STA447/2006 Midterm, February 16, 2017

(2 hours; 5 questions; 3 pages; total points = 52)

[SOLUTIONS]

1. Suppose there are 10 lily pads arranged in a circle, numbered consecutively clockwise from 1 to 10. A frog begins on lily pad #1. Each second, the frog jumps <u>one</u> pad <u>clockwise</u> with probability 1/4, or <u>two</u> pads <u>clockwise</u> with probability 3/4.

(a) [3] Specify a state space S, initial probabilities $\{\nu_i\}$, and transition probabilities $\{p_{ij}\}$, with respect to which this process is a Markov chain.

Solution. Here $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and $\nu_1 = 1$ (with $\nu_i = 0$ for all other *i*). Also, for $1 \le i \le 9$, $p_{i,i+1} = 1/4$, and for $1 \le i \le 8$, $p_{i,i+2} = 3/4$, and $p_{10,1} = 1/4$, and $p_{9,1} = p_{10,2} = 3/4$, with $p_{ij} = 0$ otherwise.

(b) [2] Determine if this Markov chain is irreducible.

Solution. Yes, since it is always possible to move one space clockwise, and hence eventually get to every other state with positive probability.

(c) [2] Determine if this Markov chain is aperiodic, or if not then what its period equals.

Solution. From any state *i*, it is possible to return in 10 seconds by moving one pad clockwise at each jump, or to return in 9 seconds by moving two pads clockwise on the first jump and then one pad clockwise for 8 additional jumps. Since gcd(10,9) = 1, the chain is aperiodic.

(d) [3] Determine whether or not $\sum_{n=1}^{\infty} p_{15}^{(n)} = \infty$.

Solution. Since the chain is irreducible, and the state space is finite, by the Finite Space Theorem we have $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$ for all $i, j \in S$, so in particular $\sum_{n=1}^{\infty} p_{15}^{(n)} = \infty$.

(e) [3] Either find a stationarity distribution $\{\pi_i\}$ for this chain, or prove that no stationary distribution exists.

Solution. For every state $j \in S$, $\sum_{i \in S} p_{ij} = (1/4) + (3/4) = 1$. Hence, the chain is <u>doubly stochastic</u>. So, since $|S| < \infty$, the <u>uniform</u> distribution on S is a stationary distribution. Hence, we can take $\pi_1 = \pi_2 = \ldots = \pi_{10} = 1/10$.

(f) [2] Determine whether or not $\lim_{n\to\infty} p_{15}^{(n)}$ exists, and if so what it equals.

Solution. Yes, since the chain is irreducible and aperiodic with stationary distribution $\{\pi_i\}$, therefore $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j = 1/10$ for all $i, j \in S$, and in particular $\lim_{n\to\infty} p_{15}^{(n)} = \pi_5 = 1/10$.

(g) [2] Determine whether or not $\lim_{n\to\infty} \frac{1}{2} [p_{15}^{(n)} + p_{15}^{(n+1)}]$ exists, and if so what it equals.

Solution. Since $\lim_{n\to\infty} p_{15}^{(n)} = 1/10$, therefore also $\lim_{n\to\infty} p_{15}^{(n+1)} = 1/10$, and hence also $\lim_{n\to\infty} \frac{1}{2} [p_{15}^{(n)} + p_{15}^{(n+1)}] = 1/10$.

2. For each of the following sets of conditions, either provide (with explanation) an example of a state space S and Markov chain transition probabilities $\{p_{ij}\}_{i,j\in S}$ such that the conditions are satisfied, or prove that no such a Markov chain exists.

(a) [3] There is a state $k \in S$ such that if the chain is started at k, then there is a positive probability that the chain will visit k exactly <u>twice</u> more (and then never again).

Solution. Yes. For example, let $S = \{1, 2\}$, with $p_{11} = 1/3$, $p_{12} = 2/3$, and $p_{22} = 1$ (with $p_{ij} = 0$ otherwise). Then if the chain is started at k = 1, then it will initially follow the path $1 \rightarrow 1 \rightarrow 1 \rightarrow 2 \rightarrow 2 \rightarrow 2 \rightarrow \ldots$ with probability $(1/3)(1/3)(2/3)(1)(1) \ldots \ge 2/27 > 0$.

(b) [3] The chain is irreducible and transient, and there are $k, \ell \in S$ with $f_{k\ell} = 1$.

Solution. Yes. For example, consider simple random walk with p = 3/4, so $S = \mathbb{Z}$ and $p_{i,i+1} = 3/4$ and $p_{i,i-1} = 1/4$ for all $i \in S$ (with $p_{ij} = 0$ otherwise). Let k = 0 and $\ell = 5$. Then as shown in class, $f_{05} = 1$, and the chain is irreducible and transient. (Of course, S is infinite here; if S is finite then all irreducible chains are recurrent.)

(c) [3] The chain is irreducible and transient, and is reversible with respect to some probability distribution π .

Solution. Does not exist. Indeed, if the chain is reversible with respect to π , then π is a stationarity distribution. Then if it is also irreducible, then by the Stationarity Recurrence Lemma, it is recurrent, i.e. it is not transient.

3. [6] Let $S = \{1, 2, 3, ...\}$, with $\pi_i = 2/3^i$ for all $i \in S$. Find (with proof) explicit transition probabilities $\{p_{ij}\}_{i,j\in S}$ such that $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j$ for all $i, j \in S$. [Hint: Don't forget the Metropolis (MCMC) algorithm.]

Solution. The Metropolis algorithm says that for $j = i\pm 1$ we want $p_{ij} = (1/2) \min(1, \pi_j/\pi_i)$. So, for all $i \ge 1$, we set $p_{i+1,i} = 1/2$, and $p_{i,i+1} = (1/2)[(2/3^{i+1})/(2/3^i)] = (1/2)[1/3] = 1/6$. Then $p_{11} = 1 - p_{12} = 1 - (1/6) = 5/6$, and for $i \ge 2$, $p_{ii} = 1 - p_{i,i-1} - p_{i,i+1} = 1 - (1/2) - (1/6) = 1/3$, with $p_{ij} = 0$ otherwise. Then by construction, $\pi_i p_{ij} = \pi_j p_{ji}$ for all $i, j \in S$, the chain is reversible with respect to π , and hence π is a stationary distribution. Also, the chain is irreducible since it is always possible to increase or decrease by 1. And, the chain is aperiodic since e.g. $p_{11} > 0$. Hence, $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j$ for all $i, j \in S$.

4. [5] Consider the undirected graph with vertex set $V = \{1, 2, 3, 4, 5\}$, and an undirected edge (of weight 1) between each of the following six pairs of vertices (and no other edges): (1,2), (2,3), (3,4), (4,5), (1,3), and (3,5). Let $\{p_{ij}\}_{i,j\in V}$ be the transition probabilities for random walk on this graph. Compute (with full explanation) $\lim_{n\to\infty} p_{23}^{(n)}$, or prove that this limit does not exist.

Solution. The graph is connected (since we can get from $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$ and back), so the walk is irreducible. Also, the walk is aperiodic since e.g. we can get from 1 to 1 in 2 steps by $1 \rightarrow 2 \rightarrow 1$, or in 3 steps by $1 \rightarrow 3 \rightarrow 2 \rightarrow 1$, and gcd(2,3) = 1. Here $Z = \sum_u d(u) = 2|E| = 2(6) = 12 < \infty$. Hence, as shown in class, if $\pi_u = d(u)/Z = d(u)/12$, then the walk is reversible with respect to π , so π is a stationary distribution. Also d(3) = 4, because there are four edges from the vertex 3. Hence, by the Graph Convergence Theorem, $\lim_{n\to\infty} p_{23}^{(n)} = \pi_3 = d(3)/12 = 4/12 = 1/3$.

5. Let $\{X_n\}$ be a Markov chain on the state space $S = \{1, 2, 3, ...\}$ of all positive integers, which is also a <u>martingale</u>. Assume $X_0 = 5$, and that there is c > 0 such that $p_{i,i-1} = c$ and $p_{i,i+2} = 1 - c$ for all $i \ge 2$. Let $T = \inf\{n \ge 0 : X_n = 1 \text{ or } X_n \ge 10\}$.

(a) [3] Determine (with explanation) what c must equal. [Hint: remember that $\{X_n\}$ is a martingale.]

Solution. For $i \ge 2$, we need $\sum_j jp_{ij} = i$, so (i-1)c + (i+2)(1-c) = i, so i+2-3c = i, so 2 = 3c, so c = 2/3.

(b) [3] Determine (with explanation) what p_{11} must equal. [Hint: again, remember that $\{X_n\}$ is a martingale.]

Solution. We need $\sum_{j \in S} jp_{1j} = 1$. But $\sum_{j \in S} jp_{1j} = \sum_{j=1}^{\infty} jp_{1j} = p_{11} + \sum_{j=2}^{\infty} jp_{ij} \ge p_{11} + \sum_{j=2}^{\infty} 2p_{ij} = p_{11} + 2(1 - p_{11}) = 2 - p_{11}$. For this to equal 1, we need $p_{11} = 1$.

(c) [3] Determine (with explanation) the value of $\mathbf{E}(X_3)$.

Solution. Since $\{X_n\}$ is a martingale, $\mathbf{E}(X_n) = \mathbf{E}(X_0) = 5$ for all n, so in particular $\mathbf{E}(X_3) = 5$.

(d) [3] Determine (with explanation) the value of $\mathbf{E}(X_T)$.

Solution. Clearly the chain is bounded up to time T, indeed we always have $|X_n| \mathbf{1}_{n \leq T} \leq 11$. Hence, by the Optional Stopping Corollary, $\mathbf{E}(X_T) = \mathbf{E}(X_0) = 5$.

(e) [3] Prove or disprove that $\sum_{n=1}^{\infty} p_{55}^{(n)} = \infty$.

Solution. Starting at 5, the chain has positive probability of immediately going $5 \to 4 \to 3 \to 2 \to 1$ and then getting stuck at 1 forever and never returning to 5. Hence, the state 5 is <u>transient</u>. It thus follows from the Recurrence Theorem that $\sum_{n=1}^{\infty} p_{55}^{(n)} < \infty$, i.e. $\sum_{n=1}^{\infty} p_{55}^{(n)} \neq \infty$. (Note that this chain is <u>not</u> irreducible, since e.g. $f_{12} = 0$, so the Cases Theorem etc do <u>not</u> apply.)

[END OF EXAMINATION: total points = 52]