STA447/2006 Midterm #2, March 21, 2019

(135 minutes; 9 questions; 7 pages; total points = 60)

 FAMILY NAME:
 GIVEN NAME(S):

 STUDENT #:
 SIGNATURE:

CLASS (circle one): STA447 STA2006

- Do <u>not</u> open this booklet until told to do so. Answer <u>all</u> questions.
- Aids allowed: <u>NONE</u>. You <u>may</u> use results from class, with explanation.
- <u>Point values</u> for each question are indicated in [square brackets].
- It is important to <u>explain</u> all of your solutions clearly.
- You may continue on the <u>back</u> of the page if necessary (write "**OVER**").
- <u>Scrap paper</u> is included at the <u>end</u> of this test (and may be detached).

DO NOT WRITE BELOW THIS LINE.

Question	Score
1	/5
2	/5
3(a)	/2
3(b)	/3
3(c)	/4
4	/5
5	/4
6(a)	/4
6(b)	/2
6(c)	/3
6(d)	/3

Question	Score
7(a)	/2
7(b)	/2
7(c)	/2
7(d)	/2
8(a)	/3
8(b)	/3
9(a)	/3
9(b)	/3
TOTAL:	/60

1. [5] Let $S = \{1, 2, 3, 4\}$, with $\pi_1 = 1/8$, $\pi_2 = 3/8$, and $\pi_3 = \pi_4 = 1/4$. Find (with proof) transition probabilities $\{p_{ij}\}_{i,j\in S}$ for a Markov chain on S, such that $p_{ij} = 0$ whenever $|i-j| \ge 2$, and $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j$ for all $i, j \in S$.

2. [5] Consider the Markov chain with state space $S = \{1, 2, 3, 4\}$, $\nu_3 = 1$, and transition probabilities specified by $p_{11} = p_{22} = 1$, $p_{31} = p_{32} = p_{33} = p_{34} = 1/4$, and $p_{42} = p_{43} = p_{44} = 1/3$. Compute $\mathbf{P}_3(T_1 < T_2)$. [Hint: Don't forget how we solved Gambler's Ruin.]

3. Consider a graph with vertex set $V = \{1, 2, 3, 4\}$, and edge weights w(1, 2) = w(2, 1) = 2, w(1, 3) = w(3, 1) = 3, w(1, 4) = w(4, 1) = 4, and w(u, v) = 0 otherwise. Let $\{X_n\}$ be random walk on this graph, with $X_0 = 1$.

(a) [2] Compute (with explanation) $\mathbf{P}(X_1 = 4)$.

(b) [3] Compute (with explanation) $\mathbf{P}(X_3 = 4)$.

(c) [4] For each of (i) $\lim_{n\to\infty} \mathbf{P}(X_n = 4)$, and (ii) $\lim_{n\to\infty} \frac{1}{2} [\mathbf{P}(X_n = 4) + \mathbf{P}(X_{n+1} = 4)]$, determine whether or not the limit exists, and if yes then what it equals.

4. [5] Suppose we repeatedly roll a fair six-sided die (which is equally likely to show 1, 2, 3, 4, 5, or 6). Let τ be the number of rolls until we see 5 twice in a row, i.e. until the pattern "55" first appears. Let $z = \mathbf{E}(\tau)$. Compute z.

5. [4] In the previous question, let X be the sum of all the numbers up to but <u>not</u> including the first "55", and let Y be the sum of all the numbers up to <u>and</u> including the first "55". Compute $\mathbf{E}(X)$ and $\mathbf{E}(Y)$. [Note: If you could not solve the previous question, then you may leave your answers to this question in terms of the unknown value z.]

6. Let $\{X_n\}$ be a Markov chain on the state space $S = \{1, 2, 3, 4\}$, with $X_0 = 3$, and with transition probabilities $p_{11} = p_{44} = 1$, $p_{21} = 1/4$, $p_{34} = 1/5$, and $p_{24} = p_{31} = p_{12} = p_{13} = p_{14} = p_{41} = p_{42} = p_{43} = 0$. Let $T = \inf\{n \ge 0 : X_n = 1 \text{ or } 4\}$, and let U = T - 1.

(a) [4] Find valid values of p_{22} , p_{23} , p_{32} , and p_{33} , which make $\{X_n\}$ a <u>martingale</u>.

(b) [2] For the values found in part (a), compute $\mathbf{E}(X_T)$.

(c) [3] For the values found in part (a), compute $p = \mathbf{P}(X_T = 4)$.

(d) [3] For the values found in part (a), compute $\mathbf{E}(X_U)$.

7. Consider a Markov chain $\{X_n\}$ with state space $S = \{0, 1, 2, 3, ...\}$, with $p_{0,0} = 1$, and $p_{i,0} = p_{i,2i} = 1/2$ for all $i \ge 1$, and with $X_0 = 5$. Let $T = \inf\{n \ge 1 : X_n = 0\}$.

(a) [2] Determine whether or not $\{X_n\}$ is a martingale.

(b) [2] Determine whether or not $\mathbf{E}(X_n) = 5$ for each fixed $n \in \mathbf{N}$.

(c) [2] Determine whether or not $\mathbf{P}(T < \infty) = 1$.

(d) [2] Determine whether or not $\mathbf{E}(X_T) = 5$.

- 8. Let $\{B_t\}_{t\geq 0}$ be standard Brownian motion, and let $\tau = \inf\{t > 0 : B_t = -2 \text{ or } 3\}$.
- (a) [3] Compute $\mathbf{E}[(2+B_2+B_3)^2]$.

(b) [3] Compute $p = \mathbf{P}[B_{\tau} = 3]$.

9. Suppose cars arrive according to a Poisson process with rate $\lambda = 3$ cars per minute, and each car is independently either Blue with probability 1/2, or Green with probability 1/3, or Red with probability 1/6.

(a) [3] Let S be the arrival time of the <u>first</u> car that arrives <u>after</u> at least 5 minutes (so we must have S > 5). Compute (with explanation) the expected value $\mathbf{E}(S)$.

(b) [3] Compute (with explanation) the probability that, in the first 2 minutes, exactly 2 Blue and 1 Green cars arrive.

(This page is intentionally left blank, and may be used as scrap paper.)

(This page is intentionally left blank, and may be used as scrap paper.)