Given name:	Family name:
	1 diffinition

Student number:_____ Signature:_____

UNIVERSITY OF TORONTO Faculty of Arts and Science

STA 3431 (Monte Carlo Methods) IN-CLASS TEST November 20, 2017, 10:10 a.m.

Duration: 100 minutes. Total points: 40. Aids allowed: NONE.

This examination paper consists of **5** single-sided pages (including this cover page), and **7** questions. The backs of the pages can be used to continue an answer (be sure to INDICATE THIS), or as scrap paper. The value of each question is indicated in [square-brackets]. Be sure to EXPLAIN all of your answers clearly!

- 1. For each of the following choices of linear congruential generator parameters, specify (with explanation) whether or not the generator has full period (i.e. period m).
 - (a) [2] m = 27, a = b = 5.

(b) [2] m = 27, a = 4, b = 6.

(c) [2] m = 32, a = 3, b = 5.

2. [5] Suppose U is a random variable having the Uniform[0,1] probability distribution. Let $Y = -3 \log(U)$ (where "log" is in base e). Compute, with proof, $\mathbf{P}(Y > y)$ for all $y \ge 0$, and identify the distribution of Y by name.

3. [5] Suppose U_1, U_2, \ldots, U_M is a sequence of i.i.d. Uniform[0,1] random variables (for some large integer M). Explain (with words and equations) how to use the U_i to provide a good estimate of the two-dimensional integral $\int_0^1 \int_2^6 \sin(\sqrt{x+y^2}) dy dx$. (You do not need to provide actual computer code, and you do not need specify standard errors.)

4. [6] Let $g(x) = e^{\sin x} \mathbf{1}_{4 < x < 7}$. Write (with explanation) an <u>R program</u> to run a <u>rejection sampler</u> to create a vector "xlist" of i.i.d. samples from the density proportional to g. [You may use R's "runif(n, min, max)" command to generate <u>uniform</u> random samples.]

5. [3] Let $\{X_n\}$ be a run of an MCMC algorithm with stationary distribution π , and let h be a real-valued functional. Suppose that the stationary lag-k correlations of $\{h(X_n)\}$ are given by $\rho_k := \operatorname{Corr}_{\pi}(h(X_0), h(X_k)) = 4^{-k}$. Compute the value of "varfact" (i.e., the integrated auto-correlation time) when estimating h with this algorithm.

- 6. Consider an MCMC algorithm, with target density π . Define with a formula, and also describe in words, each of the following:
 - (a) [3] The distance function D(x, n).

(b) [3] The algorithm being "ergodic".

(c) [3] The algorithm being "geometrically ergodic".

7. [6] Let $\{X_n\}$ be a run of an <u>independence sampler</u> on **R** with target density $\pi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$, and proposal density $q(x) = \frac{1}{2}e^{-|x|}$. Find (with explanation) a value $\rho < 1$ such that if the algorithm is started with $X_0 = 5$, then for all $n \in \mathbf{N}$,

$$\left|\mathbf{P}(X_n < 0) - \frac{1}{2}\right| \leq \rho^n.$$

End of examination Total pages: 5 Total points: 40