
General Quantities, Besides Yes/No

• So far, we have mostly done statistics on Yes/No quantities.

(Do you support the government? Is the coin heads? Does the die

show 5? Did the roulette spin come up 22? etc.)

• Then we could study proportions or fractions or probabilities,

and compute P-values and confidence intervals for them, and

(now) compare them to each other, etc. Good!

• But what about quantities that don’t involve just Yes/No?

(Medicine: blood pressure, life span, weight gain, etc. Economics:

GDP, stock price, company profits, etc. Social policy: number of

accidents, amount of congestion, etc. Weather: amount of rain,

wind speed, temperature, etc. Environment: global warming, ocean

levels, contamination levels, atmospheric concentrations, etc.

Sports: number of goals, time of possession, etc. Science: number

of particles, speed of chemical reaction, etc.) Next!
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Example: Baby Weights

• Ten babies born in a hospital (in North Carolina) had the

following weights, in pounds: x1 = 9.88, x2 = 9.12, x3 = 8.00,

x4 = 9.38, x5 = 7.44, x6 = 8.25, x7 = 8.25, x8 = 6.88, x9 = 7.94,

x10 = 6.00. (Here n = 10.)

• What is 95% confidence interval for the true mean baby weight?

− It’s not a proportion! Can’t use previous formulas!

• Well, suppose the weight of babies is random, with some

(unknown) mean µ, and some (unknown) sd σ, hence some

(unknown) variance σ2. What can we say about µ?

• Well, we could estimate µ by the average of the data, i.e. by

x = (x1 + x2 + . . .+ x10)/10 = 1
n

∑n
i=1 xi

.
= 8.11.

− But is this close to the true µ? How close?

− Variability? Confidence interval? Hypothesis test? etc.
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Baby Weights (cont’d)

• Well, we could estimate σ2 = E [(Xi − µ)2] by

the average of the squared differences from x , i.e. by

s2 = [(x1 − 8.11)2 + (x2 − 8.11)2 + . . . + (x10 − 8.11)2]/10 =
1
n

∑n
i=1(xi − x)2

.
= 1.226.

− (Controversial! Some people, and R, prefer to divide by

n − 1, which has some advantages (e.g. “unbiased”). But I think

it’s fine to divide by n; see my article: www.probability.ca/varmse)

− Then, could estimate sd by: s =
√
s2

.
=
√

1.226
.

= 1.11.

• But how close is x to µ? For this, we need to consider the

probabilities for what x could have been (ignoring its observed

value, 8.11).

• Well, if each xi was random, with mean µ, and variance σ2,

then x1 + x2 + . . .+ xn would have mean n× µ = nµ, and variance

n × σ2 = nσ2.
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Probabilities for Baby Weights

• Now use our mean and variance tricks!

• Then x = (x1 + x2 + . . . + xn)/n would have mean nµ/n = µ

(same as mean of each xi ), and variance nσ2/n2 = σ2/n (which is

only 1/n of the variance of each xi ).

• Then x − µ would have mean 0, and variance σ2/n, hence sd√
σ2/n = σ/

√
n.

• So, (x − µ)/(σ/
√
n) has mean 0, and sd 1. And, it’s

approximately normal (for reasonably large n), by the Central Limit

Theorem. So, approximately a standard normal!

• So, P[−1.96 < (x − µ)/(σ/
√
n) < +1.96]

.
= 0.95.

So, P[−1.96σ/
√
n < x − µ < +1.96σ/

√
n]

.
= 0.95. So,

P[x − 1.96σ/
√
n < µ < x + 1.96σ/

√
n]

.
= 0.95.

− 95% confidence interval for µ! Good? Any problems?
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http://probability.ca/varmse


Confidence Interval for Baby Weights

• Have confidence interval [x − 1.96σ/
√
n, x + 1.96σ/

√
n].

• Problem: σ is unknown! Could replace it by its estimate, s.

This is like a “bold” option (though quite accurate if n is large). Is

there also a “conservative” option? No! σ could be very large!

− Instead, can compensate by using the “t distribution” instead

of the normal distribution. (“t test”) This corresponds to increasing

the factor “1.96” a little bit, depending on the value of n:

n 5 10 20 50 100 200 500

factor 2.78 2.26 2.09 2.01 1.98 1.97 1.96

• In this course, don’t worry, just replace σ by s, and use “1.96”

for simplicity. So, confidence interval for µ is:

[x − 1.96 s/
√
n, x + 1.96 s/

√
n].
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Confidence Interval for Baby Weights (cont’d)

• Confidence interval: [x − 1.96 s/
√
n, x + 1.96 s/

√
n].

• Baby example: n = 10, x = 8.11,

s = 1.11, so 95% confidence interval for µ is:

[8.11− 1.96× 1.11/
√

10, 8.11 + 1.96× 1.11/
√

10]
.

= [7.42, 8.80].

− Margin of error is: 1.96 s/
√
n = 1.96× 1.11/

√
10

.
= 0.69.

• Conclusion: We are 95% confident that the true mean baby

weight, µ, is between 7.42 pounds and 8.80 pounds.

• Or, if use “2.26” factor instead, then 95% confidence interval

becomes: [8.11 − 2.26 × 1.11/
√

10, 8.11 + 2.26 × 1.11/
√

10]
.

= [7.32, 8.90]. (A bit wider, i.e. a bit more uncertainty.)

• But are we sure? Could the true mean baby weight be just 7.5

pounds? P-value? Hypothesis test?
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General Quantities: Summary So Far

• Have data values x1, x2, . . . , xn.

• Can estimate true mean µ by x = 1
n

∑n
i=1 xi .

• Then can estimate true variance σ2 by s2 = 1
n

∑n
i=1(xi − x)2.

• Then can estimate true sd σ by s =
√
s2. (“bold”)

• Then x is approximately normal, with mean µ, and variance

σ2/n, so sd σ/
√
n ≈ s/

√
n.

• So, (x − µ)/(s/
√
n) is approximately standard normal.

• So, P[−1.96 < (x − µ)/(s/
√
n) < +1.96] ≈ 0.95.

• So, P[x − 1.96 s/
√
n < µ < x + 1.96 s/

√
n] ≈ 0.95.

• So, 95% C.I. for µ is [x − 1.96 s/
√
n, x + 1.96 s/

√
n].

• Baby weights: n = 10, x
.

= 8.11, s
.

= 1.11, C.I.
.

= [7.42, 8.80].
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Hypothesis Test for Baby Weights

• For the baby example, suppose want to test the null hypothesis

that µ = 7.5, versus the alternative hypothesis that µ 6= 7.5.

• We know that if each xi has mean µ, and variance σ2, then

x = (x1 + x2 + . . .+ xn)/n would have mean µ and variance σ2/n.

• But the observed value of x was 8.11.

• So, the P-value is the probability, assuming that µ = 7.5, that

the value of x would have been 8.11 or more, or 6.89 or less

(two-sided) (since 8.11 = 7.5 + 0.61, and 6.89 = 7.5 − 0.61).

• Now, if µ = 7.5, then x has mean 7.5, and variance σ2/n.

− Once again, to proceed, replace σ (unknown) by s.

− So, assume the variance is s2/n
.

= 1.226/10.

− So, assume the sd is
√

s2/n = s/
√
n
.

= 1.11/
√

10
.

= 0.35.
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• So, under the null, x has mean 7.5, and sd about 0.35.

• Now, once again, we “should” use the t-distribution instead of

a normal (i.e., there’s slightly more uncertainty), but for simplicity

we’ll just use a normal.

• So, the P-value is the probability that the random quantity x ,

which is approximately normal(!), and has mean 7.5, and sd

approximately 0.35, will be 8.11 or more, or 6.89 or less (two-sided).

• In R: pnorm(8.11, 7.5, 0.35, lower.tail=FALSE) + pnorm(6.89,

7.5, 0.35, lower.tail=TRUE). Answer is: 0.08135857. More than

0.05! So, cannot reject the null! So, µ could indeed be 7.5!

• What if you didn’t have R, only a standard normal probability

table? Well, here the Z-score is Z = (8.11− 7.5)/0.35
.

= 1.74,

so P-value = P(Z > 1.74) + P(Z < −1.74) = (1 − P(Z <

1.74)) + (1− P(Z < 1.74))
.

= 2× (1− 0.9591)
.

= 0.0818.
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• Let’s try another test! For the baby example, suppose instead

we want to test the null hypothesis that µ = 7.2, versus the

alternative hypothesis that µ > 7.2 (one-sided).

• Now, under the null, x has mean 7.2, and sd approximately

s/
√
n = 1.11/

√
10

.
= 0.35.

• So, the P-value is the probability that the random quantity x ,

which is approximately normal(!), and has mean 7.2, and sd ≈ 0.35,

will be 8.11 or more. [Not or 6.29 or less, since just one-sided.]

• In R: pnorm(8.11, 7.2, 0.35, lower.tail=FALSE). Answer is:

0.004661188. Much less than 0.05! So, can reject the null!

− (Or, using table: P-value = P(Z > (8.11− 7.2)/0.35) =

P(Z > 2.6) = 1− P(Z < 2.6)
.

= 1− 0.9953)
.

= 0.0047.)

• Conclusion: Based on the ten baby weights studied, the true

mean baby birth weight, µ, is more than 7.2 pounds.
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General Quantites Example: Wolf Pups

• A study of endangered wolves in the southwestern United States

sampled 16 wolf dens, and found the following numbers of pups

(baby wolves) in them: 5, 8, 7, 5, 3, 4, 3, 9, 5, 8, 5, 6, 5, 6, 4, 7.

• Here the sample mean is

x = 1
n

∑n
i=1 xi = 1

16(5 + 8 + 7 + . . .+ 4 + 7) = 5.625.

• And, the sample variance is

s2 = 1
n

∑n
i=1(xi − x)2 = 1

16

∑16
i=1(xi − 5.625)2 = 1

16([5− 5.625]2 +

[8−5.625]2 +[7−5.625]2 + . . .+[4−5.625]2 +[7−5.625]2)
.

= 2.984.

− (If divide by n − 1 instead of n, get 3.183.)

• So, the sample sd is s =
√
s2 =

√
2.984

.
= 1.727.

• Then a 95% confidence interval for the true mean number

µ of pups per den is: [x − 1.96 s/
√
n, x + 1.96 s/

√
n] =

[5.625−1.96×1.727/
√

16, 5.625+1.96×1.727/
√

16]
.

= [4.78, 6.47].
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Wolf Pups (cont’d)

• Conclusion: We are 95% confident that the true mean number

of pups per wolf den is between 4.78 and 6.47.

• Could the true mean, µ, be equal to 5?

• The P-value for this is the probability that a normal (approx.)

random variable with mean 5, and sd s/
√
n
.

= 1.727/
√

16
.

= 0.432,

is 5.625 or more, or 4.375 or less (since 5.625− 5 = 5− 4.375).

• In R: pnorm(5.625, 5, 0.432, lower.tail=FALSE) + pnorm(4.375,

5, 0.432, lower.tail=TRUE). Answer is: 0.1479644. More than

0.05! So, cannot reject the null!

• Conclusion: Based on the available data from the 16 wolf dens,

the true mean number of pups, µ, could indeed be equal to 5.

• Could it be 4?

• First, some diagrams . . .
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Wolf Pups (cont’d)

• Could µ be 4?

• The P-value for that is the probability that a normal (approx.)

random variable with mean 4, and sd s/
√
n
.

= 1.727/
√

16
.

= 0.432,

is 5.625 or more, or 2.375 or less (since 5.625− 4 = 4− 2.375).

• In R: pnorm(5.625, 4, 0.432, lower.tail=FALSE) + pnorm(2.375,

4, 0.432, lower.tail=TRUE). Answer is: 0.0001688474. Much less

than 0.05! So, can reject the null! So, µ is not equal to 4.

• Conclusion: Based on the available data from the 16 wolf dens,

the true mean number of pups, µ, is not equal to 4.

• SUMMARY: We can compute confidence intervals and P-values

for general quantities, similar to for Yes/No proporitions. The main

differences are: we estimate the mean by x = 1
n

∑n
i=1 xi instead of

p̂, and estimate the individual variance by s2 = 1
n

∑n
i=1(xi − x)2

instead of p̂(1− p̂). sta130–135



Connection between General Quantities and Proportions

• Recall: For proportions, we estimate the mean by p̂, and

estimate the individual variance (bold option) by p̂(1− p̂).

• But for general quantities, we estimate the mean by

x = 1
n

∑n
i=1 xi , and estimate the individual variance by

s2 = 1
n

∑n
i=1(xi − x)2.

• What is the connection between these two cases?

• Suppose we write xi = 1 for each Yes, and xi = 0 for each No.

− Then, x = 1
n

∑n
i=1 xi = 1

n (number of Yes in sample) =

proportion of Yes in sample = p̂. Same as before!

− And, s2 = 1
n

∑n
i=1(xi − x)2 = 1

n

∑n
i=1(xi − p̂)2

= p̂(1− p̂)2 + (1− p̂)(0− p̂)2 = p̂(1− p̂). Also same as before!

• So, these two cases aren’t so different, after all.
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Comparing Two General Quantities

• For Yes/No proportions (like polls), we also know how to

compare two different samples to each other, and get a confidence

interval for the difference of the means, or a P-value for testing if

the two means are equal. Can we do that with general quantities?

• EXAMPLE: Is the birth weight of a baby affected by whether or

not the baby’s mother smoked during pregnancy?

• Study from a social club in Kentucky: Birth weights (in grams)

from the 22 babies whose mothers smoked: 3276, 1974, 2996,

2968, 2968, 5264, 3668, 3696, 3556, 2912, 2296, 1008, 896, 2800,

2688, 3976, 2688, 2002, 3108, 2030, 3304, 2912.

• Birth weights (in grams) from the 35 babies whose mothers

didn’t smoke: 3612, 3640, 3444, 3388, 3612, 3080, 3612, 3080,

3388, 4368, 3612, 3024, 2436, 4788, 3500, 4256, 3640, 4256,

4312, 4760, 2940, 4060, 4172, 2968, 2688, 4200, 3920, 2576,

2744, 3864, 2912, 3668, 3640, 3864, 3556. Conclusion?? sta130–137

Comparing Birthweights With or Without Smoking

• How can we compare them?

• Well, write x1, x2, . . . , x22 for the birthweights of the n1 = 22

babies whose mothers smoked. And, write y1, y2, . . . , y35 for the

birthweights of the n2 = 35 babies whose mothers didn’t smoke.

• Then can compute the means, x = 1
22

∑22
i=1 xi , and

y = 1
35

∑35
i=1 yi . Obtain: x = 2863, and y = 3588.

• So, y is larger, and in fact y − x = 725 grams.

• Does this prove anything? Or is it just . . . luck?

• Write µ1 for the true mean birthweight of babies whose mothers

smoked, and µ2 for those whose mothers didn’t smoke.

− Then what is a confidence interval for µ2 − µ1? And, what is

the P-value to test the null hypothesis that µ1 = µ2, against the

alternative hypothesis µ1 6= µ2 (two-sided), or µ2 > µ1 (one-sided)?
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Comparing Birthweights (cont’d)

• Well, let’s consider y − x .

− This quantity has mean µ2 − µ1.

− But what about the variance?

− Write σ21 for the true variance of the birthweights of babies

whose mothers smoked. And σ22 for those whose mothers didn’t.

− And, write s21 = 1
n1

∑n1
i=1(xi − x)2 ≈ σ21 (sample variance).

− And s22 = 1
n2

∑n2
i=1(yi − y)2 ≈ σ22.

− Then x has variance σ21/n1 ≈ s21/n1.

− And, y has variance σ22/n2 ≈ s22/n2.

− So, y − x has variance σ21/n1 + σ22/n2 ≈ s21/n1 + s22/n2.

− So, y − x has sd ≈
√

s21/n1 + s22/n2.

sta130–139



Comparing Birthweights (cont’d)

• Confidence interval? Use mean & variance tricks again!

• Indeed, here ((y − x)− (µ2 − µ1))
/√

s21/n1 + s22/n2 has mean

0, and sd 1, so it is approximately standard normal.

• So, P[−1.96 < ((y − x)− (µ2 − µ1))
/√

s21/n1 + s22/n2 <

+1.96]
.

= 0.95.

• Re-arranging (similar to before), P[y−x−1.96
√

s21/n1 + s22/n2 <

µ2 − µ1 < y − x + 1.96
√

s21/n1 + s22/n2]
.

= 0.95.

− This gives a 95% confidence interval for µ2 − µ1!

− Namely, [y − x − 1.96
√

s21/n1 + s22/n2, y − x +

1.96
√

s21/n1 + s22/n2].

• Next, apply this to the birthweight data . . .
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Comparing Birthweights (cont’d)

• Birthweight data: n1 = 22, n2 = 35, x = 2863, y = 3588.

• For this data, we compute that s21 = 1
n1

∑n1
i=1(xi − x)2 =

1
22 [(3276−2863)2+(1974−2863)2+. . .+(2912−2863)2] = 873, 531.9.

Then s1 =
√

873, 531.9
.

= 934.6.

• Also, s22 = 1
n2

∑n2
i=1(yi − y)2 =

1
35 [(3612−3588)2+(3640−3588)2+. . .+(3556−3588)2] = 346, 713.6

(smaller!). Then s2 =
√

346, 713.6
.

= 588.8.

• Hence, y − x has mean µ2 − µ1, and sd

≈
√

s21/n1 + s22/n2
.

=
√

873, 531.9/22 + 346, 713.6/35
.

= 222.7.

• So, ((y − x)− (µ2 − µ1))
/√

s21/n1 + s22/n2 has mean 0, and

sd 1. Standard normal! (approx.)

• This is what we need!
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Comparing Birthweights (cont’d)

• Birthweight data: n1 = 22, n2 = 35, x = 2863, y = 3588,

s21 = 873, 531.9, s22 = 346, 713.6.

• So, P[3588− 2863− 1.96
√

873, 531.9/22 + 346, 713.6/35 <

µ2−µ1 < 3588−2863+1.96
√

873, 531.9/22 + 346, 713.6/35]
.

= 0.95.

• i.e., P[288.4 < µ2 − µ1 < 1161.6]
.

= 0.95.

• i.e., 95% confidence interval is [288.4, 1161.6].

• Conclusion: We are 95% confident that the true mean

birthweight of babies whose mothers do not smoke, is between

288.4 and 1,161.6 grams higher than the true mean birthweight of

babies whose mothers do smoke.

• Good!

• What about hypothesis tests and P-values?
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Hypothesis Test for Comparing Birthweights

• Null hypothesis: µ1 = µ2, i.e. the two true means are equal.

• Under the null hypothesis, y − x has mean µ2 − µ1 = 0, and sd

≈
√

s21/n1 + s22/n2
.

= 222.7 like before.

• So, the two-sided P-value is the probability that a normal, with

mean 0, and sd 222.7, would be as large or larger than the

observed value 725, or as small or smaller than −725.

• In R: pnorm(725, 0, 222.7, lower.tail=FALSE) + pnorm(−725,

0, 222.7, lower.tail=TRUE). Answer: 0.00113. Much less than

0.05! So, can reject the null! So, µ1 and µ2 are not equal.

• Conclusion: The data demonstrates that the true mean

birthweight for babies whose mother smokes, is not equal to the

true mean birthweight for babies whose mother does not smoke.

(Consistent with other, larger studies, e.g. of 34,799 births in

Norway, and 347,650 births in Washington State.) sta130–143



Another Example: Phone Calls

• Some students at Hope College (Michigan) surveyed 25 male

and 25 female students. For each student, they checked how many

seconds their last cell phone call was.

• Male data: 292, 360, 840, 60, 60, 900, 60, 328, 217, 1565, 16,

58, 22, 98, 73, 537, 51, 49, 1210, 15, 59, 328, 8, 1, 3.

• Female data: 653, 73, 10800, 202, 58, 7, 74, 75, 58, 168, 354,

600, 1560, 2220, 2100, 56, 900, 481, 60, 139, 80, 72, 2820, 17, 119.

• Do females talk on the phone for longer than males do?

• Note: one data value is much larger than all the others, namely

10800. This is exactly three hours. Perhaps(?) this was the

default/max reading, and the phone had e.g. accidentally been left

on? I decided to omit that value. (“outlier”) So, female data: 653,

73, 202, 58, 7, 74, 75, 58, 168, 354, 600, 1560, 2220, 2100, 56,

900, 481, 60, 139, 80, 72, 2820, 17, 119. sta130–144

Phone Call Example (cont’d)

• Here n1 = 25 and n2 = 24.

• Then x = 1
25(292 + 360 + . . . + 1 + 3) = 288.4 seconds (nearly

5 minutes). And, y = 1
24(653 + 73 + . . . + 17 + 119)

.
= 539.4

seconds (about 9 minutes).

• Hence, y − x has observed value 539.4− 288.4 = 251.0.

• Also, s21 = 1
25 [(292− 288.4)2 + (360− 288.4)2 + . . . + (1−

288.4)2 + (3− 288.4)2] = 166, 146.8, so s1 =
√

166, 146.8
.

= 407.6.

• And, s22 = 1
24 [(653 − 539.4)2 + (73 − 539.4)2 +

. . . + (17 − 539.4)2 + (119 − 539.4)2] = 618, 271.8, so

s2 =
√

618, 271.8
.

= 786.3.

• Then y − x has sd ≈
√

s21/n1 + s22/n2
.

=
√

166, 146.8/25 + 618, 271.8/24
.

= 180.0.
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Phone Call Example (cont’d)

• So, what is the P-value for the null hypothesis that the

true means are equal, i.e. that µ1 = µ2, versus the alternative

hypothesis that µ1 < µ2 (one-sided)?

• It is the probability that a normal random value with mean

0 seconds, and sd 180.0 seconds, is larger than the observed

difference, i.e. than 251.0 seconds.

• In R: pnorm(251, 0, 180.0, lower.tail=FALSE). Answer: 0.0816.

Over 0.05! Cannot reject the null! So, µ1 and µ2 could be equal.

• (For two-sided test, would instead use pnorm(251, 0, 180.0,

lower.tail=FALSE) + pnorm(−251, 0, 180.0, lower.tail=TRUE).

Answer: 0.1632. Much more than 0.05! So, still cannot reject.)

• Conclusion: the available data does not demonstrate that

females talk on the phone longer than males do.
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Phone Call Example: Confidence Interval

• Recall that here y − x has mean µ2 − µ1, and sd ≈ 180.0 (as

above), and observed value 251.0.

• So, a 95% confidence interval for µ2 − µ1 is:

[y − x − 1.96
√

s21/n1 + s22/n2, y − x + 1.96
√

s21/n1 + s22/n2], i.e.

[251.0− 1.96× 180.0, 251.0 + 1.96× 180.0], i.e. [−101.8, 603.8].

• Conclusion: Based on the available data, on average females

could talk on the phone up to 101.8 seconds less than males, or up

to 603.8 seconds more than males; we can’t say which.

• So, that’s P-values and confidence intervals for comparing two

different sets of general quantities (e.g. birth weights when mother

smokes or doesn’t smoke; cell phone call lengths for males and

females). Get it? (More practice on Homework #3.)

• Next: What about “correlations” between quantities?
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Correlation Example: Cricket Chirps

• Crickets make chirping sounds.

(http://songsofinsects.com/crickets/striped-

ground-cricket) Sometimes faster, sometimes

slower. Question: Is the frequency of cricket

chirps affected by the temperature?

• An old study (G.W. Pierce, “The Songs of Insects”, 1948)

measured the rate of chirps (# chirps / minute) 15 times, at

different temperatures (in Celsius). The results were as follows:

Temperature (C) 31.4 22.0 34.1 29.1 27.0 24.0 20.9
Chirps / Minute 20.0 16.0 19.8 18.4 17.1 15.5 14.7

Temp 27.8 20.8 28.5 26.4 28.1 27.0 28.6 24.6
C/M 17.1 15.4 16.2 15.0 17.2 16.0 17.0 14.4

• Does this indicate that temperature affects chirps?

− How can we test this??
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Cricket Chirps (cont’d)

• Are these Yes/No proportions? No, they’re general quantities.

• Can we compare two general samples? No, they’re two different

aspects of the same sample.

• Can any of our previous techniques be applied? Not really . . .

• So what to do?

• One strategy: plot all the values on a graph, of chirps/minute

versus temperature, to see if there is a pattern.

• Let’s try it . . .
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Cricket Chirps (cont’d)

• So, is there a pattern?? Seems to be. How to test?

• Let X be the temperature (random), and let Y be the cricket

chirps/minute. We want to see if they are “related”.

• First problem: X and Y are in different “units”, on different

“scales”, with different means, different variances, etc. How to

adjust them to be comparable? Solution: use Z-scores!

• Write µX for the true mean of X , and σX for the true sd of X .

And µY and σY for Y .

• Then let Z = (X − µX )/σX be the Z-score for X . And, let

W = (Y − µY )/σY be the Z-score for Y . Then Z and W are on

the same “scale”: they measure how many sd above (or below) the

mean, for X and for Y , respectively.

• So now the question is, are Z and W related?
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Cricket Chirps (cont’d)

• Question: Are Z and W related? That is, does increasing Z

tend to increase (or decrease) W , or does it make no difference?

• Idea: Look at some expected values.

− E (Z ) = 0 (since it’s a Z-score!). And E (W ) = 0.

− If Z and W had no relation (independent), then

E (ZW ) = E (Z )E (W ) = 0× 0 = 0.

− But if Z tends to get larger when W gets larger, and smaller

when W gets smaller, then we might find that E (ZW ) > 0.

− Or, if Z tends to get smaller when W gets larger, and larger

when W gets smaller, then we might find that E (ZW ) < 0.

• So, we define the correlation between X and Y as:

ρ = ρX ,Y = E (ZW ) = E

[(
X − µX
σX

)(
Y − µY
σY

)]
.
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Estimating the Correlation

• Recall: the correlation Cor(X ,Y ) between X and Y is:

ρ = ρX ,Y = E (ZW ) = E

[(
X − µX
σX

)(
Y − µY
σY

)]
.

− Can we compute this value?

• Well, given a sample of values x1, x2, . . . , xn for X , and

corresponding sample y1, y2, . . . , yn for Y , we could try to estimate

the correlation as

1

n

n∑
i=1

(
xi − µX
σX

)(
yi − µY
σY

)
.

• The problem is: we don’t know the true means µX and µY , nor

the true sd σX and σY (or the true variances σ2X and σ2Y ).

• Solution: estimate them too!
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Estimating the Correlation (cont’d)

• We can estimate the true means µX and µY , by:

µX ≈ x = 1
n

∑n
i=1 xi , µY ≈ y = 1

n

∑n
i=1 yi ; and the true

variances σ2X and σ2Y , by: σ2X ≈ s2x = 1
n

∑n
i=1(xi − x)2,

σ2Y ≈ s2y = 1
n

∑n
i=1(yi − y)2.

• Then, the sample correlation between X and Y is

r = rxy =
1

n

n∑
i=1

(
xi − x

sx

)(
yi − y

sy

)
.

− We know all these quantities from our sample. Good!

− If we use the Z-scores zi = (xi − x)/sx , and wi = (yi − y)/sy ,

then we can write this more simply as: r = 1
n

∑n
i=1 zi wi .

− (Some people, and R, divide by n − 1 instead of n . . . let’s

not worry about that . . . )
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Back to Cricket Data

Temperature (C) 31.4 22.0 34.1 29.1 27.0 24.0 20.9
Chirps / Minute 20.0 16.0 19.8 18.4 17.1 15.5 14.7

Temp 27.8 20.8 28.5 26.4 28.1 27.0 28.6 24.6
C/M 17.1 15.4 16.2 15.0 17.2 16.0 17.0 14.4

• Write X for temperature, and Y for chirps/minute. Then

x = 1
n

∑n
i=1 xi = 1

15 [31.4 + 22.0 + . . . + 24.6]
.

= 26.7. And,

y = 1
n

∑n
i=1 yi = 1

15 [20.0 + 16.0 + . . .+ 14.4]
.

= 16.7.

• And, s2x = 1
n

∑n
i=1(xi − x)2 =

1
15 [(31.4− 26.7)2 + (22.0− 26.7)2 + . . . + (24.6− 26.7)2]

.
= 13.0.

So, sx =
√

s2x
.

=
√

13.0
.

= 3.6. Also, s2y = 1
n

∑n
i=1(yi − y)2 =

1
15 [(20.0− 16.7)2 + (16.0− 16.7)2 + . . . + (14.4− 16.7)2]

.
= 2.7.

So, sy =
√

s2y
.

=
√

2.7
.

= 1.6.

• Then how to compute the sample correlation r? Take “the

average of the products of the Z-scores”. That is, . . .
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Cricket Data: Correlation

• For the cricket data,

r = rxy = 1
n

∑n
i=1 ziwi = 1

n

∑n
i=1

(
xi−x
sx

)(
yi−y
sy

)
=

1
15

[ (
31.4−26.7

3.6

) (
20.0−16.7

1.6

)
+
(
22.0−26.7

3.6

) (
16.0−16.7

1.6

)
+ . . .

+
(
24.6−26.7

3.6

) (
14.4−16.7

1.6

) ] .
= 0.861. Phew!

• So, the sample correlation is 0.861. This means that on average,

every time the temperature increases by one standard deviation,

the cricket chirp rate increases by 0.861 of its standard deviation.

− That is, every time the temperature increases by sx , the

cricket chirp rate increases by 0.861 sy .

− Or, every time the temperature increases by one degree, the

cricket chirp rate increases by rxy sy/sx = 0.861 sy/sx .

− Can illustrate with “line of best fit” (more later) . . .
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Correlation: Discussion

• Conclusion so far: the sample correlation rxy between the

temperature in degrees celsius, and the rate of cricket chirps per

minute, is equal to 0.861.

• This means that the true correlation ρX ,Y between the

temperature in degrees celsius, and the rate of cricket chirps per

minute, is probably: approximately 0.861.

• This means that the correlation between the temperature

in degrees celsius, and the rate of cricket chirps per second

(not minute), is also approximately 0.861. (Since correlation

involves standardised variables, it is unaffected by e.g. multiplying

everything by 60.)

• And, the correlation between the temperature in degrees

fahrenheit, and the rate of cricket chirps per second (not minute),

is also approximately 0.861. (Correlation is unaffected by adding

any constants, or multiplying by any positive constants.) sta130–158

Correlation Calculations: Aside

• Computing the sample correlation rxy requires calculating lots

of things: x , y , sx , sy , zi ,wi , rxy = 1
n

∑n
i=1 ziwi .

− Lots of work!

• R can do this automatically . . . with e.g. cor(temp, chirps).

(Just like R can do mean, var, sd, etc.)

• So, in statistics applications, usually we don’t need to do all this

calculation by hand.

− (But you might need to, for example, on an exam!)

• If we try cor(temp, chirps) in R, the answer is: 0.836.

− Very close to 0.861, but not quite the same.

− Why? Because R divides by n − 1, not by n!
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Cricket Data: Correlation (cont’d)

• Is 0.861 a lot?

− Well, the correlation is largest if Y is completely

determined by X , e.g. when Y = X . In that case,

ρX ,Y = E
[(

X−µX
σX

)(
Y−µY
σY

)]
= E

[(
X−µX
σX

)(
X−µX
σX

)]
=

E

[(
X−µX
σX

)2]
= (1/σ2X )E

[
(X − µX )2

]
= (1/Var(X )) Var(X ) = 1.

− Summary: the largest possible correlation is: 1, which occurs

if e.g. Y = X . (So, if correlation is near 1, then Y mostly increases

with X .) Similarly, the smallest (i.e., most negative) possible

correlation is: −1, which occurs if e.g. Y = −X . (So, if correlation

is near −1, then Y mostly decreases when X increases.)

• So, yes, 0.861 seems like a lot. But does it actually demonstrate

a correlation? Or, is it just . . . luck?

− How to test? What probabilities? Coming next! But first . . .
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Rough Guidelines for Interpreting Correlation

• How to interpret correlation? Hard to say; depends

on context! Here’s one suggestion, taken from:

http://www.statstutor.ac.uk/resources/uploaded/pearsons.pdf

Range of rxy Relationship between X and Y

0.80 to 1.00 very strong positive correlation
0.60 to 0.79 strong positive correlation
0.40 to 0.59 moderate positive correlation
0.20 to 0.39 weak positive correlation
0.00 to 0.19 very weak positive correlation
−0.19 to −0.00 very weak negative correlation
−0.39 to −0.20 weak negative correlation
−0.59 to −0.40 moderate negative correlation
−0.79 to −0.60 strong negative correlation
−1.00 to −0.80 very strong negative correlation

• Rough guidelines only . . . debatable . . .
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More Correlation Guidelines

• Or, here’s another slightly different interpretation, taken from:

https://explorable.com/statistical-correlation

Range of rxy Relationship between X and Y

0.50 to 1.00 strong positive correlation
0.30 to 0.50 moderate positive correlation
0.10 to 0.30 weak positive correlation
−0.10 to 0.10 none or very weak correlation
−0.30 to −0.10 weak negative correlation
−0.50 to −0.30 moderate negative correlation
−1.00 to −0.50 strong negative correlation

• Which interpretation is more correct? Hard to say! Some

“judgement” is required.
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Probabilities for Correlation

• Recall: For cricket chirps versus temperature, the sample

correlation is rxy = 0.861. (Strong positive correlation.) And,

rxy = 1
n

∑n
i=1 ziwi , where zi = (xi − x)/sx and wi = (yi − y)/sy are

the corresponding Z-scores.

• To draw statistical inferences about correlation, we need to

know the probabilities for rxy .

• Well, rxy is an average of different products ziwi .

− And, each such product has mean

E (ziwi ) ≈ E (ZW ) = E
[(

X−µX
σX

)(
Y−µY
σY

)]
, which equals ρX ,Y ,

i.e. equals the true correlation between X and Y .

− So, E (rxy ) ≈ ρX ,Y . That is, the sample correlation rxy has

mean approximately equal to the true correlation ρX ,Y . (Just like

how x has mean µX , and sx has mean approximately σX .)
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Probabilities for Correlation (cont’d)

• So rxy has mean approximately ρX ,Y . But what about the

variance and sd of rxy?

• First of all, what is Var(ziwi )? It should equal Var(ZW ). But

what is that? Hard! Know E (Z ) = 0 and Var(Z ) = 1, but . . .

• Assume for now that X and Y are actually independent,

i.e. they do not affect each other at all. Then Z and W are

also independent. Then the true correlation of X and Y is

ρX ,Y = E (ZW ) = E (Z )E (W ) = (0)(0) = 0.

− In particular, E (ZW ) = ρX ,Y = 0, i.e. µZW = 0.

− Then Var(ZW ) = E [(ZW − µZW )2] = E [(ZW − 0)2] =

E [(ZW )2] = E [Z 2W 2] = E (Z 2)E (W 2) = (1) (1) = 1.

• So, in the independent case, E (ziwi ) ≈ 0, and Var(ziwi ) ≈ 1.
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Probabilities for Correlation (cont’d)

• Recall: if X and Y are independent, then each ziwi has

variance ≈ 1.

• Then Var (
∑n

i=1 ziwi ) ≈ n × 1 = n.

• So what about Var(rxy )? Well,

Var(rxy ) = Var
(
1
n

∑n
i=1 ziwi

)
= 1

n2
Var (

∑n
i=1 ziwi ) ≈ 1

n2
(n) = 1/n.

• Summary: in the independent case, Var(rxy ) ≈ 1/n.

• FACT: Even if X and Y are not independent, still approximately

Var(rxy ) ≈ 1/n. (This is rather subtle, and there is no general

formula. One approach is to consider the “Fisher transformation”

arctanh(rxy ) := 1
2 ln

(
1+rxy
1−rxy

)
, which has variance approximately 1/n

in the general case. But still only approximate! So, let’s not worry

about this, and just use that Var(rxy ) ≈ 1/n. See also R’s cor.test.)

sta130–165

Confidence Intervals for Correlation

• We’re interested in the true correlation, ρX ,Y . We can estimate

ρX ,Y by the sample correlation, rxy . We’ve argued that rxy has

mean approximately ρX ,Y , and variance approximately 1/n, hence

sd approximately
√

1/n = 1/
√
n.

• How to get confidence intervals? Standardise!

• It follows that (rxy − ρX ,Y )/(1/
√
n) has mean approximately

0, and sd approximately 1. And, if n is reasonably large, then

the probabilities for rxy are approximately normal, so that

(rxy − ρX ,Y )/(1/
√
n) is approximately standard normal. Good!

• Then, P[−1.96 < (rxy − ρX ,Y )/(1/
√
n) < +1.96]

.
= 0.95.

• Re-arranging (just like before),

P[rxy − 1.96/
√
n < ρX ,Y < rxy + 1.96/

√
n]

.
= 0.95.

− This gives a 95% confidence interval for ρX ,Y !
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Confidence Intervals for Crickets

• Summary: a 95% confidence interval for the true correlation

ρX ,Y is given by the interval: [rxy − 1.96/
√
n, rxy + 1.96/

√
n].

• In the cricket example, n = 15, and the sample correlation was

rxy
.

= 0.861.

• So, a 95% confidence interval for ρX ,Y
is: [rxy − 1.96/

√
n, rxy + 1.96/

√
n] =

[0.861− 1.96/
√

15, 0.861 + 1.96/
√

15]
.

= [0.355, 1.367].

• But correlation is always ≤ 1, so we could replace this

confidence interval by: [0.355, 1].

• Conclusion: We are 95% confident that the true correlation

between temperature and cricket chirp rate is somewhere between

0.355 and 1, i.e. is more than 0.355. (i.e., moderate to strong . . . )

• And what about P-values?
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P-Values for Correlation

• For the crickets example, suppose want to test the null

hypothesis that ρX ,Y = 0, versus the alternative hypothesis that

ρX ,Y 6= 0. (two-sided)

• We know that if ρX ,Y = 0, then rxy would have mean 0 and sd

approximately 1/
√
n = 1/

√
15

.
= 0.258. And approximately normal.

• But the observed value of rxy was 0.861.

• So, the P-value is the probability that a normal random

quantity, with mean 0, and sd 1/
√
n = 1/

√
15, is 0.861 or

more, or −0.861 or less (two-sided). In R: pnorm(0.861, 0,

1/sqrt(15), lower.tail=FALSE) + pnorm(−0.861, 0, 1/sqrt(15),

lower.tail=TRUE). Answer is: 0.0008541031.

• Much less than 0.05! Conclusion: The data indicates that the

true correlation between temperature and cricket chirp rate is not

zero. That is, they are “correlated”. sta130–168

“Correlation Does Not Imply Causation”

• (Mentioned on HW#2.) What does this mean?

• Just because two quantities are truly correlated (i.e., have

non-zero true correlation), this does not necessarily mean that the

second quantity is caused by the first quantity.

• Other possibilities include: the first quantity causes the second

quantity (“reverse causation”); or the two quantities are both

caused by some other quantity (“common cause”); or . . .

• For cricket example: Does increased temperature cause the

crickets to chirp more? Maybe. Other possibilities?

− Perhaps cricket chirps cause temperature increase? (No!)

− Perhaps both cricket chirps and temperature increase are

caused by some other quantity? (Well, maybe, but what quantity?

Perhaps . . . sunlight! Except, crickets mostly chirp at night.)

− So, probably(?) temperature increase causes chirps. sta130–169

Causation Example: Drowning

• Suppose that in a certain city, the number of people who

drown each day is positively correlated with the number of

ice cream cones sold each day.

− Possibility #1: Ice cream cones cause drowning! Surely not!

− Possibility #2: Drowning causes people to buy ice cream!

Surely not!

− Possibility #3: Drowning and ice cream are both caused by

something else. But by what?

− Perhaps by warm, sunny weather, which makes more people

go swimming, and makes more people buy ice cream!

− Seems likely! Then have correlation, but not causation! How

to test this? Could get additional data, about each day’s weather,

and the number of people who go swimming each day.
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Causation Example: Yellow Fingers

• Suppose there is a positive correlation between people who get

lung cancer, and people who have yellow stains on their finger.

− Possibility #1: Yellow fingers cause lung cancer! Surely not!

− Possibility #2: Lung cancer makes fingers yellow! Surely not!

− Possibility #3: Lung cancer and yellow finger stains are both

caused by something else. But by what?

− Perhaps by smoking cigarettes, which definitely causes lung

cancer, and which might also cause yellow stains on fingers (at

least with old-style cigarette filters).

− Seems likely! How to test? Perhaps change the cigarette

filters to a different colour! (Tricky to arrange, over many years . . . )

• Many other similar examples. Have to think about (and

explain) the meaning of a correlation.
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Example: Ice Cream Sales

• A student monitored the weekly sales (in U.S. dollars), and

average temperature (in degrees celsius) at a Southern California ice

cream shop, for 12 consecutive weeks during the Summer of 2013.

− TEMPERATURES (◦C): 14.2, 16.4, 11.9, 15.2, 18.5, 22.1,

19.4, 25.1, 23.4, 18.1, 22.6, 17.2.

− SALES (U.S. $): 215, 325, 185, 332, 406, 522, 412, 614,

544, 421, 445, 408.

• Is there a statistically significant correlation between the two?

• Let’s check!

− Compute the sample correlation! (Guesses?)
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Example: Ice Cream Sales (cont’d)

• Let X be temperature, and Y be sales. Then

x = 1
12 [14.2 + 16.4 + . . . + 17.2]

.
= 18.7, and

y = 1
12 [215 + 325 + . . . + 408]

.
= $402. Then

s2x = 1
12 [(14.2−18.7)2+(16.4−18.7)2+. . .+(17.2−18.7)2]

.
= 14.75,

so sx
.

=
√

14.75
.

= 3.84. And,

s2y = 1
12 [(215− 402)2 + (325− 402)2 + . . .+ (408− 402)2]

.
= 14563,

so sy
.

=
√

14563
.

= $120.7.

• Hence, r = rxy = 1
n

∑n
i=1 ziwi = 1

n

∑n
i=1

(
xi−x
sx

)(
yi−y
sy

)
=

1
12

[ (
14.2−18.7

3.84

) (
215−402
120.7

)
+
(
16.4−18.7

3.84

) (
325−402
120.7

)
+ . . .

+
(
17.2−18.7

3.84

) (
408−402
120.7

) ] .
= 0.957.

• Extremely high positive correlation!

• So what can we conclude from this?
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Example: Ice Cream Sales (cont’d)

• First Conclusion: Ice cream sales are positively correlated with

temperature.

• But does this imply causation? That is, do higher temperatures

cause higher ice cream sales?

• First consider other possible explanations:

− Reverse causation? Perhaps ice cream sales cause higher

temperatures? No, ice cream can’t affect the temperature.

− Common cause? I can’t think of one . . .

− Does causation make sense? Yes! Heat makes people hot and

thirsty, so they might want more ice cream!

• So, in this case, I would say: Yes, this does imply causation, i.e.

higher temperatures do cause people to buy more ice cream.
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Example: Cigarettes versus Latitude

• I looked up the average latitude, and average number of

cigarettes smoked per adult per year, for 12 northern countries:

Country Cigarettes Latitude

Canada 809 56.1
U.States 1028 37.1
Mexico 371 23.6

U.Kingdom 750 55.4
France 854 46.2

Germany 1045 51.2
Spain 1757 40.5
Greece 2996 39.1
Russia 2786 61.5
China 1711 35.9
Japan 1841 36.2

S.Korea 1958 35.9
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Cigarettes versus Latitude (cont’d)

• Is there a statistically significant correlation between the two?

(Guesses? Discussion?)

• Let X be cigarettes, and Y be latitude. Then

x = 1
12 [809 + 1028 + . . . + 1958]

.
= 1492, and

y = 1
12 [56.1 + 37.1 + . . . + 35.9]

.
= 43.2. Then

s2x = 1
12 [(809− 1492)2 + (1028− 1492)2 + . . .+ (1958− 1492)2]

.
=

625, 120, so sx
.

=
√

625, 120
.

= 790. And,

s2y = 1
12 [(56.1−43.2)2+(37.1−43.2)2+. . .+(35.9−43.2)2]

.
= 110.35,

so sy
.

=
√

110.35
.

= 10.5.

• Hence, r = rxy = 1
n

∑n
i=1 ziwi = 1

n

∑n
i=1

(
xi−x
sx

)(
yi−y
sy

)
=

1
12

[ (
809−1492

790

) (
56.1−43.2

10.5

)
+
(
1028−1492

790

) (
37.1−43.2

10.5

)
+ . . .

+
(
1958−1492

790

) (
35.9−43.2

10.5

) ] .
= 0.109.

• Weak, positive correlation. Why? Or is it just luck?
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Cigarettes versus Latitude (cont’d)

• Correlation rxy = 0.109. Is it just luck? Use statistics! e.g.

hypothesis tests (P-values), and confidence intervals!

• 95% confidence interval for the true correlation ρX ,Y :

[rxy − 1.96/
√
n, rxy + 1.96/

√
n] =

[0.109− 1.96/
√

12, 0.109 + 1.96/
√

12]
.

= [−0.457, 0.675]. Could

be positive or negative.

• P-value for null hypothesis that ρX ,Y = 0, versus the alternative

hypothesis that ρX ,Y 6= 0: Probability that a normal with mean

0, and sd 1/
√

12, is 0.109 or more, or −0.109 or less. In R:

pnorm(0.109, 0, 1/sqrt(12), lower.tail=FALSE) + pnorm(-0.109, 0,

1/sqrt(12), lower.tail=TRUE). Answer is: 0.7057374. Much more

than 0.05. Could be just luck!

• Conclusion: The given data do not demonstrate any correlation

between countries’ cigarette consumption and latitude.
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Example: Smoking and Wealth, by U.S. State

• I found data giving the percentage of adults who

smoke, in each of the 50 U.S. states, in 2014, from:

https://www.tobaccofreekids.org/research/factsheets/pdf/0176.pdf

• And I found their average income per capita in 2012:

http://www.infoplease.com/ipa/A0104652.html

• Is there a correlation? Positive or negative? Strong or weak?

Check in R (www.probability.ca/sta130/stateR). cor(sm,inc):

−0.427. Moderate negative correlation! Statistically significant

(check)! Why? Does smoking cause people to earn less

(causation)? Do lower wages make people smoke more (reverse

causation)? Are they both caused by some other factor (common

cause)? If so, what other factor? Education?

− I found high school completion percentage in each U.S. state:

http://census.gov/prod/2012pubs/p20-566.pdf.

cor(high,inc): 0.438. cor(high,sm): −0.335. Interpretation?? sta130–178

Another Perspective: Regression

• (Actually “simple linear regression”, also called “ordinary least

squares (OLS) regression”, or the “line of best fit”.)

• Suppose the quantities X and Y have correlation ρ.

• Then E (ZW ) = ρ, i.e. E
[(

X−µX
σX

)(
Y−µY
σY

)]
= ρ.

• Intuitively, this means that W = ρZ + L, where L is “leftover”

randomness, independent of Z and X , with mean 0.

• That is, Y−µY
σY

= ρ
(
X−µX
σX

)
+ L.

• Solving, Y = (ρ σY /σX )X + (µY − µXρσY /σX ) + σY L.

• That is, Y = β1X + β0 + e, where: β1 = ρ σY /σX (“regression

coefficient”), β0 = µY − µXρ σY /σX (“intercept”), and e = σY L

(“error term”; mean=0). Approximate this by Y = b1X + b0,

where b1 = rxy sy/sx , and b0 = y − xrxy sy/sx . This is the same

line of best fit as before!
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Coefficient of Determination

• Recall: Y = β1X + β0 + e, where β1 = ρ σY /σX , and

β0 = µY − µXρ σY /σX is some constant, and e is independent of

X with mean 0. (Check: µY = E (Y ) = β1µX + β0 + 0? Yep!)

• From this formula, Var(Y ) = (β1)2Var(X ) + 0 + Var(e).

• Question: How much of Var(Y ) is “explained” or “caused” by

changes in X? Well, (β1)2Var(X ) of it.

• So, what fraction of Var(Y ) is “explained” by changes in X? Well,

a fraction [(β1)2 Var(X )]/Var(Y ) = [(ρ σY /σX )2 σ2X ]/σ2Y = ρ2.

Approximate this by (rxy )2, i.e. by r2.

• Definition: The “coefficient of determination”, when regressing

Y against X , is given by r2 (“R squared”). It measures how well Y

is “explained” by X , i.e. how well the line fits the data. Minimum

possible value is 0, maximum is 1. Crickets: r2 = (0.861)2
.

= 0.741

(pretty large, i.e. temperature “explains” chirps pretty well).
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Regression’s “Least Squares” Property

• Recall our regression “line of best fit”: Y = b1X + b0, where

b1 = r sy/sx , and b0 = y − xsy/sx . Why these b1 and b0?

− Suppose we used some line, Y = aX + c . (“linear model”)

− Then for each data value xi , this model would “predict” a

corresponding Y value of Y = axi + c.

− But the “real” corresponding data value is yi .

− So, we want axi + c to be close to yi .

− The sum of squares of the errors is :
∑n

i=1(yi − axi − c)2.

• FACT: The choices a = b1 and c = b0 (as above) are the

choices which minimise this sum of squares of errors.

− “ordinary least squares estimate” (OLS)

• See also R’s function lm, e.g. lm(chirps ∼ temp).
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Multiple Regression

• Sometimes a quantity Y might depend on multiple other

quantities X1,X2, . . . ,Xp, not just a single X .

− We can still compute Cor(Y ,X1), Cor(Y ,X2), etc.

− But if the different Xi depend on each other, then the

interpretation of these correlations gets complicated.

• Use multiple regression: Y = β1X1 +β2X2 + . . .+βpXp +β0 + e,

where again e has mean 0. (If p = 1, then it’s the same as before.)

• Can again find estimates bj of the coefficients βj from the data,

by minimising the sum of squares. Requires multivariable calculus.

We’ll just trust R’s lm function for this! Interpretation?

• U.S. Smoking/Wealth again (www.probability.ca/sta130/stateR).

Try lm(sm∼inc), and lm(sm∼high), and lm(sm∼inc+high)

(perhaps with summary(. . . )). What can we conclude??
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http://probability.ca/sta130/stateR


Correlation and Regression – More Examples

• Countries: www.probability.ca/sta130/countryR. Try various

correlations (cor) and linear regressions (lm). Values? coefs? sd?

R2? Interpretation? Causation?

• www.probability.ca/sta130/SAT.txt Data for SAT scores in

Verbal and in Math, by state, together with Percentage of high

school students taking the SATs, and also the average public

school teacher salaries. Try: lm(satm∼satv), lm(pay∼satm),

lm(pay∼satv), lm(pay∼satm+satv), lm(perc∼pay). coefs? sd?

R2? Interpretation? Causation?

• Twin birth weights: www.probability.ca/sta130/twindata.txt

• A certain famous current politician. (image)

www.probability.ca/sta130/Rtrump Data from March 1, 2016

Georgia primary vote, county by county. Which variables have a

significant effect on “fracvotes”?
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Possible Interpretations of Correlations

• Suppose two quantities X and Y have a sample correlation

which is far from 0.

• Suppose the corresponding P-value is < 0.05. Then perhaps:

− X causes Y ? (directly or indirectly)

− Y causes X?

− X and Y are both caused by a third quantity?

− It’s still just luck! Could it be??

• Example: http://tylervigen.com/spurious-correlations Huh?

− Would we have P-value < 0.05 in these cases? Yep!

− But still “spurious”. Why? They tested too many

correlations before finally finding a significant one! “Multiple

testing (comparisons) problem”. What to do? Demand smaller

P-values? Do follow-up studies? Challenging!
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Let’s Study Students!

• We’ll use you as a sample of university students!

• Get an index card, and a (paper) ruler. On your index card,

write down the following information about yourself: (1) Male or

female? (2) Born in what country? (3) Live on campus, or off?

(4) Right-handed, or left, or both? (5) Currently wearing glasses

or contact lenses or neither? (6) Your height (in feet and inches?

inches only? centimeters?). (7) The number of credit cards your

currently have with you. (8) Circumference of your wrist (at the

smallest point) in cm. (9) Circumference of your (a) right and

(b) left flexed bicep (at the largest point) in cm. (10) # siblings?

• What statistical questions can we ask, given this data?

Comparisons of two proportions? Comparisons of two general

quantities? Correlations? Think of at least one question of each

type. www.probability.ca/sta130/studentdata.txt Then we will

investigate them! www.probability.ca/sta130/studentdataR
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