STA 2111 (Graduate Probability I), Fall 2023

Homework #2 Assignment: worth 10% of final course grade.

Due: in class by 10:10 a.m. <u>sharp</u> (Toronto time) on Thursday Nov. 23.

GENERAL NOTES:

• Homework assignments are to be solved by each student <u>individually</u>. You may discuss questions in general terms with other students, but you must solve them on your own, including doing all of your own computing and writing.

• You should provide very <u>complete</u> solutions, including <u>explaining</u> all of your reasoning clearly. Please submit your assignment as <u>hard copy</u> at the beginning of in class.

• Late penalty: 1–5 minutes late is -5%; 5–15 minutes late is -10%; otherwise if x days late then $-20\% \times \text{ceiling}(x)$. So, don't be late!

THE ACTUAL ASSIGNMENT:

1. [5] Let $(\Omega_1, \mathcal{F}_1, \mathbf{P}_1)$ be Lebesgue measure on [0, 1]. Consider a second probability triple, $(\Omega_2, \mathcal{F}_2, \mathbf{P}_2)$, defined as follows: $\Omega_2 = \{1, 2\}$, \mathcal{F}_2 consists of <u>all</u> subsets of Ω_2 , and $\mathbf{P}_2 : \mathcal{F}_2 \to \mathbf{R}$ is defined by $\mathbf{P}_2(\emptyset) = 0$, $\mathbf{P}_2\{1\} = \frac{1}{4}$, $\mathbf{P}_2\{2\} = \frac{3}{4}$, $\mathbf{P}_2\{1, 2\} = 1$. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the <u>product</u> measure of $(\Omega_1, \mathcal{F}_1, \mathbf{P}_1)$ and $(\Omega_2, \mathcal{F}_2, \mathbf{P}_2)$. Find (with explanation) two <u>disjoint</u> subsets $A, B \in \mathcal{F}$ such that $\mathbf{P}(A) = \mathbf{P}(B) = \frac{1}{5}$.

2. [6] Let $([0,1]^2, \mathcal{F}, \lambda)$ be Lebesgue measure on $[0,1]^2$, i.e. the product measure Unif $[0,1] \times$ Unif[0,1]. Let A be the triangle $\{(x,y) \in [0,1]^2; x+y < 1\}$. Prove $A \in \mathcal{F}$, and find $\lambda(A)$.

3. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability triple, let $B, C \in \mathcal{F}$ be two fixed events, and let

$$A_n = \begin{cases} B, & n \text{ odd} \\ C, & n \text{ even} \end{cases}$$

In terms of B and C:

- (a) [3] Specify the events $\liminf_n A_n$ and $\limsup_n A_n$.
- (b) [3] Specify the values $\liminf_{n\to\infty} \mathbf{P}(A_n)$ and $\limsup \mathbf{P}(A_n)$.
- (c) [3] Show <u>directly</u> why

$$\mathbf{P}\Big(\liminf_{n} A_n\Big) \leq \liminf_{n \to \infty} \mathbf{P}(A_n) \leq \limsup_{n \to \infty} \mathbf{P}(A_n) \leq \mathbf{P}\Big(\limsup_{n} A_n\Big).$$

- 4. Consider infinite, independent, fair coin tossing, with $H_n = \{n^{\text{th}} \text{ coin is heads}\}$.
- (a) [4] Compute $\mathbf{P}(H_{n+1} \cap H_{n+2} \cap \ldots \cap H_{n+|2\log_2 n|} i.o.)$.
- (b) [4] Compute $\mathbf{P}(H_{n+1} \cap H_{n+2} \cap \ldots \cap H_{n+|\log_2 n|} i.o.)$.

- 5. Let X be a <u>non-negative</u> random variable with $\mathbf{P}(X > 0) > 0$.
- (a) [4] Prove that there exists some $n \in \mathbb{N}$ such that $\mathbb{P}(X \ge 1/n) > 0$.
- (b) [4] Prove that E(X) > 0.
- 6. Give examples of random variables X defined on Lebesgue measure on [0, 1] with:
- (a) [3] $E(X^+) = \infty$ and $0 < E(X^-) < \infty$.
- (b) [3] $E(X^{-}) = \infty$ and $0 < E(X^{+}) < \infty$.
- (c) [3] $E(X^+) = E(X^-) = \infty$.
- (d) [3] $X \ge 0$ and $0 < \mathbf{E}(X) < \infty$ but $\mathbf{E}(X^2) = \infty$.

7. Let $\{X_n\}$ and X be random variables defined on Lebesgue measure on [0, 1], with $\lim_{n\to\infty} X_n(\omega) = X(\omega)$ for each fixed $\omega \in [0, 1]$. Suppose for each $n \in \mathbf{N}$, $\mathbf{E}|X_n| < \infty$, and also $X_{n+1}(\omega) \leq X_n(\omega)$ for all $\omega \leq 1/2$, and $X_{n+1}(\omega) \geq X_n(\omega)$ for all $\omega > 1/2$.

(a) [4] <u>Assuming</u> $\mathbf{E}|X| < \infty$, prove that $\lim_{n \to \infty} \mathbf{E}(X_n) = \mathbf{E}(X)$.

(b) [4] <u>Without</u> assuming $\mathbf{E}|X| < \infty$, find an example where $\mathbf{E}(X)$ is <u>undefined</u>, and hence $\lim_{n\to\infty} \mathbf{E}(X_n) \neq \mathbf{E}(X)$.

8. For each of the following conditions, either give an example of a random variable X defined on Lebesgue measure on [0, 1] satisfying those conditions, or prove that no such random variable exists.

- (a) [3] $X \ge 0$, and $\mathbf{E}(X) = 3$, and $\mathbf{P}(X \ge 7) = 1/2$.
- (b) [3] E(X) = 3, and $P(X \ge 7) = 1/2$.
- (c) [3] $\mathbf{E}(X) = 3$, and $\mathbf{Var}(X) = 4$, and $\mathbf{P}(X \le 0) = 1/2$.

9. Let $\{I_j\}_{j=1}^{\infty}$ be independent random variables, with $I_1 \sim \text{Uniform}\{0, 1, 2, \dots, 9\}$, $I_2 \sim \text{Uniform}\{10, 11, 12, \dots, 99\}$, $I_3 \sim \text{Uniform}\{100, 101, 102, \dots, 999\}$, and in general, I_j is chosen uniformly from the set of all non-negative integers having j digits. Then, define $\{X_n\}_{n=1}^{\infty}$ by: $X_n = 5$ if $n = I_j$ for some j, otherwise $X_n = 0$.

- (a) [5] Prove or disprove that $\{X_n\} \to 0$ in probability.
- (b) [5] Prove or disprove that $\{X_n\} \to 0$ almost surely.

[END; total points = 75]