STA 2111 (Graduate Probability I), Fall 2022

Homework #2 Assignment: worth 10% of final course grade.

Due: in class by 10:10 a.m. <u>sharp</u> (Toronto time) on Thursday Nov. 24.

GENERAL NOTES:

• Homework assignments are to be solved by each student <u>individually</u>. You may discuss questions in general terms with other students, but you must solve them on your own, including doing all of your own computing and writing.

• You should provide very <u>complete</u> solutions, including <u>explaining</u> all of your reasoning clearly. Please submit your assignment as <u>hard copy</u> in class.

• Late penalty: 1–5 minutes late is -5%; 5–15 minutes late is -10%; otherwise if x days late then $-20\% \times \text{ceiling}(x)$. So, don't be late!

THE ACTUAL ASSIGNMENT:

1. Let Ω be a <u>finite</u> non-empty set, and let \mathcal{J} consist of all singletons in Ω , together with \emptyset and Ω . Let $f: \Omega \to [0,1]$ with $\sum_{\omega \in \Omega} f(\omega) = 1$, and define $\mathbf{P}(\emptyset) = 0$, $\mathbf{P}(\Omega) = 1$, and $\mathbf{P}\{\omega\} = f(\omega)$ for all $\omega \in \Omega$.

- (a) [3] Prove that \mathcal{J} is a semialgebra.
- (b) [3] Compute $\mathbf{P}^*(A)$ for any $A \subseteq \Omega$, where P^* is outer measure.
- (c) [3] Describe precisely the collection \mathcal{M} (as defined in the Extension Theorem).
- 2. Let **P** and **Q** be two probability measures on the same space Ω and σ -algebra \mathcal{F} .

(a) [3] Suppose that $\mathbf{P}(A) = \mathbf{Q}(A)$ for all $A \in \mathcal{F}$ with $\mathbf{P}(A) \leq \frac{1}{2}$. Prove that $\mathbf{P} = \mathbf{Q}$, i.e. that $\mathbf{P}(A) = \mathbf{Q}(A)$ for all $A \in \mathcal{F}$.

(b) [3] Give an example where $\mathbf{P}(A) = \mathbf{Q}(A)$ for all $A \in \mathcal{F}$ with $\mathbf{P}(A) < \frac{1}{2}$, but such that $\mathbf{P} \neq \mathbf{Q}$, i.e. that $\mathbf{P}(A) \neq \mathbf{Q}(A)$ for some $A \in \mathcal{F}$.

3. Let $(\Omega_1, \mathcal{F}_1, \mathbf{P}_1)$ be Lebesgue measure on [0, 1]. Consider a second probability triple, $(\Omega_2, \mathcal{F}_2, \mathbf{P}_2)$, defined as follows: $\Omega_2 = \{1, 2\}$, \mathcal{F}_2 consists of all subsets of Ω_2 , and \mathbf{P}_2 is defined by $\mathbf{P}_2\{1\} = \frac{1}{3}$, $\mathbf{P}_2\{2\} = \frac{2}{3}$, and additivity. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the product measure of $(\Omega_1, \mathcal{F}_1, \mathbf{P}_1)$ and $(\Omega_2, \mathcal{F}_2, \mathbf{P}_2)$.

(a) [5] Express each of Ω , \mathcal{F} , and \mathbf{P} as explicitly as possible.

(b) [3] Find a set $A \in \mathcal{F}$ such that $\mathbf{P}(A) = \frac{3}{4}$.

4. [6] Let $([0,1]^2, \mathcal{F}, \lambda)$ be Lebesgue measure on $[0,1]^2$, i.e. the product measure Unif $[0,1] \times$ Unif[0,1]. Let A be the triangle $\{(x,y) \in [0,1]^2; y < x\}$. Prove $A \in \mathcal{F}$, and compute $\lambda(A)$.

(Continued on other side.)

5. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability triple, let $B, C \in \mathcal{F}$ be two fixed events, and let

$$A_n = \begin{cases} B, & n \text{ odd} \\ C, & n \text{ even} \end{cases}$$

In terms of B and C:

- (a) [3] Specify the events $\liminf_n A_n$ and $\limsup_n A_n$.
- (b) [3] Specify the values $\liminf \mathbf{P}(A_n)$ and $\limsup \mathbf{P}(A_n)$.
- (c) [3] Show <u>directly</u> why

$$\mathbf{P}\Big(\liminf_{n} A_{n}\Big) \leq \liminf_{n \to \infty} \mathbf{P}(A_{n}) \leq \limsup_{n \to \infty} \mathbf{P}(A_{n}) \leq \mathbf{P}\Big(\limsup_{n} A_{n}\Big).$$

6. [5] Let A_1, A_2, \ldots be <u>independent</u> events. Let Y be a random variable which is measurable with respect to $\sigma(A_n, A_{n+1}, \ldots)$ for each $n \in \mathbb{N}$. Prove there is $a \in \mathbb{R}$ with $\mathbb{P}(Y = a) = 1$.

7. Give examples of events A, B, and C, each with probability <u>not</u> 0 or 1, such that:

(a) [4] $\mathbf{P}(A \cap B) = \mathbf{P}(A) \mathbf{P}(B), \mathbf{P}(A \cap C) = \mathbf{P}(A) \mathbf{P}(C), \text{ and } \mathbf{P}(B \cap C) = \mathbf{P}(B) \mathbf{P}(C),$ but it is <u>not</u> the case that $\mathbf{P}(A \cap B \cap C) = \mathbf{P}(A) \mathbf{P}(B) \mathbf{P}(C)$. [Hint: You can let Ω be a set of four equally likely points.]

(b) [4] $\mathbf{P}(A \cap B) = \mathbf{P}(A) \mathbf{P}(B), \mathbf{P}(A \cap C) = \mathbf{P}(A) \mathbf{P}(C), \text{ and } \mathbf{P}(A \cap B \cap C) = \mathbf{P}(A) \mathbf{P}(B) \mathbf{P}(C), \text{ but it is <u>not</u> the case that <math>\mathbf{P}(B \cap C) = \mathbf{P}(B) \mathbf{P}(C)$. [Hint: You can let Ω be a set of eight equally likely points.]

- 8. Let X be a <u>non-negative</u> random variable with $\mathbf{P}(X > 0) > 0$.
- (a) [4] Prove that there exists some $\delta > 0$ such that $\mathbf{P}(X \ge \delta) > 0$.
- (b) [4] Prove that E(X) > 0.
- **9.** Let (Ω, \mathcal{F}, P) be Lebesgue measure on [0, 1], and set

$$X(\omega) = \begin{cases} 2 , & \omega \text{ rational} \\ 3 , & \omega = 1/\sqrt{3} \\ 9 , & \text{other } 0 \le \omega < 1/5 \\ 4 , & \text{other } 1/5 \le \omega < 3/5 \\ 7 , & \text{other } 3/5 \le \omega \le 1 . \end{cases}$$

- (a) [3] Compute P(X < 6).
- (b) [3] Compute $\mathbf{E}(X)$.

10. [4] Let X be a non-negative random variable with finite mean, and let $a \in \mathbf{R}$ be any real number. Prove that $\mathbf{E}[\max(X, a)] \ge \max[\mathbf{E}(X), a]$.

[END; total points = 69]