STA447/2006 Midterm #1, February 7, 2019

(135 minutes; 4 questions; 7 pages; total points = 50)

FAMILY NAME:

GIVEN NAME(S):

STUDENT #:

SIGNATURE:

Class (circle one): STA447 STA2006

Do <u>not</u> open this booklet until told to do so. Answer <u>all</u> questions. Aids allowed: <u>NONE</u>. You <u>may</u> use results from class, with explanation. <u>Point values</u> for each question are indicated in [square brackets]. You should <u>explain</u> all of your solutions clearly. You may continue on the <u>back</u> of the page if necessary (write "OVER"). <u>Scrap paper</u> is included at the <u>end</u> of this test.

DO NOT WRITE BELOW THIS LINE.

Question	Score
1(a)	/2
1(b)	/5
1(c)	/3
1(d)	/6
1(e)	/3
2(a)	/4
2(b)	/3
2(c)	/3

Question	Score
2(d)	/3
2(e)	/3
3(a)	/3
3(b)	/3
3(c)	/3
4	/6
TOTAL:	/50

1. Consider a Markov chain with state space $S = \{1, 2, 3\}$, and transition probabilities $p_{12} = 1/2$, $p_{13} = 1/2$, $p_{21} = 1/3$, $p_{23} = 2/3$, and $p_{31} = 1$, otherwise $p_{ij} = 0$.

(a) [2] Compute $p_{11}^{(2)}$.

(b) [5] Find a probability distribution π which is stationary for this chain.

(c) [3] Determine if the chain is reversible with respect to π .

1. (continued)

(d) [6] Determine (with explanation) which of the following statements are true and which are false: (i) $\lim_{n\to\infty} p_{13}^{(n)} = \pi_3$. (ii) $\lim_{n\to\infty} \frac{1}{2}[p_{13}^{(n)} + p_{13}^{(n+1)}] = \pi_3$. (iii) $\lim_{n\to\infty} \frac{1}{n} \sum_{\ell=1}^n p_{13}^{(\ell)} = \pi_3$.

(e) [3] Determine (with explanation) whether or not $\sum_{n=1}^{\infty} p_{13}^{(n)} = \infty$.

2. Consider a Markov chain with state space $S = \{1, 2, 3, 4\}$ and transition matrix:

$$P = \begin{pmatrix} 1/4 & 1/2 & 1/8 & 1/8 \\ 0 & 1/3 & 0 & 2/3 \\ 0 & 0 & 1 & 0 \\ 0 & 4/5 & 0 & 1/5 \end{pmatrix}$$

(a) [4] Specify (with explanation) which states are recurrent, and which are transient.

(b) [3] Compute f_{24} .

2. (continued)

(c) [3] Compute f_{14} .

(d) [3] Determine whether or not $\sum_{n=1}^{\infty} p_{24}^{(n)} = \infty$.

(e) [3] Determine whether or not $\sum_{n=1}^{\infty} p_{14}^{(n)} = \infty$.

3. For each of the following sets of conditions, either provide (with explanation) an example of a state space S and Markov chain transition probabilities $\{p_{ij}\}_{i,j\in S}$ such that the conditions are satisfied, or prove that no such a Markov chain exists.

(a) [3] There is $k \in S$ having period 1, and $\ell \in S$ having period 3.

(b) [3] The chain is irreducible, and there are distinct states $i, j, k, \ell \in S$ such that $f_{ij} = 1$, and $\sum_{n=1}^{\infty} p_{k\ell}^{(n)} < \infty$.

(c) [3] There are distinct states $i, j, k \in S$ with $f_{ij} = 1/3$, $f_{jk} = 1/4$, and $f_{ik} = 1/20$.

4. [6] Prove the Equal Periods Lemma, i.e. prove that if $i \leftrightarrow j$, and t_i is the period of state *i*, and t_j is the period of state *j*, then $t_i = t_j$. [Note: You cannot <u>use</u> the Equal Periods Lemma or any later results from class to prove this, you have to prove it yourself.]

[END OF EXAMINATION; total points = 50]

(This page is intentionally left blank, and may be used as scrap paper.)

(This page is intentionally left blank, and may be used as scrap paper.)