
STA3431H (Monte Carlo Methods), Winter 2011, Homework #2

Due: In class by 2:10 p.m. sharp on Monday March 28.

NOTES:

• Late homeworks, even by one minute, will be penalised!

• Homework assignments are to be solved by each student individually; you may discuss
assignments in general terms with other students, but you must solve it on your own,
including doing all of your own computing and writing.

• For full points you should provide very complete solutions, including explaining all
of your reasoning clearly and neatly, performing detailed Monte Carlo investigations
including multiple runs as appropriate, justifying all of the choices you make, etc.

• You may use results from lecture, but clearly state when you are doing so.

• When writing computer programs for homework assignments:

− R is the ”default” computer programming language and should normally be used
for homework; under some circumstances it may be permitted to use other stan-
dard computer languages, but only with prior permission from the instructor.

− You should include both the complete source code and the program output.

− Programs should be clearly explained, with comments, so they are easy to follow.

• Reminder: your final project is due April 4 at 2:10pm.

THE ACTUAL ASSIGNMENT:

1. Consider the Markov chain with state space X = {1, 2, . . . , 100}, and transition
probabilities given by P (j, j) = 0.8 for all j ∈ X , and P (1, 2) = P (100, 99) = 0.2, and
P (j, j + 1) = P (j, j − 1) = 0.1 for 2 ≤ j ≤ 99, with P (i, j) = 0 otherwise.

(a) Compute limn→∞P(Xn = 3) analytically, including a complete proof of your an-
swer. [Hint: is this Markov chain reversible with respect to some probability distribution?]

(b) Write and run a computer program to simulate this Markov chain, and relate
(with discussion) your program’s output to the answer from part (a).

2. Consider an independence sampler algorithm on X = (1,∞), where π(x) = 5x−6

and q(x) = r x−r−1 for some choice of r > 0, with identity functional h(x) = x.

(a) For what value of r will the algorithm provide i.i.d. samples?

(b) For what values of r will the sampler be geometrically ergodic?

(c) For r = 1/20, find a number n such that D(x, n) < 0.01 for all x ∈ X .

(d) Write and run a computer program to estimate Eπ(h) with this algorithm in
the two cases r = 1/20 and r = 10, each with M = 105 and B = 104. Estimate the
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corresponding standard errors by two different methods: (i) using “varfact”, and (ii) from
repeated independent runs.

(e) Discuss and compare the standard errors estimated by each of the two methods
in each of the two cases, including discussion of which method is “better” for assessing
uncertainty, and which case is a “better” sampling algorithm.

3. Let X = R, and let π(x) = c g(x), where g(x) = e−|x|/10(1 + cos(x) sin(x3)), and
let h(x) = x + x2. With appropriate choice of M and B and σ and starting distribution
L(X0), estimate Eπ(h) in each of two different ways:

(a) With a usual random-walk Metropolis algorithm for π, with the usual proposal
distributions Yn ∼ N(Xn−1, σ

2).

(b) With a Langevin (Metropolis-Hastings) algorithm with proposals Yn ∼ N(Xn−1+
1
2 σ

2 g′(Xn−1) / g(Xn−1), σ2). [Note: Here g′(x) is the usual derivative of g, and should be
computed analytically by you in advance and entered into your program.]

(c) Compare the two algorithms and discuss which one is “better”.

4. Consider the standard variance components model described in lecture, with
K = 6 and Ji ≡ 5, and {Yij} the famous “dyestuff” data (from the file “Rdye”), with prior
values a1 = a2 = a3 = b1 = b2 = b3 = 100. Estimate (as best as you can, together with a
discussion of accuracy etc.) the posterior mean of W/V , in each of three ways:

(a) With a random-walk Metropolis algorithm.

(b) With a Metropolis-within-Gibbs algorithm.

(c) With a Gibbs sampler. [Note: first derive from scratch all of the conditional
distributions, whether or not they were already described in lecture.]

(d) Finally, discuss the relative merits of all three algorithms for this example.

5. Consider the homerun baseball data in the file “Rhomerun”, giving the number
of homeruns Hi and number of attempts (at-bats) Ai for players 1 ≤ i ≤ 12. Consider
the Ai to be fixed, known constants, and the Hi to be observed data. Assume that
Hi ∼ Binomial(Ai, θi) (cond. ind.), where θi ∼ Beta(1001, 1 + 1000S) (cond. ind.) are
unknown. Finally, put a prior S ∼ Poisson(5) on S (thus, S is integer-valued).

(a) Specify (up to a normalising constant) the joint posterior distribution of S, θ1, . . . , θ12.

(b) Run at least one MCMC algorithm of your choice for this posterior distribution,
to estimate (as best as you can, together with standard errors), the posterior means of
each of the 3 variables S, θ1, θ2.

(c) For i = 1, 2, compare the estimated posterior mean of θi to the value Hi/Ai. Are
they different, and if so, how and why? Discuss.
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