.hat <- exp(theta.hat)
> sig.hat <- 1/sqrt(n*sig.hat/(1+sig.hat)^2+1/sig2)
> sig.hat
[1] 0.7397356
> #normalizing constant
> for (k in c(5,10,20,40)) {
+ u <- gauher(k)
+ theta <- sqrt(2)*sig.hat*u$x+theta.hat
+ post <- exp(-f1(theta)+u$x^2)
+ u1 <- sum(u$w*post)
+ print(u1*sqrt(2)*sig.hat)
+ }
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[1] 0.002812167
[1] 0.002828169
[1] 0.002829058
[1] 0.002829073
> # different method
> i <- 0
> integrate(function(x) {assign(’i’,i+length(x),where=1); exp(-f1(x))},
+ -Inf,Inf)[1:4]
$integral:
[1] 0.002829073

$abs.error:
[1] 4.827169e-08

$subdivisions:
[1] 3

$message:
[1] "normal termination"

> i
[1] 150
> # posterior mean and variance of theta; 40 pt G-H Q
> theta.mean <- sum(u$w*post*theta)/u1
> c(theta.mean,theta.hat)
[1] 2.420751 2.185144
> theta.var <- sum(u$w*post*(theta-theta.mean)^2)/u1
> c(theta.var,sig.hat^2)
[1] 0.6854480 0.5472088
> # check with different # points
> u2 <- gauher(30)
> theta2 <- sqrt(2)*sig.hat*u2$x+theta.hat
> post2 <- exp(-f1(theta2)+u2$x^2)
> theta.mean2 <- sum(u2$w*post2*theta2)/u1
> c(theta.mean2,theta.hat)
[1] 2.420749 2.185144
> theta.var2 <- sum(u2$w*post2*(theta2-theta.mean2)^2)/u1
> c(theta.var2,sig.hat^2)
[1] 0.6854337 0.5472088
> # posterior mean and variance of p
> p <- exp(theta)
> p <- p/(1+p)
> p.mean <- sum(u$w*post*p)/u1
> c(p.mean,sum(u$w*post*(p-p.mean)^2)/u1)
[1] 0.898789623 0.004308108
> # different method
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> i <- 0
> integrate(function(x) {assign(’i’,i+length(x),where=1); x2 <- exp(x);
+ ifelse(abs(x)<700,x2*exp(-f1(x))/(1+x2),0)},
+ -Inf,Inf)[[1]]/(u1*sqrt(2)*sig.hat)
[1] 0.8987896
> i
[1] 150
> exp(theta.hat)/(1+exp(theta.hat))
[1] 0.8989075

6.3 Multi-dimensional Integrals

The principal method for numerical evaluation of higher dimensional integrals is nested
application of the one-dimensional methods above. Consider, for example, evaluating the three
dimensional integral ∫

A
f(x1, x2, x3) dx1dx2dx3,

where A ⊂ R3. Assume that A is of the form

{(x1, x2, x3) : u(x1, x2) ≤ x3 ≤ v(x1, x2), q(x1) ≤ x2 ≤ r(x1), a ≤ x1 ≤ b},

for some functions u, v, q, and r, and values a and b. If A is not of this form but can be divided
into subregions that are of this form, then evaluate each such subregion separately. Then∫

A
f(x1, x2, x3) dx1dx2dx3 =

∫ b

a

∫ r(x1)

q(x1)

∫ v(x1,x2)

u(x1,x2)
f(x1, x2, x3) dx3dx2dx1 =

∫ b

a
g(x1) dx1, (6.13)

where

g(x1) =
∫ r(x1)

q(x1)

∫ v(x1,x2)

u(x1,x2)
f(x1, x2, x3) dx3dx2.

The final integral in (6.13) can be evaluated using a one-dimensional quadrature rule. However,
doing so will require evaluating g(x1) at a number of points, and g(x1) is defined in terms of
integrals. At each x1 where the value of g(x1) is needed, it can be evaluated by applying a
one-dimensional quadrature rule to

g(x1) =
∫ r(x1)

q(x1)
h(x1, x2) dx2,

where

h(x1, x2) =
∫ v(x1,x2)

u(x1,x2)
f(x1, x2, x3) dx3. (6.14)

This in turn requires evaluating h(x1, x2) at many values of x2, which can be done by applying a
one-dimensional quadrature rule to the integral in (6.14), which only requires evaluating
f(x1, x2, x3) at many values of x3 (for each value of x1 and x2).

In principle, this procedure could be performed for integrals of any dimension, but in practice
there are serious limitation. The number of points where the original integrand needs to be
evaluated grows exponentially with the dimension of the integral, so the computational burden
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becomes excessive. Also, since the quadrature rules do not necessarily give highly accurate
approximations, the overall error in the approximation can grow with the number of nested
applications.

In general, defining the functions bounding the region of integration can also be difficult. For
rectangular regions, this is simple, though. In this case q, r, u, and v are constants. If the same
fixed abscissas and weights are used for each evaluation in each dimension, say (x(j)

i , ω
(j)
i ) for the

integrals over xi, then the nested integration rule above reduces to evaluating f over the
Cartesian product of the abscissas for each variable. This can be written∫

A
f(x1, x2, x3) dx3dx2dx1

.=
∑
j

∑
k

∑
l

f(x(j)
1 , x

(k)
2 , x

(l)
3 )ω(j)

1 ω
(k)
2 ω

(l)
3

Transformations of the variables of integration can greatly affect the performance of nested
integration formulas. This will be discussed in more detail for Gauss-Hermite Quadrature, below.

6.3.1 Gauss-Hermite Quadrature

For multi-dimensional integrals, as in the univariate case, Gauss-Hermite quadrature is most
useful when the integrand is fairly concentrated about a single mode. It is again important to
make a change of variables to center the quadrature rule near the mode, to make the scaling of
the variables similar, and to reduce association among the variables of integration. Near the mode
this can be done by first locating the mode of the integrand, and then calculating (or
approximating) the second derivative matrix of the log of the integrand at the mode. For
Bayesian inference applications, it may again be appropriate to just use the mode and second
derivative of the posterior density, rather than the entire integrand. The transformation is then
based on the mode and the inverse of the second derivative matrix.

In general, suppose the integral is of the form∫
q(θ) exp[h(θ)] dθ, (6.15)

where θ is p-dimensional and the region of integration is essentially all of Rp. Let θ̂ be the mode
of h, let H = −∂2h(θ̂)/∂θ∂θ′, and let B′B = H be the Choleski factorization of H. If θ is thought
of as a random quantity with log-density given by h(θ), then the first order normal approximation
to this distribution is the N(θ̂, H−1) distribution. To use a Gauss-Hermite product rule, a
function proportional to a N(0, 2−1I) density would be preferred, since the Gauss-Hermite weight
function is proportional to this density. Setting α = 2−1/2B(θ − θ̂) will transform θ to a variable
that does have an approximate N(0, 2−1I) distribution. With this transformation (6.15) becomes

2p/2|B|−1
∫

exp(−α′α)f(α) dα, (6.16)

where
f(α) = q(21/2B−1α + θ̂) exp{h(21/2B−1α + θ̂) + α′α}.

The advantage is that to first order, exp{h(21/2B−1α + θ̂) + α′α} should be constant. (6.16) can
be approximated using the n-point Gauss-Hermite product rule with abscissas x1, . . . , xn and
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weights ω1, . . . , ωn, giving

2p/2|B|−1
n∑

i1=1

· · ·
n∑

ip=1

ωi1 · · ·ωipf(xi1 , . . . , xip). (6.17)

This approach is described for Bayesian inference problems in Smith et al (1987). They also
suggest starting from an initial guess at the posterior mean and variance, using these in place of θ̂
and H−1 above, using Gauss-Hermite quadrature to calculate new approximations to the
posterior mean and variance, and iterating this process until convergence. The iteration seems
unnecessary, though, if a reasonably good approximation has been used initially. They also
suggest that this approach can be used effectively for integrals of up to 5 or 6 variables (with
increases in computing power since then it might be possible to go a little higher, now). Note that
if n = 10 and p = 6, then f has to be evaluate at 106 points, and with n = 20 and p = 6 there are
6.4 × 107 points.

To illustrate, Gauss-Hermite quadrature will be applied to the Stanford heart transplant data
discussed in Example 5.1. Recall that the data consist of survival times Xi for non-transplant
patients, time to transplant Yi, and survival beyond transplant Zi, and that the model specifies

P (Xi > t) = [λ/{λ + ai(t)}]p, where ai(t) =

{
t t ≤ Yi

Yi + τ(t − Yi) t > Yi

with parameters θ = (p, λ, τ)′. Flat priors were also assumed, so the posterior is proportional to
exp{l(θ)}, where l(θ) is the log likelihood; see (5.1). Since all of the parameters are constrained to
be positive, it is convenient here to first transform to γ = (log(p), log(λ), log(τ)). For these
parameters the posterior is then proportional to exp[l(γ) + γ1 + γ2 + γ3]. Below the posterior
means and variances for the original parameters (θ) are computed using (6.17), with n = 10 and
n = 20. Comparing the two suggests the results are reasonably accurate.

> # x=survival for nontransplant patients; sx= status
> # y=days to transplant
> # z=survival from transplant; sz=status
> x <- c(49,5,17,2,39,84,7,0,35,36,1400,5,34,15,11,2,1,39,8,101,2,148,1,68,31,
+ 1,20,118,91,427)
> sx <- c(1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0)
> y <- c(0,35,50,11,25,16,36,27,19,17,7,11,2,82,24,70,15,16,50,22,45,18,4,1,
+ 40,57,0,1,20,35,82,31,40,9,66,20,77,2,26,32,13,56,2,9,4,30,3,26,4,
+ 45,25,5)
> z <- c(15,3,624,46,127,61,1350,312,24,10,1024,39,730,136,1379,1,836,60,1140,
+ 1153,54,47,0,43,971,868,44,780,51,710,663,253,147,51,479,322,442,65,
+ 419,362,64,228,65,264,25,193,196,63,12,103,60,43)
> sz <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,0,1,1,1,1,0,0,1,0,1,0,0,1,
+ 1,1,0,1,0,1,0,0,1,1,1,0,1,0,0,1,1,0,0,0)
>
> ff <- function(b) { # calculate -log likelihood -log prior
+ # - input values are log(params); final term because flat prior on
+ # original scale is rescaled by the log transformation
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+ p <- exp(b[1]); l <- exp(b[2]); tau <- exp(b[3])
+ -sum(p*log(l/(l+x))+sx*log(p/(l+x)))-sum(
+ p*log(l/(l+y+tau*z))+sz*log(tau*p/(l+y+tau*z)))-sum(b)
+ }
> ff2 <- function(b) {# - second derivatives of log likelihood wrt log
+ # params (only valid at posterior mode)
+ p <- exp(b[1]); l <- exp(b[2]); tau <- exp(b[3]);
+ v <- matrix(0,3,3)
+ v[1,1] <- sum(c(sx,sz))
+ w <- y+tau*z
+ N <- length(sx)+length(sz)
+ v[1,2] <- v[2,1] <- (-N/l+sum(1/(l+x))+sum(1/(l+w)))*p*l
+ v[1,3] <- v[3,1] <- sum(z/(l+w))*p*tau
+ v[2,2] <- N*p-(sum((p+sx)/(l+x)^2)+sum((p+sz)/(l+w)^2))*l^2
+ v[2,3] <- v[3,2] <- -sum((p+sz)*z/(l+w)^2)*l*tau
+ v[3,3] <- sum(sz)-sum((p+sz)*(z/(l+w))^2)*tau^2
+ v
+ }
>
> gamma.hat <- nlmin(ff,c(0,0,0),rfc.tol=1e-14)$x
> exp(gamma.hat) # first order estimate of mean
[1] 0.4853519 29.5188871 0.9117213
> h <- ff2(gamma.hat)
> hc <- solve(chol(h))*sqrt(2)
> solve(h) # first order estimate of posterior variances of log params

[,1] [,2] [,3]
[1,] 0.09062597 0.12995558 -0.06730149
[2,] 0.12995558 0.28901209 -0.02226088
[3,] -0.06730149 -0.02226088 0.21314900
>
> # 10 point G-H quadrature
> u <- gauher(10)
> alpha <- as.matrix(expand.grid(u$x,u$x,u$x))
> dim(alpha)
[1] 1000 3
> gamma <- hc %*% t(alpha) + gamma.hat
> post <- apply(gamma,2,ff)
> post <- exp(-post+apply(alpha^2,1,sum))
> weights <- expand.grid(u$w,u$w,u$w)
> weights <- weights[,1]*weights[,2]*weights[,3]
> u1 <- sum(weights*post)
> # means
> theta <- exp(gamma)
> p.m <- sum(theta[1,]*weights*post)/u1
> l.m <- sum(theta[2,]*weights*post)/u1
> tau.m <- sum(theta[3,]*weights*post)/u1
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> c(p.m,l.m,tau.m)
[1] 0.4968976 32.5958054 1.0469074
> #variances
> p.var <- sum((theta[1,]-p.m)^2*weights*post)/u1
> l.var <- sum((theta[2,]-l.m)^2*weights*post)/u1
> tau.var <- sum((theta[3,]-tau.m)^2*weights*post)/u1
> c(p.var,l.var,tau.var)
[1] 0.02069934 279.62275496 0.25345330
> sqrt(c(p.var,l.var,tau.var))
[1] 0.1438727 16.7219244 0.5034415
>
> # 20 point G-H quadrature
> u <- gauher(20)
... (other commands the same as before)
> c(p.m,l.m,tau.m)
[1] 0.4968993 32.5960503 1.0469256
> #variances
...
> c(p.var,l.var,tau.var)
[1] 0.02071147 279.88172827 0.25381589
> sqrt(c(p.var,l.var,tau.var))
[1] 0.1439148 16.7296661 0.5038014
>

Naylor and Smith, 1982, used 8, 9 and 10 point Gauss-Hermite quadrature on the original scale
[instead of using the log parameters], and obtained slightly different results. The values here
should be more accurate.

The calculations were quite fast for n = 10, but noticeably slower for n = 20. For higher
dimensional integrals, coding the calculations in FORTRAN or C to speed execution would be
very important.

6.4 Exercises

Exercise 6.1 Verify that if T1 is the trapezoidal approximation for
∫ b
a f(x) dx with n intervals,

and T2 is the trapezoidal approximation with 2n intervals, then (4T2 − T1)/3 gives Simpson’s
approximation (6.7) (see Algorithm 6.1).

Exercise 6.2 Evaluate ∫ 2

0
{log(x)}2x3 exp(−x) dx,

and ∫ ∞

2
{log(x)}2x3 exp(−x) dx,

using Romberg integration. (It may be easiest to use an ‘open’ formula, although that is not the
only possibility.) Compare the number of points where the integrand is evaluated to that for the
Splus integrate() function.
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Exercise 6.3 Evaluate∫ 2

1
2 + 7x + 3x2 − 15x3 − 5x4 − 2x5 + 14x7 + 6x8 + x9 dx

using 5 point Gauss-Legendre quadrature. Verify that this result is exact by explicitly evaluating
the antiderivative. (The formula for the antiderivative need not be written out. This calculation
can be done by storing the coefficients in a vector, and evaluating the integral from the
term-by-term antiderivative using a for() loop.)

Exercise 6.4 In Example 6.2, suppose n = 100 and X = 98. Evaluate the normalizing constant
of the posterior using both the naive approach (6.12) to Gauss-Hermite quadrature, and also by
using the transformation α = (θ − θ̂)/(

√
2σ̂) before applying Gauss-Hermite quadrature.

Exercise 6.5 Suppose y1, . . . , yn are a random sample from a Poisson distribution with mean
exp(α). Suppose the prior on α is normal with mean 0 and variance 100, and that the observed
data are 11, 19, 27, 12, 14, 11, 10, 13, 15, 10.

1. Use Gauss-Hermite quadrature to evaluate the mean and variance of the posterior
distribution of α. Remember to make a change of variables in the integral, if appropriate,
before applying the quadrature formulas. Give some discussion of the accuracy of these
calculations.

2. Use the integrate() command in Splus to calculate the mean and variance of the posterior
distribution of α.

3. Use the Laplace approximation to approximate the mean and variance of the posterior
distribution of α.

Exercise 6.6 Suppose

f(x, y) = (4x4 + x4y3 + 23x2y4 + 12x + 2y + 1)−2/3.

Evaluate ∫ 5

0

∫ 8

0
f(x, y) dy dx

using nested application of a univariate quadrature rule, as described in class. (Choose an
appropriate univariate quadrature method.)

Exercise 6.7 Consider again the logistic regression model with incomplete covariate data in
Exercise 3.4, only here suppose that there are p covariates, and that the covariate vectors zi are
sampled iid from a p-dimensional normal distribution with mean µ and covariance matrix V .
Suppose again that the covariate values are missing completely at random. In this case, the
likelihood function involves integrals of the form∫ exp([β0 + β′zi]yi)

1 + exp(β0 + β′zi)
f(zi; µ, V ) (6.18)
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where yi is the binary response, f(z; µ, V ) is the normal density with mean µ and covariance
matrix V , and the integral is over any components of zi that are missing.

Suppose p = 3, µ = 0, v11 = v22 = 1, v33 = 2, vij = .5 for i 6= j. Also suppose the second and
third components of zi are not observed, that zi1 = .5, and that (β0, β1, β2, β3) = (1, 2,−1,−2).
Use Gauss-Hermite quadrature to evaluate (6.18) in this case both for yi = 1 and yi = 0. Try
both n = 10 and n = 20 for each dimension.

Also, evaluate these integrals using the Laplace approximation (5.8).

Note that in performing an iterative search for the MLEs of the logistic regression model, it would
be necessary to evaluate such integrals for every observation missing some covariates, at every
value of the parameters where the likelihood was evaluated during the search.

6.5 Appendix: Gaussian Quadrature Functions

# nested loops in the following routines are slow-should not be used
# with large n
gauleg <- function(n,a=-1,b=1) {# Gauss-Legendre: returns x,w so that
#\int_a^b f(x) dx \doteq \sum w_i f(x_i)

EPS <- 3.e-14
m <- trunc((n+1)/2)
xm <- 0.5*(b+a)
xl <- 0.5*(b-a)
x <- w <- rep(-1,n)
for (i in 1:m) {
z <- cos(pi*(i-.25)/(n+.5))
z1 <- z+1
while (abs(z-z1) > EPS) {

p1 <- 1
p2 <- 0
for (j in 1:n) {# recursively evaluates pn(x)

p3 <- p2
p2 <- p1
p1 <- ((2*j-1)*z*p2-(j-1)*p3)/j

}
pp <- n*(z*p1-p2)/(z*z-1)
z1 <- z
z <- z1-p1/pp #Newton iteration

}
x[i] <- xm-xl*z
x[n+1-i] <- xm+xl*z
w[i] <- 2*xl/((1-z*z)*pp*pp)
w[n+1-i] <- w[i]

}
list(x=x,w=w)

}
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gaulag <- function(n,alf) {# Gauss-Laguerre: returns x,w so that
#\int_0^\infty x^alf*exp(-x) f(x) dx \doteq \sum w_i f(x_i)

EPS <- 3.e-14
MAXIT <- 10
x <- w <- rep(-1,n)
for (i in 1:n) {
if(i==1){

z <- (1+alf)*(3+.92*alf)/(1+2.4*n+1.8*alf)
} else if(i==2){

z <- z+(15+6.25*alf)/(1+.9*alf+2.5*n)
}else {

ai <- i-2
z <- z+((1+2.55*ai)/(1.9*ai)+1.26*ai*alf/(1+3.5*ai))*(z-x[i-2])/(1+.3*alf)

}
for (its in 1:MAXIT) {

p1 <- 1
p2 <- 0
for (j in 1:n) {

p3 <- p2
p2 <- p1
p1 <- ((2*j-1+alf-z)*p2-(j-1+alf)*p3)/j

}
pp <- (n*p1-(n+alf)*p2)/z
z1 <- z
z <- z1-p1/pp
if(abs(z-z1) <= EPS) break

}
x[i] <- z
w[i] <- -exp(lgamma(alf+n)-lgamma(n))/(pp*n*p2)

}
list(x=x,w=w)

}

gauher <- function(n) {# Gauss-Hermite: returns x,w so that
#\int_-\infty^\infty exp(-x^2) f(x) dx \doteq \sum w_i f(x_i)

EPS <- 3.e-14
PIM4 <- .7511255444649425D0
MAXIT <- 10
m <- trunc((n+1)/2)
x <- w <- rep(-1,n)
for (i in 1:m) {
if (i==1) {

z <- sqrt(2*n+1)-1.85575*(2*n+1)^(-.16667)
} else if(i==2) {

z <- z-1.14*n^.426/z
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} else if (i==3) {
z <- 1.86*z-.86*x[1]

} else if (i==4) {
z <- 1.91*z-.91*x[2]

} else {
z <- 2.*z-x[i-2]

}
for (its in 1:MAXIT) {

p1 <- PIM4
p2 <- 0.d0
for (j in 1:n) {

p3 <- p2
p2 <- p1
p1 <- z*sqrt(2.d0/j)*p2-sqrt((j-1)/j)*p3

}
pp <- sqrt(2.d0*n)*p2
z1 <- z
z <- z1-p1/pp
if(abs(z-z1) <= EPS) break

}
x[i] <- z
x[n+1-i] <- -z
w[i] <- 2/(pp*pp)
w[n+1-i] <- w[i]

}
list(x=x,w=w)

}
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Chapter 7

Basic Simulation Methodology

7.1 Generating Pseudo-Random Numbers

Sequences of ‘random’ numbers generated on a computer are generally not random at all, but are
generated by deterministic algorithms, which are designed to produce sequences that look
random. The term ‘pseudo-random’ is often used to distinguish the generated numbers from truly
random processes (if there are such things). The basic problem is generating a sequence of values
ui, 0 < ui < 1, that appear to be an iid sample for the U(0, 1) distribution. Once such a sequence
is available, transformations and other techniques can be used to obtain samples from other
distributions. Generation of uniform deviates is discussed in the following section, and methods of
using these to obtain samples from other distributions are discussed in the 2 sections following
that. A much more extensive discussion of these topics is given in Kennedy and Gentle (1980,
Chapter 6).

7.1.1 Uniform Deviates

Probably the most commonly used random number generators in statistical applications are
multiplicative congruential generators, which generate a sequence of integers {ki} by calculating

ki+1 = aki mod m, (7.1)

for suitably chosen positive integers a and m, where b mod m is the remainder from dividing b by
m. That is, if c = b mod m, then c is an integer, 0 ≤ c < m, and b = lm + c for some integer l.
The ki are converted to uniform deviates by setting

ui = ki/m.

If
am−1 = 1 mod m and al 6= 1 mod m for 0 < l < m − 1, (7.2)

and if k0 is a positive integer not equal to a multiple of m, then it can be shown that k1, . . . , km−1

will be a permutation of {1, 2, . . . , m− 1}. In this case the period of the random number generator
is m − 1. In general the period is the number of values until the generator starts to repeat.

232
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There is also an extension called linear congruential generators, which take the form

ki+1 = (aki + b) mod m, (7.3)

for suitable constants a, b and m.

Good generators should have long periods, should have low (near 0) autocorrelations, and should
give samples which appear to be drawn from a uniform distribution. There are obvious
limitations. For example, a sample can only appear to be random if the size of the sample is much
less than the period of the generator.

There are two common choices for m in (7.1). One is 231 − 1, which is the largest prime integer
that can be stored on most computers. For many years the most widely used multiplier a used
with this m was 75. This combination satisfies (7.2), and so gives a period of 231 − 2. This
particular generator is still used in the IMSL random number generator, and was also used in
early versions of MATLAB, for example. Since 75 is fairly small relative to 231 − 1, there will be a
small autocorrelation in this generator, although it is still adequate for many purposes. There are
many other values of a that will give a full period when m = 231 − 1. Fishman and Moore (1986)
identified all such multipliers a (there are apparently over 500,000,000), and evaluated them using
a variety of criteria. They identified 5 multipliers as being the best. One of these, with
a = 950, 706, 376, is available as an option in IMSL. (Another IMSL option uses a = 397, 204, 094,
which scored better in Fishman and Moore’s evaluation than 75, but not as well as the best
multipliers in that evaluation.)

The other commonly used value of m in (7.1) is 232. Since this is an even number, it is not
possible to get a period of length m − 1, but if a = 5 + 8l for some l, then the period will be 230

for appropriately chosen starting values (the starting value must at least be an odd number). A
commonly used value of a for this m is a = 69069. For certain choices of a and b in (7.3), it is
possible to get a generator of period 232; for example, a = 69069 and b = 23606797.

Random number generators require starting values to initialize the sequence. These starting
values are usually referred to as seeds. As noted above, the performance of some generators can
depend on the initial values.

When using a generator of type (7.1), depending on the magnitude of a and m, it is often true
that the product aki cannot be represented exactly using standard arithmetic. If the
multiplication is done in standard integer arithmetic, it will often overflow. Thus special
procedures are needed to compute ki+1 without explicitly forming the product aki. One such
algorithm (due to Schrage, 1979) is given in Section 7.1 of Press et. al. (1992). In the special case
of m = 232, on a 32 bit machine using the C language unsigned integer data type, the result of the
overflow of the multiplication aki will be precisely aki mod 232, so special procedures are not
needed in this case. This is probably a major reason for the use of this value of m.

Multiplicative congruential generators can have some autocorrelation in the sequence. A closely
related concept is n-dimensional uniformity, which is the degree to which vectors of n consecutive
generated values distribute uniformly in the n-dimensional unit cube. That is, given a sequence of
uniform pseudo-random numbers, use the first n values to form an n-dimensional vector, the
second n values to form a second n-dimensional vector, and so on. If the generated values are iid
U(0, 1), then these n-dimensional vectors should be uniformly distributed in the unit cube.
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However, it is known that multiplicative congruential generators tend to give n-vectors that
concentrate near hyperplanes in n-dimensional space, for some n, and hence tend to exhibit
deviations from n-dimensional uniformity. Another difficulty with multiplicative congruential
generators is that the leading bits in the representation tend to be more random than the low
order bits, so one should not treat subsets of the bits in the representation as separate random
numbers.

Because of these problems, multiplicative congruential generators are often modified in some way.
A simple modification is to introduce shuffling in the sequence. In this approach, some fixed
number (say somewhere between 30 and 150) of values are generated and stored in a table
(vector). Then at each step, one element of the table is selected to be the next number reported,
and a new value generated to replace that number in the table. The replacement value cannot be
the value used to select the element of the table, since then the values in the table would be in a
nonrandom order. A standard approach is to use the last value returned to also choose which
element to select next. This is implemented in the following algorithm.

Shuffling Algorithm
Given a means of generating a (nearly) iid sequence u1, u2, . . ., with ui ∼ U(0, 1)

• Initialize: s(i)=ui, i = 1, . . . , N , and set y=s(N).

• Generate a new value u, and set j=int(y*N)+1, where int(x) is the largest integer ≤x.

• Set y=s(j), s(j)=u, and return y as the uniform deviate.

The standard congruential generators also have periods that are a little too short for some
statistical applications. This problem can be addressed by combining two generators with long
but unequal periods to get a new generator with a much longer period. This can help reduce
autocorrelation in the sequence, too.

The ran2() function in Press et. al. (1992), based on L’Ecuyer (1988), uses two parallel streams
generated using multiplicative congruential methods, with one stream generated using a = 40014
and m = 2147483563, and the other using a = 40692, m = 2147483399. The first stream is
shuffled (as above, using the last combined output value to select the next value from the shuffle
table), but the second is not (shuffling one is sufficient). The two streams (say vi and wi) are
combined by setting ui = (vi − wi)I(vi ≥ wi) + (1 − vi + wi)I(vi < wi), which has a U(0, 1)
distribution if both vi and wi do. The period of this generator is the product of the periods of the
two streams, divided by any common divisors, or about 2.3 × 1018. This generator should be
reliable for virtually any current statistical applications.

Wichmann and Hill (1982) combined 3 streams of uniforms, each with different periods of about
30,000, to get a generator with period > 1012. The reason for using such short periods in the
streams may have been that then each value of m can be stored as an ordinary integer on a 16-bit
computer. If u

(1)
i , u

(2)
i and u

(3)
i are the ith value from the 3 streams, then the combined value is

simply u
(1)
i + u

(2)
i + u

(3)
i mod 1.0 (for floating point values, x mod 1.0 is just the fractional part of

x). That this value has a U(0, 1) distribution follows from the symmetry of the distribution of
u

(1)
i + u

(2)
i + u

(3)
i about the point 1.5. It has also been noted by Zeisel (1986) that this generator is
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equivalent to the multiplicative congruential generator with m = 27, 817, 185, 604, 309 and
a = 16, 555, 425, 264, 690. This generator is simple, and has proven to be excellent for many
purposes, but its period is a little shorter than ideal for some applications.

Another way to extend the multiplicative congruential generator concept is to combine several
previous generated values to generate the next value, for example, by setting

ki+1 = a1ki + · · · + alki+1−l mod m.

If the aj are coefficients of a primitive polynomial mod m, then the period of such a generator is
ml − 1. The simplest form of these generators is

ki+1 = aki−l − ki mod m.

Deng and Lin (2000) give a number of different values of a that can be used for l = 2, 3, 4 and
m = 231 − 1. The following FORTRAN subroutine gives one of these combinations for l = 4. The
resulting generator has a period of roughly 2 × 1037 (it is not a terribly efficient implementation,
though).

* generate uniforms using a fast multiplicative recursive generator
* from Deng and Lin, American Statistician, 2000
* n (input) = # uniforms to generate
* u (output) = vector of generated uniforms
* iseed (input, output), 4 integers giving the seeds for the generator
* initial seeds must be >0 and < 2^31-1

subroutine fmrg(n,u,iseed)
double precision u(n),v,a,m
integer n,iseed(4),i,j
data m,a/2147483647.d0,39532.d0/
do 10 i=1,n

v=a*iseed(1)-iseed(4)
if (v.lt.0) then

v=v+m
else

v=v-int(v/m)*m
endif
do 11 j=1,3

iseed(j)=iseed(j+1)
11 continue

iseed(4)=v
u(i)=v/m

10 continue
return
end

The following Splus function provides an interface to the FORTRAN routine. If an initial set of
starting values is not specified, one is generated from the Splus runif() function. The value of
the sequence at the end of the call is include as an attribute of the output vector, so it can be
used as the input seed for a subsequent call.
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ufmrg <- function(n,seed=NULL) {
# seed should be a vector of 4 integers giving the initial values for fmrg

if (length(seed) != 4) seed <- round(runif(4)*2147483646+.5)
else seed <- round(seed)
u <- .C(’fmrg_’,as.integer(n),double(n),as.integer(seed))
seed <- u[[3]]
u <- u[[2]]
attr(u,’seed’) <- seed
u

}

There are a variety of other methods that have been proposed for generating pseudo-random
numbers. Fibonacci generators start with a sequence of random uniform numbers generated by
some other method, and then generate new values as differences of lagged values in the sequence.
Two lags that have been proposed are ui = ui−17 − ui−5, and ui = ui−97 − ui−33 (the first requires
an initial sequence of 17 values, the second a sequence of 97). When the lagged difference is
negative, 1 is added to the result, so that 0 ≤ ui < 1 at all steps.

Another type of generator uses bitwise operations on the bits of the current value to generate the
next value (the ‘bits’ are the individual binary digits in the computer representation of a number).
In this method the bits of the current value are combined with the bits of a shifted version of the
current value using a bitwise exclusive or operation. The exclusive or operator (‘^’ in C) works
the like the ordinary or, except that 1 ^ 1 = 0 (instead of 1 for the ordinary or operator). Thus
the bitwise exclusive or is equivalent to adding the bits modulo 2. A typical version is given in the
following C function, which also uses the left shift << and right shift >> operators.

double ush (j)
unsigned long *j;

{
double v = 4294967296; /* v= 2^32 */
*j = *j ^ (*j << 17);
*j = *j ^ (*j >> 15);
return (*j/v);

}

To understand this, think of *j as being represented as 32 binary digits (b32, b31, . . . , b1),
*j =

∑32
l=1 bl2l−1. The command *j = *j ^ (*j << 17) produces as output

(b32 + b15, b31 + b14, . . . , b18 + b1, b17, . . . , b1) mod 2, where the addition in each component is
performed mod 2. That is, the left shift operator shifts the bits to the left, creating a value with
the original bits 1 to 15 in positions 18 to 32, and with 0’s in positions 1 to 17. This is then
combined with the original value using a bitwise exclusive or. The command
*j = *j ^ (*j >> 15) then converts this to
(b32 + b15, b31 + b14, . . . , b18 + b1, b17 + (b32 + b15), . . . , b3 + (b18 + b1), b2 + b17, b1 + b16) mod 2,
where again each individual addition is performed mod 2. According to Robert and Casella
(1999, p. 42), for most starting values, this generator has a period of 232 − 221 − 211 + 1, but
would have shorter periods for other starting values. These generators are often referred to as
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shift generators or Tausworthe generators. See Ripley (1987, Chapter 2) or Kennedy and Gentle
(1980, Section 6.2.2) for more details.

The uniform generator in Splus uses a Tausworthe generator, similar to that above, except with
the order of the left and right shift operations switched, in combination with the multiplicative
congruential generator with a = 69069 and m = 232. At each update the values from these 2
sequences are combined using a bitwise exclusive or. Since the 2 generators have different periods,
the period of the combined generator is quite long (about 4.6 × 1018). (There is an additional
modification to skip the value 0, when it occurs.) Details are given on Page 167 of Venables and
Ripley (1997). This algorithm is adequate for most purposes, but has failed some tests of
randomness.

A somewhat similar, but improved, algorithm was given by Marsaglia and and Zaman (1993).
Called the Keep It Simple Stupid algorithm, it is also described in Robert and Casella (1999, p.
42). This algorithm combines 3 generators: the linear congruential generator (7.3) with a = 69069,
b = 23606797 and m = 232; the shift generator given above; and a second shift generator, which
uses a left shift of 18 followed by a right shift of 13, with all values modulo 231. A C function for
generating a vector of uniforms based on the C code given by Robert and Casella follows.

/* KISS generator, Marsaglia and Zaman, 1993; adapted from Robert
and Casella, 1999, p 42
n (input) = # uniforms to generate
u (output) = vector of length n containing U(0,1) deviates
i, j, k (input) = seeds; j and k cannot be 0
All arguments must be references to addresses
Skips 0, so uniforms will always be 0<u<1

*/
void uks (n, u, i, j, k)

unsigned long *i, *j, *k ;
long int *n;
double *u;

{
double v = 4294967296; /* v= 2^32 */
long int l;
unsigned long m;
l=0;
while (l< *n) {
*j = *j ^ (*j << 17);
*k = (*k ^ (*k << 18)) & 0X7FFFFFFF; /* & 2^31-1 <=> mod 2^31 */
m = ((*i = 69069 * (*i) + 23606797) +

(*j ^= (*j >> 15)) + (*k ^= (*k >> 13)));
if (m>0) { /* skip 0 when it occurs */

u[l] = m/v;
l++;

}
}

}
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Here 0X7FFFFFFF is a base 16 constant equal to 231 − 1, so the quantity
x & 0X7FFFFFFF = x mod 231 (‘&’ is the bitwise ‘and’ operator). It is straightforward to verify by
direct computation that the *i sequence above has period 232 for any starting seed, the *k
sequence has period 231 − 1 for any nonzero starting value, and the *j sequence has period
232 − 221 − 211 + 1 for most seeds. (If the seed of the *j sequence is chosen at random, the chance
of getting less than the maximal period is about 2−11. One initial value that does give the
maximal period is *j = 2.) Thus for the seeds which give a maximal period for *j, the period of
this generator is approximately 4 × 1028. Even in the unlikely event of choosing a poor seed for
the *j sequence, the period is still > 1019.

The following Splus function gives an interface to the uks C function. As with ufmrg(), an initial
seed can be generated from runif(), and the final seed is returned as an attribute of the output
vector.

uks <- function(n,seed=NULL) {
# seed should be a vector of 3 integers giving the initial values
# for the 3 generators

if (length(seed) != 3) seed <- round(runif(3)*2147483646+.5)
else seed <- round(seed)
u <- .C(’uks’,as.integer(n),double(n),as.integer(seed[1]),

as.integer(seed[2]),as.integer(seed[3]))
seed <- c(u[[3]],u[[4]],u[[5]])
u <- u[[2]]
attr(u,’seed’) <- seed
u

}

The constants used in the multiplicative congruential generators and the lags used in the
Fibonacci and Tausworthe generators are not arbitrary. Poor choices can lead to very nonrandom
behavior in the sequences.

In statistical simulations, generally the total time spent generating sequences of uniform random
numbers is a tiny fraction of the total computational burden, so the speed of the uniform random
number generator is generally not important. If one generator takes twice as long as another, but
generated sequences have slightly better statistical properties, then it is better to use the slower
generator.

Some methods given above will include 0 in the sequence of random uniform numbers, while
others do not. A 0 can create problems in some transformation method algorithms, so it might
generally be better to use generators which exclude 0 as a possible value, or are modified to skip 0
when it occurs.

Most generators have some facility for automatically setting an initial seed, but also give the user
the option of specifying a value. Automatically chosen seeds might always use the same fixed
value, or might use some value based on the clock time and/or process id at the time the function
is called. As noted above, some generators have restrictions on the initial values, and others can
use arbitrary values.
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On repeated calls to a random number generator, it would usually be preferred to generate new
sets of random numbers, instead of just repeating the same set over and over (the latter would
not be very random). Many random number generators are designed so it is possible to save the
information on the current state of the generator, and then to use that information to initialize
the generator on the next call, so that it resumes at the same point where it left off in the
previous call, as was done with the ufmrg() and uks() functions above. If the generator has a
long period, and it always resumes from the state at the last call, then it will not repeat any
section of the sequence of generated values for a very long time. If arbitrarily chosen seeds are
used at different calls, there is no guarantee that the generator will not restart in the middle of a
recent run (although that is not likely). Thus to avoid reusing the same numbers over and over, it
is best to always save the updated seed from the last call, and use the saved value as the starting
seed in the next call. Random number generators that use shuffling may also require saving the
current shuffle table to resume from the same point on restarting, although it may be sufficient in
this case to reinitialize the table from the new seed, instead of continuing with the same sequence.
Fibonacci generators require saving the sequence of values back to the longest lag in the generator
in order to resume with the same sequence at a new call.

It is also a good idea in simulation experiments to save the value of the initial seed (and other
initialization information, if used), so that the experiment could later be repeated on exactly the
same generated numbers.

The seed in standard Splus generator is stored as an object .Random.seed. .Random.seed is a
vector of 12 values, each of which is an integer between 0 and 63. According to Venables and
Ripley (1997, p. 167), the seed for the multiplicative congruential part of the Splus generator is

6∑
i=1

.Random.seed[i]26(i−1),

and the seed for the Tausworthe generator is
6∑

i=1

.Random.seed[i+6]26(i−1),

in which case the first component of .Random.seed should be odd, and the 6th and 12th
components should be < 4 (so the seeds are < 232). (There may be other restrictions as well, so it
is best not to use arbitrarily selected seeds for this generator.) There is a default value of
.Random.seed in a system directory, which never changes. When any of the functions generating
random numbers in Splus are called, the current value of .Random.seed is read from its first
occurrence in the current search path. When the call is completed, the updated value of
.Random.seed is written to the current working directory. If that value is available the next time
a function using random numbers is called, the random number generator will read that value and
resume where it had left off at the last call. If the updated value is not available, however, it will
reinitialize using the system default seed. Splus also comes with a function set.seed() that can
be used to pick one of 1000 different preset seeds. These preset seeds are chosen to be far apart in
the overall sequence, so overlap between among sequences generated from these different starting
values would require very long simulation runs.

Random numbers play important roles in data encryption, and conversely, encryption algorithms
provide a means for generating random numbers (see the ran4 routine in Press et. al., 1992, for
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an example). Good data encryption requires random numbers that arise from an algorithm that
is not easily reproducible. Researchers at Silicon Graphics have found that numbers obtained
from digitized images of Lava-Lite lamps are useful source of random numbers that are not easily
reproducible. They use values obtained from these images as initial seeds in a pseudo random
number generator, which is then run for a period of time also determined by the digitized image,
to generate random values for use in encryption. See http://lavarand.sgi.com for more
information.

7.1.2 Transformation Methods

In principle, once a sequence of independent uniform random numbers is available, samples from
virtually any distribution can be obtained by applying transformations to the sequence.

Inverse CDF.

For a cumulative distribution function (CDF) F (x), an inverse CDF can be defined by
F−1(u) = inf{x : F (x) ≥ u}. If X is a continuous random variable with CDF P (X ≤ x) = F (x),
then

P [F (X) ≤ u] = P [X ≤ F−1(u)] = F [F−1(u)] = u,

by the continuity of F , so F (X) ∼ U(0, 1). Conversely, if U ∼ U(0, 1), then
P [F−1(U) ≤ x] = F (x). Thus if F−1(u) can easily be calculated, then given an iid U(0, 1) sample
{u1, . . . , un}, an iid sample {x1, . . . , xn} from F can be obtained by setting xi = F−1(ui). For
example, the CDF of the logistic distribution is F (x; µ, σ) = {1 + exp[−(x − µ)/σ]}−1. Thus
F−1(u; µ, σ) = − log(1/u − 1)σ + µ, and this formula can be used to obtain samples from the
logistic distribution from iid uniform samples.

For continuous distributions, the same results hold if the survivor function S(x) = 1 − F (x) is
used in place of F (x), and this is sometimes more convenient. The Weibull distribution with
shape γ and scale α has survivor function S(x; α, γ) = exp[−(x/α)γ ], which has inverse
S−1(u; α, γ) = [− log(u)](1/γ)α. Again if ui ∼ U(0, 1), then setting xi = S−1(ui; α, γ) gives an xi

from this Weibull distribution. If the CDF were used instead of the survival function, the only
difference would be replacing u by 1− u. This would give the same distribution, since u and 1− u
have the same distribution.

For distributions such as the normal and gamma, there are not simple closed form expressions for
the inverse CDF, so the inverse CDF method is not so straightforward. For the normal
distribution, there are good analytical approximations to the inverse CDF, and using them would
often be adequate. However, the methods discussed below, based on polar coordinates
transformations, are simpler and faster.

The obvious transformations are not always the fastest. For example, there are algorithms for
generating exponential random variables that do not require taking logs, which are faster than the
standard method (the obvious transformation is xi = − log(ui)). When a simple transformation
like this is available, its simplicity still might be preferred to a faster algorithm, unless the simple
method turns out to be too slow.

Polar Coordinates and the Normal Distribution.
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Figure 7.1: The unit disk v2
1 + v2

2 < 1 and the square {(v1, v2) : −1 < vi < 1}. If (v1, v2) has the
uniform distribution over the square, then conditional on lying in the unit disk, its distribution is
uniform over the unit disk.

Suppose X, Y are independent N(0, 1) random variables. Consider the polar coordinates
transformation defined by

X = R cos(θ), Y = R sin(θ), R ≥ 0, 0 ≤ θ < 2π.

It is easily verified that θ is uniformly distributed on [0, 2π), and R2 = X2 + Y 2 has a χ2
2

distribution (chi-square with 2 degrees of freedom), so P (R > r) = P (R2 > r2) = exp(−r2/2).
Thus given two independent uniform deviates u1 and u2, two independent normal deviates x1 and
x2 can be generated by setting R = {−2 log(u1)}1/2, θ = 2πu2, x1 = R cos(θ) and x2 = R sin(θ).

The use of the sine and cosine functions can also be avoided. Suppose (v1, v2) is drawn from the
distribution that is uniform on the unit disk in two-dimensional Euclidean space; that is, the
density of (v1, v2) is I(v2

1 + v2
2 ≤ 1)/π. Let θ be the counterclockwise angle from the positive v1

axis to the point (v1, v2). Then cos(θ) = v1/(v2
1 + v2

2)
1/2 and sin(θ) = v2/(v2

1 + v2
2)

1/2. Also,
P (v2

1 + v2
2 ≤ u) = (πu)/π = u (that is, the ratio of the area of the disk with radius u1/2 to the

area of the disk with with radius 1), so v2
1 + v2

2 ∼ U(0, 1). Furthermore, v2
1 + v2

2 is independent of
the angle θ. Thus an appropriate R for the polar coordinates transformation can be obtained
from {−2 log(v2

1 + v2
2)}1/2. Thus given values (v1, v2), two normal deviates x1 and x2 can be

obtained by computing u = v2
1 + v2

2, w = {−2 log(u)/u}1/2, x1 = v1w and x2 = v2w.

There remains the problem of obtaining (v1, v2). This is most easily accomplished by generating
two uniforms u1 and u2, and setting vi = 2ui − 1. Then (v1, v2) is uniformly distributed over the
square {(v1, v2) : −1 < vi < 1}. The subset of such points lying in the unit disk (which is
contained in this square), will be uniformly distributed over the unit disk; see Figure 7.1. Thus an
algorithm to generate (v1, v2) uniformly over the unit disk is as follows.

1. Generate (v1, v2) uniformly from the set {(v1, v2) : −1 < vi < 1}.
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2. If v2
1 + v2

2 ≥ 1, then reject (v1, v2) and try again. If v2
1 + v2

2 < 1, then keep (v1, v2).

This algorithm is an example of rejection method sampling, which is described in more detail in
the next section. Since the ratio of the area of the disk to that of the square is π/4 .= .785, only
about 21.5% of the candidate pairs will be rejected.

The idea of multivariate change of variables underlying the polar coordinates transformation
above can be used to obtain a variety of other distributions. For example, if Z ∼ N(0, 1) and
V ∼ χ2

ν , then T = Z/(V/ν)1/2 has a tν distribution.

To obtain a vector x = (x1, . . . , xp)′ from the p-variate normal distribution with mean vector µ
and covariance matrix V , first compute the Choleski factorization of U ′U of V . Then generate
z1, . . . , zp iid N(0, 1), and set x = U ′(z1, . . . , zp)′ + µ. Then Var(x) = U ′U = V , and E(x) = µ, as
required.

Discrete Distributions.

All of the preceding applies to continuous distributions. For a random variable X with a discrete
distribution with a small number of support points, s1, . . . , sk, set pj =

∑j
i=1 P (X = sj). Then

independent observations xi from this distribution can be generated by generating uniform
deviates ui, and setting xi = sj if pj−1 < ui ≤ pj (where p0 = 0). Essentially this is inverting the
CDF by direct search. If k is small, then only a few comparisons are needed to determine j, while
if k is large then searching for the value of j may take a significant amount of time, and other
techniques, such as rejection methods (discussed below) may be needed.

7.1.3 Rejection Sampling

There are two basic principles underlying rejection method sampling. The first (used above in the
algorithm for generating normal deviates) is that if B ⊂ A ⊂ Rk, and if X has a uniform
distribution on A, then the conditional distribution of X|X ∈ B is a uniform distribution on B.
Thus if there is a means available to sample from the uniform distribution on A, then a sample
from the uniform distribution on B can be obtained by sampling from A, and keeping just those
points that are also in B. The main applications are to situations where B is an irregularly
shaped set that is difficult to sample from directly, and A is a more regular set (such as a
rectangle) that is easier to sample from.

The second principle concerns regions bounded by densities. Suppose f(x) is a density on
D ⊂ Rk, and let B = {(x′, y)′ : x ∈ D, y ∈ R1, 0 < y < f(x)}. Suppose (X ′, Y )′ is a random vector
with a uniform distribution on B. Then the distribution of X is given by the density f(x) on D.
That is, since (X ′, Y )′ has a uniform distribution on B, P (X ≤ c) is the ratio of the volume of the
set C = B ∩ {(x′, y)′ : x ≤ c} to the volume of B. The volume of C is

∫
D∩{x≤c}

∫ f(x)

0
1 dy dx =

∫
D∩{x≤c}

f(x) dx,

and the volume of B is
∫
D f(x) dx = 1, since f is a density on D, so the ratio of volumes is∫

D∩{x≤c} f(x) dx, and X has the density f , as claimed.
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Figure 7.2: Density f(x) and possible dominating functions h(x) and g(x).

To visualize this, suppose k = 1, D = [0, 1], and the density is given by the curve f(x) in
Figure 7.2. The set B in the previous paragraph is the region bounded by the x-axis, the vertical
lines at 0 and 1, and the curve f(x). Since f(x) is a density, the area of B is

∫ 1
0 f(x) dx = 1. If

c = .25, as indicated by the dotted vertical line in the figure, then C is the region bounded by the
x-axis, the vertical lines at 0 and 0.25, and the curve f(x). The area of this region is∫ .25
0 f(x) dx = P (X ≤ c), where (X, Y ) has a uniform distribution on B.

Rejection sampling combines the two principles given above. Given a density f(x) defined on a
set D, again let B = {(x′, y)′ : x ∈ D, y ∈ R1, 0 < y < f(x)}. As just discussed, a sample from
f(x) can be generated by sampling points uniformly from B. But f(x) may have an irregular
shape, and it may not be easy to directly sample points uniformly from B. Let g(x) be a function
satisfying g(x) ≥ f(x) for all x ∈ D. Define A = {(x′, y)′ : x ∈ D, y ∈ R1, 0 < y < g(x)}. Then
B ⊂ A, and from the first principle, points can be sampled uniformly from B by first sampling
uniformly from A, and rejecting those points that are not also in B. The function g(x) satisfying
g(x) ≥ f(x) is called a dominating function. Thus if (X ′, Y )′ is sampled uniformly from A, and
points retained only if they are also in B, then the retained X values will have density f(x).

In Figure 7.2, the function h(x) = 2.75 is a dominating function. A variate can be generated from
the density f(x) by first generating X ∼ U(0, 1) and Y ∼ U(0, 2.75). Then (X, Y ) has a uniform
distribution on the region {(x, y)′ : 0 < x < 1, 0 < y < 2.75}. If Y ≤ f(X), then X is accepted. If
Y > f(X) then X is rejected, and another attempt made. Clearly the efficiency of this algorithm
is affected by the size of the region A, in that the proportion of points accepted is the ratio of the
area of B to the area of A. In Figure 7.2, the function g(x) is also a dominating function, and
since it leads to a smaller bounding region A, use of this function will lead to rejecting fewer
candidate points. Generating points uniformly from the region
A = {(x, y)′ : 0 < x < 1, 0 < y < 2.75 − 2.2x} is not quite as straightforward as when h(x) is used
as the dominating function, but is still fairly easy. g(x) can be normalized to a density
g∗(x) = (5 − 4x)/3, which has corresponding CDF G∗(x) = (5x − 2x2)/3. The inverse CDF
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method to sample from G∗ then requires solving a quadratic equation. Once X is generated from
g∗, sample Y ∼ U(0, g(X)), and the pair (X, Y ) will then be uniformly distributed on A. Then if
Y ≤ f(X), the point X is accepted, and if not, another attempt is made.

A better way to sample from g∗ in the previous paragraph is to note that
g∗(x) = I(0 < x < 1)[1/3 + (2/3)(2 − 2x)], so g∗ is the mixture of a U(0, 1) and the triangular
distribution with density I(0 < x < 1)(2 − 2x). This latter density is the same as that of
|u1 − u2|, where u1 and u2 are iid U(0, 1). Thus an x from g∗ can be obtained from 3 independent
uniform deviates u1, u2, u3 through

x = I(u1 < 1/3)u2 + I(u1 ≥ 1/3)|u2 − u3|.

Mixtures of linear combinations of uniforms can be used to obtain dominating functions for many
densities over a finite interval. Combined with other approximations in the tails, this method can
be used to sample from many univariate densities.

Another important feature of rejection sampling is that the density need not be normalized for
the method to work. This often arises in Bayesian inference problems, where determining the
normalizing constant for the posterior density requires evaluation of a large dimensional integral.
If the density is only known to within a normalizing constant, the sets A and B can still be
defined as before. The dominating function is still any function that is everywhere at least as
large as the unnormalized density. The accepted points will still be a random sample from the
normalized density. This follows because normalizing the density just requires rescaling the y
coordinated in the definitions of A and B, by exactly the same factor in both sets, and the
distribution of the X coordinate is not affected by the rescaling.

Example 7.1 Consider generating samples from the Γ(a, 1) distribution, which has density
proportional to f∗(x) = xa−1 exp(−x)I(x > 0), where a > 1 (the case a = 1 is trivial, and for
0 < a < 1, values can be generated using the fact that if Y ∼ Γ(a + 1, 1) and independently
U ∼ U(0, 1), then Y U1/a ∼ Γ(a, 1)). f∗(x) has a maximum value of (a − 1)a−1 exp(−a + 1) at
x = a − 1. It turns out that the function

g(x) =
(a − 1)a−1 exp(−a + 1)

1 + (x − a + 1)2/(2a − 1)

dominates f∗(x). This is believable since g(a − 1) = f∗(a − 1), and g has heavier tails than f∗.
Also,

−∂2 log[g(x)]/∂x2
∣∣∣
x=a−1

= (a − 1/2)−1 < (a − 1)−1 = −∂2 log[f∗(x)]/∂x2
∣∣∣
x=a−1

,

so g(x) has a slightly broader peak than f∗(x). The functions f∗ and g are shown in Figure 7.3
for a = 2, 6.

Since g(x) is proportional to a Cauchy density, it is easy to generate data from the region A in
this case (again, A is the region between g(x) and the x-axis). Inverting the Cauchy CDF, it
follows that an observation from the Cauchy distribution with location a − 1 and scale (2a − 1)1/2

can be generated as
xi = (2a − 1)1/2 tan(πui − π/2) + (a − 1),
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Figure 7.3: Non-normalized gamma density f∗(x) and dominating function g(x), for a = 2, 6. Both
f∗ and g are divided by (a − 1)a−1 exp(−a + 1).

where ui is a U(0, 1) deviate (because of the periodic nature of the tangent function, the constant
π/2 can also be dropped without changing the overall distribution). As in the polar coordinate
transformation for the normal distribution, it is faster to generate the value of tan(πui − π/2)
directly from pairs uniformly distributed over the unit disk. If (v1, v2) is such a pair, then the
required tangent is given by v2/v1. The complete algorithm then is as follows:

1. Generate u1 and u2 from the U(0, 1) distribution, and set vi = 2ui − 1, i = 1, 2.

2. If v2
1 + v2

2 ≥ 1 reject (v1, v2) and return to step 1.

3. If v2
1 + v2

2 < 1, set x = (2a − 1)1/2v2/v1 + a − 1.

4. If x ≤ 0, reject x and return to step 1.

5. If x > 0, generate u3 ∼ U(0, 1). If y = u3g(x) ≤ f∗(x) then retain x; otherwise reject x and
return to step 1.

There are many other methods for generating observations from gamma distributions. See Section
6.5.2 of Kennedy and Gentle (1980) for an extended discussion. 2

Rejection sampling is a powerful tool that could be applied to many problems. The main
difficulty is establishing that the dominating function g(x) really does dominate. If g(x) < f(x) at
some values, then the sample will have the distribution with density proportional to
min{f(x), g(x)}, which probably is not what is wanted.

Hazard based rejection sampling.

Consider generating data from a continuous distribution with hazard function
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λ(t) = f(t)/[1 − F (t)]. If the cumulative hazard Λ(t) =
∫ t
0 λ(u) du has a closed form inverse, then

the inverse CDF transformation can be applied, since F (t) = 1 − exp[−Λ(t)]. If Λ(t) does not
have a closed form inverse, or is too complicated, then straightforward transformations may not
be possible. In this case a rejection sampling algorithm based directly on the hazard function can
be used.

Suppose λd(t) is another hazard rate function with λ(t) ≤ λd(t) for all t, and that it is easy to
generate data from the distribution with hazard rate λd(t). The algorithm to generate X from the
distribution with hazard λ(t) is quite simple. First generate T1 from the distribution with hazard
λd(t) and U1 ∼ U(0, 1). If

λd(T1)U1 ≤ λ(T1),

then set X = T1. If not, generate T2 from the distribution of Y |Y > T1, where Y has the
distribution with hazard rate λd(t), independent of T1. The hazard function of this conditional
distribution is I(t > T1)λd(t). Also generate U2 ∼ U(0, 1). If

λd(T2)U2 ≤ λ(T2),

set X = T2. Otherwise, continue in the same fashion. At stage j, generate Tj from the conditional
distribution with hazard rate I(t > Tj−1)λd(t), and Uj ∼ U(0, 1). If

λd(Tj)Uj ≤ λ(Tj), (7.4)

then set X = Tj ; otherwise, continue.

Once the first X is generated, if the process is continued, retaining only the Tj that satisfy (7.4),
then the retained values will be the event times of a nonhomogeneous Poisson process with mean
function Λ(t). To see this, let Nd(t) be the number of Ti ≤ t, and let N(t) be the number of
Ti ≤ t that also satisfy (7.4) (that is, the number of retained Ti ≤ t). Since Nd(t) is a
nonhomogeneous Poisson process with mean function Λd(t) =

∫ t
0 λd(u) du,

P [Nd(t + h) − Nd(t) = 1] = λd(t)h + o(h).

Then

P [N(t + h) − N(t) = 1] = P [Nd(t + h) − Nd(t) = 1, U < λ(t)/λd(t)] + o(h)
= P [Nd(t + h) − Nd(t) = 1]P [U < λ(t)/λd(t)] + o(h)
= [λd(t)h + o(h)]λ(t)/λd(t) + o(h)
= λ(t)h + o(h),

where U ∼ U(0, 1) independently of the Nd process. Thus N(t) has the distribution of a
nonhomogeneous Poisson process with mean function Λ(t). From this it also follows that the first
retained value (the time of the first jump in N(t), which is value of X defined above) has the
distribution of a survival time with hazard rate λ(t).

Example 7.2 To illustrate, consider the hazard function

λ(t) = .1 + .2 exp(−t),
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which has cumulative hazard
Λ(t) = .1t + .2[1 − exp(−t)].

Although Λ(t) is simple, it does not have a closed form inverse. Consider λd(t) = .3. This is the
hazard of an exponential distribution, and due to the memoryless property of the exponential, the
conditional distribution of Y |Y > t is just an exponential with origin t, so generating observations
from the required conditional distributions is trivial (that is, the quantities Tj − Tj−1 are iid,
where T0 = 0). Below is some inefficient Splus code to illustrate the method.

> k1 <- .1
> k2 <- .2
> ld <- function(t) k1+k2
> l <- function(t) k1+k2*exp(-t)
> n <- 5000
> re <- rexp(5*n)/(k1+k2)
> ru <- runif(5*n)
> y <- rep(0,n)
> k <- 1
> for (i in 1:n) {
+ u <- re[k]
+ while (ru[k] > l(u)/ld(u)) {
+ k <- k+1
+ u <- u+re[k]
+ }
+ y[i] <- u
+ k <- k+1
+ }
> k
[1] 12664
> # survivor function transform
> uu <- exp(-k1*y-k2*(1-exp(-y)))
> hist(uu,20)
> # chi-square goodness-of-fit test
> ff <- table(cut(uu,0:20/20))
> X2 <- sum((ff-n/20)^2/(n/20))
> 1-pchisq(X2,19)
[1] 0.933394

The output from the hist() command is given in Figure 7.4. The random number functions in
Splus have a certain amount of overhead, including reading and writing the value of
.Random.seed, so it is usually more efficient to generate random numbers in large blocks, as
above. However, nearly twice as many values were generated (25,000) as were needed (12,664).
Also 12644/5000 .= 2.53 exponentials and uniforms were needed for each observation generated
from the hazard λ(t).

If yi denotes the ith generated value, then ui = S(yi) = exp[−Λ(yi)] should have a U(0, 1)
distribution. The histogram suggests close agreement with this distribution. The χ2
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Figure 7.4: Histogram of the survival function of a sample of size n = 5000 generated by the hazard
rejection sampling method.

goodness-of-fit test in the Splus code uses 20 cells, each of which has p = .05. The general formula
for the χ2 test statistic is just

k∑
j=1

(fj − npj)2/(npj),

where fj is the observed count in the jth cell, pj is the probability of an observation falling in the
jth cell, n is the sample size, and k is the number of cells. This statistic is asymptotically
chi-square with k − 1 degrees-of-freedom if the sample is from the intended distribution. The
p-value again suggests close agreement with the hypothesized distribution. 2

7.1.4 Testing Random Number Generators

Random number generators can be informally evaluated by plotting histograms of large generated
samples, to see if they reasonably approximate the intended distribution. Computing
autocorrelations at various lags is also recommended, to check that they are close to 0. Both of
these methods can be formalized into statistical tests. The fit of the distribution can be evaluated
using chi-square (as above), Kolmogorov-Smirnov and other types of goodness-of-fit tests. Formal
tests of whether the autocorrelation equals 0 can also be given.

Almost any aspect of the sequence of generated numbers can be examined to see if it exhibits
nonrandom behavior. A number of tests have been proposed to examine patterns of digits. Digits
in any base can be obtained from the sequence using a variety of methods, and the frequency of
individual digits and patterns of digits examined. The runs test examines the distribution of the
length of increasing and decreasing sequences of digits. Lattice tests examine how uniformly
consecutive n-tuples of generated values appear in an n-dimensional hypercube. These and other
procedures are discussed in Section 6.3.2 of Kennedy and Gentle (1980). See also Fishman and
Moore (1982). George Marsaglia has developed a standard battery of tests called DIEHARD.
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Source code for these tests is available on his web page at Florida State University, Department of
Statistics.

7.1.5 Splus

Splus has many functions for generating random values from different distributions. See the help
files for the functions rbeta(), rcauchy(), rchisq(), rexp(), rf(), rgamma(), rlogis(),
rlnorm(), rnorm(), rstab(), rt(), runif(), rbinom(), rgeom(), rhyper(), rpois(),
rwilcox(), and sample(), for details.

As discussed above, Splus stores the seed in an object called .Random.seed. If this object is not
in the current user directories in the search path, the system default value will be used.

As already mentioned, Splus random number functions have a certain amount of overhead
associated with each call (such as reading and writing .Random.seed), so there is some advantage
to generating random numbers in large blocks.

7.2 Statistical Simulations

When new methods of analyzing data are developed, it is usually appropriate to perform some
simulations to evaluate the methodology. To take a concrete example, consider the partial
likelihood analysis of the proportional hazards model. For independent censored failure time data
(ti, δi, zi), i = 1, . . . , n, where ti is the failure or censoring time, δi = 1 for observed failures and
= 0 for censored observations, and zi is a vector of covariates, the proportional hazards model
specifies that the failure hazard for the ith case is of the form

λ(t|zi) = λ0(t) exp(β′zi),

where λ0(t) is an unspecified underlying hazard function. The partial likelihood analysis
estimates the regression parameters β by maximizing the log partial likelihood

l(β) =
∑

i

δi[β′zi − log{
∑
j

I(tj ≥ ti) exp(β′zj)}].

Let β̂ be the maximizing value. Th estimator β̂ should be consistent and asymptotically normal,
and V = (vij) = [−∂2l(β̂)/∂β∂β′]−1 should give a consistent estimate of Var(β̂). Here are some
questions that might be of interest:

1. Are the sizes of Wald, score and likelihood ratio tests of hypotheses on the parameters,
using asymptotic approximations to critical regions, close to the nominal levels (and related,
what are the powers of such tests)?

2. What is the finite sample bias of the estimators?

3. How efficient are the estimators compared with estimators from fully specified parametric
models.

4. How accurate are the variance estimators in finite samples.
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5. Do confidence intervals based on the asymptotic distributions give correct coverage in small
samples?

All these issues are straightforward to examine through simulations, although a thorough
investigation would require examining different censoring patterns, different numbers of
covariates, different covariate distributions, different true values of the parameters, and various
sample sizes. (Since the estimators are invariant to monotone transformations of the time axis,
the results do not depend on the underlying hazard used, except through the censoring pattern.)

Simulations to examine all of the above questions have the same general structure. First, data
sets of a specified sample size are generated from a specified distribution. In regression problems,
either one fixed covariate pattern can be used throughout the simulation run, or new sets of
covariates can be generated from a specified covariate distribution for each sample. In the first
case the results will be conditional on the fixed covariate distribution, while in the second case the
results will reflect an average over the distribution of the covariates. For each simulated data set,
the analysis is then carried out exactly as it would be for real data. The results from the
individual data sets are then combined to estimate quantities addressing the questions of interest.

To be more specific, consider a simulation to address questions 1, 2 and 4 above. The case of 2
fixed binary covariates z1 and z2, with each of the 4 covariate combinations occurring for 1/4 of
the observations, will be considered, although as already mentioned, a thorough investigation
would require looking at many different covariate configurations, and varying the number of
covariates. For simplicity, exponential distributions will be used for both the failure and censoring
distributions, although again in a thorough investigation the effect of different censoring patterns
should also be investigated. The failure hazard is λ(t|z1, z2) = exp(β1z1 + β2z2), corresponding to
a baseline hazard of 1, and the censoring distribution will also have hazard rate equal to 1. In the
particular case examined below, the sample size is n = 100.

For a simulated sample s, s = 1, . . . , S, the estimated coefficients β̂
(s)
1 and β̂

(s)
2 , and their

estimated variances v
(s)
11 and v

(s)
22 (the diagonal elements of the inverse information) are computed.

The test statistics T
(s)
j = β̂j/(v(s)

jj )1/2 for the hypotheses H0 : βj = 0 are also computed. The test
statistics should be asymptotically N(0, 1) under the null hypothesis.

A simulation run with β1 = β2 = 0 allows examination of accuracy of the asymptotic distribution
for determining the critical values of the test. Let zα be the αth quantile of the standard normal
distribution. The standard approximation uses the critical region |Tj | ≥ z1−α/2 for two-sided tests
of nominal size α. The quantities

S∑
s=1

I(|T (s)
j | ≥ z1−α/2)/S, j = 1, 2,

which are just the proportions of simulated samples where each test rejects H0, can be used to
estimate the actual sizes of the tests using these approximate critical regions.

Similarly, if β1 and β2 are the true parameter values, then

S∑
s=1

β̂
(s)
j /S − βj
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estimates the bias in β̂j . Also the true variance Var(β̂j) can be estimated by

V̂ar(β̂j) =
S∑

s=1

[β̂(s)
j −

S∑
r=1

β̂
(r)
j /S]2/(S − 1),

the usual sample variance over the simulations, and

S∑
s=1

v
(s)
jj /S − V̂ar(β̂j)

estimates the bias in vjj as an estimate of Var(β̂j) (often the two terms are reported separately,
instead of just giving the estimate of bias in the variance estimator).

For any finite n, there is a positive probability that the partial likelihood will be maximized in the
limit as β̂j → ±∞. Thus strictly speaking, E(β̂j) does not exist, and Var(β̂j) is infinite. To avoid
this problem, interpret means and variances as conditional on those outcomes that give finite
parameter estimates. In practice, tests for divergence to ±∞ can be built into the model fitting
algorithm, and samples which appear to be giving unbounded estimates excluded from the
results, if any are encountered. For many parameter configurations, the probability of unbounded
parameter estimates is negligible, though, and can be ignored.

It is often convenient to put the commands to run a simulation in a batch file. Here this takes the
form of a shell script, given below. A shell script is a file containing commands to be executed at
the shell level. The name of the file below is coxsim1.s. In this file, the initial # identifies the
script as a C-shell script, so it will be executed under the C-shell. The second line executes the
Splus command. The << means that the following lines are to be used as input to the Splus
command. The characters after that are delimiters. The second occurrence of this string identifies
where the Splus commands end and control returns to the shell. The quotes in this string tell the
shell not to change anything in the Splus commands. Without these the shell would attempt to
perform expansion of shell variables, and give special characters their shell interpretation. Use of
%% as the delimiting characters is entirely arbitrary.

#
Splus << ’%%’
NT <- 845 # number simulated samples
N <- 100 # sample size--must be a multiple of 4
beta <- c(0,0) # true coefficients
lamc <- 1 # hazard rate for censoring distribution
fp <- 0
out <- matrix(-1,nrow=4,ncol=NT) # store the results
z1 <- rep(c(0,1,0,1),N/4) #covariates stay fixed throughout the run
z2 <- rep(c(0,0,1,1),N/4)
thr <- exp(c(0,beta,beta[1]+beta[2])) # true exponential hazards

# for different covariate combinations
gendata <- function(n,thr,lamc) { #function to generate censored outcomes

y <- rexp(n)/thr
cen <- rexp(n,rate=lamc)
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Surv(pmin(y,cen),ifelse(y <= cen,1,0))
}

print(.Random.seed) # always print the seed for future reference
for ( i in 1:NT) { # simulation loop

u <- gendata(N,thr,lamc)
fp <- fp+mean(u[,2])
u <- coxph(u~z1+z2)
out[,i] <- c(u$coef,diag(u$var))

}
print(memory.size()) # can become excessive
print(fp/NT) # proportion of observed failures
cat(’true beta=’,format(beta),’\n’)
u1 <- apply(out,1,mean)
u2 <- apply(out,1,var)
cat(’estimated bias\n’)
print(u1[1:2]-beta)
cat(’standard error of estimated bias\n’)
print(sqrt(u2[1:2]/NT))
cat(’average information\n’)
print(u1[3:4])
cat(’standard error of ave inform\n’)
print(sqrt(u2[3:4]/NT))
cat(’Estimated variance\n’)
print(u2[1:2])
cat(’approximate standard error of estimated variance\n’)
print(sqrt(c(var((out[1,]-u1[1])^2),var((out[2,]-u1[2])^2))/NT))
#test statistics
t1 <- abs(out[1,]/sqrt(out[3,]))
t2 <- abs(out[2,]/sqrt(out[4,]))
zq <- qnorm(.975)
rp <- c(sum(t1>=zq)/NT,sum(t2>=zq)/NT)
cat(’estimated rejection probabilities of tests\n’)
print(rp)
cat(’standard errors of est rejection probs of tests\n’)
print(sqrt(rp*(1-rp)/NT))
q()
’%%’

Since a function to fit the proportional hazards model is built into Splus, and a separate function
was written to generate the failure and censoring times, the simulation loop is quite short. In
some versions of Splus, there is a substantial efficiency gain from encapsulating all the commands
within the simulation for() loop in a single function call. That was not critical in Splus 3.4,
which was used here. The commands at the end of the program are to tabulate the simulation
results and estimate the quantities of interest.
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Estimated quantities computed from a finite number of replications of a stochastic simulation will
have some sampling error, so it is always good practice to give standard errors for all quantities
being estimated. The estimated bias and the average information are just averages over
independent samples, so the variance of the estimated bias of β̂j is just Var(β̂j)/NT, which can be
estimated by substituting the simulation estimate V̂ar(β̂j). A similar variance estimator can be
constructed for the average information. The estimated rejection probability of one of the tests is
just the average of NT iid Bernoulli random variables, and hence its variance can be estimated by
p̂(1 − p̂)/NT, where p̂ is the estimated rejection probability. The exact variance of the estimate of
Var(β̂j) is more complicated. The approximation used above is based on the fact that if
X1, X2, . . . are iid with mean µ, variance σ2 and finite fourth moments, and
σ̂2

S =
∑S

s=1(Xs − XS)2/(S − 1) denotes the usual sample variance, then

S1/2(σ̂2
S − σ2) and S1/2

[
S∑

s=1

(Xs − µ)2/S − σ2

]

have the same asymptotic normal distribution, and hence the same asymptotic variances. For
known µ, an unbiased estimator of

Var

[
S∑

s=1

(Xs − µ)2/S

]

is given by
S∑

s=1

[
(Xs − µ)2 −

S∑
l=1

(Xl − µ)2/S

]2

/[S(S − 1)]. (7.5)

Thus a consistent estimate of the asymptotic variance of σ̂2
S is given by substituting XS for µ in

(7.5). The estimate used for the variance of V̂ar(β̂j) in the program above is of this form.

Here is the output from a run with beta <- c(0,0), as above.

% coxsim1.s
S-PLUS : Copyright (c) 1988, 1996 MathSoft, Inc.
S : Copyright AT&T.
Version 3.4 Release 1 for Sun SPARC, SunOS 5.3 : 1996
Working data will be in /usr/stats/bobg/.Data
[1] 37 14 5 19 20 0 58 38 4 48 59 2

[1] 7831160
[1] 0.4967219
true beta= 0 0
estimated bias
[1] 0.006329357 -0.020323796
standard error of estimated bias
[1] 0.01066831 0.01052263
average information
[1] 0.08650828 0.08649603
standard error of ave inform
[1] 0.0003438038 0.0003395060
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Estimated variance
[1] 0.09617193 0.09356332
approximate standard error of estimated variance
[1] 0.004680766 0.004530143
estimated rejection probabilities of tests
[1] 0.05917160 0.05207101
standard errors of est rejection probs of tests
[1] 0.008116775 0.007642889
111.81u 0.68s 2:09.93 86.5%
111.97u 0.97s 2:10.40 86.6%

With β1 = β2 = 0 and the hazard for the censoring distribution equal to 1, the probability of
observing the failure time for each case should be exactly 1/2, and the observed proportion of
failures (.4967) is very close to this value. The estimated bias in β̂2 is just under 2 standard errors
from 0. However, from the symmetry of the configuration, the bias in β̂1 and β̂2 should be the
same, and the combined estimate of bias would be well within sampling variation of 0. On
average, it appears the inverse information slightly underestimates the true variance, although the
standard errors of the estimated variances are large enough that the difference might be within
sampling variation. Note that the average information is estimated much more precisely than the
true Var(β̂j). This is often the case, so when evaluating the accuracy of the inverse information or
other types of variance estimates, it is not sufficient to simply compute the standard error of the
average of these estimates over the samples—the variation in the empirical estimate of the true
variance also must be taken into account. The estimated sizes of the tests are within sampling
variation of the nominal levels. The number of samples was chosen so that if the exact size of the
tests was .05, then the true standard errors of the estimated sizes, {(.05)(.95)/NT}1/2, would be
.0075. Since the estimated sizes were slightly larger than the nominal level, the estimated
standard errors were slightly larger than the target value.

When running simulations in Splus, it is often the case that memory usage will grow with the
number of replicates of the simulation. When memory usage becomes too large, the job can
become a serious inconvenience to other users, and ultimately can cause the job to terminate with
an ‘unable to obtain requested dynamic memory’ error. In the example above, at the termination
of the simulation loop, the process had grown to about 8 MB. This is not large enough to be
much of a problem on most modern computers. If substantially more memory were required, it
might be necessary to break the job down into several separate runs, say of 50 or 100 replicates
each. The output of memory.size() can be checked within the simulation loop, with a command
to terminate if it grows too large; for example, if (memory.size()>20000000) break. It is
important that the termination be done in a way that is graceful enough to save the results to
that point, so they may be combined with results from other runs.

Also note that only about 2 minutes of cpu time were required for the entire run (on a SPARC
Ultra 1). Thus a simulation like this is now quite feasible even within an inefficient computing
environment like Splus. Of course, it should be noted that most of the work in coxph() takes
place inside C routines. A much faster program could be written by coding everything in C or
FORTRAN. If efficient algorithms are used, the entire run above should take no more than a few
seconds in such a program. Of course, coding and debugging the program would probably take at
least several days of work.
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Here is the output from another run with beta <- c(1,1).

% coxsim1.s
S-PLUS : Copyright (c) 1988, 1996 MathSoft, Inc.
S : Copyright AT&T.
Version 3.4 Release 1 for Sun SPARC, SunOS 5.3 : 1996
Working data will be in /usr/stats/bobg/.Data
[1] 5 35 63 26 46 0 61 23 21 57 7 0

[1] 7937232
[1] 0.7103905
true beta= 1 1
estimated bias
[1] 0.02192803 0.02329385
standard error of estimated bias
[1] 0.008778498 0.009213349
average information
[1] 0.06809622 0.06824705
standard error of ave inform
[1] 0.0002545156 0.0002668420
Estimated variance
[1] 0.06511741 0.07172851
approximate standard error of estimated variance
[1] 0.003234047 0.003701250
estimated rejection probabilities of tests
[1] 0.9869822 0.9846154
standard errors of est rejection probs of tests
[1] 0.003899369 0.004233975
111.72u 0.64s 2:08.78 87.2%
111.90u 0.89s 2:09.25 87.2%

In this case there is clear evidence of bias in the estimators, in that their means are slightly larger
than the true value of 1. The average information appears closer to the true variance here than in
the previous simulation, but the number of samples was again not large enough to give highly
precise estimates of the true variance. The estimated powers of the tests are > 98% for this
alternative. The estimated failure probability here is higher than in the previous run because here
the failure hazard rates are higher for 75% of the cases (those that have either covariate equal to
1), while the censoring distribution has not changed.

In general, simulation experiments like those above should be approached using the same
principles and techniques as any other type of experiment. Principles of sound experimental
design should be used. The number of replicates in the simulation should be chosen to give
reasonable precision for the quantities being estimated. Since variances are often unknown prior
to collecting some data, it is often convenient to focus on binary endpoints. For example, in the
simulation above, it is known that the variance of the rejection probabilities of the tests will be
p(1 − p)/NT, where p is the true rejection probability, and that p should be close to the nominal
level .05. This makes it possible to determine a value of NT to give reasonable precision in the
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estimates of the rejection probabilities, as was done above. More generally, when variances of
quantities to be estimated from the simulations are unknown, it is usually feasible to make some
preliminary simulation runs to estimate the variances. These estimated variances can then be
used in planning the final simulation study. Conducting preliminary experiments to estimate
unknown design parameters is generally much more feasible in computer experiments than in
general scientific research.

Variance reduction techniques, such as blocking and regressing on covariates, should also be
employed in simulation experiments, where feasible. Some particular techniques are discussed in
the following section.

7.3 Improving Efficiency

7.3.1 Control Variates

Consider estimating µX = E(Xs) based on an iid sample X1, . . . , XS . Let σ2
X = Var(Xs). The

standard estimator of µX ,

X =
S∑

s=1

Xs/S,

has variance σ2
X/S. Suppose also that there is another variable Ys measured on the same

experimental units, and that µY = E(Ys) is known. Let σ2
Y = Var(Ys), and

ρ = Cov(Xs, Ys)/(σXσY ). Consider estimating µX with

µ̃X(c) = X − c(Y − µY ).

Since µY is known, this is a well-defined estimator, and clearly it is unbiased for µX . Now

Var[µ̃X(c)] = S−1[σ2
X + c2σ2

Y − 2cρσXσY ]

is minimized by
c∗ = ρσX/σY ,

and
Var[µ̃X(c∗)] = S−1σ2

X [1 − ρ2],

which is less than σ2
X/S if ρ 6= 0.

In practice, c∗ will often need to be estimated. If the usual moment estimators are substituted for
ρ, σX and σY , the resulting estimator is

ĉ∗ =
S∑

s=1

(Xs − X)(Ys − Y )/
S∑

s=1

(Ys − Y )2,

which is just the usual least squares estimator of the regression coefficient for the regression of Xs

on Ys. Thus µ̃X(ĉ∗) is a regression adjustment for estimating µX , and more simply, is just the
least squares estimate of µX in the model

Xs = µX + γ(Ys − µY ) + εs,
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where the εs are iid with mean 0. Since this model is not necessarily true, µ̃X(ĉ∗) is not
necessarily unbiased for µX . However, since

S1/2[µ̃X(ĉ∗) − µ̃X(c∗)] = −S1/2(ĉ∗ − c∗)(Y − µY ) P→ 0,

µ̃X(ĉ∗) and µ̃X(c∗) are asymptotically equivalent, as the number of simulated samples S → ∞.

While it is not often used in simulation studies appearing in the statistical literature, the
technique described above can be a powerful tool for variance reduction in simulations. In this
setting, Ys is referred to as a control variate. To use this method there needs to be a second
quantity that can be computed from the simulated samples, whose mean is known exactly, and
that is correlated with the primary quantity of interest. Note that 1− .52 = .75, 1 − .72 = .51 and
1 − .92 = .19, so a high correlation is needed to get a large reduction in the variance.

In the simulation to study the proportional hazards model in the previous section, consider just
the problem of estimating the bias in β̂1. In the notation of this section, s indexes the simulated
samples, and Xs = β̂

(s)
1 − β1. Consider defining Ys by

Ys =
n∑

i=1

δ
(s)
i zi1/

n∑
i=1

zi1 −
n∑

i=1

δ
(s)
i (1 − zi1)/

n∑
i=1

(1 − zi1), (7.6)

the difference in the proportion observed to fail in the groups with zi1 = 1 and zi1 = 0. For the
exponential distributions used in the previous section,

E(δi|zi1, zi2) =
∫

exp(−tλc) exp(β1zi1 + β2zi2) exp[−t exp(β1zi1 + β2zi2)] dt

=
exp(β1zi1 + β2zi2)

exp(β1zi1 + β2zi2) + λc
.

Also, zi1 and zi2 are binary, and each of the 4 combinations occurs in exactly 1/4 of the cases, so

E(Ys) = (1/2)
(

exp(β1 + β2)
exp(β1 + β2) + λc

+
exp(β1)

exp(β1) + λc
− exp(β2)

exp(β2) + λc
− 1

1 + λc

)
.

All these quantities are known in the simulation experiment, so Yi can be used as a control variate
for estimating the bias of β̂1.

Below is a modified section of the shell script for the proportional hazards simulation (file
coxsim1.s above), which performs this control variate adjustment. The first part of the file
(omited) is unchanged from before. The seed is set to the value from the earlier run to use exactly
the same samples, so the results can be compared with those from before.

out <- matrix(-1,nrow=5,ncol=NT) # store the results

.Random.seed <- c(37,14,5,19,20,0,58,38,4,48,59,2)
for ( i in 1:NT) { # simulation loop

u <- gendata(N,thr,lamc)
fp <- fp+mean(u[,2])
y <- 2*(mean(z1*u[,2])-mean((1-z1)*u[,2])) # the control variate
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u <- coxph(u~z1+z2)
out[,i] <- c(u$coef,diag(u$var),y)

}
print(memory.size()) # can become excessive
print(fp/NT) # proportion of observed failures
cat(’true beta=’,format(beta),’\n’)
u1 <- apply(out,1,mean)
u2 <- apply(out,1,var)
h1 <- exp(c(beta[1]+beta[2],beta,0))
h1 <- h1/(h1+lamc)
h1 <- (h1[1]+h1[2]-h1[3]-h1[4])/2 # true E(Y)
print(u1[5]-h1)
rho <- cor(out[1,],out[5,])
cat(’rho=’,format(rho),’\n’)
cs <- rho*sqrt(u2[1]/u2[5])
cat(’ordinary and adjusted estimate of bias (beta 1)\n’)
print(c(u1[1]-beta[1],u1[1]-beta[1]-cs*(u1[5]-h1)))
cat(’standard errors\n’)
print(sqrt(u2[1]/NT*c(1,(1-rho^2))))

Below is the output from this portion of the modified program.

[1] 8325024
[1] 0.4967219
true beta= 0 0
[1] -7.100592e-05
rho= 0.6886141
ordinary and adjusted estimate of bias (beta 1)
[1] 0.006329357 0.006477450
standard errors
[1] 0.010668314 0.007735894

The proportion of observed failures, and the unadjusted estimate of bias and its standard error
are identical to the earlier run, because the same seed was used. The correlation of .689 gives a
reduction in the standard error of about 27.5%. This same reduction could have been achieved by
increasing the number of replications in the simulations by a factor of about 1.9. The estimate of
bias changed only slightly, because Y was nearly equal to its expectation in this sample.

For estimating the rejection probabilities of the test H0 : β1 = 0, the quantity of interest is
Xs = I(|T (s)

1 | ≥ z1−α/2) = I(T (s)
1 ≥ z1−α/2) + I(T (s)

1 ≤ −z1−α/2). Here it might be better to use
separate control variates for estimating the upper and lower tail rejection probabilities; for
example, Ys in (7.6) for the upper tail and −Ys for the lower.

If the proportion of censored observations was smaller than in the example above, then (7.6)
might be less useful as a control variate (in the extreme case of no censoring (7.6) would be
identically 0). In this case there are a variety of similar quantities that could be used. For
example δi in (7.6) could be replaced by I(ti ≤ t0, δi = 1), for some t0.
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When working with nonlinear statistics, it will sometimes turn out that a linear approximation to
the statistic, often the Taylor series about the true value of the parameter, will be a useful control
variate. That is, in some settings it will be possible to compute the expectation of the linearized
statistic exactly, and the linear approximation will have high enough correlation with the original
statistic to lead to significant variance reduction. In Exercise 7.4, it will also be seen that the
components of the score vector evaluated at the true value of the parameters can be a useful
control variate.

A recent application of control variates to estimating p-values for exact tests in contingency tables
was given by Senchaudhuri, Mehta and Patel (1995). Control variates have also shown promise in
bootstrap sampling; see, for example, Chapter 23 of Efron and Tibshirani (1993).

7.3.2 Importance Sampling

Let X denote a sample from a distribution, let f(·) be the density of X, let q(X) be a statistic of
interest, and consider estimating

µq = Ef{q(X)} =
∫

q(u)f(u) du, (7.7)

where Ef denotes expectation with respect to the distribution with density f (of course a similar
formula holds for discrete distributions with the integral replaced by a sum). Examples of such
statistics from the proportional hazards model simulation include the estimators β̂j , whose
expectations are needed to determine the bias, and the statistics I(|Tj | ≥ z1−α/2), whose
expectations are the rejection probabilities of the tests.

To estimate (7.7), samples Y (s), s = 1, . . . , S, can be generated from the density f , and

q̂ =
S∑

s=1

q(Y (s))/S

computed, as before. Alternately, let g(·) be a different density defined on the same sample space,
such that f(X)/g(X) < ∞ for all X in the sample space, and suppose now X(s), s = 1, . . . , S, are
independent samples from g(·). Then

q̃g =
S∑

s=1

q(X(s))ws/S, (7.8)

where
ws = f(X(s))/g(X(s)),

is also an unbiased estimator for Ef{q(X)}, since

Eg(q̃g) =
∫

q(u)
f(u)
g(u)

g(u) du =
∫

q(u)f(u) du = Ef{q(X)}.

There are two ways this can be used. In one, a density g is selected to give an estimator q̃g that is
more efficient than µ̂. In the other, having generated samples from g, (7.8) is used with different
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densities f to estimate Ef{q(X)} for different f , without generating and analyzing other
simulated data sets. In either case, the general technique of sampling from one distribution to
estimate an expectation under a different distribution is referred to as importance sampling.

To see how importance sampling can improve efficiency, the variances of q̂ and q̃g need to be
considered. Now

Var(q̂) = Varf{q(X)}/S = S−1
∫
{q(u) − µq}2f(u) du,

and

Var(q̃g) = Varg{q(X)f(X)/g(X)}/S = S−1
∫
{q(u)f(u)/g(u) − µq}2g(u) du. (7.9)

If q(u)f(u)/g(u) is constant, then (7.9) will be 0. It would almost never be practical to sample
from such a g, and this condition may not even define a density (if for example q(u) < 0 for some
u). As a general rule, though, g(u) should be chosen to be large where q(u)f(u) is large, and
small where q(u)f(u) is small. The name ‘importance sampling’ comes form this observation,
since the goal is to choose g to sample more heavily in regions where q(u)f(u) is large (the ‘more
important’ regions). However, if there are regions where g(u) is much smaller than f(u), then
(7.9) will be very large, or possibly even infinite. This places limits on how large g(u) can be in
regions where q(u)f(u) is large, since g(u) cannot be too small anywhere where q(u)f(u) is
nonzero (and g must integrate to 1).

Since q̃g is the average of iid terms, Var(q̃g) can be estimated by

1
S(S − 1)

S∑
s=1

{q(X(s))ws − q̃g}2.

To illustrate, consider the problem of estimating the size of the Wald test for H0 : β1 = 0, in the
proportional hazards model simulation. In this case q(X) = I(|T1| ≥ z1−α/2), where T1 = β̂1/v

1/2
11 .

The density for the observed data in each simulated sample is

f(X; β1, β2, λc) =
n∏

i=1

exp[δi(β1zi1 + β2zi2)]λ1−δi
c exp(−ti[exp(β1zi1 + β2zi2) + λc]),

where the true value of β1 is 0 under the null hypothesis. The product q(X)f(X) is 0 for any X
where the null hypothesis is accepted. While it would be quite difficult to sample from a g defined
to be 0 on this region, it does suggest that to estimate the size of the test, it might be more
efficient to use importance sampling with samples generated from alternative distributions than
to just generate the data under the null. However, considerable care is needed. If samples are just
generated from a fixed alternative, such as g(X) = f(X; 1, β2, λc), then the samples will
concentrate in the upper tail of the critical region T1 ≥ z1−α/2, but there might be few if any
samples in the lower tail T1 ≤ −z1−α/2, giving a poor overall estimate of the size. One way to
address this would be to estimate the upper tail and lower tail rejection probabilities separately in
different simulation runs. Alternately, a mixture distribution could be used for the importance
sampling distribution; for example,

g(X) = [f(X; γ, β2, λc) + f(X;−γ, β2, λc)]/2.
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For this choice of g, and f as above, the importance sampling weights can be written

w =
2 exp[−∑n

i=1 ti exp(β2zi2)]
exp[

∑n
i=1 δiγzi1 − ti exp(γzi1 + β2zi2)] + exp[

∑n
i=1(−δiγzi1 − ti exp(−γzi1 + β2zi2))]

= 2

 2∑
j=1

exp

(
n∑

i=1

{(−1)jδiγzi1 − ti[exp((−1)jγzi1) − 1] exp(β2zi2)}
)−1

(note that only terms with zi1 = 1 contribute to the sums).

A modified version of coxsim1.s implementing this importance sampling scheme is given below.

#
S << ’%%’
# importance sampling for estimating size of tests
NT <- 845 # number simulated samples
N <- 100 # sample size--must be a multiple of 4
beta <- c(.4,0) # true coefficients
lamc <- 1 # hazard rate for censoring distribution
fp <- 0
out <- matrix(-1,nrow=4,ncol=NT) # store the results
z1 <- rep(c(0,1,0,1),N/4) #covariates fixed throughout the run
z2 <- rep(c(0,0,1,1),N/4)
thr <- exp(c(0,beta,beta[1]+beta[2])) # true exponential hazards

# for different covariate combinations
mthr <- exp(c(0,-beta[1],beta[2],beta[2]-beta[1]))
gendata <- function(n,thr,lamc) { #function to generate censored outcomes

y <- rexp(n)/thr
cen <- rexp(n,rate=lamc)
Surv(pmin(y,cen),ifelse(y <= cen,1,0))

}

print(.Random.seed)
mm <- runif(NT)<.5 #which part of the mixture to use
w <- rep(0,NT)
sub <- z1 == 1
for ( i in 1:NT) { # simulation loop

if (mm[i]) u <- gendata(N,thr,lamc)
else u <- gendata(N,mthr,lamc)
# importance sampling weights; assumes beta[2]=0
w[i] <- 2/(exp(sum(u[sub,2]*beta[1]-u[sub,1]*(thr[2]-1))) +

exp(sum(-u[sub,2]*beta[1]-u[sub,1]*(mthr[2]-1))))
fp <- fp+mean(u[,2])
u <- coxph(u~z1+z2)
out[,i] <- c(u$coef,diag(u$var))

}
print(memory.size()) # can become excessive
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print(fp/NT) # proportion of observed failures
cat(’true beta=’,format(beta),’\n’)
t1 <- abs(out[1,]/sqrt(out[3,]))
zq <- qnorm(.975)
print(summary(w))
print(summary(w[t1>=zq]))
print(summary(w[t1<zq]))
w <- w*(t1>=zq)
rp <- c(sum(t1>=zq)/NT,sum(w)/NT)
cat(’estimated rejection probabilities of tests\n’)
print(rp)
cat(’standard errors of est rejection probs of tests\n’)
print(sqrt(c(rp[1]*(1-rp[1]),var(w))/NT))
q()
’%%’

Executing this gives the following.

[1] 37 12 0 46 25 1 20 41 23 25 14 2
[1] 4997752
[1] 0.5024142
true beta= 0.4 0.0

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0002781 0.07801 0.2808 1.042 1.055 9.133

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0002781 0.01941 0.05656 0.1436 0.1454 3.26

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.005581 0.1754 0.4752 1.366 1.672 9.133

estimated rejection probabilities of tests
[1] 0.26508876 0.03807723
standard errors of est rejection probs of tests
[1] 0.015183949 0.005599944
108.95u 0.61s 2:01.99 89.8%
109.12u 0.85s 2:02.36 89.8%

In this run with γ = .4, the empirical rejection probability of .265 was adjusted by the importance
weights to .038, which is 2 standard errors below the nominal .05 level, suggesting that the test
may be conservative (this is not completely consistent with the earlier results). In essence, the
rejection probability under both the null and an alternative has been estimated from a single run
(this could be extended by calculating importance weights for other alternatives, to give
estimated rejection probabilities under several distributions from the same run). The size of the
importance weights varied from .00028 to 9.13, which is larger variation than would be ideal,
although the range is a little smaller for samples falling within the critical region, which was part
of the objective. In ordinary sampling under the null hypothesis, the binomial standard error
with 845 replications would have been .0066, compared with .0056 above. Thus this importance
sampling algorithm did result in some improvement in efficiency in this example, but not a large
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amount. The difficulty here is that the importance sampling density g did not match qf closely
enough to give much improvement. The value of γ used did not move very much mass of the
sampling density into the critical region of the test, but if a substantially larger value of γ is used,
the probability given to regions where g << qf will be much larger, resulting in a much larger
variance. (There are regions where g << qf in the example above, but they occur with relatively
low probability.) There are examples where this technique works better, and there may be better
sampling densities even in this problem.

Importance sampling can often be used in conjunction with control variates. In many situations
the importance sampling density will be chosen to be of a simple form, such as a multivariate
normal or t distribution. It will then often be the case that either Eg[q(X)] or the expectation of
a linear approximation to q(X) can be computed exactly, so q(X) − Eg[q(X)] (or the
corresponding quantity from a linear approximation) can be used as a control variate.

Importance sampling is widely used in Monte Carlo integration, and later will be discussed from
that perspective. In addition to its efficiency enhancing properties, it can be used to get an
answer when the true distribution is difficult to sample from. Importance sampling has been used
to enhance efficiency of bootstrap sampling; see Efron and Tibshirani (1993) and Section 10.3.1,
below. Mehta, Patel and Senchaudhuri (1988) gave an application of importance sampling to
permutational inference.

7.3.3 Antithetic Sampling

The general principle of antithetic sampling is to use the same sequence of underlying random
variates to generate a second sample in such a way that the estimate of the quantity of interest
from the second sample will be negatively correlated with the estimate from the original sample.

Consider again the problem of estimating the bias in the regression coefficient estimates in the
proportional hazards model. The exponential deviates for the failure times are

− log(ui)/ exp(zi1β1 + zi2β2),

where ui ∼ U(0, 1). A second sample from the same distribution can be obtained by calculating

− log(1 − ui)/ exp(zi1β1 + zi2β2), (7.10)

using the same ui. This sample is not independent of the first, but marginally it has the same
distribution.

Suppose the first sample in this example is such that β̂1 is large. That means that on average the
failure times for the cases with zi1 = 1 are smaller than those for cases with zi1 = 0. In the second
sample obtained from (7.10) using the same underlying uniform deviates, the failure times that
were large in the first sample will tend to be small, so the second sample will tend to have longer
failure times in the group with zi1 = 1, leading to a small value for β̂1 in the second sample. Thus
the estimates of bias from the 2 samples should tend to be negatively correlated. Write β̂

(s1)
1 for

the estimate of β1 from the first sample in the sth replication of the simulation, and β̂
(s2)
1 for the

corresponding estimate from the second sample. The combined estimate of bias is
S∑

s=1

{(β̂(s1)
1 + β̂

(s2)
1 )/2 − β1}/S.
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The variance of this estimate is
Var(β̂1)(1 + ρ)/(2S), (7.11)

where ρ is the correlation between β̂
(s1)
1 and β̂

(s2)
1 . If there is substantial negative correlation in

the estimates from the two samples, then (7.11) can be much smaller than Var(β̂1)/S, the
variance of the ordinary unadjusted bias estimate.

Below is a modification of the coxsim1.s program to implement this antithetic sampling
algorithm for bias estimation. Note that since two samples are analyzed within each replicate of
the simulation, the computational burden per replicate is roughly twice that of the original
simulation.

#
S << ’%%’
# antithetic sampling for estimating bias of \hat{beta}
NT <- 845 # number simulated samples
N <- 100 # sample size--must be a multiple of 4
beta <- c(0,0) # true coefficients
lamc <- 1 # hazard rate for censoring distribution
fp <- 0
z1 <- rep(c(0,1,0,1),N/4) #covariates stay fixed throughout the run
z2 <- rep(c(0,0,1,1),N/4)
thr <- exp(c(0,beta,beta[1]+beta[2])) # true exponential hazards

# for different covariate combinations
gendata <- function(n,thr,lamc) { #function to generate censored outcomes

y <- runif(n)
y3 <- -log(1-y)/thr # the antithetic variates
y <- -log(y)/thr # the original variates
cen <- rexp(n,rate=lamc)
list(Surv(pmin(y,cen),ifelse(y <= cen,1,0)),

Surv(pmin(y3,cen),ifelse(y3 <= cen,1,0)))
}

out <- matrix(-1,nrow=6,ncol=NT) # store the results
.Random.seed <- c(37,14,5,19,20,0,58,38,4,48,59,2) #repeat 1st simulation
for ( i in 1:NT) { # simulation loop

u <- gendata(N,thr,lamc)
fp <- fp+mean(u[[1]][,2])
w <- coxph(u[[2]]~z1+z2)
u <- coxph(u[[1]]~z1+z2)
out[,i] <- c(u$coef,diag(u$var),w$coef)

}
print(memory.size()) # can become excessive
print(fp/NT) # proportion of observed failures
cat(’true beta=’,format(beta),’\n’)
u1 <- apply(out,1,mean)
u2 <- apply(out,1,var)
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u <- (out[1,]+out[5,])/2
cat(’ordinary and adjusted estimates of bias (beta 1)\n’)
print(c(u1[1],u1[5],mean(u))-beta[1])
cat(’standard errors\n’)
print(sqrt(c(u2[1],u2[5],var(u))/NT))
u <- (out[2,]+out[6,])/2
cat(’ordinary and adjusted estimate of bias (beta 2)\n’)
print(c(u1[2],u1[6],mean(u))-beta[2])
cat(’standard errors\n’)
print(sqrt(c(u2[2],u2[6],var(u))/NT))
cat(’correlations:\n’)
print(c(cor(out[1,],out[5,]),cor(out[2,],out[6,])))
q()
’%%’

Here is the output from the repeats of the two simulation runs given earlier.

[1] 8139472
[1] 0.4967219
true beta= 0 0
ordinary and adjusted estimates of bias (beta 1)
[1] 0.006329357 -0.001471003 0.002429177
standard errors
[1] 0.010668314 0.010599054 0.003764409
ordinary and adjusted estimate of bias (beta 2)
[1] -0.020323796 0.016505287 -0.001909255
standard errors
[1] 0.010522634 0.010311908 0.003746515
correlations:
[1] -0.7493752 -0.7414896

[1] 8077480
[1] 0.7103905
true beta= 1 1
ordinary and adjusted estimates of bias (beta 1)
[1] 0.02192803 0.01807757 0.02000280
standard errors
[1] 0.008778498 0.008793153 0.003817970
ordinary and adjusted estimate of bias (beta 2)
[1] 0.02329385 0.02377239 0.02353312
standard errors
[1] 0.009213349 0.009183816 0.003959552
correlations:
[1] -0.6223160 -0.6294256

In the first case the reduction in the standard error is about 65%, and in the second case about
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57%, so in both cases the reduction in variance has more than compensated for the increase in
computation time. That is, antithetic sampling has approximately doubled the computation time.
If instead the computation time was doubled by doubling the number of independent replications
in the simulation, then the standard error would have been reduced by a factor of 1/21/2 .= .707,
or about 29%.

An application of a type of antithetic sampling to bootstrap methods, based on defining an
antithetic permutation of a sample, is given in Section 10.3.1, below.

7.4 Exercises

Exercise 7.1 Consider the distribution defined by the density

f(x) =
x4 + exp(−x2)

6.6 + π1/2[Φ(23/2) − Φ(−21/2)]
, −1 < x < 2,

where Φ(·) is the standard normal CDF.

1. Give a detailed algorithm for generating random numbers from this distribution.

2. Generate 10,000 independent pseudo-random numbers from this distribution.

3. Using the 10,000 observations from part (b), perform a chi-square goodness-of-fit test, using
50 equal-probability categories, to check whether the sample really appears to be from the
distribution with density f(x).

Exercise 7.2 Develop a rejection sampling algorithm to sample from the beta distribution with
density ∝ xα−1(1 − x)β−1I(0 < x < 1). The overall algorithm should work for any α > 0 and
β > 0, but it may be appropriate to consider separate cases based on the values of α and β.

Exercise 7.3 Consider the binary logistic regression model with

P (Yi = 1|zi1, zi2) =
exp(β0 + β1zi1 + β2zi2)

1 + exp(β0 + β1zi1 + β2zi2)
, i = 1, . . . , n.

Let β̂j be the MLE of βj , j = 1, 2, 3, and vjj be the corresponding diagonal element of the inverse
information, which is the usual estimate of the variance of β̂j . An approximate 90% confidence
interval on βj is given by

β̂j ± 1.6449v
1/2
jj , j = 1, 2, 3.

Conduct a simulation to estimate the true coverage of these approximate confidence intervals with
n = 100 and with the true values of the parameters given by β0 = −.5, β1 = 1 and β2 = 0. In the
simulations, sample (zi1, zi2) from a bivariate normal distribution with means=0, variances=1,
and correlation= ρ, generating new covariate values for each simulated sample. Conduct two
separate simulation runs, one with ρ = 0 and the other with ρ = .7. Choose the sample size to
give reasonable precision for the estimated coverage probabilities (give a justification). For both
simulation runs, give the estimated coverage probabilities and their standard errors. (The
glm( ,family=binomial) function in Splus may be used to fit the models. If you use this, the
inverse information matrix can be obtained from output glm.out with the command
summary(glm.out)$cov.unscaled.)
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Exercise 7.4 Consider the Cox model simulation in Sections 7.2 and 7.3.1. Let the true value of
β here be (0, .6), but keep other aspects of the true distribution (censoring and failure
distributions, covariates, sample size) the same as before.

The partial likelihood score vector evaluated at the true β has exact mean 0, and thus its
components are candidates for control variates. Using the variable definitions from the code in
the file coxsim1.s in Section 7.2, this score vector can be computed using the Splus commands

u <- gendata(N,thr,lamc)
uu <- coxph(u~z1+z2,init=beta,iter.max=0)
y <- apply(residuals(uu,’score’),2,sum)
u <- coxph(u~z1+z2)

(y is then the score vector evaluated at beta). The first and last lines above, identical to lines in
coxsim1.s, are included to show the appropriate location.

Perform a simulation to estimate the bias in β̂j , j = 1, 2, and the coverage probabilities of upper
95% confidence limits on βj , j = 1, 2. In each case use the corresponding component of the score
vector as a control variate. For each of these 4 quantities, give the simulation estimate with and
without the control variate correction, standard errors for each, and the correlation between the
uncorrected values and the corresponding control variate.
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Chapter 8

More on Importance Sampling

8.1 Introduction

The discussion of importance sampling In Section 7.3.2 was formulated in terms of computing an
expectation, where the integrand included a density function. That formulation is completely
general, though, since any integral

∫
h(x) dx can be written∫

[h(x)/f(x)]f(x) dx = Ef [h(X)/f(X)],

where f(x) is a density with support on the region of integration. Then if X(1), . . . , X(S) are a
sample from f ,

∫
h(x) dx can be estimated by

S−1
S∑

s=1

h(X(s))/f(X(s)). (8.1)

Thus the method of Section 7.3.2 can be applied to general integration problems. As discussed
there, the choice of f is very important, since a poor choice will result in (8.1) having a large
variance. In particular, f cannot be too close to 0 except at points where h is also. In general,
locating local modes of h and examining the amount of dispersion about the modes can be very
useful to help in constructing an appropriate sampling distribution. The following sections
illustrate this idea for integrals arising in the context of Bayesian inference. Some extensions of
the basic importance sampling methods are also presented.

8.2 Importance Sampling in Bayesian Inference

Given a likelihood L(β) for a parameter vector β, based on data y, and a prior π(β), the posterior
is given by

π(β|y) = c−1L(β)π(β),

where the normalizing constant c =
∫

L(β)π(β) dβ is determined by the constraint that the
density integrate to 1. This normalizing constant often does not have an analytic expression.
General problems of interest in Bayesian analyses are computing means and variances of the

269
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posterior distribution, and also finding quantiles of marginal posterior distributions. In general let
q(β) be a parametric function for which

q∗ =
∫

q(β)π(β|y) dβ (8.2)

needs to be evaluated. Typical examples of such functions include βj , β2
j (needed for determining

the mean and variance of βj), exp(βj), and I(βj ≤ x) (the posterior expectation of the last is the
probability that βj ≤ x, and solving for a quantile of the posterior might require evaluating such
integrals for many different values of x).

In many applications, (8.2) cannot be evaluated explicitly, and it is difficult to sample directly
from the posterior distribution. (8.2) is of the same form as (7.7), so importance sampling can be
applied. As discussed in Section 7.3.2, samples can be drawn from a distribution with density g,
and the value of (8.2) estimated using (7.8). However, this estimate still depends on the
normalizing constant c, which is often unknown. In this case, if β(1), . . . , β(S) is a sample from g,
then (8.2) can be estimated with

q̃ =
∑
s

wsq(β(s))/
∑
s

ws, (8.3)

where ws = L(β(s))π(β(s))/g(β(s)). To use (8.3), the sampling density g need not be normalized,
either. In general, let

c = Eg(ws) =
∫

L(β)π(β)
g(β)

g(β)∫
g(x) dx

dβ =
∫

L(β)π(β) dβ∫
g(x) dx

,

which is just the normalizing constant of the posterior, as before, in the case where g is
normalized.

To investigate the properties of q̃, note that

q̃ − q∗ =
∑S

s=1 ws[q(β(s)) − q∗]/S∑S
s=1 ws/S

.

By the weak law of large numbers,
∑S

s=1 ws/S
P→ Eg(ws) = c. Since

E[wsq(β(s))] =
∫

q(β)
L(β)π(β)

g(β)
g(β)∫
g(x) dx

dβ

=
∫

q(β)c
π(β|y)
g(β)

g(β) dβ

= c

∫
q(β)π(β|y) dβ

= Eg(ws)q∗,

E{ws[q(β(s)) − q∗]} = 0. Thus for large S, q̃ is approximately normal with mean q∗ and variance

Var{ws[q(β(s)) − q∗]}/(Sc2). (8.4)

Since E{ws[q(β(s)) − q∗]} = 0, (8.4) can be estimated by

∑
s

(
ws[q(β(s)) − q̃]∑

k wk

)2

, (8.5)
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which is S − 1 times the sample variance of the quantities ws[q(β(s)) − q̃]/(
∑

k wk).

In some Bayesian applications, the sampling density g can be based on the normal approximation
to the posterior, as given in (5.22). The normal approximation itself will not always have tails as
heavy as the true posterior, so it can be necessary to use some multiple (> 1) of the approximate
posterior variance, or to use a t distribution instead of the normal, to get a sampling distribution
with sufficiently heavy tails. Also, if the posterior has multiple local modes, a mixture
distribution with components centered on each mode may improve performance. Thus in any case
a preliminary search for modes of the posterior is generally prudent.

In these applications, importance sampling can often be combined with a control variate
correction to improve efficiency. Consider the case where the sampling distribution has a mean µ
that can be evaluated explicitly (for example, in the normal approximation to the posterior, the
mean is the posterior mode, β̂). Then the components of β(s) − µ can be used as control variates.
For example, E(βk|y) can be estimated with

β̃k =
S∑

s=1

β
(s)
k ws∑

l wl
− r

S

S∑
s=1

(β(s)
k − µk), (8.6)

where β
(s)
k is the kth component of β(s) and S is the total number of β(s) sampled. Applying the

argument from Section 7.3.1, the optimal value of r is

r = S
Cov(ws[β

(s)
k − β∗

k]/
∑

l wl, β
(s)
k − µk)

Var(β(s)
k − µk)

,

where β∗
k is the true posterior mean, and the variances and covariances are with respect to the

sampling distribution g. At this optimal value of r, Var(β̃k) is

Var(β̃k) = S

(
Var

[
ws(β

(s)
k − β∗

k)/
∑

l

wl

]
− Cov(ws[β

(s)
k − β∗

k]/
∑

l wl, β
(s)
k − µk)2

Var(β(s)
k − µk)

)

= S Var

[
ws(β

(s)
k − β∗

k)/
∑

l

wl

]
(1 − ρ2), (8.7)

where ρ is the correlation between ws[β
(s)
k − β∗

k]/
∑

l wl and β
(s)
k − µk.

In the next section, these methods are applied to Bayesian analysis of a logistic regression model.

8.3 Bayesian Analysis For Logistic Regression

Consider the problem of Bayesian inference in the standard binary logistic regression model with
likelihood

L(β) =
n∏

i=1

exp(yix
′
iβ)

1 + exp(x′
iβ)

,

where the yi are binary responses and the xi are p-dimensional covariate vectors. Suppose that
the prior distribution on the unknown parameters β specifies that the individual components are
iid N(0, σ2), so the joint prior density is

π(β) ∝ exp[−β′β/(2σ2)].
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The posterior is then
π(β|y) ∝ L(β)π(β).

Some quantities that might be of interest in a Bayesian analysis using this model are the posterior
mean of β, quantiles of the posterior distribution of individual components of β, which can be
thought of as interval estimates of the parameters, means and quantiles of the posterior
distributions of the exp(βj) (the odds ratio parameters), and the means and quantiles of the
distributions of

P (y = 1|x) = p(x′β) =
exp(x′β)

1 + exp(x′β)

(the response probabilities) for various values of x.

In the following example n = 200 with yi = 1 for 132 cases and yi = 0 for 68 cases. There are 5
covariates plus a constant term for p = 6 total parameters, and the prior variance σ2 = 1000 (an
almost noninformative prior). With 6 parameters it might be feasible to get accurate results using
Gauss-Hermite quadrature methods, but to calculate all of the quantities of interest would require
many different multidimensional numerical integrals, so direct calculation is not an attractive
prospect. The posterior is also not easy to sample from directly. In the following, importance
sampling is to perform the calculations.

The importance sampling density considered is the normal approximation to the posterior
distribution, which is a multivariate normal distribution with mean equal to the mode β̂ of the
posterior distribution and covariance matrix equal to I−1(β̂), where

I(β) = − ∂2

∂β∂β′ log[L(β)π(β)].

To sample from this distribution, it is first necessary to find β̂ and I(β̂). In the following this is
done by specifying a function flog() which evaluates minus the log posterior and calling
nlminb() to minimize this function.

> n <- 200
> ncov <- 5
> np <- ncov+1
> y <- scan("data.y")
> X <- matrix(scan("data.X"),ncol=np)
> pen <- .001 # 1/(prior variance)
> flog <- function(b) {
+ lp <- X %*% b
+ - sum(y * lp - log(1 + exp(lp))) + (pen * sum(b^2))/2
+ }
> z <- nlminb(rep(0,np),flog)
> bhat <- z$param
> # bhat is the mode of the posterior
> bhat
[1] 0.8282945 -0.7588482 1.1381240 -0.3916353 0.5320517 -0.0423460
> # I(bhat)
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> d <- exp(X %*% bhat)
> d <- d/(1+d)^2
> # at this point the elements of d are p(xi’bhat)(1-p(xi’bhat)), where
> # the xi are the rows of X. The following line then gives the usual
> # logistic regression information
> inf <- t(X) %*% (c(d)*X)
> # has to be exactly symmetric to use chol()
> inf <- (inf+t(inf))/2
> # and include the contribution from the prior
> diag(inf) <- diag(inf)+pen
> B <- solve(chol(inf))

At this point B is a matrix such that BB′ = I−1(β̂). To sample from the normal approximation to
the posterior, 6-dimensional vectors Z(s) with iid N(0, 1) components can be generated, and β(s)

calculated from β(s) = BZ(s) + β̂. The β(s) then have the required multivariate normal
distribution. The following 3 lines produce a sample of nt=10,000 such vectors, as columns of the
matrix H.

> nt <- 10000
> Z <- matrix(rnorm(nt*np),nrow=np)
> H <- B %*% Z + bhat

In Splus, generating a large number of samples all at once is much more efficient than generating
them one at a time in a loop.

The importance sampling weights are proportional to

ws =
L(β(s))π(β(s))/[L(β̂)π(β̂)]

exp[−(β(s) − β̂)′I(β̂)(β(s) − β̂)/2]
. (8.8)

Since the normalization constant of the posterior is unknown, integrals will be estimated using
(8.3). As discussed there, in this form it is also only necessary to know the sampling density g to
within a normalizing constant, so for simplicity the weights are left in the above form. The factor
L(β̂)π(β̂) is included to standardize both the numerator and denominator to be 1 at β(s) = β̂,
which helps to avoid underflow problems. Substituting β(s) = BZ(s) + β̂, the denominator
simplifies to exp(−Z(s)′Z(s)/2). The following commands calculate the ws as components of the
vector wt. The apply() command is the slowest part of the calculations. It is performing 10,000
evaluations of the log posterior, so it takes several minutes.

> w <- rep(1,np) %*% (Z*Z)
> w2 <- apply(H,2,flog)
> wt <- exp(flog(bhat)-w2+w/2)
> wtsum <- sum(wt)

Note that Z*Z is an element by element product, which gives squares of the elements of Z, and
that flog() gives the negative of the log posterior.
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Now that the samples and the weights have been computed, the other quantities of interest can
be calculated. The mean of the posterior is estimated by

∑
s wsβ

(s)/
∑

s ws.

> bb <- t(H) * c(wt)
> bpm <- apply(bb,2,sum)/wtsum
> bpm
[1] 0.86455126 -0.79344280 1.19705198 -0.40929410 0.56454239 -0.04644663

It must be kept in mind that these (and other quantities below) are just approximations based on
simulations, not exact calculations. They become exact though in the limit as the number of
samples in the simulation becomes infinite. Applying (8.5) to estimate the precision of the
estimated posterior mean of β, gives the following.

> bb2 <- (bb-outer(c(wt),bpm))/wtsum
> sqrt(apply(bb2^2,2,sum))
[1] 0.002805072 0.003156647 0.003536797 0.002749287 0.004001108 0.002282230

Thus the standard errors vary from .002 to .004, and so there should be at least 2 decimal places
of accuracy for the posterior means of all the parameters. This is quite small relative to the
spread of the posterior distribution (see below), and so should be sufficiently accurate for
statistical inferences. If the true posterior distribution really was equal to the normal
approximation, and if estimates were calculated from 10,000 samples from that posterior, then the
variance of the estimates would be as follows.

> sqrt(diag(solve(inf))/nt)
[1] 0.001865649 0.001976781 0.002226847 0.001822120 0.002043587 0.001902633

That the actual standard errors are all less than twice as large as these indicates that the normal
approximation was a reasonably good choice for the sampling distribution.

Information about the range of likely parameter values can be obtained from quantiles of the
posterior distribution. To estimate these quantiles, think of the posterior as a discrete
distribution with mass ws/

∑
k wk on each of the sampled points β(s). The marginal distribution

of any component of β puts the same mass on the corresponding components of the β(s) (the
method of generation should give all distinct values). Estimating a quantile of the marginal
posterior of a particular component of β is then just a matter of finding the quantile of this
discrete approximation. The following function does this.

> qntl <- function(p,wt,pct=c(.025,.5,.975)) {
+ o <- order(p)
+ wtp <- cumsum(wt[o]/sum(wt))
+ out <- NULL
+ for (i in pct) {
+ ind <- max((1:length(p))[wtp<i])+0:1
+ out <- rbind(out,c(p[o][ind],wtp[ind]))
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+ }
+ out
+ }

To find the quantiles of a scalar quantity q(β), the input parameters are p = the vector of q(β(s)),
wt = the vector of w(s), and pct the quantiles (percentiles) to be calculated. In the function, the
vector wtp is the CDF of the marginal distribution, at the points p[o]. For the functions
q(β) = βk, this function gives the following. In the output the first 2 values bracket the estimated
quantile, and the next 2 give the estimated CDF of the marginal posterior at those values.

> qntl(H[1,],wt)
[,1] [,2] [,3] [,4]

[1,] 0.4961963 0.4964762 0.02490576 0.02500103
[2,] 0.8590689 0.8590836 0.49999317 0.50009727
[3,] 1.2611304 1.2612538 0.97479210 0.97502347
> qntl(H[2,],wt)

[,1] [,2] [,3] [,4]
[1,] -1.2050674 -1.2046193 0.02452151 0.02515693
[2,] -0.7930513 -0.7930312 0.49997168 0.50006287
[3,] -0.4048549 -0.4048147 0.97498370 0.97505701
> qntl(H[3,],wt)

[,1] [,2] [,3] [,4]
[1,] 0.7700427 0.7703188 0.02490795 0.0250034
[2,] 1.1873297 1.1874560 0.49993259 0.5000374
[3,] 1.6874651 1.6875951 0.97461611 0.9750564
> qntl(H[4,],wt)

[,1] [,2] [,3] [,4]
[1,] -0.78548781 -0.78463854 0.02489136 0.02519407
[2,] -0.40580561 -0.40580381 0.49992123 0.50001046
[3,] -0.05365666 -0.05362017 0.97491367 0.97500327
> qntl(H[5,],wt)

[,1] [,2] [,3] [,4]
[1,] 0.1597441 0.1598140 0.02495999 0.02506874
[2,] 0.5578549 0.5578882 0.49991835 0.50001017
[3,] 1.0070437 1.0076522 0.97488420 0.97507542
> qntl(H[6,],wt)

[,1] [,2] [,3] [,4]
[1,] -0.43373646 -0.43321462 0.02499914 0.02511654
[2,] -0.04473495 -0.04467982 0.49988329 0.50013270
[3,] 0.32910177 0.32956713 0.97489659 0.97500700

For most of the parameters, the difference between the .975 and .025 quantiles is about .8, so the
spread in the posterior is substantially larger than the sampling error in the simulation, as
claimed above. The fact that the marginal posteriors concentrate in regions which do not include
0 for all parameters but the last could be interpreted as evidence for nonnegligible effects of these
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covariates. For the last covariate 0 is near the center of the posterior distribution, and it is less
clear whether it has an important effect.

The real power of sampling based methods for Bayesian inference becomes apparent for analyzing
more complicated functions of the parameters. For the odds ratio q(β) = exp(β2) (for example),
all that is needed is to calculate the q(β(s)) and proceed as before.

> qq <- exp(H[2,])
> sum(qq*wt)/wtsum
[1] 0.4616637
> qntl(qq,wt)

[,1] [,2] [,3] [,4]
[1,] 0.2996718 0.2998061 0.02452151 0.02515693
[2,] 0.4524621 0.4524712 0.49997168 0.50006287
[3,] 0.6670736 0.6671004 0.97498370 0.97505701

Since q(β) is a monotone function of β2, the quantiles are just the exponential of those given
earlier for β2. Also, since quantiles are being computed from a (weighted) sample from the actual
posterior, it is not necessary to transform to approximate normality to calculate the quantiles (as
would be advisable if large sample approximations were used).

The success probability p(x0), with x′
0 = (1, .5, 1, 0,−.5,−1) (for example), can be calculated in a

similar manner.

> x0 <- c(1,.5,1,0,-.5,-1)
> p <- exp(x0 %*% H)
> p <- p/(1+p)
> pm <- sum(wt*p)/wtsum
> pm
[1] 0.799744
> sqrt(sum((wt*(p-pm)/wtsum)^2))
[1] 0.0007656173
> qntl(p,wt)

[,1] [,2] [,3] [,4]
[1,] 0.6675866 0.6677404 0.02494496 0.0250452
[2,] 0.8042370 0.8042542 0.49991240 0.5000179
[3,] 0.9030322 0.9031865 0.97492025 0.9750304

Again note the sampling error in the estimates is much smaller than the spread of the posterior.

Since the sampling density is a normal distribution with mean β̂, the control variate corrected
version of the importance sampling estimator (8.6) can also be used, with µk = β̂k. Applying this
control variate correction with bb an ¡- d bb2 as before gives the following.

> bb <- t(H) * c(wt)
> bb2 <- (bb-outer(c(wt),bpm))/wtsum
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> se.mean <- sqrt(apply(bb2^2,2,sum))
> H2 <- H-bhat
> for (i in 1:np) {
+ rho <- cor(H2[i,],bb2[,i])
+ cc <- nt*var(H2[i,],bb2[,i])/var(H2[i,])
+ bpmc <- sum(bb[,i]/wtsum-cc*H2[i,]/nt)
+ print(c(rho=rho,correct=cc,mean=bpmc,se=se.mean[i]*sqrt(1-rho^2)))
+ }

rho correct mean se
0.7122092 1.079125 0.8670506 0.001969069

rho correct mean se
0.6623438 1.057443 -0.7931535 0.00236496

rho correct mean se
0.6862681 1.094498 1.195384 0.002572485

rho correct mean se
0.6930217 1.058342 -0.4124472 0.001982007

rho correct mean se
0.5696292 1.107328 0.5660097 0.003288518

rho correct mean se
0.8613971 1.033094 -0.04610898 0.001159218

The first column is the correlation, the second the value of r, the 3rd the corrected estimate of the
posterior mean, and the last the estimated standard error of the corrected estimate. The posterior
means have changed only slightly, but with a correlation of ρ = 1/

√
2 = .707, the standard error is

reduced by a factor of 1/
√

2. To get an equivalent reduction from increasing the sample size
would require doubling the number of samples drawn. A correlation of .866 would reduce the
standard error by a factor of 2, which would be the equivalent of drawing 4 times as many β(s).

8.4 Exercises

Exercise 8.1 Consider again Exercise 6.7. Evaluate the integrals defined in that problem using
the following methods:

1. Direct Monte Carlo integration, sampling from the conditional normal distribution of
(z2, z3)|z1.

2. Importance sampling, sampling from the N2(ẑ, Ĥ) distribution, where ẑ = (ẑ2, ẑ3)′

maximizes the integrand g(z2, z3) of (6.18) and Ĥ−1 = −(∂2 log{g(ẑ2, ẑ3)}/∂zi∂zj) is minus
the matrix of second derivatives of log{g(·, ·)},

Ĥ−1 = p̂(1 − p̂)

(
1 −2

−2 4

)
+ R,

where p̂ = exp(2 − ẑ2 + 2ẑ3)/{1 + exp(2 − ẑ2 + 2ẑ3)} and R is the lower right 2 × 2 block of
V −1.



278 CHAPTER 8. MORE ON IMPORTANCE SAMPLING

Exercise 8.2 Suppose

Yi = β0 +
p∑

j=1

xijβj + ei/ν1/2,

where the xij are fixed covariates, β = (β0, . . . , βp)′ and ν are unknown parameters, and the ei are
iid from a known symmetric distribution with mean 0, finite variance, and density f(·). Suppose
the prior distribution for the parameters specifies that all components are independent, with
βj ∼ N(0, c−1) (c−1 is the variance) and ν ∼ Γ(a, b), where a, b and c are known constants, and
Γ(a, b) is the gamma distribution with density proportional to xa−1 exp(−bx).

1. Show that the log posterior can be written as∑
i

[h(ri) + γ] − cβ′β/2 + 2aγ − b exp(2γ),

plus a constant not involving the parameters, where h(u) = log(f(u)),
ri = (Yi − β0 − ∑

j xijβj) exp(γ) and γ = log(ν)/2.

2. Develop an importance sampling algorithm that can be used to estimate posterior moments
and distributions. Be specific about the details, including what distribution to sample from,
how to draw the samples, and give formulas for calculating the weights.

3. Suppose c−1 = 10, 000 and a = b = .1, and that f(u) = exp(u)/[1 + exp(u)]2, the standard
logistic density. The file impsampexr.dat contains Yi in the first column and 2 covariates in
columns 2 and 3, for 100 cases. For this data set, use your importance sampling algorithm
to calculate the posterior means of the parameters (and give estimates of the precision of
the estimated means).



Chapter 9

Markov Chain Monte Carlo

By sampling from a Markov chain whose stationary distribution is the desired sampling
distribution, it is possible to generate observations from distributions that would otherwise be
very difficult to sample from. The drawbacks of this technique are that it is generally unknown
how long the chain must be run to reach a good approximation to the stationary distribution, and
once the distribution converges, the values generated are not independent.

First some background material on Markov chains will be reviewed, and then some specific
methods for constructing Markov chains with a specified stationary distribution will be
considered.

The major applications driving development of Markov chain Monte Carlo methods have been to
problems of Bayesian inference, but they are also useful for a variety of other problems where
direct generation of independent observations from the joint distribution is difficult, such as in
conditional frequentist inference problems for categorical data, where the conditional sampling
distributions can have complex forms, and for Monte Carlo evaluation of integrals appearing in
the E step of EM algorithms.

9.1 Markov Chains

A Markov chain is a discrete time stochastic process. Only chains with a finite number of possible
states will be considered formally here, although in applications it will often be convenient to
think in terms of continuous distributions. The discrete state model is always technically true if
the calculations are done on a computer, since there are only a finite number of values that can be
represented. That is, when generating data from continuous distributions, such as the uniform or
normal, the values are actually drawn from a discrete approximation to the true distribution.

Let X(n) be the value the chain takes at time n (formally known as the ‘state’). Let
S = {x1, . . . , xS} be the state space, which is the set of possible values for the X(n) (the number of
possible states S could be enormously large, as long as it is finite). The possible states xj could be
virtually anything, but in statistical applications they can usually be thought of as points in Rp.

The chain starts from an initial state X(0). The distribution of the state of the chain at time
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n + 1, given the state at time n, is given by a set of transition probabilities. The Markov property
states that these transition probabilities depend on the past history of the chain only through the
current value. That is,

P (X(n+1) = y|X(j) = x(j), j = 0, . . . , n) = P (X(n+1) = y|X(n) = x(n)).

Set
p(x, y) = P (X(n+1) = y|X(n) = x).

Throughout it will be assumed that the chain is homogeneous in time, meaning that these
transition probabilities are the same for all n. Let

p(m)(x, y) = P (X(n+m) = y|X(n) = x)

be the m-step transition probabilities. A Markov chain is irreducible if p(m)(xi, xj) > 0 for some
m for each pair of possible states xi and xj (the value of m can be different for different pairs).
That is, for an irreducible chain, every state can be reached from every other state.

A state xi is periodic if there exists an integer d > 1 such that p(m)(xi, xi) = 0 whenever m is not
divisible by d. A state is aperiodic if it is not periodic. A chain is aperiodic if all states are
aperiodic. For irreducible chains with a finite state space, it can be shown that either all states
are aperiodic or all are periodic.

The transition probabilities p(xi, xj) can be organized in an S × S matrix P = (pij), where
pij = p(xi, xj). Also, in general the m-step transition probabilities can be put in a matrix
P (m) = (p(m)(xi, xj)). Since the two-step transition probabilities satisfy

p(2)(xi, xj) =
S∑

l=1

p(xi, xl)p(xl, xj),

it follows that P (2) = P 2 = P × P , the ordinary matrix product of P with itself. Continuing in
the same fashion, it can be seen that P (m) = Pm.

Let π(0)(xj) = P (X(0) = xj) be the initial distribution of the chain (if the chain always starts in a
particular state xi, then this will be the degenerate distribution with π(0)(xi) = 1). Also let
π(n)(xj) = P (X(n) = xj) be the marginal distribution of X(n), and let
π(n) = (π(n)(x1), . . . , π(n)(xS))′. Since

π(1)(xj) =
S∑

l=1

π(0)(xl)p(xl, xj),

it follows that π(1) = Pπ(0), and continuing in the same fashion, π(n) = Pnπ(0)

For irreducible, aperiodic chains, there is a unique probability distribution with mass probabilities
πj = π(xj) (for state xj) satisfying

π = Pπ,

where π = (π1, . . . , πS)′. This distribution is known as the stationary distribution. If the initial
distribution π(0) is the stationary distribution π, then π(1) = Pπ(0) = Pπ = π, and continuing in
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the same fashion, π(n) = π for all n. Thus if the chain starts from its stationary distribution, the
marginal distribution of the state at time n is again given by the stationary distribution.

Another important result is that for an irreducible, aperiodic chain with stationary distribution π,

lim
n→∞π(n) = π,

regardless of the initial distribution π(0). That is, the marginal distribution of X(n) converges to
the stationary distribution as n → ∞. Thus if an irreducible, aperiodic Markov chain is started
from some arbitrary state, then for sufficiently large n, the current state X(n) is essentially
generated from the stationary distribution on S. Also, once the distribution π(n) converges to the
stationary distribution, the marginal distribution of the state at all future times is again given by
the stationary distribution, so these values are an identically distributed sample from this
distribution (they are generally not independent, though). Thus a way to generate values from a
distribution f on a set S is to construct a Markov chain with f as its stationary distribution, and
to run the chain from an arbitrary starting value until the distribution π(n) converges to f . Two
important problems are how to construct an appropriate Markov chain, and how long the chain
needs to be run to reach the stationary distribution.

For an irreducible, aperiodic chain, if

πip(xi, xj) = πjp(xj , xi) (9.1)

for all i, j, then π is the stationary distribution. This follows because from (9.1),

S∑
i=1

πip(xi, xj) =
S∑

i=1

πjp(xj , xi) = πj ,

since
∑

i p(xj , xi) = 1, so by definition, π must the the stationary distribution. (9.1) is called a
reversibility condition, since it states that for the stationary distribution, the probability of being
in state xi and moving to state xj on the next step is the same as the probability of being in state
xj and moving to state xi. Condition (9.1) is usually easy to check, and will be very useful in
helping to construct chains with arbitrary stationary distributions, but not all chains have
stationary distributions that satisfy this condition.

An analogous formulation is available for continuous state spaces, and as already noted,
applications are often formulated in terms of density functions on continuous spaces, instead of
mass functions on discrete spaces, even though the actual sampling is technically done from
discrete approximations to the continuous densities.

Some particular methods of constructing Markov Chains will be described next.

9.2 The Metropolis-Hastings Algorithm

Practical application of Markov chain sampling goes back at least to Metropolis et al (1953).
Hastings (1970) extended the basic proposal from that paper and gave some of the first
applications in the statistical literature. These methods did not become popular until the
wide-spread availability of high speed computers in the last decade. Beginning with Tanner and
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Wong (1987), and Gelfand and Smith (1990), there has now been an enormous literature
developed on Markov chain Monte Carlo.

Hastings’ extension of the Metropolis et al algorithm will be referred to as the M-H algorithm in
the following. The M-H algorithm gives a general method for constructing a Markov chain with
stationary distribution given by an arbitrary mass function (or approximating density) f(x). Let
q(x, y) be any Markov chain transition kernel whose state space is the same as the sample space
of f . Some specific proposals for q(x, y) will be discussed below. To be useful, q(x, · ) should be
easy to sample from, but generally q does not have f as its stationary distribution. Define

α(x, y) = min
{

f(y)q(y, x)
f(x)q(x, y)

, 1
}

. (9.2)

Given the state of the chain at time n, X(n), the M-H algorithm samples a trial value X
(n+1)
t from

q(X(n), · ), sets X(n+1) = X
(n+1)
t with probability α(X(n), X

(n+1)
t ), and sets X(n+1) = X(n) with

probability 1 − α(X(n), X
(n+1)
t ). In practice this is accomplished by drawing U (n) ∼ U(0, 1) and

setting X(n+1) = X
(n+1)
t I{U (n) ≤ α(X(n), X

(n+1)
t )} + X(n)I{U (n) > α(X(n), X

(n+1)
t )}.

The transition kernel of the resulting chain is given by

p(x, y) =

{
q(x, y)α(x, y) y 6= x
1 − ∑

u6=x q(x, u)α(x, u) y = x.
(9.3)

Roughly, if α(X(n), X
(n+1)
t ) < 1 then X(n) is underrepresented relative to X

(n+1)
t in the chain

generated by q, and occasionally rejecting X
(n+1)
t and keeping X(n) adjusts for this

underrepresentation. More formally, it can be shown that f satisfies the reversibility condition
(9.1) for the transition kernel (9.3) for all x and y in the sample space of f , guaranteeing that f is
the stationary distribution. For example, suppose x 6= y are such that f(x)q(x, y) > f(y)q(y, x).
Then α(x, y) = f(y)q(y, x)/f(x)q(x, y) and α(y, x) = 1, so

f(x)p(x, y) = f(x)q(x, y)α(x, y)
= f(x)q(x, y)f(y)q(y, x)/f(x)q(x, y)
= f(y)q(y, x)
= f(y)q(y, x)α(y, x) = f(y)p(y, x).

The other cases are left as an exercise.

Note that since f appears in both the numerator and denominator of (9.2), f only needs to be
known to within a normalizing constant.

The success of this algorithm depends on how close q(x, y) is to f(y). If f(·) is small where q(x, · )
is large, then most trial points sampled will be rejected, and the chain will stay for long periods of
time in the same state. Thus choosing an appropriate q is in general not a trivial problem. The
ideas discussed in previous contexts, such as using distributions with the same mode and similar
spread as f , but easier to sample from, again play an important role.

Some specific methods for constructing transitional kernels q(x, y) will now be described. In the
following, let x̂ be the mode of f(x), and let Ĥ = −{∂2 log[f(x̂)]/∂x∂x′}−1. If these quantities
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cannot be easily approximated, then other approximations to the mean and variance of f(x)
could be considered, too.

9.2.1 Random Walk Chain

Let g be a density defined on the same space as f , and set q(x, y) = g(y − x). One choice for g
would be the mean 0 normal density with covariance matrix Ĥ. A multivariate t distribution with
dispersion matrix Ĥ might also be an appropriate choice.

If g is symmetric, then

α(x, y) = min
{

f(y)g(y − x)
f(x)g(x − y)

, 1
}

= min{f(y)/f(x), 1}.

This was the original algorithm proposed by Metropolis et al (1953).

9.2.2 Independence Chain

Again let g be a density defined on the same space as f , and set q(x, y) = g(y). That is, trial
values are generated independently of the current value. Again logical choices for g are a normal
or t distribution with mean x̂ and dispersion matrix Ĥ. In this case

α(x, y) = min
{

f(y)g(x)
f(x)g(y)

, 1
}

= min
{

f(y)/g(y)
f(x)/g(x)

, 1
}

,

so α(X(n), X
(n+1)
t ) is the ratio of the importance sampling weights at the current and the trial

points.

9.2.3 Rejection Sampling Chain

For rejection sampling, it is necessary to find a function g which everywhere dominates the
density f . It is often difficult to prove a function dominates everywhere. For example, let g be a t
density with small to moderate degrees of freedom, with mean x̂ and dispersion matrix cĤ for
some c > 1, rescaled so that g(x̂) > f(x̂). Such a function would often dominate f everywhere, or
nearly everywhere, but this would generally be difficult to to prove. Tierney (1994) gave a
method to use the general M-H algorithm to correct for possible non-dominance in the proposed
dominating function g.

Suppose then that there is a rejection sampling algorithm sampling from a density proportional to
a function g, which may not actually dominate f everywhere. In Tierney’s method, at each step
in the M-H algorithm, the rejection sampling algorithm is run, and the M-H trial value X

(n+1)
t is

the first value not rejected in the rejection sampling. If g does not actually dominate, then the
density/mass function for X

(n+1)
t is h(x) ∝ min{f(x), g(x)}, and the M-H transition kernel

q(x, y) = h(y). Then defining

α(x, y) = min
{

f(y)h(x)
f(x)h(y)

, 1
}
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gives an M-H chain that corrects the sample for possible non-dominance of g. If g does dominate
f , then α(x, y) ≡ 1, and this algorithm is identical to rejection sampling. If g does not dominate,
then points where g(x) < f(x) will have α(x, y) < 1 for some values of y (assuming g does
dominate at some points), so when these non-dominated points do occur, the M-H algorithm will
sometimes reject the new trial point, increasing the frequency of the non-dominated points. It is
straightforward to verify that f satisfies the reversibility condition (9.1) for the transition kernel
of this chain, guaranteeing that f is the stationary distribution.

Given the similarities among importance sampling, independence chain sampling, and rejection
chain sampling, it is an interesting question which can be implemented more efficiently in
particular applications.

9.3 Block-at-a-Time Algorithms

If the above algorithms were the full extent of what could be achieved with Markov chain
sampling, then there might be little to be gained over other methods such as importance
sampling. The real power of Markov chain sampling is that when using a chain to generate
observations from a vector valued distribution, it is not necessary to update all components
simultaneously, so that a complex problem can be broken down into a series of simpler problems.

Suppose X ∼ f(x) can be divided into U and V , X = (U, V ). (In this section, the orientation of
vectors does not matter, although elsewhere vectors will continue to be column vectors.) Both U
and V can also be vector valued. Let fU |V (u|v) and fV |U (v|u) be the conditional distributions of
U |V and V |U . Suppose p1|2(·, · |v) is a Markov chain transition kernel with stationary distribution
fU |V (· |v), and p2|1(·, · |u) is a Markov chain transition kernel with stationary distribution
fV |U (· |v).

Given the current state X(n) = (U (n), V (n)), consider the two step update

1. generate U (n+1) from p1|2(U (n), · |V (n)),

2. generate V (n+1) from p2|1(V (n), · |U (n+1)).

The two steps above can be thought of as generating a single update X(n+1) of the process. This
update has transition kernel

p(x, y) = p((u, v), (w, z)) = p1|2(u, w|v)p2|1(v, z|w).

This transition kernel generally does not satisfy the reversibility condition (9.1), but it does have
f as its stationary distribution. To see this, note that∑

u

∑
v

f(u, v)p((u, v), (w, z)) =
∑
u

∑
v

fU |V (u|v)fV (v)p1|2(u, w|v)p2|1(v, z|w)

=
∑
v

fU |V (w|v)fV (v)p2|1(v, z|w)

=
∑
v

fV |U (v|w)fU (w)p2|1(v, z|w)

= fV |U (z|w)fU (w) = f(w, z),
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where the second line follows because fU |V (w|v) is the stationary distribution of p1|2(u, w|v), and
the last line because fV |U (z|w) is the stationary distribution of p2|1(v, z|w). Thus to find a
Markov chain with stationary distribution f , it is only necessary to find transition kernels for the
conditional distributions of blocks of components. These can be simpler to construct and to
sample from.

This approach can be extended to any number of blocks. Any Metropolis-Hastings type update
can be used within each block, and different types of updates can be used in different blocks.

The advantage of a block-at-a-time algorithm is that it is often much easier to find good
approximations to the conditional distributions to use in M-H and other Markov chain updating
schemes, leading to simpler methods of generating new values and greater acceptance rates of
generated trial values. In some applications the conditional distributions can be sampled from
directly, as described in the following subsection. However, separately updating blocks will often
induce greater autocorrelation in the resulting Markov chain, leading to slower convergence.
Transformations to reduce the correlation between blocks can greatly improve the performance of
block-at-a-time algorithms, although there are no simple general recipes for finding appropriate
transformations.

9.3.1 Gibbs Sampling

Gibbs sampling is a block-at-a-time update scheme where the new values for each block are
generated directly from the full conditional distributions. That is, in terms of the previous
notation,

p1|2(u, w|v) = fU |V (w|v)

and
p2|1(v, z|w) = fV |U (z|w).

It turns out a variety of problems can be put in a framework where the full conditional
distributions are easy to sample from. Gelfand et al (1990) gave several examples. This is
especially true of hierarchical normal random effects models, and incomplete data problems
involving normal distributions.

The idea of generating data from full conditional distributions was discussed by Geman and
Geman (1984), and independently by Tanner and Wong (1987). The origin of the term ‘Gibbs
sampling’ is not completely clear, since neither of these papers used this term. Geman and
Geman did use Gibbs distributions in their paper, though.

9.4 Implementation Issues

The goal of Markov chain sampling (in this context) is to generate observations from a specified
distribution f . Having constructed a transition kernel with stationary distribution f , the usual
approach to is to start from an arbitrary point and run the chain until it is thought to have
converged, and to discard the values generated prior to convergence. The values generated before
convergence (and discarded) are referred to as the ‘burn-in’.

Gelfand and Smith (1990) proposed just keeping a single value from the chain, and starting a new
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chain to generate each new observation from f . In this way they obtain an independent series of
observations from f . It is now generally recognized that this in inefficient. If the marginal
distributions of the Markov chain have converged, then more information would be obtained by
continuing to sample from the same chain than from starting a new one, since each time the chain
is restarted from an arbitrary value there is a new burn-in period that needs to be discarded.

Empirical monitoring for convergence of a Markov chain is not a simple problem, and examples
can be constructed that will fool any particular test. Gelman and Rubin (1992) advocated
running several parallel chains, starting from widely dispersed values, and gave a convergence
diagnostic based on an analysis of variance procedure for comparing the within chain and between
chain variability. At minimum, it seems prudent to run several chains from different starting
values and to compare inferences from the different chains. There have been a number of other
convergence diagnostics proposed. Cowles and Carlin (1996) gave a comparative review. Simple
plots of the trace of generated values over the iterations (X(n) versus n) and of cumulative sums
(
∑

(X(n) − X)), can reveal serious problems, although apparently good results in selected plots
does not guarantee overall convergence.

Perhaps the greatest danger is that a chain run for some finite period of time will completely miss
some important region of the sample space. For example, if a density has distinct local modes,
with little probability mass between the modes, then the chain will tend to become trapped in
one of the modes and could completely miss the other modes. In this case, although technically
the chain might be irreducible, practically speaking it is not, since the probability of a transition
from the neighborhood of one mode to another is very small. Gelman and Rubin (1992) also
advocated doing an extensive search for local modes, and starting chains within the distinct
modes. Once the modes are located, M-H sampling based on mixtures of components centered on
each mode could be considered.

9.4.1 Precision of Estimates

If X(1), X(2), . . . , X(N) are the values generated from a single long run of a Markov chain with
stationary distribution f(x), and if the chain has approximately converged by the Bth iteration,
then an approximately unbiased estimator for

∫
b(x)f(x) dx

is

b̃ =
N∑

i=B+1

b(X(i))/(N − B),

(see eg Tierney, 1994, for a more precise statement of consistency and asymptotic normality of
averages of sequences from Markov chains). Since the X(i) are generally not independent,
determining the precision of this estimator is not a trivial problem. Let σ2 = Var[b(X(i))] be the
marginal variance and ρk = cor[b(X(i)), b(X(i+k))] be the lag k autocorrelation in the sequence. If
the chain is assumed to have converged by the Bth step, σ2 and the ρk should not depend on i for
i > B. If the autocorrelations die out reasonably fast and can be assumed to be negligible for
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k > K for some K, then

Var(b̃) =
1

(N − B)2

 N∑
i=B+1

σ2 +
∑
i<j

2ρj−iσ
2

 =
σ2

(N − B)2

N − B + 2
K∑

j=1

(N − B − j)ρj

 .

If the autocorrelations do go to zero reasonably fast, then the usual empirical moments will be
consistent (although somewhat biased) for σ2 and the ρk, so this quantity is straightforward to
estimate.

Since Markov chain Monte Carlo runs are often quite long, a simpler approach is to group the
data into blocks and estimate the variance from the block means. That is, suppose N − B = Jm,
and let

b̃j =
B+jm∑

i=B+1+(j−1)m

b(X(i))/m, j = 1, . . . , J,

be the means of groups of m consecutive values. Note that b̃ =
∑J

j=1 b̃j/J . If m is large relative
to the point at which the autocorrelations die out, then the correlations among the b̃j should be
negligible, and the variance can be estimated as if the b̃j were independent. If the correlation is
slightly larger, then it might be reasonable to assume the correlation between b̃j and b̃j+1 is some
value ρ to be estimated, but that correlations at larger lags are negligible. In this case

Var(b̃) .= Var(b̃j)(1 + 2ρ)/J, (9.4)

and ρ and Var(b̃j) can be estimated using empirical moments. The following function computes
(9.4) for a generated vector x.

varest <- function(x,m=100) {
# estimate standard error in mean of correlated sequence x by using
# variation in means of blocks of size m. Assumes adjacent blocks are
# correlated, but blocks at greater lags are not

ng <- floor(length(x)/m)
if (ng*m < length(x)) x <- x[-(1:(length(x)-ng*m))]
ind <- rep(1:ng,rep(m,ng))
gmx <- tapply(x,ind,mean)
mx <- mean(gmx)
rho <- cor(gmx[-1],gmx[-length(gmx)])
c(mean=mx,se=sqrt(var(gmx)*(1+2*rho)/ng),rho=rho)

}

Other methods of estimation, such as overlapping batch means, are discussed in Chapter 3 of
Chen, Shao and Ibrahim (2000).

9.5 One-way Random Effects Example

The following example uses Gibbs sampling for a Bayesian analysis of a one-way random effects
model, which is similar to that used in Section 4 of Gelfand et al (1990). The distribution of the
responses Yij is given by

Yij = θi + eij , i = 1, . . . , n, j = 1, . . . , J,
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with the θi iid N(µ, σ2
θ) and the eij iid N(0, σ2

e). The prior on µ is N(µ0, σ
2
0), the prior on 1/σ2

e is
Γ(a1, b1) and the prior on 1/σ2

θ is Γ(a2, b2), where Γ(a, b) denotes the gamma distribution with
density proportional to xa−1 exp(−bx).

Integrating over the random effects, conditional on the parameters (µ, σ2
θ , σ

2
e), the vectors

Yi = (Yi1, . . . , YiJ)′ are independent with

Yi ∼ N(µ1J , σ2
eI + σ2

θ1J1′
J).

In this simple example, explicit formulas for the determinant and inverse of the covariance matrix
are easily given, so an explicit formula for the likelihood is available. With only 3 parameters it is
likely that posterior means and variances can be calculated using the Gaussian quadrature
methods described earlier. And with only 3 parameters a variety of methods could be used to
sample from the posterior. Gibbs sampling provides an especially easy way to sample from the
posterior, though, and the Gibbs sampling algorithm is easily generalized to more complex
random effects models.

For Gibbs sampling to be easy to implement, it is necessary that each of the full conditional
distributions be easy to sample from. Here this is accomplished by thinking of the θi as
parameters (in the Bayesian sense), and the random effects structure as a hierarchical prior on
these parameters. Conditional on θ = (θ1, . . . , θn)′ and σ2

e , the Yij are iid N(θi, σ
2
e), so the

likelihood is just

L(θ, σ2
e) = σ−nJ

e exp

−
∑
i,j

(Yij − θi)2/(2σ2
e)

 ,

and the posterior is proportional to L(θ, σ2
e)g1(θ|µ, σ2

θ)g2(µ)g3(σ2
θ)g4(σ2

e), where g1 is the
conditional prior density of the θi (iid N(µ, σ2

θ)) and g2, g3 and g4 are the densities of the prior
distributions of µ, σ2

θ and σ2
e given earlier. The conditional distributions that need to be sampled

then are [θ|σ2
e , σ

2
θ , µ], [µ|θ, σ2

θ ], [σ2
θ |µ, θ] and [σ2

e |θ] (these are also conditional on the data, but that
only directly affects the first and last). The priors were chosen to be conditionally conjugate, so
the sampling will only require generating values from normal and gamma distributions. It is
straightforward to verify that the conditional distributions are

[θ|σ2
e , σ

2
θ , µ] iid∼ N

(
JY iσ

2
θ + µσ2

e

Jσ2
θ + σ2

e

,
σ2

θσ
2
e

Jσ2
θ + σ2

e

)

[µ|θ, σ2
θ ] ∼ N

(
nθσ2

0 + µ0σ
2
θ

nσ2
0 + σ2

θ

,
σ2

0σ
2
θ

nσ2
0 + σ2

θ

)
[1/σ2

θ |µ, θ] ∼ Γ(n/2 + a2, b2 +
∑

i

(θi − µ)2/2)

[1/σ2
e |θ] ∼ Γ(nJ/2 + a1, b1 +

∑
i,j

(Yij − θi)2/2),

where Y i =
∑

j Yij/J and θ =
∑

i θi/n. Starting from arbitrary values, the Gibbs sampler consists
of sampling from each of these distributions in turn, where at each iteration the current values are
used for any parameters in the corresponding conditional distribution.

In the calculations below, the distributions are sampled in the order given above, but this was
arbitrary. The values used in the priors are m0= µ0 = 0, nu0= 1/σ2

0 = 10−5, and a1, b1, a2, b2
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(a1, b1, a2, b2) all equal to .001. The variable names used for the parameters are ths for θ, nu.es
for 1/σ2

e , nu.ths for 1/σ2
θ , and mus for µ. The commands used to generate the data set are given

below. The actual data is in the file gibbs.dat.

> K <- 6; J <- 5; mu <- 5; vt <- 4; ve <- 16;
> .Random.seed
[1] 1 53 41 59 44 3 59 6 53 42 5 3

> theta <- rnorm(K,mu,sqrt(vt))
> Y <- rnorm(K*J,0,sqrt(ve)) + rep(theta,rep(J,K))
> group <- rep(1:K,rep(J,K))
> ybar <- tapply(Y,group,mean)
> write(rbind(Y,group),"gibbs.dat",2)
> # summary of the data
> ybar

1 2 3 4 5 6
5.097592 7.457386 -0.2985133 8.141821 -1.162981 7.066291

> mean(ybar)
[1] 4.383599
>
> # prior distribution parameters
> m0 <- 0; nu0 <- 1.e-5; a1 <- .001; b1 <- .001; a2 <- .001; b2 <- .001;

The following function runs the Gibbs sampler, using 0’s and 1’s as initial values. It is used to
generate an initial sequence of 500 values, which are plotted in Figure 9.1.

> gibbs.re <- function(nt) {
+ print(.Random.seed)
+ # initial values for Gibbs Sampling
+ mus <- rep(0,nt+1)
+ nu.es <- nu.ths <- rep(1,nt+1)
+ ths <- matrix(0,nrow=K,ncol=nt+1)
+ # The following loop runs the sampler.
+ for (i in 2:(nt+1)) {
+ j <- i-1
+ wt <- 1/(nu.es[j]*J+nu.ths[j])
+ ths[,i] <- rnorm(K,(J*ybar*nu.es[j]+nu.ths[j]*mus[j])*wt,sqrt(wt))
+ wt <- 1/(K*nu.ths[j]+nu0)
+ mus[i] <- rnorm(1,(nu.ths[j]*K*mean(ths[,i])+nu0*m0)*wt,sqrt(wt))
+ nu.ths[i] <- rgamma(1,K/2+a2)/(sum((ths[,i]-mus[i])^2)/2+b2)
+ nu.es[i] <- rgamma(1,J*K/2+a1)/(b1+sum((Y-ths[group,i])^2)/2)
+ }
+ list(mus=mus,nu.es=nu.es,nu.ths=nu.ths,ths=ths)
+ }
> nt <- 500
> run1 <- gibbs.re(nt)
[1] 9 24 29 51 30 2 6 5 60 30 56 3
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> postscript("fig1.ps",pointsize=20)
> plot(1:nt,1/run1$nu.ths[-1],type="l",xlab="Iteration",main=
+ "Variance of Theta Dist")
> dev.off()
> postscript("fig2.ps",pointsize=20)
> plot(1:nt,1/run1$nu.es[-1],type="l",xlab="Iteration",main=
+ "Variance of Error Dist")
> dev.off()
> postscript("fig3.ps",pointsize=20)
> plot(1:nt,run1$mus[-1],type="l",xlab="Iteration",main=
+ "Mean of Theta Dist")
> dev.off()
> postscript("fig4.ps",pointsize=20)
> plot(1:nt,run1$ths[2,-1],type="l",xlab="Iteration",main="Theta2")
> dev.off()
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Figure 9.1: Output from the first 500 cycles

After viewing output from the first 500 samples, it was decided (informally, and perhaps
conservatively) to discard the first 100 from a full run of 5000 cycles through the sampler.



9.5. ONE-WAY RANDOM EFFECTS EXAMPLE 291

> run2 <- gibbs.re(5000)
[1] 1 63 42 14 52 3 63 11 22 47 14 3

> ths <- run2$ths[,-(1:101)]
> mus <- run2$mus[-(1:101)]
> nu.ths <- run2$nu.ths[-(1:101)]
> nu.es <- run2$nu.es[-(1:101)]
> # How much correlation is there in the sequence?
> acor <- function(x,k) cor(x[-(1:k)],x[-((length(x)-k+1):length(x))])
> for (k in c(1,10,20,30,40,50,100,200,300)) print(acor(1/nu.ths,k))
[1] 0.2582468
[1] 0.001480924
[1] 0.001870187
[1] -0.006411884
[1] -0.009027028
[1] -0.01824866
[1] -0.001897716
[1] -0.003997428
[1] 0.008303639
> for (k in c(1,10,20,30,40,50,100,200,300)) print(acor(1/nu.es,k))
[1] 0.3178706
[1] 0.1060543
[1] 0.07578219
[1] 0.02398592
[1] 0.003063344
[1] -0.002129605
[1] 0.001628338
[1] 0.06055358
[1] 0.004518483
> # Estimate the sampling error in the posterior means
> varest(1/nu.es)

mean se rho
16.33774 0.2040973 -0.01361772

> # the following is roughly the se for 4900 independent samples
> sqrt(var(1/nu.es)/length(nu.es))
[1] 0.07907397
> # spread of the posterior
> quantile(1/nu.es,c(.025,.5,.975))

2.5% 50.0% 97.5%
8.988528 15.19181 30.26893

> # variance of random effects
> varest(1/nu.ths)

mean se rho
22.02392 0.6837816 -0.07702611

> sqrt(var(1/nu.ths)/length(nu.ths))
[1] 0.5079442
> quantile(1/nu.ths,c(.025,.5,.975))
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2.5% 50.0% 97.5%
1.086735 13.67551 93.38017

> # overall mean
> varest(mus)

mean se rho
4.444879 0.02229332 -0.3051893

> sqrt(var(mus)/length(mus))
[1] 0.02962804
> quantile(mus,c(.025,.5,.975))

2.5% 50.0% 97.5%
0.4691267 4.433664 8.608497

To examine the sensitivity to the prior, the runs were repeated with different priors on variance of
the random effects. In the first case, the sample generated is almost noninformative, due to
extremely high autocorrelation in the µ sequence, as can be seen in Figure 9.2. In the second
case, performance was much better.

> a2 <- 2 # prior for variance of random effects
> # has mode at 1, variance of 2000000).
> run3 <- gibbs.re(5000)
[1] 13 32 24 55 17 0 36 29 20 11 2 0

> ths <- run3$ths[,-(1:101)]
> mus <- run3$mus[-(1:101)]
> nu.ths <- run3$nu.ths[-(1:101)]
> nu.es <- run3$nu.es[-(1:101)]
> for (k in c(1,10,20,30,40,50)) print(acor(1/nu.ths,k))
[1] 0.6487311
[1] -0.01415425
[1] 0.004182847
[1] -0.0003099855
[1] -0.01843221
[1] -0.006256902
> for (k in c(1,10,20,30,40,50,100,200,300)) print(acor(mus,k))
[1] 0.9991632
[1] 0.9912071
[1] 0.9827219
[1] 0.9748673
[1] 0.9662091
[1] 0.9564646
[1] 0.9043435
[1] 0.8012627
[1] 0.6749711
>
> # the following se is not valid, since the correlation in blocks at
> # lag more than 1 is much larger than 0.
> varest(mus)
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mean se rho
5.085794 0.1066138 0.9319637

> varest(1/nu.ths)
mean se rho

0.0009894144 7.207767e-05 0.1943027
> postscript("plot2.ps",pointsize=20)
> plot(1:length(mus),mus,type="l",xlab="Iteration",main=
+ "Mean of Theta Dist")
> dev.off()
> ## different prior where the performance is better
> a2 <- .5
> b2 <- 1
> run4 <- gibbs.re(5000)
[1] 45 8 31 63 55 3 7 2 40 52 54 0

> ths <- run4$ths[,-(1:101)]
> mus <- run4$mus[-(1:101)]
> nu.ths <- run4$nu.ths[-(1:101)]
> nu.es <- run4$nu.es[-(1:101)]
> varest(1/nu.es)

mean se rho
16.46548 0.1015839 -0.204841

> quantile(1/nu.es,c(.025,.5,.975))
2.5% 50.0% 97.5%

8.991402 15.38827 30.09218
> varest(1/nu.ths)

mean se rho
15.12667 0.3180309 -0.1422266

> quantile(1/nu.ths,c(.025,.5,.975))
2.5% 50.0% 97.5%

1.380939 10.51433 56.65054
> varest(mus)

mean se rho
4.374258 0.03810206 0.1592661

> quantile(mus,c(.025,.5,.975))
2.5% 50.0% 97.5%

0.7687718 4.392122 7.927748

9.6 Logistic Regression Example

Consider again the example of Bayesian inference in the standard binary logistic regression model
from Section 8.3. The likelihood again is

L(β) =
n∏

i=1

exp(yix
′
iβ)

1 + exp(x′
iβ)

,
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Figure 9.2: Gibbs sampler sequence for µ, from the first alternate prior, where the sampler per-
formed poorly.

where the yi are binary responses and the xi are p-dimensional covariate vectors, and the prior on
β specifies that the individual components are iid N(0, σ2), so the joint prior density is

π(β) ∝ exp[−β′β/(2σ2)].

The posterior is then
π(β|y) ∝ L(β)π(β).

In the following subsections, independence chain sampling and rejection chain sampling are
applied to this problem.

9.6.1 Independence Chain Sampling

Here the independence chain M-H algorithm from Section 9.2.2 will be applied.

M-H transition kernel for generating trial values is q(β(s), β) = g(β), a fixed density independent
of the current value β(s). In this example the normal approximation to the posterior (as given in
Section 8.3) will be used for g(β). In this case

α(β(s), β) =
π(β|y)/g(β)

π(β(s)|y)/g(β(s))
=

w(β)
ws

,

where w(β) and ws = w(β(s)) are the importance sampling weights as defined in (8.8).

To sample from this chain, trial values of β are sampled from the normal approximation to the
posterior, exactly as in importance sampling, and the weights ws are calculated as before. In fact,
the exact set of β(s) values used in Section 8.3 could be used, although new values were generated
here. Since the commands for generating the β(s) are identical to Section 8.3, that part of the
output is omitted. Then for each s = 2, . . . , S, a Us ∼ U(0, 1) is generated, and if Us < ws/ws−1

then the trial value is retained, and if not then β(s) is set equal to β(s−1) (and ws = ws−1). This is
done in a for() loop, but since little is being done inside the loop, it turns out to be quite fast.
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> Hi <- H
> wti <- wt
> ui <- runif(nt)
> l <- 0
> for (j in 2:nt) {
+ if (ui[j] >= wti[j]/wti[j-1]) {
+ l <- l+1
+ Hi[,j] <- Hi[,j-1]
+ wt[,j] <- wt[,j-1]
+ }
+ }
> l
[1] 1275
> apply(Hi,1,mean)
[1] 0.8527268 -0.7810300 1.1719671 -0.4104312 0.5518204 -0.0425595
> bpm
[1] 0.86455126 -0.79344280 1.19705198 -0.40929410 0.56454239 -0.04644663
> bhat
[1] 0.8282945 -0.7588482 1.1381240 -0.3916353 0.5320517 -0.0423460

Note that of the 10,000 trial values generated, 1,275 wind up being rejected. The advantage of
using the independence chain over importance sampling is that once the chain converges to its
stationary distribution, the β(s) generated can be viewed as a sample from the posterior, and it is
not necessary to use the importance weights to estimate posterior quantities. Above, the posterior
mean is estimated with a simple average of the retained values. The disadvantages of the Markov
chain are the convergence and dependence issues. Here the normal approximation is a fairly good
approximation to the posterior, so convergence should be very fast, and the average of the entire
generated sequence was used in calculating the means.

The functions acor() and varest() below are the same as in the previous section.

> for(k in 1:5) print(apply(Hi,1,acor,k=k))
[1] 0.1656941 0.1650504 0.1626723 0.1485015 0.1478927 0.1417715
[1] -0.0001425621 0.0041872393 -0.0128523335 0.0276380796 0.0164524764
[6] -0.0064613996
[1] 0.003057361 0.003440434 -0.005240666 0.019521594 0.007019761
[6] -0.009516269
[1] -0.013895209 0.011933642 0.001239134 0.017269755 0.004064773
[6] -0.010002931
[1] -0.001681361 -0.009623145 -0.001216035 -0.012933311 0.005685681
[6] -0.003769621
> for (i in 1:6) print(varest(Hi[i,],50))

mean se rho
0.8527268 0.002016549 0.04118475

mean se rho
-0.78103 0.002453827 0.1459101
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mean se rho
1.171967 0.002382343 0.01111419

mean se rho
-0.4104312 0.002299085 0.07305585

mean se rho
0.5518204 0.002373905 0.01112616

mean se rho
-0.0425595 0.001710989 -0.1573334

The autocorrelations at lags greater than 1 are very small. The standard errors for the posterior
means here are a little smaller than from the standard importance sampling algorithm, and
overall about the same as for the control variate corrected importance sampling. The differences
in the means from the two approaches are larger than would be expected from the standard errors
for some of the parameters. The reason for this is not clear.

Quantiles of the posterior distribution are even easier to estimate here than with importance
sampling, since all points are given equal weight, so quantiles can be estimated directly from the
order statistics.

> apply(Hi,1,quantile,probs=c(.025,.5,.975))
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.4911447 -1.1681642 0.7553135 -0.76811032 0.1625419 -0.41527798
[2,] 0.8533511 -0.7790818 1.1640513 -0.40996736 0.5493667 -0.04223188
[3,] 1.2245509 -0.4138491 1.6071968 -0.05675237 0.9480288 0.32381396

9.7 Rejection Chain Sampling

In this section the rejection chain variation on the Metropolis-Hastings algorithm will be
implemented (see Section 9.2.3).

As in Section 8.3, denote the mean and covariance matrix of the normal approximation to the
posterior by β̂ and I−1(β̂). The proposal for the function g(β) to dominate L(β)π(β) is the
density of the normal distribution with mean β̂ and covariance matrix 1.2I−1(β̂), rescaled so that
L(β̂)π(β̂)/g(β̂) = 1. This function was deliberately chosen so that it would not dominate
everywhere; using a larger multiplier of the variance would lead to fewer rejections of trial values
in the M-H algorithm, but perhaps require generating more candidate points within each rejection
step. Below 10,000 candidate points for the initial rejection sampling are generated first. Of these
3,846 are rejected, leaving 6,154 candidate points for the M-H rejection sampling chain. Apart
from using rejection sampling within each step, the steps in the Markov chain are the same as in
the independence chain, except the sampling density is the pointwise minimum of the posterior
and the possible dominating function. Functions and quantities not explicitly defined are the
same as before.

> ## Metropolis-Hastings rejection chain sampling
> nt <- 10000
> Z <- matrix(rnorm(nt*np),nrow=np)
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> # normal approximation to the posterior, with variance inflated by 1.2
> H <- (sqrt(1.2)*B) %*% Z + bhat # B as before
>
> # calculate ratios for rejection sampling
> w <- rep(1,np) %*% (Z*Z)
> w2 <- apply(H,2,flog) # flog as before
> # densities not normalized
> f <- exp(flog(bhat)-w2) # proportional to target density
> g <- exp(-w/2) # ’dominating’ function
> ratio <- f/g
> summary(ratio)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0001585 0.4579 0.6527 0.6166 0.7943 4.479

> # candidates for Markov-Chain
> sub <- ratio > runif(nt)
> H <- H[,sub]
> dim(H)
[1] 6 6154
> f <- f[sub]
> q <- pmin(f,g[sub]) # proportional to actual sampling density
> # Markov-Chain
> Hi <- H
> ui <- runif(ncol(H))
> l <- 0 # count # times candidate value rejected
> ll <- 0 # count # times transition probability < 1
> for (j in 2:ncol(H)) {
+ alpha <- f[j]*q[j-1]/(f[j-1]*q[j]) # transition probability
+ if (alpha<1) {
+ ll <- ll+1
+ if (ui[j] >= alpha) {# reject new value and keep old
+ l <- l+1
+ Hi[,j] <- Hi[,j-1]
+ f[j] <- f[j-1]
+ q[j] <- q[j-1]
+ }
+ }
+ }
>
> l
[1] 31
> ll
[1] 179
>
> # Estimated posterior means
> apply(Hi,1,mean)
[1] 0.86187776 -0.79164665 1.19414352 -0.40826093 0.56016282 -0.04155914
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> apply(Hi,1,acor,k=1)
[1] 0.010092943 0.009675866 0.055761542 0.008355903 0.020832825 0.011807339
> apply(Hi,1,acor,k=2)
[1] 0.001331318 0.013919084 0.016189311 0.020072205 0.020893868 0.004500746
> apply(Hi,1,acor,k=3)
[1] -0.0009875959 -0.0127251232 0.0078220516 -0.0106785176 -0.0045123510
[6] 0.0105690761
> for (i in 1:6) print(varest(Hi[i,],50))

mean se rho
0.8619278 0.002511336 0.02710478

mean se rho
-0.7915666 0.002672721 0.06601914

mean se rho
1.194157 0.00337172 0.03359866

mean se rho
-0.4082298 0.002525831 -0.02808374

mean se rho
0.5600244 0.003036515 0.161695

mean se rho
-0.04165937 0.002600647 -0.02406042

The tradeoff between this algorithm and the independence chain is that of the initial 10,000
normal vectors generated here, only 6,154 were accepted by the rejection sampling screen.
However, for this reduced sample, all but 31 points were accepted by the M-H algorithm, so even
the lag 1 autocorrelations were very small, whereas in the independence chain, 1,275 of the 10,000
trial values were rejected by the M-H algorithm, leading to more dependence in the sequence. The
standard errors of the posterior means were a little smaller for the independence chain. The
standard errors here are mostly a little smaller than for the standard importance sampling
algorithm.

9.8 Exercises

Exercise 9.1 Show that f satisfies the reversibility condition (9.1) for the M-H transition kernel
(9.3).

Exercise 9.2 Verify that f is the stationary distribution of the rejection sampling chain
described in Section 9.2.3.

Exercise 9.3 Consider the same model as in Exercise 8.2, but now suppose f(·) is the standard
normal density. Also, suppose that c is not known, but instead has a Γ(.01, .01) prior (sometimes
called a hyperprior, since it is a prior on a parameter of a prior distribution). (The prior on ν is
again Γ(.1, .1).)

1. Give the conditional distributions [β|ν, Y, c], [ν|β, Y, c], and [c|ν, Y, β].
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2. Using the same data as in Exercise 8.2, implement a Gibbs sampling algorithm to sample
from the joint posterior distribution. Estimate the posterior mean (and estimate the
precision of the estimated mean) for each of the parameters. Also estimate the .025, .5 and
.975 quantiles of the posterior distribution of each of the parameters.
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Chapter 10

Bootstrap Methods

10.1 Variance Estimation

Let X = (X1, . . . , Xn) be a sample and θ a parameter, and suppose θ is estimated by
θ̂ = θ̂(X1, . . . , Xn). Once θ̂ is computed, the next step towards drawing inferences about θ would
often be estimating the variance of θ̂. The exact variance of θ̂ is defined by

E[θ̂ − E(θ̂)]2,

where the expectations are over the true sampling distribution of X. There are generally two
problems with computing the exact variance. First, the true distribution is usually unknown.
Second, for all but the simplest statistics, direct computation of the exact moments is
prohibitively complex. Because of the difficulties evaluating the exact variance, large sample
approximations are often used.

The bootstrap is a general approach to frequentist inference. The underlying idea of the
bootstrap is to first use the sample to estimate the unknown sampling distribution of the data.
Then this estimated distribution is used in place of the unknown true distribution in calculating
quantities needed for drawing inferences on θ. Exact calculations are used where possible, but
often simulations, drawing samples from the estimated distribution, are required to approximate
the quantities of interest. The estimate of the sampling distribution may be either parametric or
nonparametric.

Example 10.1 Suppose X1, . . . , Xn are iid, θ = E(Xi), and θ̂ = X =
∑n

i=1 Xi/n, the sample
mean. Then

Var(θ̂) = Var(Xi)/n,

and the problem of estimating the variance of θ̂ is reduced to estimating the variance of Xi.

To apply the bootstrap, the sampling distribution needs to be estimated. Since the data are iid,
only the (common) marginal distribution of the Xi needs to be estimated. If a parametric model
has been specified, then a parametric estimator can be used. For example, suppose that the data
follow an exponential model, with P (Xi > x) = exp(−λx) = 1 − F (x; λ), where λ > 0 is an
unknown parameter. Then the CDF F (x; λ) can be estimated by substituting the MLE λ̂ = 1/X

300
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for λ. The bootstrap approach uses the true variance under this estimated distribution as an
estimate of the variance under the true distribution. Since the estimated distribution is
exponential with rate λ̂, and the variance of an exponential with rate λ is λ−2, the bootstrap
estimate of the variance of θ̂ is X

2
/n.

If a parametric model is not assumed, then with iid data a nonparametric estimate of the
common marginal distribution of the Xi is given by the empirical CDF

F̂ (x) = n−1
n∑

i=1

I(Xi ≤ x).

This distribution places probability mass n−1 on each of the observed data points Xi. Thus if X∗

has the distribution with CDF F̂ (·), then for any function q(·),

E[q(X∗)] =
∫

q(x) dF̂ (x) =
n∑

i=1

q(Xi)/n.

In particular,

E[X∗] =
n∑

i=1

Xi/n = X

and

E[(X∗ − E(X∗))2] = n−1
n∑

i=1

(Xi − X)2

(the last expression is the usual sample variance multiplied by (n − 1)/n). Thus the
nonparametric bootstrap estimate of the variance of the sample mean is

n−2
n∑

i=1

(Xi − X)2.

2

In most settings the exact variance of θ̂ under the bootstrap distribution cannot be calculated
directly. In these settings, simulations can be used to approximate the exact variance under the
bootstrap distribution. In general, suppose F ∗(x1, . . . , xn) is the estimated CDF of the sample X,
and let X∗(1),X∗(2), . . . ,X∗(B) be independent simulated samples, each with distribution F ∗.
Also, let X∗ be a generic random sample with distribution F ∗, and write θ̂∗ = θ̂(X∗). Then

θ̃∗ = B−1
B∑

b=1

θ̂(X∗(b))

is the simulation estimate of E(θ̂∗), and

v∗ = (B − 1)−1
B∑

b=1

[θ̂(X∗(b)) − θ̃∗]2 (10.1)

is the simulation estimate of Var(θ̂∗) (and thus a bootstrap estimate of Var(θ̂)). The simulated
samples X∗(b) are often called resamples. This terminology comes from the nonparametric
version, where each component of each X∗(b) is one of the observed values in the original sample.
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Example 10.2 Suppose the sample consists of bivariate observations (Xi, Yi), i = 1, . . . , n, where
the pairs are iid. Let F (x, y) be the bivariate CDF of (Xi, Yi). Consider estimating the
correlation coefficient

ρ = Cov(Xi, Yi)/[Var(Xi)Var(Yi)]1/2.

The usual moment estimator is

ρ̂ =
∑n

i=1(Xi − X)(Yi − Y )[∑n
i=1(Xi − X)2

∑n
i=1(Yi − Y )2

]1/2
.

If F is a bivariate normal distribution, then the Fisher Z transform can be applied, giving that

1
2

log
(

1 + ρ̂

1 − ρ̂

)
.∼ N

(
1
2

log
(

1 + ρ

1 − ρ

)
,

1
n − 3

)
.

From the delta method, it then follows that Var(ρ̂) .= (1 − ρ2)2/(n − 3). For other distributions,
large sample approximations to Var(ρ̂) would generally be substantially more complicated.

Using simulations to approximate the nonparametric bootstrap estimate of Var(ρ̂) is
straightforward. The empirical CDF is

F̂ (x, y) = n−1
n∑

i=1

I(Xi ≤ x, Yi ≤ y),

which again places mass n−1 on each of the observed pairs (Xi, Yi).

One way to draw a sample X∗(b) from the estimated distribution is to first generate n uniforms
u

(b)
1 , . . . , u

(b)
n , and set ij = k if k − 1 < nu

(b)
j ≤ k. Then the resample is

X∗(b) = {(Xi1 , Yi1), . . . , (Xin , Yin)} .

In Splus the indices ij can be generated directly by using the sample() command (with the
option replace=T).

Figure 10.1 gives a small example data set. The commands used to generate the data, and
parametric and nonparametric bootstrap estimates of the variance, are given in the Splus code
below.

> # generate first data set
> print(.Random.seed)
[1] 41 58 36 53 44 3 37 11 61 34 14 3

> v <- matrix(c(1,.75,.75,1),2,2)
> vc <- chol(v)
> u <- matrix(rnorm(100),ncol=2) %*% vc + 5
> var(u)

[,1] [,2]
[1,] 0.9972487 0.8412334
[2,] 0.8412334 1.2056130
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Figure 10.1: First data set, correlation coefficient example. ρ̂ = .77.

>
> postscript(file = "../boot/fig1.ps", horizontal = T, pointsize = 22,
+ ps.preamble = ps.pre)
> par(font=5,lwd=2,pty=’s’,mar=c(4.1,4.1,0.1,2.1))
> plot(u[,1],u[,2],xlab=’X’,ylab=’Y’)
> dev.off()
> r <- cor(u[,1],u[,2])
> r
[1] 0.7672038
> (1-r^2)/(nrow(u)-3)
[1] 0.008753155
>
> normsim <- function(B,n,vc,ff) {
+ # the correlation coefficient is invariant to location shifts, so
+ # don’t need the mean
+ w <- t(vc) %*% matrix(rnorm(2*B*n),nrow=2)
+ w <- split(w,rep(1:B,rep((2*n),B)))
+ out <- unlist(lapply(w,ff))
+ print(c(var(out),sqrt(var((out-mean(out))^2)/B)))
+ out
+ }
> ff <- function(w) {w <- matrix(w,nrow=2); cor(w[1,],w[2,])}
> # true variance
> out <- normsim(500,nrow(u),vc,ff)
[1] 0.0040219830 0.0003057766
> # parametric bootstrap
> vce <- chol(var(u))
> vce

[,1] [,2]
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[1,] 0.9986234 0.8423930
[2,] 0.0000000 0.7042635
attr(, "rank"):
[1] 2
> unix.time(out <- normsim(500,nrow(u),vce,ff))
[1] 0.0035354108 0.0002697988
[1] 1.360001 0.000000 2.000000 0.000000 0.000000
>
> # nonparametric bootstrap
> npboot <- function(B,u,ff) {
+ index <- sample(nrow(u),B*nrow(u),replace=T)
+ index <- split(index,rep(1:B,nrow(u)))
+ out <- unlist(lapply(index,ff,data=u))
+ print(c(var(out),sqrt(var((out-mean(out))^2)/B)))
+ out
+ }
> ff2 <- function(index,data) cor(data[index,1],data[index,2])
> unix.time(out <- npboot(500,u,ff2))
[1] 0.0026423798 0.0001784584
[1] 1.020004 0.000000 1.000000 0.000000 0.000000
> # compare lapply() and for()
> npboot.2 <- function(B,u,ff) {
+ out <- rep(0,B)
+ for (i in 1:B) {
+ index <- sample(nrow(u),nrow(u),replace=T)
+ out[i] <- ff(index,u)
+ }
+ print(c(var(out),sqrt(var((out-mean(out))^2)/B)))
+ out
+ }
> unix.time(out <- npboot.2(500,u,ff2))
[1] 0.0027813029 0.0001733102
[1] 1.379997 0.000000 1.000000 0.000000 0.000000

The difference between the true variance calculation and the parametric bootstrap is that in the
true variance the covariance matrix used to generate the original data is used in the simulation,
while in the parametric bootstrap the estimated covariance matrix from the original sample is
used in generating the new samples. The number of samples is not large enough to give a highly
precise estimate of the true variance, but as will be discussed later, 500 bootstrap resamples may
be more than adequate for estimating the variance, since the sampling error in the simulation is
then usually smaller than the error in bootstrap estimate of the true distribution. The parametric
bootstrap appears to be a little smaller than the true variance in this example, and the
nonparametric bootstrap even smaller. However, nothing can be concluded about the bias of the
bootstrap variance estimate from a single sample. Investigating the bias would require generating
many samples, and computing the bootstrap variance estimate on each sample. The large sample
variance approximation appears to be less accurate here.
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Note the use of lapply() and split() to avoid explicit use of for() loops in the functions
above. To compare the time used, npboot.2() performed the same calculations as npboot, but
using explicit for() loops. The version with lapply() was slightly faster in this example. Also,
on a Sparc Ultra 80, only about a second was needed for each of the bootstrap runs.
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Figure 10.2: Second data set, correlation coefficient example. ρ̂ = .54.

Figure 10.2 gives a second data set, which is not very close to normal. The commands used to
generate the data, and parametric and nonparametric bootstrap estimates of the variance, are
given in the Splus code below.

> # generate second data set
> print(.Random.seed)
[1] 49 42 19 60 9 3 25 57 7 25 55 3

> a <- rexp(50)
> a <- cbind(a,rexp(50,1/a))
> var(a)

a
a 0.5376905 0.3485758

0.3485758 0.7806216
>
> postscript(file = "../boot/fig2.ps", horizontal = T, pointsize = 22,
+ ps.preamble = ps.pre)
> par(font=5,lwd=2,pty=’s’,mar=c(4.1,4.1,0.1,2.1))
> plot(a[,1],a[,2],xlab=’X’,ylab=’Y’)
> dev.off()
> r <- cor(a[,1],a[,2])
> r
[1] 0.5380353
> (1-r^2)/(nrow(a)-3)
[1] 0.0151174
>
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> # true variance
> B <- 500
> w <- rexp(B*nrow(a))
> w <- rbind(w,rexp(B*nrow(a),1/w))
> w <- split(w,rep(1:B,rep((2*nrow(a)),B)))
> ff <- function(w) {w <- matrix(w,nrow=2); cor(w[1,],w[2,])}
> out <- unlist(lapply(w,ff))
> var(out)
[1] 0.0157834
> sqrt(var((out-mean(out))^2)/B)
[1] 0.0009073865
>
> # parametric bootstrap--wrong distribution
> vce <- chol(var(a))
> vce

a
a 0.7332738 0.4753692

0.0000000 0.7447454
attr(, "rank"):
[1] 2
> unix.time(out <- normsim(500,nrow(a),vce,ff))
[1] 0.0105435672 0.0006532394
[1] 1.34999847 0.02999973 2.00000000 0.00000000 0.00000000
> # nonparametric bootstrap
> unix.time(out <- npboot(500,a,ff2))
[1] 0.008679424 0.000570964
[1] 1.050003 0.000000 1.000000 0.000000 0.000000

For these data, the true variance is larger than in the previous case. The large sample variance,
which is only approximately valid for normal data, is again not very accurate here. The
parametric bootstrap, using the wrong (normal) parametric distribution, happens to be fairly
close to the true variance. Since the wrong distribution was used, this estimator is not even
asymptotically valid, and in general it cannot be relied on. The nonparametric bootstrap is fairly
close to the true variance. (It should be noted, though, that the bootstrap always involves
sampling from the “wrong” distribution, since only an estimate of the true sampling distribution
is available.) 2

10.1.1 Regression Models

Consider the linear regression model

yi = x′
iβ + εi, i = 1, . . . , n,

where xi is a p-vector of covariates (usually including a constant term), β is a vector of unknown
parameters, and the errors εi are iid with mean 0 and finite variance σ2. The observed data
consist of (yi, x

′
i)
′, i = 1, . . . , n. The regression coefficients β can be consistently estimated using



10.1. VARIANCE ESTIMATION 307

the least squares estimator

β̂ =

(∑
i

xix
′
i

)−1 ∑
i

xiyi,

or any of a variety of more robust estimators. In large samples, β̂ is approximately normal with
mean β and variance σ2 (

∑
i xix

′
i)
−1. σ2 can be estimated by the usual residual mean square

σ̂2 =
n∑

i=1

(yi − x′
iβ̂)2/(n − p).

As in the iid case, both parametric and nonparametric bootstrap methods can be applied.
However, here there are two distinct ways of proceeding. In one, the xi are kept fixed, and the
distribution of the yi estimated by estimating the distribution of the εi and the value of β. In the
other, the joint distribution of (yi, x

′
i)
′ is estimated. In the first approach, inferences will be

conditional on the observed covariate values. This is particularly appropriate if the covariate
values were fixed by design, but is also often appropriate when covariates are random, since
usually the covariate values are ancillary. In the second approach inferences are averaged over the
distribution of possible covariate values. For the least squares estimator, the two approaches
usually lead to the same large sample inferences.

If parametric distributions are specified, either approach is straightforward. The distributions are
estimated using standard methods, such as maximum likelihood or more robust methods, and
inferences made under the estimated sampling distribution, using simulations if necessary.

The nonparametric bootstrap is easier to implement in the second (unconditional) approach. The
joint distribution of (y, x′)′ can be estimated with the empirical distribution of the observed data
points, which again places probability 1/n on each of the observed data points. In simulations,
observations can be selected for the bootstrap resamples by sampling integers with replacement
from the set {1, . . . , n}. This approach does not make use of the assumption that the errors are
iid, and in fact this method remains valid even if the error distribution depends on xi. It also
does not require that the regression model be correctly specified (to give valid resamples, in the
sense that the estimated distribution is consistent, although validity of the inferences drawn may
still require that the model be correctly specified).

In the first (conditional) approach, an estimate of the error distribution is needed. One way to
estimate this distribution is with the empirical distribution of the estimated residuals
êi = yi − x′

iβ̂. This distribution places mass 1/n on each of the observed êi. In simulations, to
generate a bootstrap resample, errors ε∗i are drawn with equal probability with replacement from
the set {ê1, . . . , ên}. The xi are kept fixed, and the responses are y∗i = x′

iβ̂ + ε∗i . The bootstrap
resample then is (y∗i , x′

i)
′, i = 1, . . . , n. Validity of this method requires both that the form of the

regression model be correctly specified, and that the errors be iid. It is thus not a true
nonparametric procedure, and is more properly referred to as semiparametric.

For the least-squares estimate β̂, the semiparametric bootstrap procedure gives

Var(β̂∗) =
n − p

n
σ̂2

(∑
i

xix
′
i

)−1

,
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the usual estimator times (n − p)/n.

There is another way to approach conditional nonparametric resampling. Instead of relying on
the validity of the hypothesized model, a nonparametric estimate of the distribution of y|x can be
used. In its simplest form, the collection of nearest neighbors indexed by
J(i) = {j : ‖xi − xj‖ < hi} could be used, with y∗i sampled with replacement from {yj : j ∈ J(i)}.
Points within this set could be weighted based on the magnitudes of ‖xi − xj‖. The window size
hi could be chosen in a variety of ways, such as to include a certain number of points. This
approach requires minimal assumptions, and if the hi → 0 at an appropriate rate as n → ∞, then
the estimated distribution should be consistent. However, the estimated distribution can have
substantial bias for finite n, and the details of implementation, such as the values of the hi and
the weights used within a neighborhood are fairly arbitrary, but can effect the results. A
refinement of this procedure is to use a local semiparametric model, for example, fitting a linear
model to the points in a neighborhood, and resampling from the residuals of the local linear fit.

The techniques discussed above can generally be applied to nonlinear regression models with
independent observations. Applying the nonparametric bootstrap to more general dependent data
problems, such as time series and clustered data, is more difficult. If enough structure is assumed,
semiparametric sampling is still straightforward. For example, in first order autoregression model,
iid residuals can be estimated, and resamples drawn from their empirical distribution. Methods
for fully nonparametric resampling of time series data have been proposed, such as the moving
blocks bootstrap (which resamples blocks of consecutive values in the time series), but it is not
clear how reliable these methods are in general problems. For clustered data, the obvious
nonparametric approach is to resample clusters from the empirical distribution of the clusters
(possibly also resampling subjects within clusters, depending on the nature of the inference
problem). This approach may not perform well, unless the number of clusters is fairly large,
though.

10.1.2 How many resamples?

The variance of the bootstrap simulation variance estimator v∗, defined by (10.1), can be
decomposed

Var(v∗) = VarX[E(v∗|X)] + EX[Var(v∗|X)]. (10.2)

In both terms on the right, the inner moments are over the distribution of the bootstrap
resamples, conditional on the original sample X, and the outer moments are over the distribution
of X. Since E(v∗|X) is the value v∗ converges to as B → ∞, the first term is the inherent
variability from using an estimate of the true distribution. The second term reflects the
variability from using a finite number of resamples B to approximate the bootstrap variance.

For the second term in (10.2), from the discussion of the variance of a sample variance estimator
on page 18 of the Basic Simulation Methodology handout, it follows that

Var(v∗|X) .= Var{[θ̂∗ − E(θ̂∗|X)]2|X}/B

= E{[θ̂∗ − E(θ̂∗|X)]4|X}/B − E{[θ̂∗ − E(θ̂∗|X)]2|X}2/B

= σ∗4[κ(θ̂∗) + 2]/B (10.3)

where σ∗2 = Var[θ̂∗|X], and κ(·) is the standardized kurtosis of the distribution of its argument
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(here the conditional distribution of θ̂∗, given X). (In general, the standardized kurtosis of a
random variable W is E[W −E(W )]4/Var(W )2 − 3. The value 3 is subtracted so the standardized
kurtosis of a normal distribution is 0.)

To go further requires knowledge of the statistic and the sampling distribution of X. The simplest
case is when θ̂ = X, and the original data are an iid sample X1, . . . , Xn. In this case
θ̂∗ =

∑n
i=1 X∗

i /n, Var(θ̂∗) = Var(X∗
i )/n, and κ(θ̂∗) = κ(X∗

i )/n. Thus in this case

EX[Var(v∗|X)] .= EX

[
1
B

Var(X∗
i )2

n2

(
κ(X∗

i )
n

+ 2
)]

.=
1
B

Var(Xi)2

n2

(
κ(Xi)

n
+ 2

)
, (10.4)

since for large n the variance and kurtosis of the bootstrap distribution will be converging to
those of the true distribution. Also, from Example 10.1, in this case

E(v∗|X) = n−2
n∑

i=1

(Xi − X)2. (10.5)

Applying the argument leading to (10.4) to (10.5) gives that

VarX[E(v∗|X)] .=
Var(Xi)2

n3
[κ(Xi) + 2] . (10.6)

Combining (10.4) and (10.6) gives that

Var(v∗) .=
Var(Xi)2

n2

(
κ(Xi)
nB

+
2
B

+
κ(Xi) + 2

n

)
. (10.7)

Only the terms involving B are affected by the number of bootstrap resamples. If B is
substantially larger than n, then clearly little would be gained by drawing additional samples,
since the other terms are already dominant. Since E(v∗) .= Var(Xi)/n, the coefficient of variation
of v∗ is approximately (

κ(Xi)
nB

+
2
B

+
κ(Xi) + 2

n

)1/2

(10.8)

For most reasonable values of κ(Xi) (in particular, for the normal distribution where κ(Xi) = 0),
considering (10.8) as a function of B, the rate of change is flattening by B = 50, and there is
generally little gained by increasing B beyond about 200. With large n, it is possible to get more
precise estimates with larger values of B, though.

In applications to percentile estimation, such as will be discussed in connection with hypothesis
tests and confidence intervals, a substantially larger number of resamples, at least an order of
magnitude larger, would often be appropriate.

10.2 Bootstrap Bias Correction

If θ̂ is an estimator of a parameter θ, then the bias of θ̂ is

Eθ(θ̂) − θ.

Let θ(F ) denote the value of θ corresponding to an arbitrary distribution F (it may not always be
possible to define θ(F ) sensibly, for example, if θ is the shape parameter of a gamma distribution,
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and F is the empirical CDF of an observed sample). Also, let F ∗ be the estimated distribution
used for the bootstrap, and let E∗ denote the expectation under F ∗. In many bootstrap problems,
it turns out that θ(F ∗) = θ̂.

The bootstrap estimate of bias is defined to be

bias(θ̂∗) = E∗(θ̂∗) − θ(F ∗), (10.9)

and the bias corrected estimator is

θ̂ − bias(θ̂∗) = θ̂ + θ(F ∗) − E∗(θ̂∗).

If θ(F ∗) = θ̂, then the bias corrected estimator is

2θ̂ − E∗(θ̂∗).

If simulations are used to estimate E∗(θ̂∗), then in the formulas for the bootstrap estimate of bias
and the bias corrected estimator, E∗(θ̂∗) would be replaced by B−1 ∑B

b=1 θ̂∗(b).

Recall the control variates method from Section 7.3.1. Control variates and closely related
adjustment can often be used to greatly improve the efficiency of bootstrap bias estimators, as
described in the following example.

Example 10.3 Bias Correction for Ratio Estimators. Suppose pairs (yi, zi)′, i = 1, . . . , n,
are iid from a distribution with mean (µy, µz)′. Suppose the parameter of interest is θ = µy/µz,
and θ̂ = y/z. Define the distribution F ∗ of the bootstrap resamples by taking the pairs within a
resample to be iid, with each having the empirical distribution F̂ , which puts mass 1/n on each of
the observed data pairs. Then θ(F ∗) = y/z = θ̂.

Linear approximations to statistics often give useful control variates for bias estimation. A first
order Taylor series expansion of u/v about (u, v)′ = (µy, µz)′ gives

u/v
.= µy/µz + (u − µy)/µz − µy(v − µz)/µ2

z.

Substituting y for u and z for v gives

θ̂
.= θ + (y − µy)/µz − µy(z − µz)/µ2

z.

For the estimator θ̂∗ defined from bootstrap resamples, the true means are (y, z)′, so the
corresponding expansion is

θ̂∗ .= θ̂ + (y∗ − y)/z − y(z∗ − z)/z2.

The quantity
(y∗ − y)/z − y(z∗ − z)/z2

has exact mean 0 (in the bootstrap distribution, conditional on the original sample), and is a first
order approximation to θ̂∗ − θ̂, and thus is a good candidate for a control variate. The bootstrap
estimate of bias incorporating this control variate, based on B resamples, is

B−1
B∑

b=1

{θ̂∗(b) − (y∗(b) − y)/z + y(z∗(b) − z)/z2} − θ̂ (10.10)
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(the control variate adjustment generally multiplies the control variate by a constant, but here to
first order the optimal constant is 1). An additional modification can be made. Again using a first
order expansion of u/v,

∑B
b=1 y∗(b)∑B
b=1 z∗(b)

.= θ̂ +
1
z

(
1
B

B∑
b=1

y∗(b) − y

)
− y

z2

(
1
B

B∑
b=1

z∗(b) − z

)
.

Thus to first order, (10.10) equals

B−1
B∑

b=1

θ̂∗(b) −
∑B

b=1 y∗(b)∑B
b=1 z∗(b)

. (10.11)

This is the version that is usually used. Either (10.10) or (10.11) will often improve the precision
of a bias estimator by 1 to 2 orders of magnitude.

Formula (10.10) has an interesting interpretation. Let N
∗(b)
j be the number of times the point

(yj , zj)′ appears in the bth bootstrap resample, so y∗(b) = n−1 ∑n
j=1 N

∗(b)
j yj . Then

1
B

B∑
b=1

y∗(b) =
1
n

∑
j=1

(
1
B

B∑
b=1

N
∗(b)
j

)
yj , (10.12)

with similar formula for the z’s. Since the points are sampled with equal probability,
B−1 ∑B

b=1 N
∗(b)
j → 1 as B → ∞, so not surprisingly (10.12) converges to y, which is the true mean

in the bootstrap sample. The correction term∑B
b=1 y∗(b)∑B
b=1 z∗(b)

− θ̂

to the standard bias estimate (10.9) reflects the extent to which the actual bootstrap resamples
deviate from an idealized set where each of the observed data points appears exactly B times in
the B bootstrap resamples. 2

The technique in the previous example can often be used when the empirical distribution of the
data is used as the bootstrap sampling distribution. Suppose that the statistic computed from the
bth resample can be written as a function of the proportions P

∗(b)
j = N

∗(b)
j /n, where again N

∗(b)
j is

the number of times the jth data point appears in the bth resample. That is,
θ̂∗(b) = g(P ∗(b)

1 . . . , P
∗(b)
n ), and θ̂ = g(1/n, . . . , 1/n). In the previous example,

g(u1, . . . , un) =
n∑

j=1

ujyj/
n∑

j=1

ujzj .

Then the standard bootstrap estimate of bias is

B−1
B∑

b=1

g(P ∗(b)
1 . . . , P ∗(b)

n ) − g(1/n, . . . , 1/n).
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The adjusted bias estimate corresponding to (10.11) is

B−1
B∑

b=1

g(P ∗(b)
1 . . . , P ∗(b)

n ) − g(P ∗
1, . . . , P

∗
n),

where P
∗
j =

∑B
b=1 P

∗(b)
j /B. Again this adjusts for the difference between the actual samples, and

a balanced set of resamples where each point appears exactly B times.

Nonlinear estimators generally have bias of O(n−1). The bootstrap bias correction generally
removes the leading O(n−1) term in an expansion for the bias, and the bias corrected estimator
will have remaining bias of O(n−2). As will be discussed in Section 10.5, it turns out that nested
application of the bootstrap can be used to further reduce the order of the bias.

10.3 Bootstrap Hypothesis Tests

Given a sample X, consider testing the hypothesis H0 : θ = θ0 using the statistic T (X), and
suppose without loss of generality the test rejects for large values of the statistic.

Let t0 be the value of the statistic for the observed data. The p-value is defined to be

P [T (X) ≥ t0|θ = θ0]. (10.13)

If the null hypothesis completely specifies the distribution, then the p-value is simply computed
under that distribution. If null hypothesis is composite, then the bootstrap can be used to
approximate the p-value. In this case the bootstrap consists of using an estimate of in place of the
unknown true null distribution. As for other types of bootstrap problems, exact computations are
usually not possible, and simulations are used. If the bootstrap resamples are denoted by X∗(b),
then the basic bootstrap p-value estimate is given by

1
B

B∑
b=1

I[T (X∗(b)) ≥ t0].

Since this is of the same form as used in estimating the rejection probability of a test in the Basic
Simulation notes, importance sampling can often be used to improve the efficiency of the
resampling, as will be discussed in more detail below.

The main distinction between the bootstrap variance estimation and hypothesis testing problems
is that in hypothesis testing it is necessary to use an estimated distribution which satisfies the
null hypothesis. This means it is often not appropriate to use the empirical distribution, without
some modification. The problem of testing equality of means of two samples will help to illustrate
the issues.

Example 10.4 Testing Equality of Means. Suppose the sample X consists of iid observations
y1, . . . , yn drawn from one population, and iid observations z1, . . . , zm drawn from a separate
population. Let θ = E(yi) − E(zj), and consider H0 : θ = 0, that is, that the means of the two
populations are equal. Let y and z be the usual sample means, and let s2

y and s2
z be the usual

sample variances. The statistic

T (X) = |y − z|/(s2
y/n + s2

z/m)1/2
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can be used to test this hypothesis.

Usually the size of the samples from the two populations would be treated as fixed (although even
this is not mandatory). Consider drawing resamples by drawing y∗1, . . . , y∗n from the empirical
distribution of y1, . . . , yn and z∗1 , . . . , z∗m from the empirical distribution of z1, . . . , zm. The
difficulty is that then E(y∗i ) = y and E(z∗i ) = z, and generally these are not equal, so the
resampling distribution does not satisfy the null hypothesis.

One way to proceed is to still resample from the empirical distributions, but to approximate the
p-value in the original problem with the p-value in the bootstrap simulation for the hypothesis
H0 : E(y∗i − z∗j ) = y − z. Since this is the true mean in the simulation, the bootstrap simulation is
then conducted under this null hypothesis. Setting

S(X∗) = |y∗ − z∗ − y + z|/(s∗2y /n + s∗2z /m)1/2,

the bootstrap estimate of the p-value is

B−1
B∑

b=1

I[S(X∗(b)) ≥ t0]. (10.14)

Equivalently, this can be thought of as shifting the location of one or both of the distributions so
they have the same mean. For example, resample the y∗1, . . . , y∗n from the empirical distribution of
y1, . . . , yn (as before), and z̃∗1 , . . . , z̃∗n from the empirical distribution of z1 − z + y, . . . , zm − z + y.
Then E(y∗i ) = E(z̃∗i ) = y, so the means are equal and the estimate of the rejection probability is

B−1
B∑

b=1

I[|y∗ − z̃
∗|/(s∗2y /n + s̃∗2z /m)1/2 ≥ t0],

which is algebraically identical to (10.14). In this approach, the shape of the y and z distributions
are estimated using the empirical distributions of the two samples (and no assumption is made
that the shapes are similar), but there is an assumption that the only difference between the null
and alternative distributions is shifting the relative locations of the two samples. This would not
be appropriate, for example, if both samples had a common range restriction, such as to the
interval (0,∞) or (0, 1).

With more assumptions, a better approach can be given. Suppose it can be assumed that the
distributions of the two samples differ only with respect to a location shift, that is, if
P (yi ≤ u) = G(u), then P (zi ≤ u) = G(u − θ). Then under H0 : θ = 0, the distributions of the
two samples are identical, and the common distribution can be estimated with the distribution of
the pooled sample. In this case it would be more appropriate to use a pooled estimate of variance
in the test statistic, so let

s2
p =

(
n∑

i=1

(yi − y)2 +
m∑

i=1

(zi − z)2
)

/(n + m − 2),

R(X) = |y − z|/[sp(1/n + 1/m)1/2],

and r0 be the observed value of R(X). Sampling y∗1, . . . , y∗n and z∗1 , . . . , z∗m from the empirical
distribution of the pooled sample, the p-value P [R(X) > r0|θ = 0] can be estimated by

B−1
B∑

b=1

I[R(X∗(b)) ≥ r0].
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While this seems like a sensible approach in this case, it is not the only possibility under the
location shift model. If the observed sample means y and z are far apart, so the data are not
consistent with the null hypothesis, then the spread in the pooled sample may be larger than
would be appropriate for samples obtained under the null. In this case an alternative sampling
procedure that would give samples with a smaller variance is to sample y∗1, . . . , y∗n and z∗1 , . . . , z∗m
from the empirical distribution of the pooled data with one sample shifted, for example, from the
empirical distribution of y1, . . . , yn, z1 − z + y, . . . , zm − z + y. 2

The previous example illustrates some of the difficulties in choosing an appropriate sampling
distribution under the null hypothesis. This is generally not a trivial problem in using simulations
to approximate p-values. Usually one tries to use a good estimate of the distribution obtained
under an appropriate model for the data under the null hypothesis, but the choice is usually
somewhat arbitrary, and different choices give different results. If the estimate is consistent for
the true distribution under the null, then all choices should be asymptotically equivalent, though.

The use of the studentized statistics in the previous example was based on theoretical
considerations. Generally if T (X) D→ N(0, 1), and the asymptotic normal distribution is used to
approximate the p-value, say with Φ(−t0) + 1 − Φ(t0), where Φ(·) is the standard normal CDF,
then the error in this approximation to the p-value is O([1/n + 1/m]1/2). Using the bootstrap
distribution of T (X∗) to approximate the p-value then usually has an error of order O(1/n+1/m),
and so can be substantially more accurate. However, if T (X) D→ N(0, σ2), where σ2 is unknown,
and the bootstrap is applied directly to T (X), then usually the error is O([1/n + 1/m]1/2).

10.3.1 Importance Sampling for Nonparametric Bootstrap Tail Probabilities

Suppose that under H0 the sample X consists of iid observations x1, . . . , xn, which may be vector
valued, and the bootstrap distribution F ∗ samples values independently from F̂ , the empirical
distribution of the x̃i (where the x̃i consist of the original sample, possibly with some observations
shifted to guarantee that F̂ satisfies the null hypothesis). To estimate P (T (X) ≥ t0), independent
resamples X∗(1), . . . ,X∗(B) are drawn, where each X∗(b) consists of n independent observations
from F̂ , and

p̂ = B−1
B∑

b=1

I[T (X∗(b)) ≥ t0]

computed. In this section importance sampling to improve the efficiency of the bootstrap
simulation is considered. The problem and approach taken are quite similar to those in
Section 7.3.2.

Consider first the case where T (X) = n−1 ∑n
i=1 g(xi), for some known function g(·). To make

effective use of importance sampling, some of the mass of F̂ should be modified so that it no
longer satisfies the null hypothesis. Shifting the points would mean that the actual sampling
distribution and the distribution of interest have support on different points, which would make it
difficult to compute the importance weights. Instead, the distribution can be modified by keeping
the support points the same, but assigning different mass to each of the points. In particular,
instead of giving each point equal weight, giving large mass to points with larger values of g(x̃i)
and less to points with smaller values will increase the mean of T (X∗) in the bootstrap resampling.
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One way to do this is with a one parameter family of weighted discrete distributions. Let

p(x̃i; λ) =
exp(λ[g(x̃i) − g̃])∑n

j=1 exp(λ[g(x̃j) − g̃])
,

where g̃ = n−1 ∑n
i=1 g(x̃i). Note that p(x̃i; 0) = 1/n. If the distribution of x∗

i is given by

P (x∗
i = x̃j) = p(x̃j ; λ), (10.15)

then when λ > 0, the expectation

E∗
λ[g(x∗

i )] =
∑n

j=1 g(x̃j) exp(λ[g(x̃j) − g̃])∑n
j=1 exp(λ[g(x̃j) − g̃])

> g̃ = E∗
λ=0[g(x∗

i )].

Thus when λ > 0, E∗
λ[T (X∗)] is increased, and its distribution should put more mass into the

critical region, so (10.15) might be a suitable candidate for an importance sampling distribution.
This procedure can be sensitive to the value of λ. One possibility is to choose λ to solve

E∗
λ[g(x∗

i )] = t0, (10.16)

so that about half the bootstrap resamples will have T (X∗) > t0.

For more general statistics, a similar approach can be used, if the statistic can be approximated
by a linear function of the data (most asymptotically normal statistics can be). That is, suppose
that T (X) is scaled so that it is asymptotically normal, and that it can be written as

T (X) = n−1/2
n∑

i=1

U(xi, F ) + V (X, F ),

where V (X, F ) is asymptotically negligible, and F is included as an argument of U and V to
indicate that they can depend on the true distribution (including unknown parameters) in
addition to the data. Then a possible importance sampling distribution for the bootstrap
resampling is

P (x∗
i = x̃j) = exp[λU(x̃j , F̂ )]/

∑
k

exp[λU(x̃k, F̂ )]. (10.17)

Analogously to (10.16), λ could be chosen to solve E∗
λ[U(x∗

i , F̂ )] = t0/n1/2. The U(xi, F ) terms in
the linear expansion are called influence functions.

Example 10.5 Suppose the sample consists of iid bivariate observations (si, ti)′, i = 1, . . . , n,
with E∗[(si, ti)′] = (µs, µt)′, θ = µt exp(−µs), and the test statistic for H0 : θ = θ0 versus
Ha : θ > θ0 is

T (X) =
√

n[t exp(−s) − θ0].

Then using a first order Taylor series expansion,

T (X) .=
√

n[θ0 + θ0(t − µt0)/µt0 − θ0(s − µs0)],

where µt0 and µs0 are the means under the true null distribution, so an appropriate choice for
U(x, F ) is

U(x, F ) = θ0(t − µt0)/µt0 − θ0(s − µs0).
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In this case the easiest way to perform a nonparametric bootstrap resampling under H0 is to use
the empirical distribution of the data, and to change the null value of the parameter to match this
observed value. That is, in the resampling use the statistic

T (X∗) =
√

n[t∗ exp(−s∗) − t exp(−s)].

Also,
U(xi, F̂ ) = exp(−s)(ti − t) − t exp(−s)(si − s).

The importance sampling distribution is given by (10.17), say with λ chosen so that∑
i U(xi, F̂ ) exp[λU(xi, F̂ )]∑

i exp[λU(xi, F̂ )]
= t0/n1/2,

where t0 is the value of T (X) for the observed data. The bootstrap importance sampling estimate
of the p-value is then

B−1
B∑

b=1

I(T (X∗(b)) ≥ t0)n−n (
∑

j exp[λU(xj , F̂ )])n

exp[λ
∑

i U(x∗(b)
i , F̂ )]

(n−n is the mass function for the target resampling distribution, and the last factor is the inverse
of the mass function for the actual resampling distribution).

The following code implements this procedure on a simulated data set. Note that in the
resampling, the null hypothesis is taken to be the value of the statistic in the observed data. In
the first run, using the value of λ suggested above, there is a small reduction in the standard
error. In the second run, using a larger value of λ leads to more improvement.

> isboot <- function(nboot,x,lstar,U,t00,t0) {
+ # x=data=cbind(s,t);lstar=lambda;U=influence
+ # functions; t00=null value;t0=obs stat
+ probs <- exp(lstar*U)
+ probs <- probs/sum(probs)
+ print(summary(probs))
+ out <- matrix(0,3,nboot)
+ for (i in 1:nboot) {
+ i1 <- sample(1:nrow(x),nrow(x),T)
+ i2 <- sample(1:nrow(x),nrow(x),T,probs)
+ xmb1 <- mean(x[i1,1])
+ xmb2 <- mean(x[i1,2])
+ t1 <- sqrt(nrow(x))*(xmb2*exp(-xmb1)-t00)
+ xmb1 <- mean(x[i2,1])
+ xmb2 <- mean(x[i2,2])
+ t2 <- sqrt(nrow(x))*(xmb2*exp(-xmb1)-t00)
+ wt <- exp(sum(-log(probs[i2]*nrow(x))))
+ out[,i] <- c(t1,t2,wt)
+ }
+ print(apply(out,1,summary))
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+ w <- (out[2,]>=t0)*out[3,]
+ p1 <- mean(out[1,]>=t0)
+ print(c(p1,mean(w)))
+ print(sqrt(c(p1*(1-p1),var(w))/nboot))
+ print(table(out[2,]>t0))
+ invisible()
+ }
> # generate data H0:theta=.11
> set.seed(200)
> x <- matrix(rnorm(100),nrow=2) # s,t
> B <- matrix(c(1,1,0,1),2,2)
> t(B)%*%B

[,1] [,2]
[1,] 2 1
[2,] 1 1
> x <- t(exp(t(B)%*%x))
> xm <- apply(x,2,mean)
> xm
[1] 2.661298 1.777114
> t00 <- xm[2]*exp(-xm[1])
> t0 <- sqrt(nrow(x))*(t00-.11)
> t0
[1] 0.1000186
> # influence functions
> U <- exp(-xm[1])*((x[,2]-xm[2])-xm[2]*(x[,1]-xm[1]))
> ff <- function(lam) {w <- exp(lam*U)
+ sum(w*U)/sum(w)-t0/sqrt(nrow(x))}
> lstar <- uniroot(ff,c(-5,5))$root
> lstar
[1] 0.07419001
> isboot(1000,x,lstar,U,t00,t0)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01651 0.02007 0.0202 0.02 0.02029 0.02053

[,1] [,2] [,3]
[1,] -0.77560 -0.7121 0.6139
[2,] -0.24780 -0.1540 0.8289
[3,] 0.04528 0.1653 0.9447
[4,] 0.09853 0.2090 0.9929
[5,] 0.37280 0.5012 1.1160
[6,] 1.80600 1.8030 2.1850
[1] 0.4470000 0.4529162
[1] 0.01572231 0.01323698
FALSE TRUE

455 545
> isboot(1000,x,.25,U,t00,t0) # new lambda

Min. 1st Qu. Median Mean 3rd Qu. Max.
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0.01044 0.02015 0.02061 0.02 0.0209 0.02176
[,1] [,2] [,3]

[1,] -0.80880 -0.59050 0.1554
[2,] -0.23770 0.06732 0.4837
[3,] 0.04307 0.41530 0.7131
[4,] 0.10040 0.44410 1.0020
[5,] 0.39740 0.77000 1.1630
[6,] 1.74400 2.56600 7.3220
[1] 0.4510000 0.4390412
[1] 0.01573528 0.01048219
FALSE TRUE

276 724

2

10.3.2 Antithetic Bootstrap Resampling

Recall the basic idea of antithetic sampling from Section 7.3.3. Hall (1989) proposed a method for
generating antithetic bootstrap resamples. This is a general method that can be used to varying
degrees of effectiveness in all types of bootstrap problems. Let x1, . . . , xn be a sample and
θ̂ = θ̂(x1, . . . , xn) be an estimator of θ, which is invariant to the order of the data points xi. As
was discussed for T (X) in the previous section, generally θ̂ has an expansion

θ̂ = θ + n−1
n∑

i=1

U(xi, F ) + V (X, F ),

where V (X, F ) is asymptotically negligible compared to the linear term.

To define the antithetic sample, relabel the data points x1, . . . , xn so that
U(x1, F̂ ) ≤ · · · ≤ U(xn, F̂ ). The regular bootstrap sample x∗

1, . . . , x
∗
n is sampled with replacement

from the observed data. Suppose that x∗
i = xj(i). The antithetic bootstrap resample is defined to

be the resample consisting of the points x∗a
i = xn−j(i)+1. That is, the antithetic resample takes

the opposite value of each point in the original resample.

As with antithetic sampling in the Basic Simulation handout, the quantity of interest is computed
both from the regular sample and the antithetic sample, and the average of the two values used as
the final estimate. The success of the method depends on there being a fairly large negative
correlation between the estimates from the regular and antithetic samples. Hall (1989) shows that
the antithetic resampling as defined above maximizes the magnitude of the negative correlation
for several types of bootstrap estimation problems.

For estimating the variance of θ̂, it may be more appropriate to order the points based on the
linear terms in the expansion of (θ̂ − θ)2.

Below, this antithetic sampling algorithm is applied to the testing problem in Example 10.5 from
the previous section. Antithetic sampling reduces the variance of the p-value estimate by about
60% here, with the trade-off that the test is computed twice within each sample.
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Example 10.5 (continued).

> atboot <- function(nboot,x,t00,t0) {
+ # x=data=cbind(s,t);t00=null value;t0=obs stat
+ out <- matrix(0,2,nboot)
+ for (i in 1:nboot) {
+ i1 <- sample(1:nrow(x),nrow(x),T)
+ xmb1 <- mean(x[i1,1])
+ xmb2 <- mean(x[i1,2])
+ t1 <- sqrt(nrow(x))*(xmb2*exp(-xmb1)-t00)
+ i2 <- nrow(x)-i1+1 #antithetic sample
+ xmb1 <- mean(x[i2,1])
+ xmb2 <- mean(x[i2,2])
+ t2 <- sqrt(nrow(x))*(xmb2*exp(-xmb1)-t00)
+ out[,i] <- c(t1,t2)
+ }
+ out <- out>=t0
+ print(cor(out[1,],out[2,]))
+ out2 <- (out[1,]+out[2,])/2
+ p <- c(mean(out[1,]),mean(out[2,]))
+ print(c(p,mean(out2)))
+ print(sqrt(c(p*(1-p),var(out2))/nboot))
+ invisible()
+ }
> # x,u as in previous section
> # sort data on influence functions
> o <- order(U)
> U <- U[o]
> x <- x[o,]
> atboot(1000,x,t00,t0)
[1] -0.2098982
[1] 0.423 0.453 0.438
[1] 0.015622772 0.015741379 0.009861706

2

10.4 Bootstrap Confidence Intervals

A 100(1 − α)% upper confidence limit for a real valued parameter θ is a random variable (a
function of the data) θ̃u such that

P (θ̃u > θ|θ) = 1 − α. (10.18)

The notation “P (·|θ)” means that the probability is computed using the distribution of the data
when θ is the true value of the parameter. Although the requirement is only that θ̃u give the right
coverage probability at the true distribution, since the true distribution is unknown, a good
confidence interval procedure should satisfy (10.18) for all possible values of the parameter. That
is, if θ̃u only gave the right coverage probability at a particular θ0, but it is not known whether θ0
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is the true value of θ, then θ̃u may or may not have reasonable coverage. Lower confidence limits
can be defined analogously to (10.18). Here only the upper confidence limit will be studied in
detail.

Apart from specifying the coverage probability, the definition of an upper confidence limit is
completely noninformative about how to construct good confidence limits. Ideally, the confidence
set should reflect the values of the parameter which are most likely to have generated the
observed data. A brief discussion of some general issues follows, and then some bootstrap
procedures will be defined. Some general background is also given in Chapter 12 of Efron and
Tibshirani (1993), and several bootstrap procedures defined in Chapters 12–14.

A “pivot” is a function of the parameter of interest and the data whose distribution is
independent of the parameter(s) (including any nuisance parameters). Suppose X1, . . . , Xn are
sampled from a location-scale family, where the location parameter µ is of primary interest and
the scale parameter σ is a nuisance parameter. Then (Xn − µ)/{∑i(Xi − Xn)2}1/2 is a pivot,
since its distribution is independent of µ and σ.

A function of the data and the parameter of interest whose asymptotic distribution is
independent of any unknown parameters is an asymptotic or approximate pivot. For example, if
n1/2(θ̂n − θ) D→ N(0, σ2), and σ̂n is a consistent estimator for σ, then

n1/2(θ̂n − θ)/σ̂n (10.19)

is an approximate pivot.

For an exact pivot of the form (10.19), an upper 100(1 − α)% confidence limit can be defined by

θ̃un = θ̂n − xασ̂n/n1/2, (10.20)

where xα satisfies
P{n1/2(θ̂n − θ)/σ̂n > xα} = 1 − α.

Since n1/2(θ̂n − θ)/σ̂n is a pivot, its distribution is the same for all parameter values, and a single
value xα gives exact coverage regardless of the true values of the parameters. For an approximate
pivot of the form (10.19), a standard approximate upper confidence limit is again given by
(10.20), but with the percentile xα defined from the asymptotic distribution of n1/2(θ̂n − θ)/σ̂n.
This again gives a single value xα regardless of the true value of the parameter, but the exact
coverage probability

P (θ̂n − xασ̂n/n1/2 > θ)

will generally not equal 1 − α, and usually will vary with the true value of the parameter.
However, since n1/2(θ̂n − θ)/σ̂n is an asymptotic pivot, the coverage probability converges to
1 − α for all values of the parameter.

Another way to define a confidence limit is to consider testing the null hypothesis H0 : θ = θ0

against the alternative H1 : θ < θ0. Suppose there is a family of valid tests which reject if
θ̂n < K(θ0), where K(θ0) satisfies

P{θ̂n < K(θ0)|θ0} = α. (10.21)
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Then the set of θ0 values which are not rejected at level α are an upper 100(1 − α)% confidence
set. Note that K(θ0) should be an increasing function of θ0, and the upper confidence limit can
be thought of as being the solution to θ̂n = K(θ̃un); that is θ̃un is the value of θ0 which puts the
observed θ̂n on the boundary of the critical region. Then

P (θ < θ̃un|θ) = P{K(θ) < K(θ̃un)|θ} = P{K(θ) < θ̂n|θ} = 1 − α,

verifying that this is a 100(1− α)% confidence limit. If a test has good power properties, then the
confidence set obtained by inverting the test should in some sense contain the parameter values
most consistent with the observed data.

If the distribution of θ̂n depends on other unknown parameters besides θ, then further
modification is needed, such as choosing K(θ0) so that

P{θ̂n < K(θ0)|θ0} ≤ α

for all values of the nuisance parameters. Typically the exact type I error of such a test will vary
with the values of the nuisance parameters, and consequently so will the coverage probability of
the confidence set determined by inverting the test. However, the coverage probability would be
≥ 1 − α for all values of the nuisance parameter.

If n1/2(θ̂n − θ)/σ̂n is a pivot, then the natural test would be to reject if n1/2(θ̂n − θ0)/σ̂n < xα,
where xα satisfies P{n1/2(θ̂n − θ0)/σ̂n < xα|θ0} = α. Inverting this test again gives (10.20).

In the testing approach to confidence limits, the behavior of the estimator or test statistic is
considered under a variety of values of the parameter. This behavior is then used to determine
which values of the parameter, if they were the true value, would be most consistent with the
observed data. Proposals for bootstrap confidence limits attempt to construct confidence limits
from a single approximate sampling distribution. This generally does not give exact procedures.
A possible alternative to the usual bootstrap confidence intervals is to construct a confidence set
by inverting the bootstrap hypothesis tests described in Section 10.3 above. This would require an
iterative search to determine the null hypothesis which puts the observed data on the boundary of
the critical region, and each step in the iteration would require a new set of bootstrap samples.

The bootstrap-t confidence limit is defined in Section 12.5 of Efron and Tibshirani (1993). In this
approach, for an approximate pivot n1/2(θ̂n − θ)/σ̂n, instead of using the asymptotic distribution
to approximate the percentile xα, the bootstrap distribution is used. This is in accordance with
the general bootstrap principle. That is, the true xα solves

P{n1/2(θ̂n − θ)/σ̂n > xα} = 1 − α.

In the bootstrap, the probability in this expression is approximated using the bootstrap
distribution of the statistic, and xα estimated by determining the appropriate percentile of the
bootstrap distribution. Thus the bootstrap estimate of the percentile x̂α solves

P{n1/2(θ̂∗n − θ̂n)/σ̂∗
n > x̂α|X} = 1 − α,

where as usual θ̂∗n and σ̂∗
n are computed from bootstrap samples. (Because the bootstrap

distribution is usually discrete, this may not have an exact solution.) The upper confidence limit
is then

θ̂n − σ̂nx̂α/n1/2; (10.22)
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the bootstrap is only used to estimate the percentile x̂α. Confidence limits formed using the
asymptotic distribution of the approximate pivot will have coverage probabilities that are first
order accurate, in the sense that they differ from 1 − α by O(n−1/2), while bootstrap-t confidence
limits are second order accurate, and have coverage probabilities that differ from 1 − α by
Op(n−1).

As discussed in Section 12.6 of Efron and Tibshirani (1993), asymptotic-t and bootstrap-t
confidence limits are not invariant to transformations of the parameters. That is, if
n1/2(θ̂n − θ)/σ̂n

D→ N(0, 1), and g is a smooth monotone increasing function, then from the delta
method,

n1/2{g(θ̂n) − g(θ)}/(σ̂n|g′(θ̂n)|) D→ N(0, 1), (10.23)

and so is also an approximate pivot. Any such g can be used to define an upper confidence limit
for g(θ) as before, and then since g is monotone, transforming the upper confidence limit for g(θ)
by g−1 will give an upper confidence limit for θ of the form

θ̃gn = g−1{g(θ̂n) − σ̂n|g′(θ̂n)|x(g)
α /n1/2}

where x
(g)
α is the asymptotic percentile of (10.23). In the bootstrap-t version, x

(g)
α is replaced by

the corresponding percentile from the bootstrap distribution. These confidence limits will be
different for different g, and while all will have the same order of coverage accuracy, not all will
perform as well for a given n. For parameters that have a restricted range, like the correlation
coefficient, some transformations will give confidence limits for some data sets which are outside
the parameter space, which is not desirable.

To deal with range restrictions and transformations, Efron proposed a bootstrap percentile
method, which is described in Chapter 13 of Efron and Tibshirani (1993). If
Gn(u|X) = P (θ̂∗n ≤ u|X), then Efron’s percentile method defines the upper confidence limit by

G−1
n (1 − α|X). (10.24)

If θ̂n only takes values in the parameter space, then Gn will have support on the parameter space,
and so (10.24) will be in the parameter space. Also, if estimates of functions of θ satisfy
ĝ(θ)n = g(θ̂n), then a confidence limit for θ determined from the distribution of ĝ(θ)n will be the
same regardless of g. Thus these confidence limits transform properly. However, (10.24) does not
appear to be defined in accordance with the general bootstrap principle, where a quantity of
interest is defined from the distribution of θ̂n, and then estimated using the conditional
distribution of θ̂∗n. And at first glance it may not be clear whether (10.24) has any connection
with confidence limits.

To make a bit more sense of this, suppose P (θ̂n ≤ u) = H(u; θ). Consider the quantity
H−1(1 − α; θ̂n). Formula (10.24) could be thought of as a bootstrap analog of this, with the
unknown distribution H estimated from the bootstrap distribution. If H(u; θ) = F (u − θ), where
F is the CDF of a symmetric density, then H−1(1 − α; θ̂n) is a valid upper confidence limit. That
is

P (H−1(1 − α; θ̂n) > θ|θ) = P (1 − α > H(θ; θ̂n)|θ)
= P (1 − α > F (θ − θ̂n)|θ)
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= P (θ − F−1(1 − α) < θ̂n|θ)
= P (θ + F−1(α) < θ̂n|θ)
= 1 − F ([θ + F−1(α)] − θ)
= 1 − α,

since F−1(1 − α) = −F−1(α) because of symmetry, and since P (θ̂n > u|θ) = 1 − F (u − θ). Note
that without symmetry, even with the location family assumption, the coverage probability would
have been F [−F−1(1 − α)], which would generally not be 1 − α. In this sense Efron’s percentile
method uses the percentile from the “wrong tail” of the distribution. When n1/2(θ̂n − θ) is
asymptotically normal, then asymptotically θ̂n has the distribution of a symmetric location
family, and the coverage probability of Efron’s percentile method will converge to 1 − α. Since it
converges to this distribution at a rate of n−1/2, it is not surprising that Efron’s percentile
method is only first order accurate.

Hall (1992) defines a different percentile method. Hall proposes as a 100(1 − α)% upper
confidence limit the point θ̂n + t, where t is chosen so that

P (θ̂n + t > θ) = 1 − α. (10.25)

The bootstrap is then used to estimate t. Specifically, choose t̂ as the solution to

P (θ̂∗n + t̂ > θ̂n|X) = 1 − α.

Note that θ̂n − t̂ = G−1
n (α|X), where again Gn is the conditional CDF of θ̂∗n, so the upper

confidence limit is
2θ̂n − G−1

n (α|X), (10.26)

in contrast to (10.24). This is based on the general bootstrap principle, in that a quantity t of
interest is defined, and the bootstrap distribution used to estimate it. However, since generally
θ̂n − θ is not a pivot, the quantity t defined in (10.25) is a function of unknown parameters, so if
the exact t could be determined θ̂n + t would still not be a useful confidence limit. The bootstrap
estimates t under a particular distribution, but does not examine how t changes with the true
distribution. Since the bootstrap distribution converges to the true distribution at a rate of n−1/2,
it is not surprising that Hall’s percentile method is also only first order accurate. It is also true
that Hall’s percentile method can violate range restrictions on the parameter. That is, since it
takes the percentile from the opposite tail of the distribution and reflects it, it can go beyond the
range of the parameter space when there are restrictions on the range of the parameter.

Various methods have been proposed to modify or correct Efron’s percentile method to maintain
some of its desirable properties while getting second order accuracy. Efron’s BCa method
(Chapter 14 in Efron and Tibshirani (1993)) is an example of this. Hall (1992) Section 3.10
discusses some other possibilities (and elsewhere various other approaches to constructing second
order accurate confidence limits). Bootstrap iteration, a general approach to improving accuracy
of bootstrap procedures, is discussed in the following section.

10.5 Iterated Bootstrap

Bootstrap iteration is discussed in Sections 1.4 and 3.11 of Hall (1992). It was introduced in
various settings by Efron (1983), Hall (1986) and Beran (1987). The basic idea of the iterated
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bootstrap is to use a second level of bootstrap sampling to estimate the error in a bootstrap
procedure, and to use this estimate of error to correct the original procedure. This procedure can
be iterated: use a 3rd level of sampling to estimate the error in the corrected procedure to get a
new correction, a 4th level to estimate the error . . . .

In the setting of an upper confidence limit, correcting the error in the coverage probability of a
procedure would be of interest. To be concrete, consider the bootstrap-t procedure. The upper
confidence limit is

θ̂n − x̂ασ̂n/n1/2,

with x̂α chosen to satisfy
P (θ̂n < θ̂∗n − x̂ασ̂∗

n/n1/2|X) = 1 − α.

How can the actual coverage probability of this procedure be estimated? The true distribution is
unknown, so the actual coverage probability cannot be computed from the true distribution.
Also, if the bootstrap resamples used to construct the upper confidence limit were also used to
estimate the error in the coverage probability, then the estimated error would have mean 0, since
x̂α was chosen to be the appropriate quantile of the bootstrap distribution.

Suppose the sample X1, . . . , Xn, gives an estimator θ̂n. Next draw a large number B of bootstrap
resamples X∗(b) = {X∗(b)

1 , . . . , X
∗(b)
n }, each giving an estimator θ̂

∗(b)
n . For each resample, treat it as

if it were an original sample, and consider the bootstrap distribution based on the bth resample.
That is, let F̂ ∗(b)(·) be the empirical CDF of X∗(b), and draw X

∗∗(bc)
i from F̂ ∗(b)(·), i = 1, . . . , n.

Use this nested resample to construct a confidence bound on the parameter. In this second level
bootstrap (boot2), θ̂

∗(b)
n is the estimator computed from the sample X∗(b), and the bootstrap-t

confidence limit is defined by
θ̃∗(b)un = θ̂∗(b)n − ˆ̂xασ̂∗(b)

n /n1/2, (10.27)

with ˆ̂xα chosen to satisfy

P (n1/2(θ̂∗∗(bc)n − θ̂∗(b)n )/σ̂∗∗(bc)
n > ˆ̂xα|X∗(b)) = 1 − α.

Note that the true value of the parameter in the “population” X from which the “sample” X∗(b)

is drawn is θ̂n, so (10.27) is really an upper confidence limit on θ̂n.

Using this procedure, B upper confidence limits on θ̂n are obtained. These confidence limits can
then be used to estimate the actual coverage probability of the bootstrap-t procedure. That is,
calculate

P (θ̂n < θ̃∗(b)un |X),

or really, estimate this from the resamples, say with
∑B

j=1 I(θ̂n < θ̃
∗(b)
un )/B. If the estimated

coverage probability is not equal to 1 − α, then the confidence level used to calculate ˆ̂xα can be
adjusted, until this bootstrap estimate of the coverage probability equals the nominal coverage
probability. To be more precise, instead of using ˆ̂xα in (10.27), use ˆ̂xα+t̂, giving

θ̃
∗(b)
utn = θ̂∗(b)n − ˆ̂xα+t̂σ̂

∗(b)
n /n1/2,

with t̂ chosen so that
P (θ̂n < θ̃

∗(b)
utn |X) = 1 − α.
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This procedure thus estimates a confidence level 1 − α − t̂ that should be used in the bootstrap-t
procedure to give an actual confidence level of 1 − α. The upper confidence limit on θ is then
constructed by applying the bootstrap-t procedure to the original data, using the level 1 − α − t̂.
That is, set

θ̃u = θ̂n − x̂α+t̂σ̂n/n1/2, (10.28)

with x̂α+t̂ chosen to satisfy

P (n1/2(θ̂∗n − θ̂n)/σ̂n > x̂α+t̂|X) = 1 − α − t̂

(treating t̂ as fixed). It turns out that by using a second level of bootstrapping to adjust the
confidence level, the bootstrap-t procedure improves from second order accurate to third order. In
principle, one could add a third order of bootstrapping to estimate the error in this 2-stage
procedure, a 4th level to look at the error in the 3 stage procedure, etc. In theory, each such
additional level improves the order of the approximation. It is probably not possible to iterate
this procedure to ∞ to produce exact limits, however. First, it would be prohibitively expensive
in most settings. Second, the Edgeworth expansions on which the theory is based usually
converge as n → ∞ for a fixed number of terms, but often do not converge for fixed n as the
number of terms increases. But it is this latter convergence that would be required to get exact
coverage for a fixed sample size.

Example 10.6 Consider computing an upper confidence limit on the square of the mean, based
on the estimator X

2
n. The delta method (g(x) = x2, g′(x) = 2x) gives that

n1/2[ X2
n − µ2]/(2|Xn|sn),

where s2
n =

∑n
i=1(Xi − Xn)2/(n − 1), is asymptotically N(0, 1), and hence is an approximate

pivot. Consider the following data, with n = 6.

> set.seed(33)
> x <- rexp(6)
> x
[1] 0.36520032 1.10559251 2.32469911 0.21976869 2.16249816 0.01115996

The delta method upper 90% confidence limit is calculated by the following commands.

> # upper confidence limit for f1(E(X)), using the estimator f1(mean(x))
> # f2 is the derivative of f1
> #asymptotic normal UCL (delta method)
> f1 <- function(x) x^2; f2 <- function(x) 2*x
> f1(mean(x))-qnorm(.10)*abs(f2(mean(x)))*sqrt(var(x))/sqrt(length(x))
> [1] 2.154137

b.ucl below is a function to compute the bootstrap-t upper confidence limits, given an array of
bootstrap resamples. Note that it computes the approximate pivot on each of the resamples, and
then computes the appropriate quantile(s) of the vector of approximate pivots (apvar is a
function to compute the variances of the rows of a matrix, which is significantly faster than
apply(xb,1,var)).
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> b.ucl
function(xb, x, probs)
{
## xb=matrix of bootstrap resamples,x=original data,1-probs=conf level
## returns bootstrap-t upper confidence limits of levels 1-probs.

xbm <- apply(xb, 1, mean)
xbv <- apvar(xb, xbm)
xbv <- ifelse(xbv > 0, xbv, 1e-10)
xbm <- (sqrt(length(x)) * (f1(xbm) - f1(mean(x))))/(abs(f2(xbm)) * sqrt(

xbv))
x5 <- quantile(xbm, prob = probs)
f1(mean(x)) - (x5 * abs(f2(mean(x))) * sqrt(var(x)))/sqrt(length(x))

}
> apvar
function(a, am)
{

a <- (a - am)^2
apply(a, 1, sum)/(ncol(a) - 1)

}
> B <- 500
> xb <- sample(x,B*length(x),replace=T)
> dim(xb) <- c(B,length(x))
> b.ucl(xb,x,.10)

10%
2.816042

Thus the ordinary bootstrap-t upper confidence limit is 2.82, quite a bit larger than the
asymptotic value. (B = 500 is a little small for estimating percentiles, but to use a second level of
sampling, B cannot be too large.) To correct the bootstrap-t confidence limit using a second level
of bootstrap sampling to estimate the actual coverage probability requires computing bootstrap-t
confidence limits for different nominal coverage probabilities, and then searching for the nominal
value that gives the correct actual coverage. To do this, the confidence limits for nominal levels
94% to 75% will be computed for each set of bootstrap2 resamples. The following commands do
this using each of the original 500 resamples as an “original” data set. (The memory.size()
command is to monitor memory usage, which stayed under about 4MB during this run.)

> xbb <- matrix(-1,nrow=B,ncol=length(x))
> out <- matrix(-1,nrow=B,ncol=20)
> for (i in 1:500) {
+ xbb[1:B,1:length(xb[i,])] <- sample(xb[i,],B*length(x),replace=T)
+ out[i,] <- b.ucl(xbb,xb[i,],6:25/100)
+ print(memory.size())
+ }

The following commands tabulate the proportion of the 500 resamples where the upper confidence
limit was ≥ X

2
n, which is the “true value” of the parameter in the first level of bootstrap
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resamples. Thus these are estimates of the coverage probabilities for the confidence limits of
nominal size 94% to 75%. The results suggest that a nominal level of about 77% to 78% should
be used to get actual coverage of 90% using the bootstrap-t procedure. The 77%, 77.5% and 78%
bootstrap-t upper confidence limits are given at the end of the output. These are smaller than
both the original delta method confidence limit and the uncorrected bootstrap-t limit.

> w <- matrix(-1,20,2)
> for ( i in 1:20) w[i,] <- c((95-i)/100,table(out[,i]>=f1(mean(x)))[2]/B)
> w

[,1] [,2]
[1,] 0.94 0.978
[2,] 0.93 0.974
[3,] 0.92 0.964
[4,] 0.91 0.946
[5,] 0.90 0.940
[6,] 0.89 0.928
[7,] 0.88 0.926
[8,] 0.87 0.924
[9,] 0.86 0.924

[10,] 0.85 0.924
[11,] 0.84 0.924
[12,] 0.83 0.924
[13,] 0.82 0.924
[14,] 0.81 0.924
[15,] 0.80 0.920
[16,] 0.79 0.914
[17,] 0.78 0.906
[18,] 0.77 0.892
[19,] 0.76 0.872
[20,] 0.75 0.862
> b.ucl(xb,x,c(.22,.225,.23))

22.0% 22.5% 23.0%
1.841403 1.815584 1.782364

2

The iterated bootstrap is not often used because of the computational expense. It has been
proposed most frequently, though, in connection with Efron’s percentile method. Recall that
Efron’s percentile method transforms properly and stays within range restrictions on the
parameter, but is not directly motivated as a frequentist confidence set procedure, and often has
poor coverage. Using a second level of bootstrap sampling to correct the coverage probability
then gives a second order accurate procedure, which automatically transforms properly and stays
within range restrictions on parameters. Beran (1987) proposed a method called prepivoting,
slightly different than the method described here, for getting second order accurate confidence
limits using a double bootstrap procedure.
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10.6 Exercises

Exercise 10.1 Bootstrap iteration is a general technique that can (in principle) be applied to
improve other types of bootstrap estimates. In this exercise its application to estimating bias is
discussed.

As discussed in Section 10.2 above, the bias of an estimator θ̂n of θ is

E(θ̂n) − θ,

and in accordance with the general bootstrap principle, the bootstrap estimate of bias is

E(θ̂∗n|X) − θ̂n.

It is assumed here that θ̂n is the true value of the parameter in the bootstrap distribution, and
that the expectation over the bootstrap distribution can be computed exactly, or estimated with
a sufficiently large number of bootstrap resamples to make it essentially exact, so the control
variate type correction discussed in Section 10.2 is not needed. The bias corrected estimate is then

θ̂n − [E(θ̂∗n|X) − θ̂n] = 2θ̂n − E(θ̂∗n|X).

As with confidence intervals and coverage probabilities, a second level of bootstrapping can be
used to estimate the bias in the bias corrected estimator. As before X∗(b) = {X∗(b)

1 , . . . , X
∗(b)
n } is a

resample from the original data, and X
∗∗(bc)
1 , . . . , X

∗∗(bc)
n a resample from X∗(b). The distribution

of the second level of resamples for each first level resample provides an estimate

E(θ̂∗∗(bc)n |X∗(b)) − θ̂∗(b)n

of the bias of θ̂∗n (the difference between θ̂
∗(b)
n and θ̂∗n is that the former refers to a particular

resample). The actual bias (conditional on X) of θ̂∗n is

E(θ̂∗n|X) − θ̂n.

Thus an estimate of the bias in the bootstrap estimate of bias is

E(θ̂∗∗(bc)n |X∗(b)
n ) − θ̂∗(b)n − [E(θ̂∗n|X) − θ̂n].

Taking the expectation over X∗(b)|X reduces this expression to

E(θ̂∗∗(bc)n |X) − 2E(θ̂∗n|X) + θ̂n.

An improved estimate of bias is then given by

E(θ̂∗n|Xn) − θ̂n − [E(θ̂∗∗(bc)n |X) − 2E(θ̂∗n|X) + θ̂n] = 3E(θ̂∗n|X) − E(θ̂∗∗(bc)n |X) − 2θ̂n.

The double bias corrected estimator is

θ̂n − [3E(θ̂∗n|X) − E(θ̂∗∗(bc)n |Xn) − 2θ̂n].

As with confidence intervals, this process can be further iterated.
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Many asymptotically normal estimators have a bias of O(n−1). Correcting using the bootstrap
estimate of bias typically reduces this to O(n−2). The double bootstrap correction reduces to
O(n−3), and each further iteration reduces the order by a factor of n−1. This is discussed in
Sections 1.4 and 1.5 of Hall (1992).

The following is a simple example where exact calculations can be given. Suppose X1, . . . , Xn are
iid with mean µ and variance σ2, and suppose θ = µ2 is estimated with θ̂n = X

2
n. Also let

σ̂2
n =

∑
i(Xi − Xn)2/n.

(a) Show E(θ̂n) = µ2 + σ2/n.

(b) Show that the bias corrected bootstrap estimator is

X
2
n − σ̂2

n/n.

(c) Give an exact formula for the bias of the estimator in (b).

(d) Show that the kth iterated bootstrap gives a biask corrected estimator of the form

X
2
n − (n−1 + n−2 + · · · + n−k)σ̂2

n.

(e) Give an exact formula for the bias of the estimator in (d), and show that it is O(n−(k+1)).

(f) Identify the limit as k → ∞ of the estimator in (d), and show this limit is unbiased for µ2.
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