STA 2111 (Graduate Probability I), Fall 2022

Homework #1 Assignment: worth 10% of final course grade.

Due: in class by 10:10 a.m. sharp (Toronto time) on Thursday Oct 6.

GENERAL NOTES:

- Homework assignments are to be solved by each student <u>individually</u>. You may discuss questions in general terms with other students, but you must solve them on your own, including doing all of your own computing and writing.
- You should provide very <u>complete</u> solutions, including <u>explaining</u> all of your reasoning very clearly. Please submit your assignment as <u>hard copy</u> in class.
- Please also include your <u>name</u> and <u>student number</u> and <u>department</u> and <u>program</u> and <u>year</u> and <u>e-mail address</u> at the beginning of your assignment thank you.
- Late penalty: 1–5 minutes late is -5%; 5–15 minutes late is -10%; otherwise if x days late then $-20\% \times \text{ceiling}(x)$. So, don't be late!

THE ACTUAL ASSIGNMENT:

- 1. [3] Suppose that $\Omega = \{1, 2\}$, and $\mathcal{F} = 2^{\Omega}$ is the collection of all subsets of Ω , and $\mathbf{P} : \mathcal{F} \to [0, 1]$ with $\mathbf{P}(\emptyset) = 0$ and $\mathbf{P}(\Omega) = 1$. Suppose $\mathbf{P}\{1\} = \frac{1}{4}$. Prove that \mathbf{P} is countably additive if and only if $\mathbf{P}\{2\} = \frac{3}{4}$.
- 2. Let $\Omega = \{1, 2, 3, 4\}$. Determine whether or not each of the following is a σ -algebra.
- (a) [3] $\mathcal{F}_1 = \{\emptyset, \{1,2\}, \{3,4\}, \{1,2,3,4\}\}.$
- **(b)** [3] $\mathcal{F}_2 = \{\emptyset, \{3\}, \{4\}, \{1,2\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,2,3,4\}\}.$
- (c) [3] $\mathcal{F}_3 = \{\emptyset, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3,4\}\}.$
- **3.** Let $\Omega = \{1, 2, 3, 4\}$, and let $\mathcal{J} = \{\emptyset, \{1\}, \{2\}, \{3, 4\}, \Omega\}$. Define $\mathbf{P} : \mathcal{J} \to [0, 1]$ by $\mathbf{P}(\emptyset) = 0$, $\mathbf{P}\{1\} = 1/6$, $\mathbf{P}\{2\} = 1/3$, $\mathbf{P}\{3, 4\} = 1/2$, and $\mathbf{P}(\Omega) = 1$.
- (a) [3] Prove that \mathcal{J} is a semi-algebra.
- (b) [5] Compute $\mathbf{P}^*(A)$ and $\mathbf{P}^*(A^C)$ where $A = \{2,3\} \subseteq \Omega$ and \mathbf{P}^* is outer measure.
- (c) [5] Determine whether or not $A \in \mathcal{M}$, where \mathcal{M} is the σ -algebra constructed in the proof of the Extension Theorem. [Hint: Perhaps consider the case $E = \Omega$.]
- **4.** [5] Suppose that $\Omega = \mathbf{N}$ is the set of positive integers, and \mathbf{P} is defined for all $A \subseteq \Omega$ by $\mathbf{P}(A) = 0$ if A is finite, and $\mathbf{P}(A) = 1$ if A is infinite. Is \mathbf{P} finitely additive?
- 5. Let $\Omega = \mathbf{N}$ be the set of positive integers, and let

$$\mathcal{B} = \{A \subseteq \Omega : \text{either } A \text{ is finite or } A^C \text{ is finite} \}.$$

1

Let $\mathbf{P}: \mathcal{B} \to [0,1]$ by $\mathbf{P}(A) = 0$ if A is finite, and $\mathbf{P}(A) = 1$ if A^C is finite.

- (a) [5] Is \mathcal{B} an algebra (meaning that $\emptyset, \Omega \in \mathcal{B}$, and \mathcal{B} is closed under complement and under finite union)?
- (b) [5] Is \mathcal{B} a σ -algebra?
- (c) [5] Is P finitely additive on \mathcal{B} ?
- (d) [5] Is **P** countably additive on \mathcal{B} (meaning that if $A_1, A_2, \ldots \in \mathcal{B}$, and if also $\bigcup_n A_n \in \mathcal{B}$, then $\mathbf{P}(\bigcup_n A_n) = \sum_n \mathbf{P}(A_n)$?
- **6.** [5] Prove that the extension $(\Omega, \mathcal{M}, \mathbf{P}^*)$ constructed in the proof of the Extension Theorem must be "complete", meaning that if $A \in \mathcal{M}$ with $\mathbf{P}^*(A) = 0$, and if $B \subseteq A$, then $B \in \mathcal{M}$. (It then follows from monotonicity that $\mathbf{P}^*(B) = 0$.)
- 7. For any interval $I \subseteq [0,1]$, let $\mathbf{P}(I)$ be the <u>length</u> of I.
- (a) [5] Prove that if $I_1, I_2, ..., I_n$ is a <u>finite</u> collection of intervals, and if $\bigcup_{j=1}^n I_j \supseteq I_*$ for some interval I_* , then $\sum_{j=1}^n \mathbf{P}(I_j) \ge \mathbf{P}(I_*)$. [Hint: Suppose I_j has left endpoint a_j and right endpoint b_j , and first re-order the intervals so $a_1 \le a_2 \le ... \le a_n$.]
- (b) [5] Prove that if $I_1, I_2, ...$ is a countable collection of <u>open</u> intervals, and if $\bigcup_{j=1}^{\infty} I_j \supseteq I_*$ for some <u>closed</u> interval I_* , then $\sum_{j=1}^{\infty} \mathbf{P}(I_j) \ge \mathbf{P}(I_*)$. [Hint: You may use the <u>Heine-Borel Theorem</u>, which says that if a collection of open intervals contain a closed interval, then some <u>finite sub-collection</u> of the open intervals also contains the closed interval.]
- (c) [5] Prove that if $I_1, I_2, ...$ is any countable collection of intervals, and if $\bigcup_{j=1}^{\infty} I_j \supseteq I_*$ for any interval I_* , then $\sum_{j=1}^{\infty} \mathbf{P}(I_j) \ge \mathbf{P}(I_*)$. (Note: This is the "countable monotonicity" property needed to apply the Extension Theorem for the Uniform[0,1] distribution, to guarantee that $\mathbf{P}^*(I) \ge \mathbf{P}(I)$.) [Hint: Extend the interval I_j by $\epsilon 2^{-j}$ at each end, and decrease I_* by ϵ at each end, while making I_j open and I_* closed. Then use part (b).]
- (d) [5] Suppose we instead defined P(I) to be the <u>square</u> of the length of I. Show that in that case, the conclusion of part (c) would <u>not</u> hold.

[END; total points = 75]