by Jeffrey S. Rosenthal, University of Toronto, www.probability.ca
(Last updated: December 4, 2023)
Note: I will update these notes regularly, by posting them on the course web page each evening after lectures. However, they are just rough, point-form notes, with no guarantee of completeness or accuracy. They should in no way be regarded as a substitute for attending and learning from all the lectures, studying the course textbook, or doing the suggested homework exercises.

Introduction

- Course Information: See the course web page at: probability.ca/sta257
- Who here is doing a specialist or major program involving: Statistics / Data Science? Mathematics? Actuarial Science? Computer Science? Economics/Commerce? Physics/Chemistry/Biology? Education? Psychology/Sociology? Engineering? Other?
- Who here has seen probabilities in elementary school? high school? STA130?
\rightarrow Don't worry, we will start from scratch. (Just need math.)
- Life is full of randomness and uncertainty: lotteries, card games, computer games, gambling, weather, TTC, airplanes, friends, jobs, classes, science, finance, elections, diseases, safety/risk, demographics, internet routing, legal cases, ... whenever we're not sure of the outcome or what will happen next.
- Lots of interesting probability questions to solve! Such as ...
\rightarrow What's the probability you'll win the Lotto Max jackpot, i.e. that you will choose the correct 7 distinct numbers between 1 and 50 ?
\rightarrow If 200 students each flip a fair coin, then how many Heads is most likely? What's the probability of more than 150 Heads?
\rightarrow If you repeatedly roll a fair 6 -sided die [show], then how many rolls will there be on average before the first 5 ?
\rightarrow At a party of 40 people, what is the probability that some pair of them have the same birthday?
\rightarrow If a disease affects one person in a thousand, and a test for the disease has 99% accuracy, and you test positive, then what is the probability you have the disease?
\rightarrow If you pick a number uniformly at random between 0 and 1 , then what is the probability that you pick exactly the number $3 / 4$?
\rightarrow Three-Card Challenge. [demonstration] What are the probabilities of the initial (front) colour? Then, what are the probabilities of the back colour?
- History of Mathematical Probability Theory (in brief):
\rightarrow Mathematics is very precise and certain. For thousands of years, it simply ignored the uncertainty of probabilities.
\rightarrow Then, in 1654, the French writer Antoine Gombaud (the "Chevalier de Méré") asked the mathematician Pierre de Fermat some gambling questions:
\rightarrow Which is more likely (or are they the same) (and are they more than 50%):
(a) Get at least one six when rolling a fair six-sided die 4 times; or
(b) Get at least one pair of sixes when rolling two fair six-sided dice 24 times?
\rightarrow He thought (a) was $4 \times(1 / 6)=2 / 3$, and (b) was $24 \times(1 / 36)=2 / 3$. Correct?
\rightarrow Also: (c) Suppose a gambler is playing a best-of-seven match, where whoever wins 4 (fair) games first in the winner, and so far they have won 3 times and lost 1 , but then the match gets interrupted. What is the probability that they would have won the match, if it had been allowed to continue?
\rightarrow Fermat then corresponded with the mathematician Blaise Pascal to solve these questions (later!), and mathematical probability theory was born!
- So, can probabilities be studied mathematically?
\rightarrow Can we use certain mathematics to study the uncertainty of probabilities?
\rightarrow Yes! That's why we're here! To be certain about our uncertainty!
\rightarrow But we have to define our terms carefully ...

Sample Space

- The first part of any probability model is the sample space, written S, which is the set of all possible outcomes.
\rightarrow e.g. flip a coin: $S=\{$ Heads, Tails $\}$, or $S=\{H, T\}$.
\rightarrow e.g. flip a coin three times in a row:
$S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$.
\rightarrow Or, if we only care about the number of Heads: $S=\{0,1,2,3\}$.

\rightarrow e.g. tonight's dinner: $S=\{$ Beef, Chicken, Fish $\}$.
\rightarrow e.g. the number of bees I will see on my walk home: $S=\{0,1,2,3, \ldots\}$.
\rightarrow e.g. the price of IBM stock next month: $S=[0, \infty)$.
\rightarrow e.g. the height (in cm) of the next student I meet: $S=(0, \infty)$. (Or \ldots)
\rightarrow e.g. your grade in this class: $S=\{0,1,2,3, \ldots, 100\}$.
\rightarrow e.g. roll one six-sided die: $S=\{1,2,3,4,5,6\}$.
\rightarrow e.g. roll two six-sided dice: $S=\{1,2,3,4,5,6\}^{2}$, i.e. $S=\{11,12,13,14,15,16,21,22,23,24,25,26$, $31,32,33,34,35,36,41,42,43,44,45,46$, $51,52,53,54,55,56,61,62,63,64,65,66\}$.
\rightarrow Or, if we only care about the sum, instead maybe take $S=\{2,3,4,5,6,7,8,9,10,11,12\}$.
\rightarrow e.g. "Pick any integer between 1 and 10 ": $S=\{1,2,3,4,5,6,7,8,9,10\}$.
\rightarrow e.g. "Pick any number between 0 and 1 ": $S=[0,1]$. (important case!)
- Summary: The sample space S can be any non-empty set which contains all of the possible outcomes. Simple!
- But it gets more interesting when we also have ...

Probabilities and Events

- An event A is "any" subset $A \subseteq S$.
- For any event A, we can define the probability $\mathrm{P}(A)$ that it will occur.
\rightarrow e.g. flip a "fair" coin: $\mathrm{P}(H)=\mathrm{P}(T)=1 / 2$.
\rightarrow (Note: We often use e.g. " $\mathrm{P}(H)$ " as shorthand for " $\mathrm{P}(\{H\})$ ", etc.)
\rightarrow e.g. roll a fair six-sided die: $\mathrm{P}(1)=\mathrm{P}(2)=\mathrm{P}(3)=\mathrm{P}(4)=\mathrm{P}(5)=\mathrm{P}(6)=1 / 6$.
\rightarrow e.g. tonight's dinner: maybe $\mathrm{P}($ Beef $)=0.40, \mathrm{P}($ Chicken $)=0.15$, and $\mathrm{P}($ Fish $)=0.45$.
\rightarrow (Note: We could also write $\mathrm{P}($ Fish $)=45 \%$, etc. Usually percentages are good for intuition, but pure probabilities (not percentages) are better for calculation.)
\rightarrow e.g. flip three fair coins: $\mathrm{P}(H H H)=\mathrm{P}(H H T)=\ldots=\mathrm{P}(T T T)=1 / 8$.
\rightarrow e.g. roll two fair dice: $\mathrm{P}(11)=\mathrm{P}(12)=\ldots=\mathrm{P}(65)=\mathrm{P}(66)=1 / 36$.
\rightarrow e.g. Pick any integer between 1 and 10 . [Try it!]
Could be "uniform", i.e. $\mathrm{P}(1)=\mathrm{P}(2)=\ldots=\mathrm{P}(10)=1 / 10$. Or instead, maybe \ldots
$P(3)=P(6)=P(7)=0.2$, and $P(5)=0.1$, and $P(1)=P(2)=P(4)=P(8)=P(9)=P(10)=0.05$.
\rightarrow e.g. Pick any number between 0 and 1 , "uniformly":
$\mathrm{P}([0,1 / 2])=1 / 2, \mathrm{P}([1 / 2,1])=1 / 2, \mathrm{P}([0,1 / 3])=1 / 3, \mathrm{P}([1 / 3,2 / 3])=1 / 3$, and in general $\mathrm{P}([a, b])=b-a$ whenever $0 \leq a \leq b \leq 1$. [Diagram]

Basic Properties of Probabilities

- Let's begin with a specific example (and then we will generalise):
- e.g. tonight's dinner, with $\mathrm{P}($ Beef $)=0.40, \mathrm{P}($ Chicken $)=0.15$, and $\mathrm{P}($ Fish $)=0.45$.
\rightarrow Probability of Beef or Chicken $=\mathrm{P}(\{$ Beef, Chicken $\})=\mathrm{P}(\{$ Beef $\})+\mathrm{P}(\{$ Chicken $\})$ $=0.40+0.15=0.55$.
\rightarrow Probability of any dinner $=$ Probability of Beef or Chicken or Fish $=\mathrm{P}(\{$ Beef, Chicken, Fish $\})=\mathrm{P}(\{$ Beef $\})+\mathrm{P}(\{$ Chicken $\})+\mathrm{P}(\{$ Fish $\})=0.40+0.15+0.45=1$.
\rightarrow Probability of No dinner $=P(\emptyset)=0$.
- In general, certain properties must hold for any probability model ("axioms"):
- If A is an event, then $0 \leq \mathrm{P}(A) \leq 1$.
- If $A=S$ is the event corresponding to all outcomes, then $\mathrm{P}(A)=\mathrm{P}(S)=1$.
- Or, if $A=\emptyset$ is the event corresponding to no outcomes, then $\mathrm{P}(A)=\mathrm{P}(\emptyset)=0$.
- Additivity: If A and B are disjoint events (i.e. $A \cap B=\emptyset$), e.g. $A=\{$ Beef $\}$ and $B=\{$ Chicken $\}$, then $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$.
- More generally, if $A_{1}, A_{2}, A_{3}, \ldots$ are any sequence (finite or infinite) of disjoint events (i.e. $A_{i} \cap A_{j}=\emptyset$ whenever $i \neq j$), then $\mathrm{P}\left(\bigcup_{i} A_{i}\right)=\sum_{i} \mathrm{P}\left(A_{i}\right)$.
\rightarrow So, in particular, since $\mathrm{P}(S)=1$, all of the probabilities have to add up to 1 .
\rightarrow e.g. $\mathrm{P}($ Heads $)+\mathrm{P}($ Tails $)=0.5+0.5=1$.
\rightarrow e.g. $\mathrm{P}($ Beef $)+\mathrm{P}($ Chicken $)+\mathrm{P}($ Fish $)=0.40+0.15+0.45=1$.

Derived Properties of Probabilities

- Once we know the above properties, then we can use them to prove others too:
- Fact: If A^{C} is the complement of A, i.e. the set of all outcomes which are not in A, then $\mathrm{P}\left(A^{C}\right)=1-\mathrm{P}(A)$. (Important! Remember this! Use this!)
\rightarrow Proof: Note that A and A^{C} are disjoint, so $\mathrm{P}\left(A \cup A^{C}\right)=\mathrm{P}(A)+\mathrm{P}\left(A^{C}\right)$. But $\mathrm{P}\left(A \cup A^{C}\right)=\mathrm{P}(S)=1$, so $1=\mathrm{P}(A)+\mathrm{P}\left(A^{C}\right)$, i.e. $\mathrm{P}\left(A^{C}\right)=1-\mathrm{P}(A)$.
\rightarrow e.g. $\mathrm{P}($ Fish $)=\mathrm{P}(\underline{\text { not Beef or Chicken })=1-\mathrm{P}(\text { Beef or Chicken })=1-0.55=, ~=~}$ 0.45 .
- Fact: For any events A and B [Diagram], $\mathrm{P}(A)=\mathrm{P}(A \cap B)+\mathrm{P}\left(A \cap B^{C}\right) . \quad(*)$
\rightarrow Proof: The events $A \cap B$ and $A \cap B^{C}$ are disjoint, and $(A \cap B) \cup\left(A \cap B^{C}\right)=A$ [Diagram], so by additivity, $\mathrm{P}(A \cap B)+\mathrm{P}\left(A \cap B^{C}\right)=\mathrm{P}(A)$.
\rightarrow e.g. integer between 1 and 10: $\mathrm{P}($ even $)=\mathrm{P}($ even and $\leq 4)+\mathrm{P}($ even $\underline{\text { and }} \geq 5)$ $=\mathrm{P}(\{2,4\})+\mathrm{P}(\{6,8,10\})$.

END MONDAY \#1

- Re-arranging $(*)$ also gives that: $\mathrm{P}\left(A \cap B^{C}\right)=\mathrm{P}(A)-\mathrm{P}(A \cap B) . \quad(* *)$
- Fact: If $A \supseteq B$, then $\mathrm{P}(A)=\mathrm{P}(B)+\mathrm{P}\left(A \cap B^{C}\right) . \quad(* * *)$
\rightarrow Proof: This follows from $(*)$, since if $A \supseteq B$, then $A \cap B=B$.
\rightarrow e.g. integer between 1 and 10: $\mathrm{P}(\leq 7)=\mathrm{P}(\leq 4)+\mathrm{P}(\leq 7$ but $\geq 5)$.
- Monotonicity: If $A \supseteq B$, then $\mathrm{P}(A) \geq \mathrm{P}(B)$. (Remember this!)
\rightarrow Proof: We must have $\mathrm{P}\left(A \cap B^{C}\right) \geq 0$, so from $(* * *), \mathrm{P}(A)=\mathrm{P}(B)+\mathrm{P}\left(A \cap B^{C}\right) \geq$ $\mathrm{P}(B)+0=\mathrm{P}(B)$.
\rightarrow e.g. $\mathrm{P}(\{$ Beef, Chicken $\})=0.55 \geq 0.40=\mathrm{P}(\{$ Beef $\})$.
- Law of Total Probability - Unconditioned Version: Suppose A_{1}, A_{2}, \ldots are a sequence (finite or infinite) of events which form a partition of S, i.e. they are disjoint $\left(A_{i} \cap A_{j}=\emptyset\right.$ for all $\left.i \neq j\right)$ and their union equals the entire sample space $\left(\bigcup_{i} A_{i}=S\right)$, and let B be any event. Diagram:

Then $\mathrm{P}(B)=\sum_{i} \mathrm{P}\left(A_{i} \cap B\right)$. That is: $\mathrm{P}(B)=\mathrm{P}\left(A_{1} \cap B\right)+\mathrm{P}\left(A_{2} \cap B\right)+\ldots$.
\rightarrow Proof: Since the $\left\{A_{i}\right\}$ are disjoint, and $A_{i} \cap B \subseteq A_{i}$, therefore the $\left\{A_{i} \cap B\right\}$ are also disjoint. Furthermore, since $\bigcup_{i} A_{i}=S$, therefore $\bigcup_{i}\left(A_{i} \cap B\right)=S \cap B=B$. Hence, $\mathrm{P}(B)=\mathrm{P}\left(\bigcup_{i}\left(A_{i} \cap B\right)\right)=\sum_{i} \mathrm{P}\left(A_{i} \cap B\right)$.
\rightarrow e.g. integer between 1 and 10: Suppose $A_{1}=\{\leq 4\}=\{1,2,3,4\}$, and $A_{2}=$ $\{\geq 5\}=\{5,6,7,8,9,10\}$, and $B=\{$ even $\}=\{2,4,6,8,10\}$. Then $\mathrm{P}($ even $)=\mathrm{P}($ even and $\leq 4)+\mathrm{P}($ even and $\geq 5)$, i.e. $\mathrm{P}(\{2,4,6,8,10\})=\mathrm{P}(\{2,4\})+\mathrm{P}(\{6,8,10\})$.

- Principle of Inclusion-Exclusion: $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$.
\rightarrow (Of course, if they're disjoint $(A \cap B=\emptyset)$, then $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$.)
\rightarrow Intuition: $\mathrm{P}(A)+\mathrm{P}(B)$ counts each element of $A \cap B$ twice, so we have to subtract one of them off.
\rightarrow Proof: The events $A \cap B$, and $A \cap B^{C}$, and $A^{C} \cap B$, are all disjoint, and their union is $A \cup B$. [Diagram.] Hence, $\mathrm{P}(A \cup B)=\mathrm{P}(A \cap B)+\mathrm{P}\left(A \cap B^{C}\right)+\mathrm{P}\left(A^{C} \cap B\right)$.

Then, from $(* *), \mathrm{P}\left(A \cap B^{C}\right)=\mathrm{P}(A)-\mathrm{P}(A \cap B)$ and $\mathrm{P}\left(A^{C} \cap B\right)=\mathrm{P}(B)-\mathrm{P}(A \cap B)$.
Hence, $\mathrm{P}(A \cup B)=\mathrm{P}(A \cap B)+[\mathrm{P}(A)-\mathrm{P}(A \cap B)]+[\mathrm{P}(B)-\mathrm{P}(A \cap B)]$ $=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$.
\rightarrow e.g. integer between 1 and 10: $\mathrm{P}($ even or $\leq 4)=\mathrm{P}($ even $)+\mathrm{P}(\leq 4)-\mathrm{P}($ even and $\leq 4)=\mathrm{P}(\{2,4,6,8,10\})+\mathrm{P}(\{1,2,3,4\})-\mathrm{P}(\{2,4\})$.
\rightarrow Or, $\mathrm{P}($ even or perfect square $)=\mathrm{P}($ even $)+\mathrm{P}($ perfect square $)-\mathrm{P}($ even and perfect square $)=\mathrm{P}(\{2,4,6,8,10\})+\mathrm{P}(\{1,4,9\})-\mathrm{P}(\{4\})$.

- $\mathrm{P}(A \cap B) \geq 0$, so $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \leq \mathrm{P}(A)+\mathrm{P}(B)$. Indeed:
- Subadditivity: For any sequence of events A_{1}, A_{2}, \ldots, not necessarily disjoint, we still always have $\mathrm{P}\left(A_{1} \cup A_{2} \cup \ldots\right) \leq \mathrm{P}\left(A_{1}\right)+\mathrm{P}\left(A_{2}\right)+\ldots$.
\rightarrow (Of course, it would be equal if they are disjoint.)
\rightarrow Proof: Let $B_{1}=A_{1}$, and $B_{2}=A_{2} \cap\left(A_{1}\right)^{C}$, and $B_{3}=A_{3} \cap\left(A_{1} \cup A_{2}\right)^{C}$, and $B_{4}=A_{4} \cap\left(A_{1} \cup A_{2} \cup A_{3}\right)^{C}$, and so on. (That is, each new B_{n} is the part of A_{n} which is not already part of A_{1}, \ldots, A_{n-1}.) Diagram:

The $\left\{B_{i}\right\}$ are disjoint, and $\bigcup_{i} B_{i}=\bigcup_{i} A_{i}$. Also $B_{i} \subseteq A_{i}$ so $\mathrm{P}\left(B_{i}\right) \leq \mathrm{P}\left(A_{i}\right)$. Hence, $\mathrm{P}\left(A_{1} \cup A_{2} \cup \ldots\right)=\mathrm{P}\left(B_{1} \cup B_{2} \cup \ldots\right)=\mathrm{P}\left(B_{1}\right)+\mathrm{P}\left(B_{2}\right)+\ldots \leq \mathrm{P}\left(A_{1}\right)+\mathrm{P}\left(A_{2}\right)+\ldots$
\rightarrow Alternative proof (for a finite number of events): Use induction! For $n=2$ events, this follows from Inclusion-Exclusion. Then for $n \geq 3$ events, $\mathrm{P}\left(A_{1} \cup \ldots \cup A_{n}\right)=$ $\mathrm{P}\left(\left(A_{1} \cup \ldots \cup A_{n-1}\right) \cup A_{n}\right)$, which by Inclusion-Exclusion is $\leq \mathrm{P}\left(A_{1} \cup \ldots \cup A_{n-1}\right)+\mathrm{P}\left(A_{n}\right)$, which by induction is $\leq\left(\mathrm{P}\left(A_{1}\right)+\ldots+\mathrm{P}\left(A_{n-1}\right)\right)+\mathrm{P}\left(A_{n}\right)$.
\rightarrow e.g. integer between 1 and 10: $\mathrm{P}($ even or $\leq 4) \leq \mathrm{P}($ even $)+\mathrm{P}(\leq 4)$, i.e. $\mathrm{P}(\{1,2,3,4,6,8,10\}) \leq \mathrm{P}(\{2,4,6,8,10\})+\mathrm{P}(\{1,2,3,4\})$.

Suggested Homework: 1.2.13, 1.2.14, 1.2.15. (more theoretical)
Suggested Homework: 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.3.7, 1.3.8, 1.3.9.
Optional: A more general Inclusion-Exclusion formula is in Challenge 1.3.10.

Uniform Probabilities on Finite Spaces

- Suppose $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ is some finite sample space, of finite size $|S|=n$, and each element is equally likely.
\rightarrow Then $\mathrm{P}\left(s_{1}\right)=\mathrm{P}\left(s_{2}\right)=\ldots=\mathrm{P}\left(s_{n}\right)=1 / n$. ("discrete uniform distribution")
\rightarrow And for any event $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, by additivity we have

$$
\mathrm{P}(A)=\mathrm{P}\left(a_{1}\right)+\mathrm{P}\left(a_{2}\right)+\ldots+\mathrm{P}\left(a_{k}\right)=\frac{1}{n}+\frac{1}{n}+\ldots+\frac{1}{n}=\frac{k}{n}=\frac{|A|}{|S|}
$$

\rightarrow So, in this case, we just need to count the number of elements in A, and divide that by the number of elements in S. Easy!?! Sometimes!

- e.g. Roll a fair six-sided die. What is $\mathrm{P}(\geq 5)$?
\rightarrow Here $S=\{1,2,3,4,5,6\}$ so $|S|=6$. All equally likely.
\rightarrow Also $A=\{5,6\}$ so $|A|=2$.
\rightarrow So, $\mathrm{P}(\geq 5)=\mathrm{P}(A)=|A| /|S|=2 / 6=1 / 3$. Easy!
- e.g. Roll one fair six-sided die, and flip two fair coins.

What is $\mathrm{P}(\#$ Heads $=$ Number Showing On The Die $)$?
\rightarrow Here $S=\{1 H H, 1 H T, 1 T H, 1 T T, 2 H H, \ldots, 6 T T\}$. All equally likely.
\rightarrow But what is $|S|$?
\rightarrow Multiplication Principle: If S is made up by choosing one element of each of the subsets $S_{1}, S_{2}, \ldots, S_{k}$, i.e. if $S=S_{1} \times S_{2} \times \ldots \times S_{k}$, then what is $|S|$? Well, \ldots $|S|=\left|S_{1}\right|\left|S_{2}\right| \ldots\left|S_{k}\right|$.
\rightarrow In our example, $S_{1}=\{1,2,3,4,5,6\}$, and $S_{2}=\{H, T\}$, and $S_{3}=\{H, T\}$, so $|S|=\left|S_{1}\right|\left|S_{2}\right|\left|S_{3}\right|=6 \cdot 2 \cdot 2=24$.
\rightarrow And what about A ? Well, think about the possibilities ...
$A=\{1 H T, 1 T H, 2 H H\}$. (No other combination works. Why?) So, $|A|=3$.
\rightarrow Hence, $\mathrm{P}(\#$ Heads $=$ Number Showing On The Die $)=|A| /|S|=3 / 24=1 / 8$.

- e.g. Roll three fair six-sided dice. What is $\mathrm{P}($ sum $\geq 17)$?
\rightarrow Here $S=\{1,2,3,4,5,6\}^{3}$ so $|S|=6^{3}=216$. All equally likely.
\rightarrow But what is A ? Think about it ...
Here $A=\{666,566,656,665\}$ (why?), so $|A|=4$.
\rightarrow So, $\mathrm{P}($ sum $\geq 17)=\mathrm{P}(A)=|A| /|S|=4 / 216=1 / 54$.
\rightarrow Exercise: What about $\mathrm{P}($ sum $\geq 16)$? $\mathrm{P}($ sum $\geq 15)$?
- Chevalier's questions:
- (a) What is P (get at least one six when rolling a fair six-sided die 4 times)?
\rightarrow Here $S=\{1,2,3,4,5,6\}^{4}$, so $|S|=6^{4}=1296$. All equally likely.
\rightarrow And what is $|A|$? Tricky. Easier to consider ..
$\rightarrow A^{C}=\{$ no sixes in four rolls $\}=\{1,2,3,4,5\}^{4}$, so $\left|A^{C}\right|=5^{4}=625$.
\rightarrow So, $\mathrm{P}\left(A^{C}\right)=\left|A^{C}\right| /|S|=5^{4} / 6^{4}=625 / 1296 \doteq 0.482$.
\rightarrow So, $\mathrm{P}(A)=1-\mathrm{P}\left(A^{C}\right) \doteq 1-0.482=0.518$. More than 50%.
\rightarrow (Alternatively: By "independence" [later], $\mathrm{P}(A)=1-(5 / 6)^{4} \doteq 0.518$.)
- (b) What is P (get at least one pair of sixes when rolling a pair of fair six-sided dice 24 times)?
\rightarrow Here $S=\left(\{1,2,3,4,5,6\}^{2}\right)^{24}$, so $|S|=\left(6^{2}\right)^{24}=6^{48}\left(>10^{37}\right)$. All equally likely.
\rightarrow And what is $|A|$? Tricky. Again, easier to consider ...
$\rightarrow A^{C}=\{$ no pair of sixes in 24 rolls $\}=\{11,12,13, \ldots, 64,65\}^{24}$, so $\left|A^{C}\right|=35^{24}$.
\rightarrow So, $\mathrm{P}\left(A^{C}\right)=\left|A^{C}\right| /|S|=35^{24} / 6^{48} \doteq 0.509$.
\rightarrow So, $\mathrm{P}(A)=1-\mathrm{P}\left(A^{C}\right) \doteq 1-0.509=0.491$. Less than 50%.
\rightarrow (Again, alternatively by independence [later], $\mathrm{P}(A)=1-(35 / 36)^{24} \doteq 0.491$.)
- (c) In a best-of-seven match with fair (50\%) games, if a player has won 3 games and lost 1 , then what is the probability they will win the match?
\rightarrow Various paths to victory: win right away, lose then win, etc. Tricky.
\rightarrow One solution: Pretend 3 more games will always be played. (Result same.)
\rightarrow Then $S=\{\text { Win, Lose }\}^{3}$, so $|S|=2^{3}=8$, all equally likely.
\rightarrow What about A ? Well, here $A^{C}=\{$ Lose, Lose, Lose $\}$, so $\left|A^{C}\right|=1$.
\rightarrow Hence, $\mathrm{P}\left(A^{C}\right)=\left|A^{C}\right| /|S|=1 / 8$, and so $\mathrm{P}(A)=1-\mathrm{P}\left(A^{C}\right)=7 / 8$.
\rightarrow Exercise: What if the player has won just 2 games and lost 1? (Trickier.)
Suggested Homework: 1.4.1, 1.4.2, 1.4.3, 1.4.9, 1.4.10, 1.4.11, 1.4.12, 1.4.13.

Warning about Non-Uniform Probabilities

- e.g. Roll two fair dice. What is $\mathrm{P}($ sum is $\leq 3)$?
\rightarrow POSSIBLE SOLUTION: The sum is in $S=\{2,3,4,5,6,7,8,9,10,11,12\}$. So, $|S|=11$. And, the event " ≤ 3 " corresponds to $A=\{2,3\}$, so $|A|=2$. Hence, $\mathrm{P}($ sum is $\leq 3)=|A| /|S|=2 / 11$. Right?
\rightarrow WRONG! These sums are not all equally likely, i.e. it is not uniform! So, $\mathrm{P}(A) \neq|A| /|S|$. That formula is only when all outcomes are equally likely. Important!
\rightarrow INSTEAD: Let $S=\{$ all ordered pairs of two dice $\}$, i.e. $S=\{11,12,13, \ldots, 65,66\}$. Then $|S|=36$. Now each outcome in S is equally likely. And, now $A=\{11,12,21\}$. So, $\mathrm{P}(A)=|A| /|S|=3 / 36=1 / 12$. Correct!
- And sometimes the sample space S is a discrete infinite set:
\rightarrow e.g. $S=\mathbf{N}:=\{1,2,3, \ldots\}$, with $\mathrm{P}(i)=2^{-i}$ for each $i \in S$.
\rightarrow Valid? Yes, since $2^{-i} \geq 0$, and $\sum_{i=1}^{\infty} 2^{-i}=\frac{2^{-1}}{1-2^{-1}}=1$. (Geometric series.)
\rightarrow Then e.g. P(Even Number) $=\sum_{i=2,4,6, \ldots .} 2^{-i}=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\ldots=\frac{1 / 4}{1-(1 / 4)}=1 / 3$.
\rightarrow And, $\mathrm{P}(\leq 10)=\sum_{i=1}^{10} 2^{-i}=\frac{2^{-1}-2^{-11}}{1-2^{-1}}=\frac{(1 / 2)-(1 / 2048)}{1-(1 / 2)}=1023 / 1024$. Close to 1 .
\rightarrow On a discrete infinite space, cannot have a uniform distribution!
- Summary: Don't assume it's uniform when it isn't!

More Finite Uniform Probabilities

- e.g. Suppose there are ten people at a party, and you randomly pick three of the people, in order (1-2-3). What is the probability that your choices will also be the three richest people at the party (in the same order)?
$\rightarrow S$ is the set of all ways of picking three people, in order. All equally likely.
\rightarrow But what is $|S|$?
\rightarrow The first person can be picked in 10 different ways.
\rightarrow Then, the second person can be picked in 9 different ways.
\rightarrow Then, the third person can be picked in 8 different ways.
\rightarrow So, $|S|=10 \cdot 9 \cdot 8=720$.
\rightarrow Also, $|A|=1$ since there is only one matching choice.
\rightarrow So, $\mathrm{P}($ you picked the three richest, in order $)=|A| /|S|=1 / 720$.
- More generally, the number of ways of picking k distinct items, in order, out of n items total, is equal to $n(n-1)(n-2) \ldots(n-k+1)=n!/(n-k)$!. ("permutations")
\rightarrow In particular, if $k=n$, then the number of ways of picking all n items in order is equal to $n(n-1)(n-2) \ldots(1)=n$!. (" n factorial")
- "The Birthday Problem": Suppose 40 (say) people at a party are each equally likely to be born on any one of 365 days of the year. Then what is the probability that at least one pair of them have the same birthday? (Any guesses?)
\rightarrow Here, S is the set of all 40-tuples of possible birthdays. All equally likely.
\rightarrow (Count them in order, since they might not all be distinct.)
\rightarrow So, by the Multiplication Principle, $|S|=365^{40}$.
\rightarrow What about $|A|$? Not easy ...
\rightarrow Instead, consider A^{C}. (Then can use that $\mathrm{P}(A)=1-\mathrm{P}\left(A^{C}\right)$.)
$\rightarrow A^{C}$ is the set of all ways of picking 40 distinct birthdays, in order.
\rightarrow So, $\left|A^{C}\right|=365 \cdot 364 \cdot 363 \cdot \ldots \cdot 326=365$! $/ 325$!.
\rightarrow So, $\mathrm{P}\left(A^{C}\right)=(365!/ 325!) / 365^{40} \doteq 0.109$.
\rightarrow So, $\mathrm{P}(A)=1-\mathrm{P}\left(A^{C}\right) \doteq 0.891$. Over 89%. Very likely! (Make a bet?)
\rightarrow (Generalisation to " C " people in the textbook's Challenge 1.4.21...)
- But suppose instead that we don't care about the order. Then, we have to divide by $k!=k(k-1)(k-2) \ldots(2)(1)$, the number of different orderings of k items.
\rightarrow So, the number of ways of picking k distinct items out of n items total, ignoring order, is equal to $n(n-1)(n-2) \ldots(n-k+1) / k!=n!/(n-k)!k$!. ("combinations"; "choose formula", or "binomial coefficient") Also written as: $\binom{n}{k}$.
- e.g. Suppose there are ten people at a party, and you randomly pick a collection of three of the people, but ignoring order. What is the probability that your choices will also be the three richest people at the party (in any order)?
$\rightarrow S$ is all ways of picking three people (ignoring order). All equally likely.
\rightarrow But what is $|S|$?
\rightarrow Here $|S|=\binom{10}{3}=10!/(7!3!)=120$.
\rightarrow And, again $|A|=1$ since there is only one matching choice.
\rightarrow So, $\mathrm{P}($ you picked the three richest, ignoring order $)=|A| /|S|=1 / 120$.
\rightarrow Six times as large as before! Makes sense since $3!=6$.
- e.g. Lotto Max jackpot:
\rightarrow Here $S=\{$ all choices of 7 distinct numbers between 1 and 50$\}$.
\rightarrow All equally likely. And, we do not care about the order.
\rightarrow So, $|S|=50!/(43!7!)=99,884,400 \doteq 100$ million.
\rightarrow Also, A is the one correct choice. So, $|A|=1$.
\rightarrow So, $\mathrm{P}($ jackpot $)=\mathrm{P}($ choose the correct 7 distinct numbers between 1 and 50$)$ $=|A| /|S|=1 / 99,884,400 \doteq 1 / 100,000,000=0.000001 \%$. Very small!
\rightarrow (For $\$ 5$, you get three choices of 7 numbers, which increases $\mathrm{P}($ jackpot) to $3 /$ $99,884,400=1 / 33,294,800 \ldots$ still very small \ldots)
- Recall that a standard deck of playing cards has four suits (Clubs, Spades, Hearts,

Diamonds), and each suit has 13 ranks (A, $2,3,4,5,6,7,8,9,10, \mathrm{~J}, \mathrm{Q}, \mathrm{K}$), so 52 cards total:

- A card's value is its number, counting A as $1, \mathrm{~J}$ as $11, \mathrm{Q}$ as 12 , and K as 13 .
- Suppose we pick one playing card from a standard deck, uniformly at random.
\rightarrow So S is the set of all cards in the deck, with $|S|=52$, all equally likely.
\rightarrow Then what is $\mathrm{P}($ Club or 7$)$? Can solve this directly, or \ldots
\rightarrow Here $\mathrm{P}(\mathrm{Club})=13 / 52=1 / 4$, and $\mathrm{P}(7)=4 / 52=1 / 13$.
\rightarrow Also, $\mathrm{P}($ Club and 7$)=\mathrm{P}(7$-of-Clubs $)=1 / 52$.
\rightarrow So, by Inclusion-Exclusion, $\mathrm{P}($ Club or 7$)=\mathrm{P}(\mathrm{Club})+\mathrm{P}(7)-\mathrm{P}($ Club and 7$)$ $=1 / 4+1 / 13-1 / 52=16 / 52=4 / 13$.
- Or, suppose we draw a pair of distinct cards uniformly from a standard deck.
\rightarrow What is P (both are Face Cards), i.e. $\mathrm{P}($ both are $\mathrm{J} / \mathrm{Q} / \mathrm{K})$?
\rightarrow Here $S=\{$ all distinct pairs of cards, ignoring order $\}$.
\rightarrow So, $|S|=\binom{52}{2}=52 \cdot 51 / 2=1326$.
\rightarrow And $A=$ all distinct pairs of Face Cards\}, so $|A|=\binom{12}{2}=12 \cdot 11 / 2=66$.
$\rightarrow \mathrm{So}, \mathrm{P}(A)=|A| /|S|=66 / 1326 \doteq 0.0498 \doteq 1 / 20$.
\rightarrow Alternatively, could let $S=$ \{all distinct pairs of cards in order $\}$. Then $|S|=$ $52 \cdot 51=2652$, and $|A|=12 \cdot 11=132$. So, $\mathrm{P}(A)=|A| /|S|=132 / 2652$, which gives the same answer as before.
$\rightarrow($ Or, conditional probability [next]: $\mathrm{P}(A)=(12 / 52) \cdot(11 / 51)=132 / 2652$.
- e.g. Flip 4 fair coins. What is P (exactly 2 Heads)?
\rightarrow Here $S=$ all 4 -tuples of H and T (in order). $|S|=2^{4}=16$. All equally likely.
\rightarrow And $A=$ all 4-tuples with two H and two T. What is $|A|$?
\rightarrow Can write them all out [let's do it now]:
\rightarrow So $|A|=6$, and $P(A)=|A| /|S|=6 / 16=3 / 8$. Simpler way?
\rightarrow Each element of A can be specified by choosing which 2 of the 4 coins were H (without caring about the order).
\rightarrow So, $|A|=$ number of choices of 2 coins out of $4=\binom{4}{2}=4!/((4-2)!2!)=$ $24 /(2 \cdot 2)=6$, and $P(A)=|A| /|S|=6 / 16$.
\rightarrow Same answer as before, but more systematic, and easier to use when we have lots of coins. Clear?
- e.g. Suppose we flip ten fair coins. What is P (exactly six Heads)?
$\rightarrow S$ is the set of all " 10 -tuples" of H and T , i.e. length- 10 sequences (in order) of H and T .
\rightarrow All equally likely. But what is $|S|$? Well, by the Multiplication Principle, $|S|=2 \cdot 2 \cdot \ldots \cdot 2=2^{10}=1024$.
\rightarrow What about $|A|$? Well, $A=\{$ HHHHHHTTTT, H H H H HTHTTT, \ldots, TTTTHHHHHH\}. But how many elements does it include?
\rightarrow Well, an element of A is specified by "choosing" which 6 of the 10 coins are Heads. So, the size of A is equal to the corresponding binomial coefficient:

$$
|A|=\binom{10}{6}=\frac{10!}{6!(10-6)!}=\frac{10!}{6!4!}=\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1}=\frac{5040}{24}=210 .
$$

\rightarrow So, $\mathrm{P}($ exactly six Heads $)=|A| /|S|=210 / 1024=105 / 512 \doteq 0.205=20.5 \%$.

- In general, if flip n fair coins, then P (exactly k Heads) $=\binom{n}{k} / 2^{n}$, for $0 \leq k \leq n$.
\rightarrow (Special case of the "Binomial Distribution" - more later.)
Suggested Homework: 1.3.6, 1.4.4, 1.4.6, 1.4.7, 1.4.8, 1.4.15, 1.4.16, 1.4.17, 1.4.19, 1.4.21.
- There is lots of computer software available for statistical computation. (Even spreadsheets etc.) One package used by most statisticians (and STA courses) is "R".
\rightarrow Free and easy to install on any computer, e.g. on your laptop!
\rightarrow For some basic info and links, see: http://probability.ca/Rinfo.html
\rightarrow Also discussed in Appendix B of the textbook.
\rightarrow In this course, you do not need to learn it.
\rightarrow But I will use it for occasional demonstrations.
\rightarrow It is interesting, and insightful, and used in other courses. [Try it!]
- For now, just a few simulation commands to get us started:
\rightarrow sample(c("H","T"), 1) [one random sample from $\{H, T\}]$
\rightarrow sample $(1: 6,1) \quad$ [one random sample from $\{1,2,3,4,5,6\}]$
\rightarrow sample(1:6, 3, replace=TRUE) [three samples, with replacement]
\rightarrow sample(c("Beef"," Chicken","Fish"), 1, prob=c(0.40,0.15,0.45)) [with probs]
$\rightarrow \operatorname{rgeom}(1,1 / 2)+1 \quad\left[\right.$ sample where $\left.P(i)=2^{-i}\right]$

Conditional Probability

- e.g. Flip three fair coins.
\rightarrow Then $S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$.
\rightarrow All equally likely. So, P (first coin Heads) $=4 / 8=1 / 2$.
\rightarrow Suppose we are told that exactly 2 coins were Heads.
\rightarrow Now what is the probability that the first coin was Heads?
\rightarrow Well, the outcome must be in $\{H H T, H T H, T H H\}$. Still all equally likely.
\rightarrow And, two of these three outcomes have the first coin Heads.
\rightarrow So, now the probability that the first coin was Heads is equal to $2 / 3$.
\rightarrow That is: The probability that the first coin was Heads, given that 2 coins were Heads, is equal to $2 / 3$.
\rightarrow In symbols: $\mathrm{P}($ first coin Heads $\mid 2$ coins were Heads $)=2 / 3$.
- In general, if A and B are two events, then the conditional probability of A given B is written as $\mathrm{P}(A \mid B)$, and represents the fraction of the times when B occurs, in which A also occurs. [Diagram.] So, it is equal to:

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}
$$

- Note: If $\mathrm{P}(B)=0$, then $\mathrm{P}(A \mid B)$ is \ldots
undefined! It only makes sense if $\mathrm{P}(B)>0$.
\rightarrow (Reasonable since if $\mathrm{P}(B)=0$, then B will "never" happen.)
- In the above example, $A=\{$ first coin Heads $\}$, and $B=\{2$ coins Heads $\}$.
\rightarrow Then, $B=\{H H T, H T H, T H H\}$, so $\mathrm{P}(B)=|B| /|S|=3 / 8$.
\rightarrow Also, $A \cap B=\{H H T, H T H\}$, so $\mathrm{P}(A \cap B)=|A \cap B| /|S|=2 / 8$.
\rightarrow Hence, $\mathrm{P}(A \mid B)=\mathrm{P}(A \cap B) / \mathrm{P}(B)=(2 / 8) /(3 / 8)=2 / 3$, same as before.
- e.g. Roll three fair six-sided dice. What is P (first die is $3 \mid$ at least one 3)?
\rightarrow Here $S=\{111,112, \ldots, 665,666\}$. So, $|S|=6 \cdot 6 \cdot 6=6^{3}=216$.
\rightarrow Here $A=\{$ first die is 3$\}$, and $B=\{$ at least one 3$\}$. What is $\mathrm{P}(B)$?
\rightarrow Well, $B^{C}=\{$ no 3$\}$, i.e. each die in $\{1,2,4,5,6\}$. (So, 5 choices.)
\rightarrow So, $\left|B^{C}\right|=5^{3}$, and $\mathrm{P}\left(B^{C}\right)=\left|B^{C}\right| /|S|=5^{3} / 6^{3}=125 / 216$.
\rightarrow Then, $\mathrm{P}(B)=1-\mathrm{P}\left(B^{C}\right)=1-125 / 216=91 / 216$. What about $\mathrm{P}(A)$?
\rightarrow Well, $A=\{311,312, \ldots, 366\}$, so $|A|=6^{2}=36$, and $\mathrm{P}(A)=36 / 216=1 / 6$.
(Of course - "independence" - coming soon.) But what we really need is ...
$\rightarrow \mathrm{P}(A \cap B)$. But $A \subseteq B$, so $A \cap B=A$, so $\mathrm{P}(A \cap B)=\mathrm{P}(A)=36 / 216=1 / 6$.
\rightarrow Hence, $\mathrm{P}(A \mid B)=\mathrm{P}(A \cap B) / \mathrm{P}(B)=(1 / 6) /(91 / 216)=(36 / 216) /(91 / 216)=$ $36 / 91 \doteq 0.396$. Much more than $1 / 6 \doteq 0.167$. Surprising?
- e.g. Roll three fair six-sided dice. What is P (at least one $3 \mid$ sum is $\leq 5)$?
\rightarrow Here $S=\{111,112, \ldots, 665,666\}$. So, $|S|=6 \cdot 6 \cdot 6=216$.
\rightarrow Here $A=\{$ at least one 3$\}$, and $B=\{$ sum is $\leq 5\}$. What is $|B|$?
\rightarrow Well, $B=\{111,112,113,121,122,131,211,212,221,311\}$.
\rightarrow So, $|B|=10$, and $\mathrm{P}(B)=|B| /|S|=10 / 216$.
\rightarrow What about A ? Well, $A=\{311,312,313, \ldots\}$. Tricky? Use A^{C} !
\rightarrow Here $\left|A^{C}\right|=5^{3}=125$, so $\mathrm{P}\left(A^{C}\right)=125 / 216 \doteq 0.579$, so $\mathrm{P}(A) \doteq 0.421$.
\rightarrow But wait, here we don't need to know A, we only need $A \cap B$!
\rightarrow By looking at B, we see that $A \cap B=\{113,131,311\}$.
$\rightarrow \mathrm{So},|A \cap B|=3$, and $\mathrm{P}(A \cap B)=|A \cap B| /|S|=3 / 216$.
\rightarrow Then $\mathrm{P}(A \mid B)=\mathrm{P}(A \cap B) / \mathrm{P}(B)=(3 / 216) /(10 / 216)=3 / 10=30 \%$.
- Conditional Multiplication Formula: Since $\mathrm{P}(A \mid B)=\mathrm{P}(A \cap B) / \mathrm{P}(B)$, therefore $\mathrm{P}(A \cap B)=\mathrm{P}(B) \mathrm{P}(A \mid B)$. Similarly, $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B \mid A)$. Useful!
- e.g. Suppose we are dealt two cards, in order, from a standard deck.
\rightarrow What is P (both are Face Cards)? Can instead use conditional prob ...
\rightarrow Let $A=\{$ first card is Face Card $\}$, and $B=\{$ second card is Face Card $\}$.
\rightarrow Then $P(A)=12 / 52$. What about $\mathrm{P}(B \mid A)$?
\rightarrow Well, once we know that the first card is a Face Card, then there are 11 Face Cards remaining, out of 51 total remaining cards. So, $\mathrm{P}(B \mid A)=11 / 51$.
\rightarrow Then $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B \mid A)=(12 / 52)(11 / 51)$. Same as before. Easier?
- Combining this Conditional Multiplication Formula with our previous Law of Total Probability gives a new version:
- Law of Total Probability - Conditioned Version: Suppose A_{1}, A_{2}, \ldots are a sequence (finite or infinite) of events which form a partition of S, i.e. they are dis-
joint $\left(A_{i} \cap A_{j}=\emptyset\right.$ for all $\left.i \neq j\right)$ and their union equals the entire sample space $\left(\bigcup_{i} A_{i}=S\right)$, and let B be any event. Then $\mathrm{P}(B)=\sum_{i} \mathrm{P}\left(A_{i}\right) \mathrm{P}\left(B \mid A_{i}\right)$, or equivalently $\mathrm{P}(B)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(B \mid A_{1}\right)+\mathrm{P}\left(A_{2}\right) \mathrm{P}\left(B \mid A_{2}\right)+\ldots$.
- e.g. Flip one fair coin. If Heads, roll one die; if Tails, roll two dice. What is P (get at least one 5)?
\rightarrow Here $B=\left\{\right.$ at least one 5\}, and $A_{1}=\{$ Heads $\}$, and $A_{2}=\{$ Tails $\}$.
\rightarrow Then A_{1}, A_{2} form a partition. And $\mathrm{P}\left(A_{1}\right)=\mathrm{P}\left(A_{2}\right)=1 / 2$. Need $\mathrm{P}\left(B \mid A_{i}\right)$.
\rightarrow Well, $\mathrm{P}\left(B \mid A_{1}\right)=\mathrm{P}($ get at least one 5 when you roll one die $)=1 / 6$.
\rightarrow Also, $\mathrm{P}\left(B \mid A_{2}\right)=\mathrm{P}($ get at least one 5 when you roll two dice $)=? ?$
\rightarrow Well, its complement is P (get no 5 when you roll two dice $)=5^{2} / 6^{2}=25 / 36$.
\rightarrow So, $\mathrm{P}\left(B \mid A_{2}\right)=1-(25 / 36)=11 / 36$.
\rightarrow Then, from the above Law of Total Probability,

$$
\begin{gathered}
\mathrm{P}(B)=\sum_{i} \mathrm{P}\left(A_{i}\right) \mathrm{P}\left(B \mid A_{i}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(B \mid A_{1}\right)+\mathrm{P}\left(A_{2}\right) \mathrm{P}\left(B \mid A_{2}\right) \\
=(1 / 2)(1 / 6)+(1 / 2)(11 / 36)=17 / 72 \doteq 0.236
\end{gathered}
$$

- Three-Card Challenge: Have three cards: $\mathrm{C} 1=$ Blue-Blue, $\mathrm{C} 2=$ Yellow-Yellow, $\mathrm{C} 3=$ Blue-Yellow. Pick a card uniformly at random. Then pick one side of that card, uniformly at random. What is P (the card is $\mathrm{C} 2 \mid$ the side is Yellow)?
\rightarrow Let $B=\{$ the side is Yellow $\}$. First of all, what is $\mathrm{P}(B)$?
\rightarrow Use Law of Total Probability! Since we pick one of the three cards, the three cards $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ form a partition.
\rightarrow So, $\mathrm{P}(B)=\mathrm{P}(\mathrm{C} 1) \mathrm{P}(B \mid \mathrm{C} 1)+\mathrm{P}(\mathrm{C} 2) \mathrm{P}(B \mid \mathrm{C} 2)+\mathrm{P}(\mathrm{C} 3) \mathrm{P}(B \mid \mathrm{C} 3)$
$=(1 / 3)(0)+(1 / 3)(1)+(1 / 3)(1 / 2)=1 / 3+1 / 6=1 / 2$. (Of course.)
\rightarrow Now, let $A=\{$ the card is C 2$\}$. Then what is $\mathrm{P}(A \cap B)$?
\rightarrow Well, $A \cap B=\{$ choose C 2 , then Yellow $\}=\{$ choose C 2 , then either side $\}$.
\rightarrow So, $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B \mid A)=\mathrm{P}(\mathrm{C} 2) \mathrm{P}($ Yellow Side $\mid \mathrm{C} 2)=(1 / 3)(1)=1 / 3$.
\rightarrow Hence, $\mathrm{P}($ the card is $\mathrm{C} 2 \mid$ the side is Yellow $)=\mathrm{P}(A \mid B)=\mathrm{P}(A \cap B) / \mathrm{P}(B)=$ $(1 / 3) /(1 / 2)=2 / 3$. Surprising? (Try it!)
\rightarrow Intuition: We picked one of the three Yellow sides, of which two are on C2.
- e.g. Suppose a disease affects one person in a thousand, and a test for the disease has 99% accuracy. Someone is selected at random, and tested for the disease.
\rightarrow (a) What is P (they test positive)?
\rightarrow Use the Law of Total Probability! Here $B=\{$ test positive $\}$. And, partition is $A_{1}=\{$ have disease $\}$ and $A_{2}=\{$ do not have disease $\}$.
\rightarrow So, $\mathrm{P}(B)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(B \mid A_{1}\right)+\mathrm{P}\left(A_{2}\right) \mathrm{P}\left(B \mid A_{2}\right)$ $=(1 / 1000)(0.99)+(999 / 1000)(0.01)=0.01098$.
 what is the conditional probability that they have the disease?
\rightarrow This is $\mathrm{P}\left(A_{1} \mid B\right)=\mathrm{P}\left(A_{1} \cap B\right) / \mathrm{P}(B)$. But how do we compute $\mathrm{P}\left(A_{1} \cap B\right)$?
\rightarrow Use the Conditional Multiplication Formula! Here $\mathrm{P}\left(A_{1} \cap B\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(B \mid A_{1}\right)=$ $(1 / 1000)(0.99)=0.00099$.
\rightarrow So, $\mathrm{P}\left(A_{1} \mid B\right)=\mathrm{P}\left(A_{1} \cap B\right) / \mathrm{P}(B)=(0.00099) /(0.01098)=0.0901639 \doteq 9 \% \doteq$ 1/11. Small! Why?
\rightarrow Intuition: So many more people do not have the disease, that even their false positives (1%) are more than the number of people who have the disease (0.1%).
- In the above example, we knew $\mathrm{P}\left(B \mid A_{1}\right)$ (it was 99%), but we wanted $\mathrm{P}\left(A_{1} \mid B\right)$.
\rightarrow What is the connection between them?
- In general, $\mathrm{P}(B \mid A)=\mathrm{P}(A \cap B) / \mathrm{P}(A)$, and $\mathrm{P}(A \mid B)=\mathrm{P}(A \cap B) / \mathrm{P}(B)$. \rightarrow So $\ldots \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A)}{\mathrm{P}(B)} \mathrm{P}(B \mid A)$. ("Bayes Theorem", or "Bayes Rule")
\rightarrow (Aside: This formula is the inspiration for "Bayesian Statistics" ...)
Suggested Homework: 1.5.1, 1.5.2, 1.5.3, 1.5.4, 1.5.6, 1.5.7, 1.5.8, 1.5.10, 1.5.11, 1.5.12, 1.5.13, 1.5.16, 1.5.17.

Independence

- Recall: If we roll three fair six-sided dice, then $\mathrm{P}(\underline{\text { first }}$ die shows 5$)=\ldots$
$1 / 6$. Of course! Why? Because the first die doesn't "care" about the other dice!
\rightarrow And, P (first die shows $5 \mid$ second die shows 4$)=1 / 6$, too. Doesn't care!
\rightarrow More formally, we say the first die is "independent" of the other dice.
- If A and B are any two events, then saying they are independent means that they do not affect each others' probabilities, i.e. that $\mathrm{P}(A \mid B)=$ $\mathrm{P}(A)$, and $\mathrm{P}(B \mid A)=\mathrm{P}(B)$.
\rightarrow But $\mathrm{P}(A \mid B)=\mathrm{P}(A \cap B) / \mathrm{P}(B)$, so $\mathrm{P}(A \mid B)=\mathrm{P}(A)$ if and only if \ldots
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$. This is the official definition of independence. (Better, since it is symmetric in A and B, and it is valid even if $\mathrm{P}(A)=0$ or $\mathrm{P}(B)=0$.)
\rightarrow If A and B are independent, and $\mathrm{P}(B)>0$, then $\mathrm{P}(A \mid B)=\mathrm{P}(A)$.
- If two parts of an experiment are physically completely unrelated, like two different coins, or a coin and a die, or multiple dice, then they must be independent.
\rightarrow We already implicitly used this fact, e.g. if you flip two coins, then P (both Heads $)=\mathrm{P}$ (first is Heads) P (second is Heads) $=(1 / 2)(1 / 2)=1 / 4$, and so on.
\rightarrow But now we know why it was okay to multiply!
- e.g. Flip two fair coins. So, $S=\{H H, H T, T H, T T\},|S|=4$, all equally likely.
\rightarrow Let $A=\{$ first coin Heads $\}, B=\{$ second coin Heads $\}$, and $C=\{$ both coins are the same $\}$.
\rightarrow Are A and B independent? Yes, of course! (physically unrelated)
\rightarrow Check: $\mathrm{P}(A)=|\{H H, H T\}| / 4=2 / 4=1 / 2$, and $\mathrm{P}(B)=|\{H H, T H\}| / 4=$ $2 / 4=1 / 2$, and $\mathrm{P}(A \cap B)=|\{H H\}| / 4=1 / 4=(1 / 2)(1 / 2)=\mathrm{P}(A) \mathrm{P}(B)$.
\rightarrow What about A and C ? Well, $\mathrm{P}(C)=|\{H H, T T\}| / 4=2 / 4=1 / 2$, and $\mathrm{P}(A \cap C)=|\{H H\}| / 4=1 / 4$, So, $\mathrm{P}(A \cap C)=1 / 4=(1 / 2)(1 / 2)=\mathrm{P}(A) \mathrm{P}(C)$.
\rightarrow So, A and C are independent! And similarly, B and C are independent.
\rightarrow So, A and B and C are all pairwise independent.
\rightarrow Hence, $\mathrm{P}(A \mid C)=\mathrm{P}(A)=1 / 2$, and $\mathrm{P}(C \mid A)=\mathrm{P}(C)=1 / 2$, etc. Surprising?
\rightarrow But are they all truly independent? Well, suppose we know A and also know B. Then we would know that C is true, too!
\rightarrow That is, $\mathrm{P}(C \mid A \cap B)=1 \neq 1 / 2=\mathrm{P}(C)$.
\rightarrow Why? Since $\mathrm{P}(A \cap B \cap C)=|\{H H\}| / 4=1 / 4 \neq(1 / 2)(1 / 2)(1 / 2)$.
\rightarrow For A and B and C to be truly independent, we also need $\mathrm{P}(A \cap B \cap C)=$ $\mathrm{P}(A) \mathrm{P}(B) \mathrm{P}(C)$. That would guarantee that e.g. $\mathrm{P}(C \mid A \cap B)=\mathrm{P}(C)$, etc.
- In general, a collection $A_{1}, A_{2}, A_{3}, \ldots$ of events are called independent if $\mathrm{P}\left(A_{i_{1}} \cap\right.$ $\left.A_{i_{2}} \cap \ldots \cap A_{i_{k}}\right)=\mathrm{P}\left(A_{i_{1}}\right) \mathrm{P}\left(A_{i_{2}}\right) \ldots \mathrm{P}\left(A_{i_{k}}\right)$ for any subcollection of the events.
\rightarrow If truly independent, then we can always multiply the probabilities.
\rightarrow e.g. Flip 5 fair coins: $\mathrm{P}(\underline{\text { all }}$ Heads $)=(1 / 2)(1 / 2)(1 / 2)(1 / 2)(1 / 2)=1 / 32$.
- Does it matter? Ask Sally Clark! Solicitor in Cheshire, England. Had two sons; each suffocated and died in infancy.
\rightarrow Sudden Infant Death Syndrome (SIDS)? Or murder!?!
$\rightarrow 1999$ testimony by paediatrician Sir Roy Meadow: "the odds against two [SIDS] in the same family are 73 million to one".
\rightarrow Sally Clark was arrested, jailed, and vilified, and her third son was temporarily taken away. Was this justified?
\rightarrow How did Meadow compute that " 73 million to one"?

\rightarrow He said the probability of one child dying of SIDS was one in 8,543 , so for two children dying, we multiply: $(1 / 8,543) \times(1 / 8,543)=1 / 72,982,849 \approx 1 / 73,000,000$. Was this valid?
\rightarrow No! We can't just multiply, since SIDS tends to run in families, i.e. not independent. Given one SIDS death, a second one is about 10 times more likely!
\rightarrow (Also, even the figure "one in 8,543 " was misleading, since he included factors which lower the SIDS probability, but neglected other factors which raise it.)
\rightarrow (Separate point: Even if two SIDS deaths are quite unlikely, two murders are also unlikely! So, how to compare and evaluate? Even unlikely things will happen sometime to someone. Statistical inference! Interesting, but not part of this course.)
\rightarrow So what happened? Convicted! Jailed for three years! Then overturned.
\rightarrow More info in my article: probability.ca/justice
Suggested Homework: 1.5.9, 1.5.14, 1.5.15, 1.5.20.

Continuity of Probabilities

- Recall: For a function $f: \mathbf{R} \rightarrow \mathbf{R}$, "continuity" means if $\lim _{n \rightarrow \infty} x_{n}=x$, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$. Is there something similar for probabilities $\mathrm{P}\left(\stackrel{n \rightarrow \infty}{A_{n}}\right)$? Sort of \ldots
- e.g. $S=\mathbf{N}:=\{1,2,3, \ldots\}$, with $\mathrm{P}(i)=2^{-i}$ for each $i \in S$.
- Question: In this example, what is $\lim _{n \rightarrow \infty} \mathrm{P}(\leq n)$, i.e. $\lim _{n \rightarrow \infty} \mathrm{P}\{1,2, \ldots, n\}$?
\rightarrow It must be 1, of course. Not just in this example, but in general:
- Definition: Write that $\left\{A_{n}\right\} \nearrow A$ if $\bigcup_{n} A_{n}=A$, and they are "nested increasing", i.e. $A_{n} \subseteq A_{n+1}$ for all n, i.e. $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots$ Like $\lim _{n \rightarrow \infty} A_{n}=A$. Diagram:
\rightarrow e.g. if $A_{n}=\{1,2, \ldots, n\}$, then $\left\{A_{n}\right\} \nearrow \mathbf{N}$. [Check!] And therefore?
- Continuity Of Probabilities Theorem: If $\left\{A_{n}\right\} \nearrow A$, then $\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right)=\mathrm{P}(A)$.
\rightarrow Proof: Let $B_{1}=A_{1}$, and $B_{n}=A_{n} \cap A_{n-1}^{C}$ for $n \geq 2$.
\rightarrow Then A is the disjoint union of all of the B_{n}. [Diagram.]
\rightarrow Hence, by additivity, $\mathrm{P}(A)=\sum_{i=1}^{\infty} \mathrm{P}\left(B_{i}\right):=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathrm{P}\left(B_{i}\right)$.
\rightarrow But also, A_{n} is the disjoint union of just $B_{1}, B_{2}, \ldots, B_{n}$.
\rightarrow So, by additivity, $\mathrm{P}\left(A_{n}\right)=\sum_{i=1}^{n} \mathrm{P}\left(B_{i}\right)$.
\rightarrow Combining these two, $\mathrm{P}(A)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathrm{P}\left(B_{i}\right)=\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right)$.
- Similarly, write that $\left\{A_{n}\right\} \searrow A$ if $\bigcap_{n} A_{n}=A$, and they are nested decreasing, i.e. $A_{n} \supseteq A_{n+1}$ for all n, i.e. $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \ldots$ Diagram:
\rightarrow It follows that $\left\{A_{n}\right\} \searrow A$ if and only if $\left\{A_{n}^{C}\right\} \nearrow A^{C}$. [Exercise!]
\rightarrow Hence, if $\left\{A_{n}\right\} \searrow A$, then $\left\{A_{n}^{C}\right\} \nearrow A^{C}$, so $\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}^{C}\right)=\mathrm{P}\left(A^{C}\right)$, i.e. $\lim _{n \rightarrow \infty}\left[1-\mathrm{P}\left(A_{n}\right)\right]=1-\mathrm{P}(A)$, so $\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right)=\mathrm{P}(A)$, just like before.
- e.g. Suppose we have any probablities P defined on $S=\mathbf{N}=\{1,2,3, \ldots\}$.
\rightarrow Does there necessarily exist some finite number $n \in \mathbf{N}$ with $\mathrm{P}\{1,2, \ldots, n\}=1$?
\rightarrow No! e.g. in above example with $\mathrm{P}(i)=2^{-i}$, we have $\mathrm{P}\{1,2, \ldots, n\}=\sum_{i=1}^{n} 2^{-i}=$ $\frac{2^{-1}-2^{-n-1}}{1-2^{-1}}=1-2^{-n}$, which is always <1.
\rightarrow Is it necessarily true that $\lim _{n \rightarrow \infty} \mathrm{P}\{1,2, \ldots, n\}=1$?
\rightarrow Yes! Since $\{1,2, \ldots, n\} \nearrow \mathbf{N}=S$, by Continuity Of Probabilities, we must have $\lim _{n \rightarrow \infty} \mathrm{P}\{1,2, \ldots, n\}=\mathrm{P}(S)=1$.
\rightarrow Does there necessarily exist some finite $n \in \mathbf{N}$ with $\mathrm{P}\{1,2, \ldots, n\}>0.99$?
\rightarrow Yes! Since $\lim _{n \rightarrow \infty} \mathrm{P}\{1,2, \ldots, n\}=1$, therefore $\mathrm{P}\{1,2, \ldots, n\}>0.99$ for all sufficiently large n.
- Suppose we flip an infinite number of fair coins. (!)
\rightarrow What is P (all the coins are Heads)? How to even think about that?
\rightarrow Let $A=\{$ all the coins are Heads $\}$, and $A_{n}=\{$ the first n coins are Heads $\}$.
\rightarrow Then $A_{n} \supseteq A_{n+1}$. Also $\bigcap_{n=1}^{\infty} A_{n}=A$. So, $\left\{A_{n}\right\} \searrow A$.
\rightarrow Hence, $\mathrm{P}($ all coins Heads $)=\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right)=\lim _{n \rightarrow \infty}(1 / 2)^{n}=0$.
\rightarrow (So, \{all coins Heads\} is "possible", but has probability 0; will never happen.)

END MONDAY \#3

- e.g. Suppose we pick a number between 0 and 1. Diagram:
\rightarrow Suppose $\mathrm{P}([a, b])=b-a$ whenever $0 \leq a<b \leq 1$, e.g. $\mathrm{P}\left(\left[\frac{1}{2}, \frac{2}{3}\right]\right)=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}$.
\rightarrow What about the open interval $\mathrm{P}\left(\left(\frac{1}{2}, \frac{2}{3}\right)\right)$? Is it necessarily the same?
\rightarrow Use Continuity Of Probabilities!
\rightarrow Let $A=\left(\frac{1}{2}, \frac{2}{3}\right)$, and $A_{n}=\left[\frac{1}{2}+\frac{1}{n}, \frac{2}{3}-\frac{1}{n}\right]$. Diagram:
\rightarrow Then $A_{n+1} \supseteq A_{n}$, and $\bigcup_{n=1}^{\infty} A_{n}=A$, so $\left\{A_{n}\right\} \nearrow A$.
\rightarrow Also, we know that $\mathrm{P}\left(\left[\frac{1}{2}+\frac{1}{n}, \frac{2}{3}-\frac{1}{n}\right]\right)=\left[\frac{2}{3}-\frac{1}{n}\right]-\left[\frac{1}{2}+\frac{1}{n}\right]=\frac{1}{6}-\frac{2}{n}$.
\rightarrow Hence, by Continuity Of Probabilities, $\mathrm{P}(A)=\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right)$,
i.e. $\mathrm{P}\left(\left(\frac{1}{2}, \frac{2}{3}\right)\right)=\lim _{n \rightarrow \infty}\left[\frac{1}{6}-\frac{2}{n}\right]=\frac{1}{6}$.
\rightarrow Similarly, must have $\mathrm{P}((a, b))=b-a$ whenever $0 \leq a<b \leq 1$.
\rightarrow What about $\mathrm{P}(\{a\})$, for $a \in \mathbf{R}$? Zero? Again by Continuity of Probabilities, $\mathrm{P}(\{a\})=\lim _{n \rightarrow \infty} \mathrm{P}\left(\left[a-\frac{1}{n}, a+\frac{1}{n}\right]\right)=\lim _{n \rightarrow \infty}\left(\left(a+\frac{1}{n}\right)-\left(a-\frac{1}{n}\right)\right)=\lim _{n \rightarrow \infty} \frac{2}{n}=0$.

Suggested Homework: 1.6.1, 1.6.2, 1.6.3, 1.6.4, 1.6.5, 1.6.6, 1.6.7, 1.6.8, 1.6.9, 1.6.10. Optional: 1.6.11.
[END OF TEXTBOOK CHAPTER \#1]

Random Variables

- A random variable is "any" function from S to \mathbf{R}.
\rightarrow Intuitively, it represents some random quantity in an experiment.
- e.g. Roll 3 dice: $X=$ number showing on the first die.
$\rightarrow X$ could be $1,2,3,4,5,6$, depending on result: $X(265)=2, X(513)=5$, etc.
$\rightarrow \mathrm{Or}, Y=\underline{\text { sum }}$ of the three numbers showing, so $Y(265)=13, Y(513)=9$, etc.
\rightarrow Or, $Z=$ first number divided by third number: $Z(265)=2 / 5, Z(513)=5 / 3$.
- Or: Roll three fair dice, $X(s)=$ number of 5's, $Y(s)=$ number of 3 's, $Z=X-Y$.
\rightarrow Then $X(335)=1, Y(335)=2, Z(335)=-1$, etc. Values can be negative, too!
- e.g. Flip 10 coins: $X=\#$ of Heads, or $Y=(\# \text { of Heads })^{2}$, or
$Z=1$ if first coin Heads otherwise $Z=0$, etc.
\rightarrow So $X($ HHHTTTHTTT $)=4, X($ TTHHHHHHHT $)=7$, etc.
\rightarrow In this example, can also write $Y=X^{2}$ (function of another random variable).
- e.g. $X(s)=5$ for all $s \in S$: "constant random variable". (Or any constant.)
- Special case: $I_{A}(s)=1$ if $s \in A$ otherwise $I_{A}(s)=0$. "indicator function"
- e.g. $S=\mathbf{N}:=\{1,2,3, \ldots\}$, with $\mathrm{P}(i)=2^{-i}$ for each $i \in S$.
\rightarrow Maybe $X(s)=s$, and $Y(s)=s^{2}$. What are their largest possible values?
\rightarrow None! They can be arbitrarily large. "unbounded random variables"
\rightarrow Also, for all $s \in S$ we have $s \leq s^{2}$, i.e. $X(s) \leq Y(s)$ for all $s \in S$, so " $X \leq Y$ ".
Suggested Homework: 2.1.1, 2.1.2, 2.1.4, 2.1.5, 2.1.6, 2.1.10, 2.1.11, 2.1.12, 2.1.15.

Distributions of Random Variables

- The distribution of a random variable is the collection of all of the probabilities of the variable being in every possible subset of \mathbf{R}.
- e.g. tonight's dinner, with $S=\{$ Beef, Chicken, Fish $\}$, and $\mathrm{P}($ Beef $)=0.40, \mathrm{P}($ Chicken $)=0.15$, and $\mathrm{P}($ Fish $)=0.45$.
\rightarrow Let $X($ Beef $)=1, \quad X($ Chicken $)=2, \quad X($ Fish $)=5 . \quad$ Probabilities for X ?
\rightarrow Here $\mathrm{P}(X=1)=\mathrm{P}\{$ Beef $\}=0.40$, and $\mathrm{P}(X=2)=\mathrm{P}\{$ Chicken $\}=0.15$, and $\mathrm{P}(X=5)=\mathrm{P}\{$ Fish $\}=0.45$. What about $\mathrm{P}(X \leq 3)$?
\rightarrow Well, $\mathrm{P}(X \leq 3)=\mathrm{P}\{$ Beef, Chicken $\}=0.40+0.15=0.55$. And $\mathrm{P}(X=7)=0$.
\rightarrow And $\mathrm{P}(X<20)=\mathrm{P}\{$ Beef, Chicken, Fish $\}=0.40+0.15+0.45=1$.
\rightarrow And $\mathrm{P}(1<X<6)=\mathrm{P}\{$ Chicken, Fish $\}=0.15+0.45=0.60$. And so on.
\rightarrow Can also write that for "any" subset $B \subseteq \mathbf{R}$, we have
$\mathrm{P}(X \in B)=0.40 I_{B}(1)+0.15 I_{B}(2)+0.45 I_{B}(5)$.
\rightarrow e.g. If B is the event " ≤ 3 ", then $I_{B}(1)=1, I_{B}(2)=1$, and $I_{B}(5)=0$, so $\mathrm{P}(X \in B)=0.40(1)+0.15(1)+0.45(0)=0.55$, like before.
- In general, " $\mathrm{P}(X \in B)$ " means $\mathrm{P}\left(X^{-1}(B)\right):=\mathrm{P}\{s \in S: X(s) \in B\}$.
\rightarrow e.g. If B is the event " ≤ 3 ", then $B=\{x \in \mathbf{R}: x \leq 3\}$, so $\mathrm{P}(X \in B)=\mathrm{P}(X \leq$ $3)=\mathrm{P}(X \in(-\infty, 3])=\mathrm{P}\left(X^{-1}(-\infty, 3]\right)$.

Suggested Homework: 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.6, 2.2.8, 2.2.9, 2.2.10.

Discrete Random Variables

- A random variable is called discrete if $\sum_{x \in \mathbf{R}} \mathrm{P}(X=x)=1$.
\rightarrow i.e., all of its probability is on individual values.
\rightarrow Not always true! e.g. if we "pick a number uniformly between 0 and 1 ", then we know that $\mathrm{P}(X=x)=0$ for all values of x, so $\sum_{x \in \mathbf{R}} \mathrm{P}(X=x)=0<1$.
- If it's true, there's a distinct sequence $x_{1}, x_{2}, x_{3}, \ldots \in \mathbf{R}$, and corresponding probabilities $p_{1}, p_{2}, p_{3}, \ldots \geq 0$, with $\sum_{i} p_{i}=1$, such that $\mathrm{P}\left(X=x_{i}\right)=p_{i}$ for each i.
\rightarrow In above example, $x_{1}=1, x_{2}=2, x_{3}=5$, with $p_{1}=0.40, p_{2}=0.15, p_{3}=0.45$.
- Can also define the "probability function" as $p_{X}(x):=\mathrm{P}(X=x)$.
\rightarrow So, $p_{X}\left(x_{i}\right)=p_{i}$ for all i, with $p_{X}(x)=0$ for all $x \notin\left\{x_{1}, x_{2}, \ldots\right\}$.
\rightarrow In above example, $p_{X}(1)=0.40, p_{X}(2)=0.15, p_{X}(3)=0.45$, otherwise $p_{X}(x)=0$.
- e.g. Flip one fair coin, and let $X=\#$ Heads.
\rightarrow Then $\mathrm{P}(X=0)=1 / 2$, and $\mathrm{P}(X=1)=1 / 2$.
\rightarrow So, here $x_{1}=0$, and $x_{2}=1$, and $p_{1}=p_{2}=1 / 2$.
\rightarrow Also, $p_{X}(0)=1 / 2$ and $p_{X}(1)=1 / 2$, with $p_{X}(x)=0$ for all $x \neq 0,1$.
- e.g. Flip two fair coins, and let $X=\#$ Heads. Then $\mathrm{P}(X=0)=\binom{2}{0} / 2^{2}=1 / 4$, and $\mathrm{P}(X=1)=\binom{2}{1} / 2^{2}=2 / 4=1 / 2$, and $\mathrm{P}(X=2)=\binom{2}{2} / 2^{2}=1 / 4$.
\rightarrow So $x_{1}=0$, and $x_{2}=1$, and $x_{3}=2$, and $p_{1}=1 / 4$, and $p_{2}=1 / 2$, and $p_{3}=1 / 4$.
\rightarrow Also, $p_{X}(0)=1 / 4$ and $p_{X}(1)=1 / 2$ and $p_{X}(2)=1 / 4$, otherwise $p_{X}(x)=0$.
Suggested Homework: 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5.

Some Important Discrete Distributions

- e.g. Shoot one "free throw" in basketball, with probability " θ " of scoring (for some value of θ with $0<\theta<1$, e.g. $\theta=0.5$, or $\theta=1 / 3$, or \ldots).
\rightarrow Let $X=1$ if you score, or $X=0$ if you miss. Probabilities for X ?
\rightarrow Here $\mathrm{P}(X=1)=\mathrm{P}\{$ score $\}=\theta$, and $\mathrm{P}(X=0)=\mathrm{P}\{$ miss $\}=1-\theta$.

\rightarrow This is the "Bernoulli (θ) distribution".
\rightarrow Can also write $X \sim \operatorname{Bernoulli}(\theta)$.
\rightarrow Then $p_{X}(0)=1-\theta$ and $p_{X}(1)=\theta$, with $p_{X}(x)=0$ for all $x \neq 0,1$.
\rightarrow e.g. Bernoulli(0.5), or Bernoulli($1 / 3$), or \ldots
\rightarrow (Of course, it doesn't have to be free throws! This distribution applies to any situation involving any "attempt" or "trial" having probability θ of "success" and probability $1-\theta$ of "failure". And similarly for the below, too.)
- e.g. Shoot $\underline{2}$ free throws, each independent with probability θ of scoring (for some value of θ with $0<\theta<1$ like 0.5 or $1 / 3$).
\rightarrow Let $X=\#$ Successes. Probabilities for X ?
\rightarrow Here $\mathrm{P}(X=0)=\mathrm{P}\{$ miss-miss $\}=(1-\theta)(1-\theta)=(1-\theta)^{2}$.
(We can multiply because they are independent.)
\rightarrow And, $\mathrm{P}(X=2)=\mathrm{P}\{$ score-score $\}=(\theta)(\theta)=\theta^{2}$.
\rightarrow And, $\mathrm{P}(X=1)=\mathrm{P}\{$ score-miss, miss-score $\}=(\theta)(1-\theta)+(1-\theta)(\theta)=2 \theta(1-\theta)$.
\rightarrow This is the "Binomial $(2, \theta)$ distribution".
\rightarrow Then $p_{X}(0)=(1-\theta)^{2}, p_{X}(1)=2 \theta(1-\theta), p_{X}(2)=\theta^{2}$, otherwise $p_{X}(x)=0$.
- e.g. Shoot " n " free throws, each independent with probability θ of scoring (for some value of θ with $0<\theta<1$, and some value of $n \in \mathbf{N}$ like 2 or 10 or 286).
\rightarrow Let $X=\#$ Successes. Probabilities for X ?
\rightarrow Here $\mathrm{P}(X=0)=\mathrm{P}\{$ miss-miss-...-miss $\}=(1-\theta)^{n}$.
\rightarrow And, $\mathrm{P}(X=n)=\mathrm{P}\{$ score-score- \ldots-score $\}=\theta^{n}$.
\rightarrow And, $\mathrm{P}(X=1)=\mathrm{P}\{$ score-miss-...-miss, miss-score-miss-...-miss, $\ldots\}=? ?$
\rightarrow Well, each such sequence has probability $\theta(1-\theta) \ldots(1-\theta)=\theta(1-\theta)^{n-1}$.
\rightarrow And, there are n such sequences (one for each shot which could score).
\rightarrow So, $\mathrm{P}(X=1)=n \theta(1-\theta)^{n-1}$.
\rightarrow What about $\mathrm{P}(X=k)$ for any integer $k \in\{0,1,2, \ldots, n\} ?$
\rightarrow Well, $\mathrm{P}(X=k)=\mathrm{P}$ \{all sequences of k scores and $n-k$ misses $\}$.
\rightarrow Each such sequence has probability $\theta^{k}(1-\theta)^{n-k}$.
\rightarrow And, the number of such sequences is $\binom{n}{k}$. ("Choose" which k shots scored.)
\rightarrow So, $p_{X}(k):=\mathrm{P}(X=k)=\binom{n}{k} \theta^{k}(1-\theta)^{n-k}$, for any $k \in\{0,1,2, \ldots, n\}$.
\rightarrow This is the "Binomial (n, θ) distribution". Can write $X \sim \operatorname{Binomial}(n, \theta)$.
\rightarrow Check: $k=0: \mathrm{P}(X=0)=\binom{n}{0} \theta^{0}(1-\theta)^{n-0}=(1-\theta)^{n}$. Yep!
\rightarrow Check: $k=n: \mathrm{P}(X=n)=\binom{n}{n} \theta^{n}(1-\theta)^{n-n}=\theta^{n}$. Yep!
\rightarrow Check: $k=1: \mathrm{P}(X=1)=\binom{n}{1} \theta^{1}(1-\theta)^{n-1}=n \theta(1-\theta)^{n-1}$. Yep!
\rightarrow Check: $\mathrm{P}(X=k) \geq 0$. Yep!
\rightarrow Check: $\sum_{k=0}^{n} \mathrm{P}(X=k)=\sum_{k=0}^{n}\binom{n}{k} \theta^{k}(1-\theta)^{n-k}=? ?$
$=[\theta+(1-\theta)]^{n}=1^{n}=1$ (by using the "Binomial Theorem"). Yep!
- Special case: $\operatorname{Binomial}(1, \theta)$ is the same as $\operatorname{Bernoulli}(\theta)$.
- Suppose $X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Bernoulli}(\theta)$, for independent trials.
\rightarrow Let $Y=X_{1}+X_{2}+\ldots+X_{n}$. What is the distribution of Y ?
\rightarrow Here Y represents the number of successes in n independent attempts, each with probability θ of success, so $Y \sim \operatorname{Binomial}(n, \theta)$.
\rightarrow Special case: if $\theta=1 / 2$, then the $\operatorname{Binomial}(n, 1 / 2)$ distribution has $\mathrm{P}(X=k)=\binom{n}{k}(1 / 2)^{k}(1-(1 / 2))^{n-k}=\binom{n}{k}(1 / 2)^{n}=\binom{n}{k} / 2^{n}$, same as before.
- e.g. Suppose $1 / 4$ of students have long hair. You pick four students at random, with replacement. What is P (exactly 2 of them have long hair)?
\rightarrow Let $Y=\#$ students with long hair. Then $Y \sim \operatorname{Binomial}(4,1 / 4)$. So,
$\mathrm{P}(Y=2)=\binom{4}{2}(1 / 4)^{2}(1-(1 / 4))^{4-2}=6(1 / 4)^{2}(3 / 4)^{2}=54 / 256=27 / 128 \doteq 0.21$.
- e.g. Repeatedly shoot free throws, each independent with probability θ of scoring. Let $Z=\#$ misses before the first score. Probabilities for Z ?
\rightarrow Here $\mathrm{P}(Z=0)=\mathrm{P}($ score first time $)=\theta$.
\rightarrow And, $\mathrm{P}(Z=1)=\mathrm{P}($ miss-score $)=(1-\theta) \theta$.
\rightarrow And, $\mathrm{P}(Z=2)=\mathrm{P}($ miss-miss-score $)=(1-\theta)^{2} \theta$.
\rightarrow In general, $\mathrm{P}(Z=k)=\mathrm{P}$ (miss-miss-...-miss-score $)=(1-\theta)^{k} \theta$, valid for all $k=0,1,2,3, \ldots$.
\rightarrow This is the "Geometric (θ) distribution". Can write $Z \sim \operatorname{Geometric}(\theta)$.
\rightarrow Check: $\mathrm{P}(Z=k) \geq 0$ for all k. Yep!
\rightarrow Check: $\sum_{k=0}^{\infty}(1-\theta)^{k} \theta=\theta\left[1+(1-\theta)+(1-\theta)^{2}+(1-\theta)^{3}+\ldots\right]$
$=\theta\left[\frac{1}{1-(1-\theta)}\right]=\theta\left[\frac{1}{\theta}\right]=1$. (Geometric series.) Yep!
- [Some books count \# attempts up to and including first success: one more.]
- e.g. Suppose $1 / 4$ of students have long hair. You repeatedly pick students at random, with replacement. What is P (the sixth student is the first with long hair)?
\rightarrow Let $X=\#$ students before first one with long hair. Then we want to find $\mathrm{P}(X=5)$. And, here $X \sim$ Geometric $(1 / 4)$.
\rightarrow So, $\mathrm{P}(X=5)=(1 / 4)(1-(1 / 4))^{5}=(1 / 4)(3 / 4)^{5}=243 / 4096 \doteq 0.059$.
- Suppose again that $X \sim \operatorname{Geometric}(1 / 4)$. What is $\mathrm{P}(X=\infty)$?
\rightarrow Well, $\mathrm{P}(X \leq m)=\sum_{k=0}^{m} \mathrm{P}(X=k)=\sum_{k=0}^{m}(1 / 4)(3 / 4)^{k}=(1 / 4)[1+(3 / 4)+$ $\left.(3 / 4)^{2}+\ldots+(3 / 4)^{k}\right]=(1 / 4)^{\frac{1-(3 / 4)^{m+1}}{1-(3 / 4)}}=1-(3 / 4)^{m+1} . \quad$ This is <1.
\rightarrow So, $\mathrm{P}(X>m)=1-\mathrm{P}(X \leq m)=1-\left[1-(3 / 4)^{m+1}\right]=(3 / 4)^{m+1}$.
\rightarrow Hence, $\mathrm{P}(X>m)>0$ for any $m \in \mathbf{N}$. ("unbounded random variable")
\rightarrow But also, $\{X>m\} \searrow\{X=\infty\}$. [check!]
\rightarrow Hence, by Continuity of Probabilities,
$\mathrm{P}(X=\infty)=\lim _{m \rightarrow \infty} \mathrm{P}(X>m)=\lim _{m \rightarrow \infty}(3 / 4)^{m+1}=0$. Phew!
Suggested Homework: 2.3.6, 2.3.7, 2.3.10, 2.3.11, 2.3.14, 2.3.15, 2.3.16(a,b), 2.3.23, 2.3.24, 2.3.27.

END WEDNESDAY \#3

- Now, if X is a discrete variable which always equals one of the values x_{1}, x_{2}, \ldots, then the events $\left\{X=x_{i}\right\}$ form a partition. So, we get that...
- [Law of Total Probability - Discrete Random Variable Version]

If X is a discrete random variable, with possible values x_{1}, x_{2}, \ldots, and corresponding probabilities p_{1}, p_{2}, \ldots, and B is any event, then
$\mathrm{P}(B)=\sum_{i} \mathrm{P}\left(X=x_{i}\right) \mathrm{P}\left(B \mid X=x_{i}\right)=\sum_{i} p_{i} \mathrm{P}\left(B \mid X=x_{i}\right)$.
\rightarrow In fact, since $\mathrm{P}(X=x)=0$ for all other x, we can also write this as:
$\mathrm{P}(B)=\sum_{x \in \mathbf{R}} \mathrm{P}(X=x) \mathrm{P}(B \mid X=x)$.

- e.g. Suppose we roll one fair six-sided die, and then flip a number of coins equal to the number showing on the die. Let $X=\#$ Heads. Compute $\mathrm{P}(X=3)$.
\rightarrow Let $Y=$ number on die. Then Y is discrete, with possible values $\{1,2,3,4,5,6\}$.
\rightarrow Use the values of Y as a partition! Then \ldots
$\mathrm{P}(X=3)=\sum_{y \in \mathbf{R}} \mathrm{P}(Y=y) \mathrm{P}(X=3 \mid Y=y)=\sum_{y=1}^{6} \mathrm{P}(Y=y) \mathrm{P}(X=3 \mid Y=$ $y)=\sum_{y=3}^{6}(1 / 6)\left[\binom{y}{3} / 2^{y}\right]=\frac{1}{6}\left(\frac{1}{8}+\frac{4}{16}+\frac{10}{32}+\frac{20}{64}\right)=1 / 6 . \quad$ (Just like before.)
\rightarrow And, $\mathrm{P}(X=4)=\sum_{y \in \mathbf{R}} \mathrm{P}(Y=y) \mathrm{P}(X=4 \mid Y=y)=\sum_{y=1}^{6} \mathrm{P}(Y=y) \mathrm{P}(X=$ $4 \mid Y=y)=\sum_{y=4}^{6}(1 / 6)\left[\binom{y}{4} / 2^{y}\right]=\frac{1}{6}\left(\frac{1}{16}+\frac{5}{32}+\frac{15}{64}\right)=29 / 384 \doteq 0.0755$.
- e.g. Suppose we roll one fair six-sided die, and then attempt a number of free throws equal to the number showing on the die. Assume we have independent probability $1 / 3$ of scoring on each free throw. Let $X=\#$ Scores. Compute $\mathrm{P}(X=3)$.
\rightarrow Let $Y=$ number on die. Then by the Law of Total Probability, $\mathrm{P}(X=3)=\sum_{y \in \mathbf{R}} \mathrm{P}(Y=y) \mathrm{P}(X=3 \mid Y=y)=\sum_{y=1}^{6} \mathrm{P}(Y=y) \mathrm{P}(X=3 \mid Y=$ $y)=\sum_{y=3}^{6}(1 / 6)\left[\binom{y}{3}(1 / 3)^{3}(2 / 3)^{y-3}\right]=(1 / 6)\left[(1)(1 / 3)^{3}(2 / 3)^{0}+(4)(1 / 3)^{3}(2 / 3)^{1}+\right.$ $\left.(10)(1 / 3)^{3}(2 / 3)^{2}+(20)(1 / 3)^{3}(2 / 3)^{3}\right]=\ldots=(1 / 6)[379 / 729] \doteq 0.087$.

Poisson Distribution

- e.g. Suppose Toronto has an average of $\lambda=5$ house fires per day.
\rightarrow Intuitively, this is caused by a very large number n of buildings, each of which has a very small probability θ of having a fire.
\rightarrow Let $\lambda=n \theta$, i.e. $\theta=\lambda / n$. (Then λ is the "average" number of fires - later.)
\rightarrow Then the number of fires has the distribution $\operatorname{Binomial}(n, \lambda / n)$, so

$$
\begin{aligned}
\mathrm{P}(\# \text { fires }=k) & =\binom{n}{k} \theta^{k}(1-\theta)^{n-k} \\
& =\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!}(\lambda / n)^{k}[1-(\lambda / n)]^{n-k} .
\end{aligned}
$$

\rightarrow Now, what happens as $n \rightarrow \infty$, for a fixed value $k \in\{0,1,2, \ldots\}$?
\rightarrow Well, since $k \ll n$, we have $\frac{n}{n}=1, \frac{n-1}{n} \rightarrow 1, \frac{n-2}{n} \rightarrow 1, \ldots \frac{n-k+1}{n} \rightarrow 1$.
\rightarrow Hence, $\frac{n(n-1)(n-2) \ldots(n-k+1)}{n^{k}} \rightarrow 1$.
\rightarrow Also, from calculus, $e^{x}=1+x+\frac{x^{2}}{2!}+\ldots$, so for small $x \in \mathbf{R}, e^{x} \approx 1+x$.
\rightarrow So, $[1-(\lambda / n)]^{n-k} \approx[1-(\lambda / n)]^{n} \approx\left[e^{-\lambda / n}\right]^{n}=e^{-\lambda}$.
\rightarrow Hence, as $n \rightarrow \infty$, we have $\mathrm{P}(\#$ fires $=k) \rightarrow \frac{1}{k!} \lambda^{k} e^{-\lambda}=e^{-\lambda \frac{\lambda^{k}}{k!}}$.
\rightarrow This is the Poisson (λ) distribution: $\mathrm{P}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}$, for $k=0,1,2,3, \ldots$.

- Check: $\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda}\left[1+\lambda+\frac{\lambda^{2}}{2!}+\frac{\lambda^{3}}{3!}+\ldots\right]=e^{-\lambda}\left[e^{\lambda}\right]=1$. Yep!
- In general, if n is very large, and θ is very small, then $\operatorname{Binomial}(n, \theta)$ is well approximated by Poisson (λ) where $\lambda=n \theta$. "Poisson approximation"
- e.g. Suppose $Y \sim$ Poisson(3). What is $\mathrm{P}(Y=4)$?
\rightarrow Well, $\mathrm{P}(Y=4)=e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-3} \frac{3^{4}}{4!}=e^{-3} \frac{81}{24} \doteq 0.168$.
- e.g. Suppose $Y \sim \operatorname{Binomial}(20000,0.0001)$.
\rightarrow Then $\mathrm{P}(Y=4)=\binom{20000}{4}(0.0001)^{4}(0.9999)^{20000-4} \doteq 0.09022352216$.
\rightarrow Poisson Approximation: Here $\lambda=n \theta=20000 \cdot 0.0001=2$.
$\rightarrow \mathrm{So}, \mathrm{P}(Y=4) \approx e^{-2 \frac{(2)^{4}}{4!}} \doteq 0.09022352178$.
- Or, if $Y \sim \operatorname{Binomial}(200,0.01)$, then still $\lambda=200 \cdot 0.01=2$, so Poisson approxi-
mation is the same, but now $\mathrm{P}(Y=4)=\binom{200}{4}(0.01)^{4}(0.99)^{200-4} \doteq 0.0902197$.
\rightarrow Still pretty close, but not as close.
Suggested Homework: 2.3.8, 2.3.12, 2.3.19, 2.3.27. Optional: 2.3.18, 2.3.30.

Understanding Distributions Using the Computer Software "R"

- Recall - basic info and links at: http://probability.ca/Rinfo.html
\rightarrow Also discussed in Appendix B of the textbook.
- Can use " R " to simulate from probability distributions!
\rightarrow e.g. "rbinom $(1,10,1 / 2)$ ", "rgeom $(1,0.2)$ ", "rpois $(1,5)$ ".
- Can also plot probabilities, e.g. "plot(dbinom(0:10,10,1/2))", "plot(dgeom(0:10,0.2))"
\rightarrow [Also: other parameter values, and different options like "type='b'", etc.]

Some Additional Discrete Distributions

- e.g. Repeatedly attempt free throws, with independent probability θ each time. Let $r \in \mathbf{N}$, and Y be the number of misses before the $r^{\text {th }}$ score. What is $\mathrm{P}(Y=k)$?
\rightarrow Well, if $Y=k$, then the first $r-1+k$ shots must have included $r-1$ scores and k misses. Binomial Distribution! This probability is $\binom{r-1+k}{r-1} \theta^{r-1}(1-\theta)^{k}$.
\rightarrow Then we had to score on the final attempt, which has probability θ.
\rightarrow So, $\mathrm{P}(Y=k)=\binom{r-1+k}{r-1} \theta^{r-1}(1-\theta)^{k} \theta=\binom{r-1+k}{k} \theta^{r}(1-\theta)^{k}$, for $k=0,1,2, \ldots$.
\rightarrow This is the Negative- $\operatorname{Binomial}(r, \theta)$ Distribution.
\rightarrow Special case: If $r=1$, then $\mathrm{P}(Y=k)=\binom{1-1+k}{k} \theta^{1}(1-\theta)^{k}=\theta(1-\theta)^{k}$.
This is the same as the Geometric(θ) Distribution (of course!).
- e.g. Suppose an urn contains N balls, of which M are Red and $N-M$ are Blue.
\rightarrow We draw n balls from the urn without replacement, so each collection of n balls has the same probability $1 /\binom{N}{n}$.
\rightarrow Let X be the number of Red balls drawn. Probabilities?
\rightarrow Clearly $X \leq n$, and $X \leq M$, so $X \leq \min (n, M)$. And $X \geq 0$.
\rightarrow Also, at most $N-M$ balls could be Blue, so $X \geq n-(N-M)=n+M-N$.
\rightarrow So, we want to find $\mathrm{P}(X=k)$, where $\max (0, n+M-N) \leq k \leq \min (n, M)$.
\rightarrow Well, $X=k$ if we chose k Red and $n-k$ Blue.
\rightarrow The number of such choices is $\binom{M}{k}\binom{N-M}{n-k}$.
\rightarrow Hence, $\mathrm{P}(X=k)=\binom{M}{k}\binom{N-M}{n-k} /\binom{N}{n}$.
\rightarrow This is the Hypergeometric (N, M, n) Distribution.

Continuous Random Variables

- A random variable X is continuous if $\mathrm{P}(X=x)=0$ for all x.
\rightarrow Then $\sum_{x \in \mathbf{R}} \mathrm{P}(X=x)=\sum_{x \in \mathbf{R}} 0=0$. The "opposite" of discrete!
- e.g. The Uniform $[0,1]$ distribution (already mentioned):
$\rightarrow X \sim$ Uniform $[0,1]$ if $\mathrm{P}(a \leq X \leq b)=b-a$ whenever $0 \leq a \leq b \leq 1$.
\rightarrow Then e.g. $\mathrm{P}(X \in[0,1])=\mathrm{P}(0 \leq X \leq 1)=1-0=1$,
$\mathrm{P}(1 / 3 \leq X \leq 3 / 4)=(3 / 4)-(1 / 3)=5 / 12$,
$\mathrm{P}(X \geq 2 / 3)=\mathrm{P}(2 / 3 \leq X \leq 1)=1-(2 / 3)=1 / 3$, etc.
\rightarrow Also, $\mathrm{P}(X>1)=0$, and $\mathrm{P}(X<0)=0$, so e.g. $\mathrm{P}(1 / 3 \leq X \leq 5)=\mathrm{P}(1 / 3 \leq$ $X \leq 1)=1-(1 / 3)=2 / 3$, etc.
\rightarrow And, we previously showed (using Continuity Of Probabilities) that we can always replace " \leq " with " $<$ ", or " $>$ " by " \geq ", etc. (Also true since $\mathrm{P}(X=x)=0$.)
- Alternative representation: Let

$$
f(x)= \begin{cases}0, & x<0 \\ 1, & 0 \leq x \leq 1 \\ 0, & x>1\end{cases}
$$

\rightarrow Then for any $a \leq b$,

$\mathrm{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x$.
\rightarrow And as a check, $f(x) \geq 0$, and $\int_{-\infty}^{\infty} f(x) d x=1$. More complicated, but \ldots

- A density function is "any" $f: \mathbf{R} \rightarrow \mathbf{R}$ with $f(x) \geq 0$ and $\int_{-\infty}^{\infty} f(x) d x=1$.
\rightarrow Given any density function, can define $\mathrm{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x$ for $a \leq b$.
\rightarrow This defines a new distribution! Very general! ("absolutely continuous")
- Follows that $\mathrm{P}(X=a)=\mathrm{P}(a \leq X \leq a)=\int_{a}^{a} f(x) d x=0$, i.e. X is continuous.
- If $f(x)$ is the density function for a random variable X, write it as $f_{X}(x)$.
- e.g. the Uniform[5,12] distribution has density: $f_{X}(x)= \begin{cases}0, & x<5 \\ 1 / 7, & 5 \leq x \leq 12 \\ 0, & x>12\end{cases}$
\rightarrow Then $f_{X}(x) \geq 0$, and $\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{-\infty}^{5}(0) d x+\int_{5}^{12}(1 / 7) d x+\int_{12}^{\infty}(0) d x=$ $0+(1 / 7)(7)+0=1$. Good.
\rightarrow And then for $5 \leq a \leq b \leq 12$, we have $P(a \leq X \leq b)=\frac{1}{7}(b-a)$.
- For any $L<R$, the Uniform[L,R] density is: $f_{X}(x)=\left\{\begin{array}{cl}0, & x<L \\ 1 /(R-L), & L \leq x \leq R \\ 0, & x>R\end{array}\right.$
\rightarrow Then $f_{X}(x) \geq 0$, and $\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{-\infty}^{L}(0) d x+\int_{L}^{R} \frac{1}{R-L} d x+\int_{R}^{\infty}(0) d x=$ $0+\frac{1}{R-L}(R-L)+0=1$. Good.
\rightarrow And then whenever $L \leq a \leq b \leq R$, then $P(a \leq X \leq b)=\frac{b-a}{R-L}$.
- e.g. Let $f(x)=e^{-x}$ for $x \geq 0$, otherwise $f(x)=0$.
\rightarrow Then $f(x) \geq 0$, and $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{0}(0) d x+\int_{0}^{\infty} e^{-x} d x=(0)+\left.\left(-e^{-x}\right)\right|_{x=0} ^{x=\infty}=$ $(-0)-(-1)=1$.
\rightarrow If X has this density f, for $0 \leq a \leq b, \mathrm{P}(a \leq X \leq b)=\int_{a}^{b} e^{-x} d x=e^{-a}-e^{-b}$.
\rightarrow Also $\mathrm{P}(X \geq a)=e^{-a}$. This is the Exponential(1) distribution.
- More generally, for any $\lambda>0$, let $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0$, otherwise $f(x)=0$.
\rightarrow Then $f(x) \geq 0$, and $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{0}(0) d x+\int_{0}^{\infty}\left(\lambda e^{-\lambda x}\right) d x=-\left.e^{-\lambda x}\right|_{x=0} ^{x=\infty}=$ $(-0)-(-1)=1$.
\rightarrow If X has this density f, for $0 \leq a \leq b, \mathrm{P}(a \leq X \leq b)=e^{-\lambda a}-e^{-\lambda b}$.
\rightarrow Also $\mathrm{P}(X \geq a)=e^{-\lambda a}$. This is the Exponential (λ) distribution.
\rightarrow Many useful properties. Good model of e.g. how long a lightbulb will last.
Suggested Homework: 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11, 2.4.12, 2.4.14.

The Normal Distribution

- Let $\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ for $x \in \mathbf{R}$.
\rightarrow "Standard normal density"
\rightarrow "bell curve", "Gaussian"
\rightarrow Clearly $\phi(x) \geq 0$.
\rightarrow Fact: $\int_{-\infty}^{\infty} \phi(x) d x=1$.

\rightarrow (Proof uses polar coordinates: p. 126.)
\rightarrow So, it's a density. Important! Amazing!
- If X has density ϕ, then we say that X has the $\operatorname{Normal}(0,1)$ or $\mathrm{N}(0,1)$ distribution.
\rightarrow Then $\mathrm{P}(a \leq X \leq b)=\int_{a}^{b} \phi(x) d x=\int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$ for all $a \leq b$.
\rightarrow Cannot be computed analytically. (No exact anti-derivative function.)
\rightarrow But can be computed using software, or tables like Appendix D.2.
- More generally, for any $\mu \in \mathbf{R}$ and $\sigma>0$, let $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$.
\rightarrow Then $f(x) \geq 0$. By change-of-variable theorem, $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} \phi(x) d x=1$.
\rightarrow This is the density of the $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ or $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution.
\rightarrow Previous case was: $\mu=0, \sigma=1$. ("Standard normal distribution")
\rightarrow Curve is centered at μ, so changing μ "shifts" it.
\rightarrow Increasing σ makes it "fatter"; decreasing σ makes it "thinner".
\rightarrow [Plot in R: e.g. "plot $(\backslash(\mathrm{x})$ dnorm $(\mathrm{x}, 2,3)$, $\operatorname{xlim}=\mathrm{c}(-4,4)$, $y \lim =\mathrm{c}(0,1)$)"]
- In fact, if $Z \sim \operatorname{Normal}(0,1)$, and $W=\mu+\sigma Z$, then by the change-of-variable formula (coming soon), $W \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$.
- So, there is a normal density for every "location" μ and "scale" σ.
\rightarrow Good model for e.g. human heights, weights of eggs, etc.
\rightarrow See e.g. https://www.statology.org/example-of-normal-distribution/
\rightarrow The key distribution for the Central Limit Theorem and more! (Later.)
Suggested Homework: 2.4.13, 2.4.26.

Cumulative Distribution Functions (cdf)

- For any random variable X, the cumulative distribution function (cdf) is the function F_{X} defined by $F_{X}(x)=\mathrm{P}(X \leq x)$ for all $x \in \mathbf{R}$.
\rightarrow If X is discrete, then $F_{X}(x)=\sum_{u \leq x} \mathrm{P}(X=u)$.
\rightarrow Or, if X is absolutely continuous, then $F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u$.
- Then for any $a<b, \mathrm{P}(a<X \leq b)=\mathrm{P}(X \leq b)-\mathrm{P}(X \leq a)=F_{X}(b)-F_{X}(a)$.
\rightarrow Also, by Continuity Of Probabilities, $\mathrm{P}(a \leq X \leq b)=\mathrm{P}(X \leq b)-\mathrm{P}(X<a)=$ $\mathrm{P}(X \leq b)-\lim _{n \rightarrow \infty} \mathrm{P}\left(X \leq a-\frac{1}{n}\right)=F_{X}(b)-\lim _{n \rightarrow \infty} F_{X}\left(a-\frac{1}{n}\right)$.
\rightarrow Special case: $\mathrm{P}(X=a)=\mathrm{P}(a \leq X \leq a)=F_{X}(a)-\lim _{n \rightarrow \infty} F_{X}\left(a-\frac{1}{n}\right)$.
\rightarrow (In particular, if F_{X} is continuous, then $\mathrm{P}(a \leq X \leq b)=F_{X}(b)-F_{X}(a)$.)
\rightarrow So, all probabilites for X can be found from F_{X}. ("distribution function")
- Basic properties of any cumulative distribution function F_{X} :
$\rightarrow 0 \leq F_{X}(x) \leq 1$ for all $x \in \mathbf{R}$.
\rightarrow If $x \leq y$, then $F_{X}(x) \leq F_{X}(y)$, i.e. F_{X} is an increasing function.
\rightarrow What about $\lim _{x \rightarrow-\infty} F_{X}(x)$ and $\lim _{x \rightarrow \infty} F_{X}(x)$?
\rightarrow By Continuity of Probabilities, $\lim _{x \rightarrow-\infty} F_{X}(x)=0$ and $\lim _{x \rightarrow \infty} F_{X}(x)=1$.
[Reminder: No lecture nor tutorial next Monday Oct 9 (Thanksgiving).]
[Reminder: Extra TA and Prof office hours added on web page.]
[Reminder: Midterm \#1 next Wednesday Oct 11 in EX200.]
END WEDNESDAY \#4
(Thanksgiving holiday.)
- Are cumulative distribution functions (cdfs) continuous?
- If $A=(-\infty, x]$ and $A_{n}=\left(-\infty, x+\frac{1}{n}\right]$, then:
$\left\{A_{n}\right\} \searrow A$, so $\mathrm{P}\left(A_{n}\right) \rightarrow \mathrm{P}(A)$, i.e. $F_{X}\left(x+\frac{1}{n}\right) \rightarrow F_{X}(x)$. "right-continuous"
- If $A=(-\infty, x]$ and $A_{n}=\left(-\infty, x-\frac{1}{n}\right]$, does $\left\{A_{n}\right\} \nearrow A$?
\rightarrow No! $\left\{A_{n}\right\} \quad \nearrow(-\infty, x)$. $\left[\right.$ Since $x \notin A_{n}$ for any n.]
\rightarrow So, $\mathrm{P}\left(A_{n}\right) \rightarrow \mathrm{P}((-\infty, x))=\mathrm{P}(X<x)$. $\quad[\operatorname{Not} \mathrm{P}(X \leq x)$.]
\rightarrow i.e. $F_{X}\left(x-\frac{1}{n}\right) \rightarrow \mathrm{P}(X<x)=\mathrm{P}(X \leq x)-\mathrm{P}(X=x)=F_{X}(x)-\mathrm{P}(X=x)$.
- If $\mathrm{P}(X=x)=0$, e.g. X continuous, then $F_{X}\left(x-\frac{1}{n}\right) \rightarrow F_{X}(x)$. "left-continuous" \rightarrow And, if it's right-continuous and left-continuous, then it is continuous!
- But if $\mathrm{P}(X=x)>0$, then $F_{X}(x)$ is discontinuous at x.
\rightarrow Furthermore, the jump-size at x is equal to $\mathrm{P}(X=x)$.
- e.g. Flip 3 coins, $X=\#$ Heads.
\rightarrow Know $\mathrm{P}(X=0)=1 / 8, \mathrm{P}(X=1)=3 / 8, \mathrm{P}(X=2)=3 / 8, \mathrm{P}(X=3)=1 / 8$.
\rightarrow So, for $x<0, F_{X}(x)=\mathrm{P}(X \leq x)=0$.
\rightarrow And, for $0 \leq x<1, F_{X}(x)=\mathrm{P}(X \leq x)=\mathrm{P}(X=0)=1 / 8$.
\rightarrow And, for $1 \leq x<2, F_{X}(x)=$ $\mathrm{P}(X \leq x)=\mathrm{P}(X=0)+\mathrm{P}(X=1)=$ $1 / 8+3 / 8=4 / 8=1 / 2$.
\rightarrow And, for $2 \leq x<3, F_{X}(x)=$ $\mathrm{P}(X \leq x)=\mathrm{P}(X=0)+\mathrm{P}(X=1)+$ $\mathrm{P}(X=2)=1 / 8+3 / 8+3 / 8=7 / 8$.

\rightarrow And, for $x \geq 3, F_{X}(x)=\mathrm{P}(X \leq x)=\mathrm{P}(X=0)+\mathrm{P}\left(X_{\mathrm{x}}=1\right)+\mathrm{P}(X=$ $2)+\mathrm{P}(X=3)=1 / 8+3 / 8+3 / 8+1 / 8=1$.
\rightarrow [Graph.] All properties satisfied!
- All discrete distributions have somewhat similar cdfs. (piecewise-constant)
- e.g. $Y=$ roll of one fair six-sided die.
$F_{Y}(y)= \begin{cases}0, & y<1 \\ 1 / 6, & 1 \leq y<2 \\ 2 / 6, & 2 \leq y<3 \\ 3 / 6, & 3 \leq y<4 \\ 4 / 6, & 4 \leq y<5 \\ 5 / 6, & 5 \leq y<6 \\ 1, & y \geq 6\end{cases}$
- Continuous? e.g. $X \sim \operatorname{Uniform}[0,1]$.

\rightarrow Then $\mathrm{P}(X \leq x)=0$ for $x<0$.
\rightarrow And, $\mathrm{P}(X \leq x)=1$ for $x>1$.
\rightarrow For $0 \leq x \leq 1, \mathrm{P}(X \leq x)=$ $\mathrm{P}(0 \leq X \leq x)=x-0=x$.
\rightarrow Hence, $F_{X}(x)= \begin{cases}0, & x<0 \\ x, & 0 \leq x<1 \\ 1, & x \geq 1\end{cases}$
- e.g. $Z \sim \operatorname{Uniform}[L, R]$ for some $L<R$. Then, similarly, $F_{Z}(z)=$ $\begin{cases}0, & z<L \\ \frac{z-L}{R-L}, & L \leq z<R \\ 1, & z \geq R\end{cases}$

\rightarrow So e.g. if $L=2$ and $R=5$, then $F_{Z}(z)=\frac{z-2}{3}$ for $2 \leq z \leq 5$.
- e.g. $X \sim \operatorname{Exponential(1).~}$
\rightarrow Then $\mathrm{P}(X<0)=0$.
\rightarrow So, for $x<0, F_{X}(x)=0$.
\rightarrow For $x \geq 0, F_{X}(x)=\mathrm{P}(X \leq$ $x)=\int_{-\infty}^{x} f_{X}(u) d u=\int_{0}^{x} e^{-u} d u=1-$ e^{-x}. [Graph.] All properties satisfied!

- e.g. $Y \sim \operatorname{Exponential(5).~}$
\rightarrow Then $\mathrm{P}(Y<0)=0$. So, for $y<0, F_{Y}(y)=0$.
\rightarrow For $y \geq 0, F_{Y}(y)=\mathrm{P}(Y \leq y)=\int_{-\infty}^{y} f_{Y}(u) d u=\int_{0}^{y} 5 e^{-5 u} d u=1-e^{-5 y}$.
- In general, if $W \sim \operatorname{Exponential}(\lambda)$ for some $\lambda>0$, then $F_{W}(w)=0$ for $w<0$, otherwise $F_{W}(w)=1-e^{-\lambda w}$.
- e.g. Suppose $X \sim \operatorname{Exponential(3).~What~is~} \mathrm{P}(X \geq 2.6)$?
\rightarrow Here F_{X} is continuous, so $\mathrm{P}(X \geq 2.6)=1-\mathrm{P}(X<2.6)=1-\mathrm{P}(X \leq 2.6)=$ $1-F_{X}(2.6)=1-\left[1-e^{-3(2.6)}\right]=e^{-3(2.6)}=e^{-7.8} \doteq 0.00041$.

Suggested Homework: 2.5.2, 2.5.3, 2.5.7, 2.5.8, 2.5.9, 2.5.12.

- e.g. $Z \sim \operatorname{Normal}(0,1)$.
\rightarrow Then $F_{Z}(x)=\mathrm{P}(Z \leq x)=$ $\int_{-\infty}^{x} \phi(u) d u=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u$.
\rightarrow [Graph.] All properties satisfied!
\rightarrow Formula for this $F_{Z}(x)$?
\rightarrow There isn't one!

\rightarrow But it is so important that it has its own symbol: $\Phi(x)$.
\rightarrow It can be computed using software (R: "pnorm"), or tables like Appendix D.2.
\rightarrow By symmetry, $\mathrm{P}(Z \leq x)=\mathrm{P}(Z \geq-x)$. So, $\Phi(x)=1-\Phi(-x)$ for all $x \in \mathbf{R}$, i.e. $\Phi(x)+\Phi(-x)=1$. Also, $\Phi(0)=1 / 2$.
- e.g. Suppose $Z \sim \operatorname{Normal}(0,1)$. What is $\mathrm{P}(Z \leq 1.43)$?
\rightarrow Well, $\mathrm{P}(Z \leq 1.43)=\Phi(1.43)=1-\Phi(-1.43)$.
\rightarrow From the table in Appendix D.2, this is $\doteq 1-(0.0764)=0.9236$.
- e.g. Suppose $W \sim \operatorname{Normal}\left(5,4^{2}\right)$. What is $\mathrm{P}(6 \leq W \leq 8)$?
\rightarrow Well, here $W=5+4 Z$ where $Z \sim \operatorname{Normal}(0,1)$.
\rightarrow So, $\mathrm{P}(6 \leq W \leq 8)=\mathrm{P}(6 \leq 5+4 Z \leq 8)=\mathrm{P}(1 / 4 \leq Z \leq 3 / 4)$.
\rightarrow By definition of Φ, this is $\mathrm{P}(Z \leq 3 / 4)-\mathrm{P}(Z \leq 1 / 4)=\Phi(3 / 4)-\Phi(1 / 4)$.
\rightarrow Then, this equals $[1-\Phi(-3 / 4)]-[1-\Phi(-1 / 4)]=\Phi(-1 / 4)-\Phi(-3 / 4)=$ $\Phi(-0.25)-\Phi(-0.75)$.
\rightarrow From the Appendix D. 2 table, this is $\doteq 0.4013-0.2266=0.1747$.
\rightarrow So, here $\mathrm{P}(6 \leq W \leq 8) \doteq 0.1747$.
Suggested Homework: 2.5.4, 2.5.5.

END MONDAY $\# 6$

- Suppose that X is absolutely continuous, with density function $f_{X}(x)$, and cumulative distribution function $F_{X}(x)$. What is the relationship between f_{X} and F_{X} ?
\rightarrow Well, we know that $F_{X}(x):=\mathrm{P}(X \leq x)=\int_{-\infty}^{x} f_{X}(u) d u$.
\rightarrow So, by the Fundamental Theorem of Calculus, the derivative $F_{X}^{\prime}(x):=\frac{d}{d x} F_{X}(x)$ equals $f_{X}(x)$, at least if f_{X} is continuous at x.
\rightarrow That is, the derivative of the cdf is the density!
- e.g. Suppose $X \sim \operatorname{Exponential(1).~Then~we~know~} F_{X}(x)=1-e^{-x}$ for $x \geq 0$.
\rightarrow Then for $x>0, F_{X}^{\prime}(x)=\frac{d}{d x}\left[1-e^{-x}\right]=-\left(-e^{-x}\right)=e^{-x}=f_{X}(x)$. Yep!
- e.g. Similarly, for any $\lambda>0$, if $Y \sim \operatorname{Exponential}(\lambda)$, then for $y>0, F_{Y}(y)=$ $1-e^{-\lambda y}$, and $F_{Y}^{\prime}(y)=\frac{d}{d y}\left[1-e^{-\lambda y}\right]=(-\lambda)\left(-e^{-\lambda y}\right)=\lambda e^{-\lambda y}=f_{Y}(y)$. Yep!
- If $Z \sim \operatorname{Normal}(0,1)$, then we know $\Phi^{\prime}(z)=\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}$.
\rightarrow Even though we don't really know exactly what $\Phi(z)$ is!
- e.g. Suppose a r.v. X has cdf $F_{X}(x)= \begin{cases}0, & x<5 \\ (x-5)^{4}, & 5 \leq x<6 \\ 1, & x \geq 6\end{cases}$
\rightarrow Valid cdf? (Yes! Increases from 0 to 1, right-continuous ...)
\rightarrow Then e.g. $\mathrm{P}(3<X \leq 5.5)=F_{X}(5.5)-F_{X}(3)=(5.5-5)^{4}-0=0.0625$.
\rightarrow e.g. Also, X has density function $f_{X}(x)=F_{X}^{\prime}(x)=\left\{\begin{array}{cl}0, & x<5 \\ 4(x-5)^{3}, & 5<x<6 \\ 0, & x>6\end{array}\right.$
- Mixture Distributions: e.g. Consider the following random variables:
$\rightarrow Y$ is the result of rolling one fair six-sided die, with $\operatorname{cdf} F_{Y}(y)$ as above.
$\rightarrow Z \sim$ Uniform $[2,5]$, with $\operatorname{cdf} F_{Z}(z)=\frac{z-2}{3}$ for $2 \leq z \leq 5$ as above.
$\rightarrow W \sim \operatorname{Bernoulli}(1 / 3)$ (indep.), so $\mathrm{P}(W=1)=1 / 3$ and $\mathrm{P}(W=0)=2 / 3$.
\rightarrow Then, we let $X= \begin{cases}Y, & W=1 \\ Z, & W=0\end{cases}$
\rightarrow Intuitively, X is equal either to the result of the die (with probability $1 / 3$), or to a Uniform[2,5] variable (with probability $2 / 3$).
\rightarrow Then what is, say, $F_{X}(4.4) ?$
\rightarrow Well, by the Law of Total Probability, $F_{X}(4.4):=\mathrm{P}(X \leq 4.4)$
$=\mathrm{P}(X \leq 4.4, W=1)+\mathrm{P}(X \leq 4.4, W=0)$
$=\mathrm{P}(Y \leq 4.4, W=1)+\mathrm{P}(Z \leq 4.4, W=0)$
$=\mathrm{P}(Y \leq 4.4) \mathrm{P}(W=1)+\mathrm{P}(Z \leq 4.4) \mathrm{P}(W=0)$
$=F_{Y}(4.4)(1 / 3)+F_{Z}(4.4)(2 / 3)=(4 / 6)(1 / 3)+(2.4 / 3)(2 / 3)$.
\rightarrow More generally, $F_{X}(x)=(1 / 3) F_{Y}(x)+(2 / 3) F_{Z}(x)$, for all $x \in \mathbf{R}$.
$\rightarrow\left(\right.$ Can then plug in $F_{Y}(x)$ and $F_{Z}(x)$ to compute $F_{X}(x)$.)
\rightarrow The distribution of X is a mixture of the distributions of Y and of Z.
- In this example, is X continuous?
\rightarrow No! By independence, we have that e.g. $\mathrm{P}(X=2)=\mathrm{P}(W=1, Y=2)=$ $\mathrm{P}(W=1) \mathrm{P}(Y=2)=(1 / 3)(1 / 6)=1 / 18>0$. Not zero, like for the continuous case.
- Ah, so then is X discrete?
\rightarrow No! Here $\sum_{x \in \mathbf{R}} \mathrm{P}(X=x)=\sum_{x=1}^{6} \mathrm{P}(X=x)=\sum_{x=1}^{6} \mathrm{P}(W=1, Y=x)=$ $\sum_{x=1}^{6} \mathrm{P}(W=1) \mathrm{P}(Y=x)=\sum_{x=1}^{6}(1 / 3)(1 / 6)=1 / 3<1$. Not one, like for the discrete case.
- Here X is has a mixture distribution. Neither discrete nor continuous!
\rightarrow (In this course we'll usually stick with either discrete or absolutely continuous. But there are other kinds of random variables too. Even beyond mixtures!)

Suggested Homework: 2.5.6, 2.5.13, 2.5.14, 2.5.15, 2.5.17, 2.5.18.

Change of Variable Formula (one-dimensional)

- Suppose X is a random variable, and $h: \mathbf{R} \rightarrow \mathbf{R}$ is some function.
\rightarrow Then we can define $Y=h(X)$, i.e. $Y(s)=h(X(s))$ for all $s \in S$. (e.g. $\left.Y=X^{2}\right)$
\rightarrow Then Y is another random variable. ("function of a random variable")
\rightarrow So, Y has its own distribution. What is it??
- Discrete Case: Suppose X discrete: $\mathrm{P}\left(X=x_{i}\right)=p_{i}$ where $p_{i} \geq 0$ and $\sum_{i} p_{i}=1$.
\rightarrow Then, Y is discrete too, with $\mathrm{P}(Y=y)=\mathrm{P}(h(X)=y)=\sum\left\{p_{i}: h\left(x_{i}\right)=y\right\}$.
\rightarrow That is, $\mathrm{P}(Y=y)=\mathrm{P}(X \in\{x: h(x)=y\})$.
\rightarrow Or, in terms of probability functions, $p_{Y}(y)=\sum_{x: h(x)=y} p_{X}(x)$.
\rightarrow Discrete Change-of-Variable Theorem.
- e.g. $X=$ roll of fair die, and $Y=(X-3)^{2}$. What is $\mathrm{P}(Y=4)$?
\rightarrow Well, $\mathrm{P}(Y=4)=\mathrm{P}\left(X \in\left\{x:(x-3)^{2}=4\right\}\right)=\mathrm{P}(X \in\{1,5\})=(1 / 6)+(1 / 6)=$ $2 / 6=1 / 3$.
\rightarrow Also, $\mathrm{P}(Y=1)=\mathrm{P}\left(X \in\left\{x:(x-3)^{2}=1\right\}\right)=\mathrm{P}(X \in\{2,4\})=(1 / 6)+(1 / 6)=$ $2 / 6=1 / 3$.
\rightarrow And, $\mathrm{P}(Y=9)=\mathrm{P}\left(X \in\left\{x:(x-3)^{2}=9\right\}\right)=\mathrm{P}(X \in\{6\})=(1 / 6)$. More?
\rightarrow Yes! Also $\mathrm{P}(Y=0)=\mathrm{P}\left(X \in\left\{x:(x-3)^{2}=0\right\}\right)=\mathrm{P}(X \in\{3\})=(1 / 6)$.
\rightarrow That is, $p_{Y}(y)=1 / 3$ for $y=1,4 ; p_{Y}(y)=1 / 6$ for $y=0,9$; otherwise 0 .
- Easy! But what if X is continuous? Trickier!
- Absolutely Continuous Case: Suppose X has density $f_{X}(x)$, and $Y=h(X)$.
\rightarrow Then what is the density function $f_{Y}(y)$ for Y ?
\rightarrow Will Y necessarily even be absolutely continuous too??
\rightarrow No, not necessarily!
- e.g. $X \sim \operatorname{Uniform}[0,1]$, and $h(x)= \begin{cases}2, & x \leq 1 / 3 \\ 4, & x>1 / 3\end{cases}$
\rightarrow Then if $Y=h(X)$, then $\mathrm{P}(Y=2)=\mathrm{P}(X \leq 1 / 3)=1 / 3$, and $\mathrm{P}(Y=4)=$ $\mathrm{P}(X>1 / 3)=1-(1 / 3)=2 / 3$. That is, $p_{Y}(2)=1 / 3$, and $p_{Y}(4)=2 / 3$.
$\rightarrow \mathrm{So}, Y$ is discrete! Not continuous at all!
- But what if h is strictly increasing? (or decreasing?) Then what is $f_{Y}(y)$?
- Absolutely Continuous Change-of-Variable Theorem: Suppose X has density $f_{X}(x)$, and $Y=h(X)$, where $h: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable and strictly increasing or decreasing (at least on $\left\{x: f_{X}(x)>0\right\}$), with inverse function $h^{-1}(y)$. Then Y is also absolutely continuous, with density function $f_{Y}(y)=f_{X}\left(h^{-1}(y)\right) /\left|h^{\prime}\left(h^{-1}(y)\right)\right|$.
- Proof: Suppose h is strictly increasing.
\rightarrow Then h has an inverse function, $h^{-1}(y)$. So, $X=h^{-1}(Y)$.
\rightarrow Also assume h has a derivative, $h^{\prime}(x)$.
\rightarrow Then by the Inverse Function Theorem, $\frac{d}{d y} h^{-1}(y):=\left(h^{-1}\right)^{\prime}(y)=1 / h^{\prime}\left(h^{-1}(y)\right)$.
- Method \#1:
\rightarrow Then $\mathrm{P}(a \leq Y \leq b)=\mathrm{P}\left(h^{-1}(a) \leq X \leq h^{-1}(b)\right)=\int_{h^{-1}(a)}^{h^{-1}(b)} f_{X}(x) d x$.
\rightarrow We now make the "substitution" $x=h^{-1}(y)$.
\rightarrow Then by "integration by subsitution" or the "chain rule" from calculus, we have $d x=d\left(h^{-1}(y)\right)=\left(h^{-1}\right)^{\prime}(y) d y=\left[1 / h^{\prime}\left(h^{-1}(y)\right)\right] d y$.
\rightarrow Hence, from above, $\mathrm{P}(a \leq Y \leq b)=\int_{a}^{b}\left[f_{X}\left(h^{-1}(y)\right) / h^{\prime}\left(h^{-1}(y)\right)\right] d y, \forall a \leq b$.
\rightarrow But this equals $\int_{a}^{b} f_{Y}(y) d y$, so we must have $f_{Y}(y)=f_{X}\left(h^{-1}(y)\right) / h^{\prime}\left(h^{-1}(y)\right)$.
\rightarrow (The first part $f_{X}\left(h^{-1}(y)\right)$ is intuitive. The rest is from the chain rule.)
- Method \#2:
\rightarrow Then $F_{Y}(y)=\mathrm{P}(Y \leq y)=\mathrm{P}(h(X) \leq y)=\mathrm{P}\left(X \leq h^{-1}(y)\right)=F_{X}\left(h^{-1}(y)\right)$.
\rightarrow So, $f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{d}{d y} F_{X}\left(h^{-1}(y)\right)=f_{X}\left(h^{-1}(y)\right) \frac{d}{d y} h^{-1}(y)$ $=f_{X}\left(h^{-1}(y)\right)\left[1 / h^{\prime}\left(h^{-1}(y)\right)\right]=f_{X}\left(h^{-1}(y)\right) / h^{\prime}\left(h^{-1}(y)\right)$.
- Note: We need h to be increasing only where $f_{X}(x)>0$; other x don't matter.
- If instead h is strictly decreasing, then everything is still the same, except that h^{\prime} and $\left(h^{-1}\right)^{\prime}$ are negative, so we need to put an absolute value sign on it.
\rightarrow Or, in Method $\# 2, \mathrm{P}(Y \leq y)=\mathrm{P}\left(X \geq h^{-1}(y)\right)=1-\mathrm{P}\left(X \leq h^{-1}(y)\right)=$ $1-F_{X}\left(h^{-1}(y)\right)$ which gives a negative.
- e.g. Suppose $X \sim$ Uniform $[0,1]$, and $Y=5 X+4$.
\rightarrow Then $f_{X}(x)=1$ for $0 \leq x \leq 1$, otherwise 0 .
\rightarrow Also $h(x)=5 x+4$, strictly increasing, $h^{\prime}(x)=5$.
\rightarrow And, if $y=5 x+4$, then $x=(y-4) / 5$, so $h^{-1}(y)=(y-4) / 5$.
\rightarrow So, $f_{X}\left(h^{-1}(y)\right)=f_{X}((y-4) / 5)$, which $=1$ for $4 \leq y \leq 9$ otherwise 0 .
\rightarrow And, $h^{\prime}\left(h^{-1}(y)\right)=h^{\prime}((y-4) / 5)=5$.
\rightarrow So, $f_{Y}(y)=f_{X}\left(h^{-1}(y)\right) /\left|h^{\prime}\left(h^{-1}(y)\right)\right|=1 / 5$ for $4 \leq y \leq 9$ otherwise 0 .
\rightarrow That is, $Y \sim$ Uniform $[4,9]$, a familiar distribution! (Makes sense.)
- Alternatively, use cdfs!
\rightarrow In above example, for $4 \leq y \leq 9$:
$\rightarrow F_{Y}(y)=\mathrm{P}(Y \leq y)=\mathrm{P}(5 X+4 \leq y)=\mathrm{P}(X \leq(y-4) / 5)=(y-4) / 5$.
\rightarrow Hence, for $4 \leq y \leq 9, f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{d}{d y}(y-4) / 5=1 / 5$. Same as before!
- e.g. Suppose $X \sim \operatorname{Uniform}[0,1]$, and $Y=X^{2}$.
\rightarrow Then $f_{X}(x)=1$ for $0 \leq x \leq 1$, otherwise 0 .
\rightarrow Also $h(x)=x^{2}$, strictly increasing for $x \geq 0$, and $h^{\prime}(x)=2 x$.
\rightarrow And, $h^{-1}(y)=\sqrt{y}$ for $y \geq 0$, so $f_{X}\left(h^{-1}(y)\right)$ is 1 for $0<y \leq 1$ otherwise 0 .
\rightarrow Therefore, $h^{\prime}\left(h^{-1}(y)\right)=2 h^{-1}(y)=2 \sqrt{y}$ for $y>0$, otherwise 0 .
\rightarrow So, $f_{Y}(y)=f_{X}\left(h^{-1}(y)\right) /\left|h^{\prime}\left(h^{-1}(y)\right)\right|=1 /(2 \sqrt{y})$ for $0<y \leq 1$ otherwise 0 .
\rightarrow Is that really correct? Check: $\int_{-\infty}^{\infty} f_{Y}(y) d y=\int_{0}^{1}[1 /(2 \sqrt{y})] d y=\frac{1}{2} \int_{0}^{1} y^{-1 / 2} d y=$ $\left.\frac{1}{2}\left(2 y^{1 / 2}\right)\right|_{y=0} ^{y=1}=\frac{1}{2}\left(2\left[1^{1 / 2}-0^{1 / 2}\right]\right)=\frac{1}{2} \cdot 2 \cdot 1=1$. Phew! (And Y is not uniform.)
\rightarrow Alternatively: For $0 \leq y \leq 1, F_{y}(y)=\mathrm{P}(Y \leq y)=\mathrm{P}\left(X^{2} \leq y\right)=\mathrm{P}(X \leq$ $\sqrt{y})=\sqrt{y}$, so $f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{d}{d y} \sqrt{y}=\frac{d}{d y} y^{1 / 2}=(1 / 2) y^{-1 / 2}=1 /(2 \sqrt{y})$.

Suggested Homework: 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.6.6, 2.6.7, 2.6.9, 2.6.10, 2.6.12, 2.6.14, 2.6.15.

END WEDNESDAY \#6

- e.g. Suppose $X \sim \operatorname{Exponential(5),~and~} Y=X^{2}$.
\rightarrow Then for $y>0, F_{y}(y)=\mathrm{P}(Y \leq y)=\mathrm{P}\left(X^{2} \leq y\right)=\mathrm{P}(X \leq \sqrt{y})=1-e^{-5 \sqrt{y}}$.
\rightarrow So, for $\left.y>0, f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{d}{d y}\left[1-e^{-5 \sqrt{y}}\right]=-e^{-5 \sqrt{y}}\left(-5 y^{-1 / 2} / 2\right)\right)=$ $(5 / 2) e^{-5 \sqrt{y}} / \sqrt{y}$. (Otherwise $f_{Y}(y)=0$.) Crazy, but true! [Check: Integrates to 1.]
\rightarrow Or, use the usual Theorem: Again $h(x)=x^{2}$, strictly increasing for $x \geq 0$, $h^{\prime}(x)=2 x, h^{-1}(y)=\sqrt{y}$ for $y \geq 0$, and here $f_{X}(x)=5 e^{-5 x}$ for $x \geq 0$, so for $y \geq 0$, $f_{Y}(y)=f_{X}\left(h^{-1}(y)\right) /\left|h^{\prime}\left(h^{-1}(y)\right)\right|=5 e^{-5 \sqrt{y}} / 2 \sqrt{y}$. Same!
- e.g. Suppose $Z \sim \operatorname{Normal}(0,1)$, and $Y=6+3 Z$.
\rightarrow Then $f_{Z}(z)=\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}$.
\rightarrow Also $h(z)=6+3 z$, strictly increasing, with $h^{\prime}(z)=3$. And, $h^{-1}(y)=(y-6) / 3$.
\rightarrow So, $f_{Y}(y)=f_{Z}\left(h^{-1}(y)\right) /\left|h^{\prime}\left(h^{-1}(y)\right)\right|=\phi((y-6) / 3) / 3$ $=\frac{1}{\sqrt{2 \pi}} e^{-[(y-6) / 3]^{2} / 2} / 3=\frac{1}{3 \sqrt{2 \pi}} e^{-(y-6)^{2} /\left(2 \cdot 3^{2}\right)}$.
\rightarrow This is the same as $\frac{1}{\sigma \sqrt{2 \pi}} e^{-(y-\mu)^{2} /\left(2 \sigma^{2}\right)}$ where $\mu=6$ and $\sigma=3$.
\rightarrow Hence, $Y \sim \operatorname{Normal}\left(6,3^{2}\right)$, as we expected.
\rightarrow (Similarly for any μ besides 6 , and σ besides 3.)
\rightarrow This demonstrates that if $Z \sim \operatorname{Normal}(0,1)$, and $Y=\mu+\sigma Z$, then $Y \sim$ $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$, as we claimed before. (Phew.)

Joint Distributions

- Suppose X and Y are two random variables.
\rightarrow Suppose we know the distribution of X and also know the distribution of Y.
\rightarrow Does that tell us the whole story? Maybe not!
- e.g. Suppose we flip two fair (independent) coins.
\rightarrow Let $X=I_{\text {first coin Heads }}$, i.e. $X=1$ if first coin Heads, otherwise $X=0$.
\rightarrow Then $X \sim \operatorname{Bernoulli}(1 / 2)$, i.e. $\mathrm{P}(X=0)=\mathrm{P}(X=1)=1 / 2$.
\rightarrow Let $Y_{1}=X, Y_{2}=1-X$, and $Y_{3}=I_{\text {second coin Heads. Distributions? }}$
\rightarrow Here $Y_{1} \sim \operatorname{Bernoulli}(1 / 2)$, and $Y_{2} \sim \operatorname{Bernoulli}(1 / 2)$, and $Y_{3} \sim \operatorname{Bernoulli}(1 / 2)$.
\rightarrow But what about their relationships to X ? e.g. $\mathrm{P}\left(X=1, Y_{i}=1\right)$?
\rightarrow Here $\mathrm{P}\left(X=1, Y_{1}=1\right)=1 / 2$, and $\mathrm{P}\left(X=1, Y_{2}=1\right)=0$, and $\mathrm{P}\left(X=1, Y_{3}=\right.$ $1)=1 / 4$. All different!
- To really understand multiple variables, we need their joint distribution.
\rightarrow How to keep track? Joint probability functions (discrete case), joint density functions (absolutely continuous case), joint cdfs (most general; we'll do them first).

Joint Cumulative Distribution Functions

- Given random variables X and Y, their joint cumulative distribution function or joint cdf is the function $F_{X, Y}: \mathbf{R}^{2} \rightarrow[0,1]$ given by $F_{X, Y}(x, y)=\mathrm{P}(X \leq x, Y \leq y) \equiv$ $\mathrm{P}(X \leq x$ and $Y \leq y)$. Can get tricky!
- Again let $X=I_{\text {first coin Heads }}, Y_{1}=X, Y_{2}=1-X$, and $Y_{3}=I_{\text {second coin Heads }}$.
\rightarrow If $x<0$ or $y<0$ (or both), then $F_{X, Y_{i}}(x, y)=0$ for each i (of course).
\rightarrow If $x \geq 1$ and $y \geq 1$, then $F_{X, Y_{i}}(x, y)=1$ for each i (of course).
\rightarrow For $Y_{1}=X$: If $0 \leq \min [x, y]<1$, then $F_{X, Y_{1}}(x, y)=\mathrm{P}\left(X \leq x, Y_{1} \leq y\right)=$ $\mathrm{P}(X \leq x, X \leq y)=\mathrm{P}(X \leq \min [x, y])=\mathrm{P}(X=0)=1 / 2$. Hence,

$$
F_{X, Y_{1}}(x, y)= \begin{cases}1, & x \geq 1 \text { and } y \geq 1 \\ 1 / 2, & 0 \leq \min [x, y]<1 \\ 0, & x<0 \text { or } y<0 \text { or both }\end{cases}
$$

\rightarrow Alternatively (easier?), compute $F_{X, Y_{1}}(x, y)$ systematically using a big table:

$F_{X, Y_{1}}(x, y)$	$x<0$	$0 \leq x<1$	$x \geq 1$
$y<0$	0	0	0
$0 \leq y<1$	0	$1 / 2$	$1 / 2$
$y \geq 1$	0	$1 / 2$	1

\rightarrow What about $Y_{2}=1-X$? Well, if $0 \leq x<1$ and $y \geq 1$, then $F_{X, Y_{2}}(x, y)=$ $\mathrm{P}\left(X \leq x, Y_{1} \leq y\right)=\mathrm{P}(X \leq x, 1-X \leq y)=\mathrm{P}(X=0,1-X=1)=\mathrm{P}(X=0)=$ $1 / 2$. Also true if $0 \leq y<1$ and $x \geq 1$. But if $x<1$ and $y<1$, then cannot have both $X \leq x$ and $1-X \leq y$, so $F_{X, Y_{2}}(x, y)=0$. Hence,

$F_{X, Y_{2}}(x, y)$	$x<0$	$0 \leq x<1$	$x \geq 1$
$y<0$	0	0	0
$0 \leq y<1$	0	0	$1 / 2$
$y \geq 1$	0	$1 / 2$	1

\rightarrow What about $Y_{3}=I_{\text {second coin Heads }}$? Well, if $0 \leq x<1$ and $y \geq 1$, then $F_{X, Y_{3}}(x, y)=\mathrm{P}\left(X \leq x, Y_{1} \leq y\right)=\mathrm{P}(X=0)=1 / 2$. Also true if $0 \leq y<1$ and $x \geq 1$. But if $0 \leq x<1$ and $0 \leq y<1$, then $\mathrm{P}(X \leq x, Y \leq y)=\mathrm{P}(X=0, Y=$ $0)=(1 / 2)(1 / 2)=1 / 4$. Hence,

$F_{X, Y_{3}}(x, y)$	$x<0$	$0 \leq x<1$	$x \geq 1$
$y<0$	0	0	0
$0 \leq y<1$	0	$1 / 4$	$1 / 2$
$y \geq 1$	0	$1 / 2$	1

\rightarrow So, e.g. $F_{X, Y_{1}}(1 / 2,1 / 2)=1 / 2, F_{X, Y_{2}}(1 / 2,1 / 2)=0, F_{X, Y_{3}}(1 / 2,1 / 2)=1 / 4$.
\rightarrow All different! Relationships matter! (But $F_{X, Y}(x, y)$ awkward to work with.)

- Some "limit" properties of $F_{X, Y}(x, y):=\mathrm{P}(X \leq x, Y \leq y)$:
$\rightarrow \lim _{x \rightarrow-\infty} F_{X, Y}(x, y)=0$ for all y, and $\lim _{y \rightarrow-\infty} F_{X, Y}(x, y)=0$ for all x.
$\rightarrow \lim _{x \rightarrow+\infty} F_{X, Y}(x, y)=F_{Y}(y)$ for all y, and $\lim _{y \rightarrow+\infty} F_{X, Y}(x, y)=F_{X}(x)$ for all x.
\rightarrow "Marginal cdfs": the joint cdf tells us all about the individual ones.
\rightarrow In above example, bottom row is $F_{X}(x)$, and right column is $F_{Y}(y)$.
- What about $\mathrm{P}(a<X \leq b, c<Y \leq d)$?
\rightarrow Well, $\mathrm{P}(a<X \leq b, Y \leq d)=\mathrm{P}(X \leq b, Y \leq d)-\mathrm{P}(X \leq a, Y \leq d)=$ $F_{X, Y}(b, d)-F_{X, Y}(a, d)$.
\rightarrow Hence, $\mathrm{P}(a<X \leq b, c<Y \leq d)=\mathrm{P}(a<X \leq b, Y \leq d)-\mathrm{P}(a<X \leq$ $b, Y \leq c)=\left[F_{X, Y}(b, d)-F_{X, Y}(a, d)\right]-\left[F_{X, Y}(b, c)-F_{X, Y}(a, c)\right]$,
\rightarrow So, $\mathrm{P}(a<X \leq b, c<Y \leq d)=F_{X, Y}(b, d)-F_{X, Y}(a, d)-F_{X, Y}(b, c)+F_{X, Y}(a, c)$.
\rightarrow Intuitive from Diagram:

Joint Probability Functions

- If X and Y are discrete, then we can keep track of their relationship by the joint probability function $p_{X, Y}(x, y):=\mathrm{P}(X=x, Y=y)$.
- e.g. In above example, $p_{X, Y_{1}}(1,1)=1 / 2$ and $p_{X, Y_{1}}(0,0)=1 / 2$ (otherwise $p_{X, Y_{1}}(x, y)=$ 0 , e.g. $\left.p_{X, Y_{1}}(1,0)=0\right)$. Also $p_{X, Y_{2}}(1,0)=1 / 2$ and $p_{X, Y_{2}}(0,1)=1 / 2$. Also $p_{X, Y_{3}}(1,1)=$ $1 / 4$ and $p_{X, Y_{3}}(1,0)=1 / 4$ and $p_{X, Y_{3}}(0,1)=1 / 4$ and $p_{X, Y_{3}}(0,0)=1 / 4$.
- If we know $p_{X, Y}(x, y)$, can we find $p_{X}(x)$ and $p_{Y}(y)$?
\rightarrow Yes! From the Law of Total Probability (Unconditioned Version), $p_{X}(x)=$ $\mathrm{P}(X=x)=\sum_{y} \mathrm{P}(X=x, Y=y)=\sum_{y} p_{X, Y}(x, y)$ for all x. Similarly $p_{Y}(y)=$ $\sum_{x} p_{X, Y}(x, y)$ for all y. ("marginals") So, $p_{X, Y}(x, y)$ has all the information.
- e.g. In above example, $p_{X}(1)=p_{X, Y_{3}}(1,0)+p_{X, Y_{3}}(1,1)=1 / 4+1 / 4=1 / 2$, etc.
\rightarrow Can also write e.g. $p_{X, Y_{3}}(x, y)$ in a table, with $p_{X}(x)$ and $p_{Y_{3}}(y)$ at the right and bottom margins, which is why they are called the "marginals":

	$Y_{3}=0$	$Y_{3}=1$	$p_{X}(x)$
$X=0$	$1 / 4$	$1 / 4$	$1 / 2$
$X=1$	$1 / 4$	$1 / 4$	$1 / 2$
$p_{Y_{3}}(y)$	$1 / 2$	$1 / 2$	

- Then e.g. $\mathrm{P}(a \leq X \leq b, c \leq Y \leq d)=\sum_{a \leq x \leq b} \sum_{c \leq y \leq d} p_{X, Y}(x, y)$, etc.

Suggested Homework: 2.7.3, 2.7.6.

Joint Density Functions

- Random variables X and Y are jointly absolutely continuous if there is a joint density function $f_{X, Y}: \mathbf{R}^{2} \rightarrow \mathbf{R}$, which is ≥ 0, with $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$, such that $\mathrm{P}(a \leq X \leq b, c \leq Y \leq d)=\int_{c}^{d} \int_{a}^{b} f_{X, Y}(x, y) d x d y$ for all $a \leq b$ and $c \leq d$.
- Two-dimensional ("iterated") integral! (e.g. Appendix A.6.) [MAT237 - later]
\rightarrow Compute the "inner" integral first, treating the outer variable as constant.
\rightarrow Then, integrate the resulting expression as the outer integral.
\rightarrow Trickiest part: specify the inner limits of integration correctly, to ensure that the point (x, y) is always within the correct region (see example below).
\rightarrow Can integrate in either order ("Fubini's Thm"), provided you do it correctly!
- Marginals? Similar to discrete case - "add up" the other variable.
$\rightarrow \mathrm{P}(a \leq X \leq b)=\mathrm{P}(a \leq X \leq b,-\infty<Y<\infty)=\int_{-\infty}^{\infty} \int_{a}^{b} f_{X, Y}(x, y) d x d y$.
$\rightarrow \operatorname{But} \mathrm{P}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x$, for all $a \leq b$.
\rightarrow So, $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$.
\rightarrow Similarly, $f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x$.
- Running example: $f_{X, Y}(x, y)=\frac{15}{32} x y^{2}$ for $0 \leq y \leq x \leq 2$, otherwise 0 . Diagram:
- Valid joint density function?
\rightarrow Here $f_{X, Y} \geq 0$, and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=\int_{0}^{2} \int_{y}^{2}\left(\frac{15}{32} x y^{2}\right) d x d y=\left.\int_{0}^{2}\left(\frac{15}{32} \frac{1}{2} x^{2} y^{2}\right)\right|_{x=y} ^{x=2} d y=$ $\int_{0}^{2}\left[\frac{15}{64}\left(2^{2}-y^{2}\right) y^{2}\right] d y=\left.\frac{15}{64}\left[2^{2} \frac{1}{3} y^{3}-\frac{1}{5} y^{5}\right]\right|_{y=0} ^{y=2}=\frac{15}{64}\left[\frac{4}{3}\left(2^{3}-0\right)-\frac{1}{5}\left(2^{5}-0\right)\right]=1$. So, yes!
- What is $\mathrm{P}(0 \leq X \leq 1 / 2,0 \leq Y \leq 1 / 4)$? We compute this as ...
$\rightarrow \int_{0}^{1 / 4} \int_{y}^{1 / 2}\left(\frac{15}{32} x y^{2}\right) d x d y=\left.\int_{0}^{1 / 4}\left(\frac{15}{32} \frac{1}{2} x^{2} y^{2}\right)\right|_{x=y} ^{x=1 / 2} d y=\int_{0}^{1 / 4}\left[\frac{15}{64}\left((1 / 2)^{2}-y^{2}\right) y^{2}\right] d y=$ $\left.\frac{15}{64}\left[(1 / 2)^{2} \frac{1}{3} y^{3}-\frac{1}{5} y^{5}\right]\right|_{y=0} ^{y=1 / 4}=\frac{15}{64}\left[\frac{1}{12}\left((1 / 4)^{3}-0\right)-\frac{1}{5}\left((1 / 4)^{5}-0\right)\right]=17 / 65536 \doteq 0.00026$.
\rightarrow Exercise: Compute $\mathrm{P}(7 / 4 \leq X \leq 2,3 / 2 \leq Y \leq 2)$. Is it larger?
- What is $f_{X}(x)$, the density function of X ?
\rightarrow For $0 \leq x \leq 2, f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{0}^{x}\left(\frac{15}{32} x y^{2}\right) d y=\left.\left(\frac{15}{32} \frac{1}{3} x y^{3}\right)\right|_{y=0} ^{y=x}=$ $\frac{15}{32} \frac{1}{3} x\left(x^{3}-0^{3}\right)=(5 / 32) x^{4}$. (Otherwise $f_{X}(x)=0$ if $x<0$ or $x>2$.)
\rightarrow Check: $\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{0}^{2}(5 / 32) x^{4} d x=\left.(5 / 32) \frac{1}{5} x^{5}\right|_{x=0} ^{x=2}=(5 / 32) \frac{1}{5}\left(2^{5}-0^{5}\right)=$ 1. Phew!
\rightarrow So e.g. $\mathrm{P}(X \leq 1 / 3)=\int_{0}^{1 / 3} f_{X}(x) d x=\int_{0}^{1 / 3}(5 / 32) x^{4} d x=\left.(5 / 32) \frac{1}{5} x^{5}\right|_{x=0} ^{x=1 / 3}=$ $(5 / 32) \frac{1}{5}\left((1 / 3)^{5}-0^{5}\right)=1 / 7776 \doteq 0.00013$.
- What is $f_{Y}(y)$, the density function of Y ?
\rightarrow For $0 \leq y \leq 2, f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x=\int_{y}^{2}\left(\frac{15}{32} x y^{2}\right) d x=\left.\left(\frac{15}{32} \frac{1}{2} x^{2} y^{2}\right)\right|_{x=y} ^{x=2}=$ $\frac{15}{32} \frac{1}{2}\left(2^{2}-y^{2}\right) y^{2}=\frac{15}{64}\left(4 y^{2}-y^{4}\right)$. (Otherwise $f_{Y}(y)=0$ if $y<0$ or $y>2$.)
\rightarrow Check: $\left.\int_{-\infty}^{\infty} f_{Y}(y) d y=\int_{0}^{2} \frac{15}{64}\left(4 y^{2}-y^{4}\right) d y=\frac{15}{64}\left[4 \frac{1}{3} y^{3}-\frac{1}{5} y^{5}\right)\right]\left.\right|_{y=0} ^{y=2}=\frac{15}{64}\left[4 \frac{1}{3}\left(2^{3}-\right.\right.$ $\left.\left.0^{3}\right)-\frac{1}{5}\left(2^{5}-0^{5}\right)\right]=1$. Phew!

Suggested Homework: 2.7.4, 2.7.7, 2.7.8, 2.7.9, 2.7.14, 2.7.15, 2.7.16.

Conditioning and Independence for Discrete Random Variables

- Suppose X and Y are discrete with joint probability function $p_{X, Y}$ given (in tabular form) by:

	$Y=5$	$Y=6$	$p_{X}(x)$
$X=2$	0.0	0.1	0.1
$X=3$	0.1	0.2	0.3
$X=4$	0.2	0.4	0.6
$p_{Y}(y)$	0.3	0.7	

(Meaning that $p_{X, Y}(2,5)=0.0, p_{X, Y}(3,5)=0.1, p_{X, Y}(4,6)=0.4$, etc.)
(Marginals $p_{X}(x)$ and $p_{Y}(y)$ are also shown, found by summing.)
\rightarrow Then we can compute e.g. $\mathrm{P}(Y=5 \mid X=3)=\frac{\mathrm{P}(X=3, Y=5)}{\mathrm{P}(X=3)}=\frac{0.1}{0.3}=1 / 3$.
\rightarrow Similarly $\mathrm{P}(Y=6 \mid X=3)=\frac{\mathrm{P}(X=3, Y=6)}{\mathrm{P}(X=3)}=\frac{0.2}{0.3}=2 / 3$.
\rightarrow Can write this as $p_{Y \mid X}(5 \mid 3)=1 / 3, p_{Y \mid X}(6 \mid 3)=2 / 3$, otherwise $p_{Y \mid X}(x \mid 3)=0$.
\rightarrow So, $p_{Y \mid X}(\cdot \mid 3)$ is a proper probability function (≥ 0, and sums to 1): the conditional distribution of Y given that $X=3$.
\rightarrow Also, $\mathrm{P}(X=2 \mid Y=6)=\frac{\mathrm{P}(X=2, Y=6)}{\mathrm{P}(Y=6)}=\frac{0.1}{0.7}=1 / 7$, and $\mathrm{P}(X=3 \mid Y=$ $6)=2 / 7$, and $\mathrm{P}(X=4 \mid Y=6)=4 / 7$. So, $p_{X \mid Y}(2 \mid 6)=1 / 7, p_{X \mid Y}(3 \mid 6)=2 / 7$, $p_{X \mid Y}(4 \mid 6)=4 / 7$, the conditional distribution of X given that $Y=6$.
\rightarrow Exercise: Find $p_{X \mid Y}(x \mid 5)$ for all $x \in \mathbf{R}$, i.e. the conditional distribution of X given that $Y=5$.

- In general, $p_{X \mid Y}(x \mid y)=\frac{\mathrm{P}(X=x, Y=y)}{\mathrm{P}(Y=y)}$, and $p_{Y \mid X}(y \mid x)=\frac{\mathrm{P}(X=x, Y=y)}{\mathrm{P}(X=x)}$.
\rightarrow Then e.g. $\mathrm{P}(a \leq Y \leq b \mid X=x)=\sum_{a \leq y \leq b} \mathrm{P}(Y=y \mid X=x)=\sum_{a \leq y \leq b} p_{Y \mid X}(y \mid x)=$ $\sum_{a \leq y \leq b} \frac{p_{X, Y}(x, y)}{p_{X}(x)}=\frac{\mathrm{P}(a \leq Y \leq b, X=x)}{\mathrm{P}(X=x)}$, as it should.
- Definition: Two random variables X and Y are independent if the events $\{X \in B\}$ and $\{Y \in C\}$ are independent for all subsets $B, C \subseteq \mathbf{R}$, i.e. if we always have $\mathrm{P}(X \in B, Y \in C)=\mathrm{P}(X \in B) \mathrm{P}(Y \in C)$.
\rightarrow For example, if we take $B=(-\infty, x]$ and $C=(-\infty, y]$, this means that $\mathrm{P}(X \leq x, Y \leq y)=\mathrm{P}(X \leq x) \mathrm{P}(Y \leq y)$, i.e. $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$ for all $x, y \in \mathbf{R}$. (Equivalent definition.)
\rightarrow For discrete random variables X and Y, it suffices that the events $\{X=x\}$ and $\{Y=y\}$ are independent, i.e. $\mathrm{P}(X=x, Y=y)=\mathrm{P}(X=x) \mathrm{P}(Y=y)$, i.e. $p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$ for all $x, y \in \mathbf{R}$.
\rightarrow Then for any B and C, we have $\mathrm{P}(X \in B, Y \in C)=\sum_{x \in B} \sum_{y \in C} p_{X, Y}(x, y)=$ $\sum_{x \in B} \sum_{y \in C} p_{X}(x) p_{Y}(y)=\left(\sum_{x \in B} p_{X}(x)\right)\left(\sum_{y \in C} p_{Y}(y)\right)=\mathrm{P}(X \in B) \mathrm{P}(Y \in C)$.
- If X and Y are discrete and independent, then $p_{X \mid Y}(x \mid y)=\frac{\mathrm{P}(X=x, Y=y)}{\mathrm{P}(Y=y)}=$ $\frac{\mathrm{P}(X=x) \mathrm{P}(Y=y)}{\mathrm{P}(Y=y)}=\mathrm{P}(X=x)$, and similarly $p_{Y \mid X}(y \mid x)=\mathrm{P}(Y=y)$.
\rightarrow This means the values of Y do not affect the probabilities for X.
\rightarrow In above example, X and Y are not independent, since e.g. $p_{X, Y}(3,5)=0.1$ but $p_{X}(3) p_{Y}(5)=(0.3)(0.3)=0.09 \neq 0.1$.

Suggested Homework: 2.8.1, 2.8.2, 2.8.5, 2.8.9, 2.8.10, 2.8.12, 2.8.13, 2.8.20.

Conditioning and Independence for Continuous Random Variables

- Suppose X and Y have joint density function $f_{X, Y}(x, y)$. Conditionals?
- Does $\mathrm{P}(a \leq Y \leq b \mid X=x)$ even make sense?
\rightarrow No, since $\mathrm{P}(X=x)=0$, so we can't divide by it.
\rightarrow Trick: Do it anyway!
- Intuitively, imagine replacing the event $\{X=x\}$ by the event $\{x \leq X \leq x+\epsilon\}$ for small $\epsilon>0$, so that $\mathrm{P}(x \leq X \leq x+\epsilon)>0$. In fact, $\mathrm{P}(x \leq X \leq x+\epsilon)=\int_{x}^{x+\epsilon} f_{X}(u) d u$.
\rightarrow If f_{X} is continuous at x, and $\epsilon>0$ is small, then $\mathrm{P}(x \leq X \leq x+\epsilon) \approx \epsilon f_{X}(x)$.
\rightarrow ["First-order approximation": formally, $\lim _{\epsilon \backslash 0} \frac{1}{\epsilon} \int_{x}^{x+\epsilon} f_{X}(u) d u=f_{X}(x)$.]
\rightarrow But also, if $f_{X, Y}$ is continuous at (x, y) for $a \leq y \leq b$, then $\mathrm{P}(x \leq X \leq$ $x+\epsilon, a \leq Y \leq b)=\int_{a}^{b} \int_{x}^{x+\epsilon} f_{X, Y}(u, y) d u d y \approx \epsilon \int_{a}^{b} f_{X, Y}(x, y) d y$.
\rightarrow So, $\mathrm{P}(a \leq Y \leq b \mid x \leq X \leq x+\epsilon) \approx \frac{\epsilon \int_{a}^{b} f_{X, Y}(x, y) d y}{\epsilon f_{X}(x)}=\int_{a}^{b} \frac{f_{X, Y}(x, y)}{f_{X}(x)} d y$.
- Therefore, we define the conditional density of Y given that $X=x$, to be the density function $f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}$, valid whenever $f_{X}(x)>0$.
\rightarrow Then we say that $\mathrm{P}(a \leq Y \leq b \mid X=x)=\int_{a}^{b} f_{Y \mid X}(y \mid x) d y:=\int_{a}^{b} \frac{f_{X, Y}(x, y)}{f_{X}(x)} d y$.
- Definition: X and Y are independent if $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ for "all" $x, y \in \mathbf{R}$, or equivalently if $f_{Y \mid X}(y \mid x)=f_{Y}(y)$ whenever $f_{X}(x)>0$.
\rightarrow Then for any B and C, we have $\mathrm{P}(X \in B, Y \in C)=\int_{y \in C} \int_{x \in B} f_{X, Y}(x, y) d x d y=$ $\int_{y \in C} \int_{x \in B} f_{X}(x) f_{Y}(y) d x d y=\left(\int_{x \in B} f_{X}(x) d x\right)\left(\int_{y \in C} f_{Y}(y) d y\right)=\mathrm{P}(X \in B) \mathrm{P}(Y \in C)$.
- Previous running example: $f_{X, Y}(x, y)=\frac{15}{32} x y^{2}$ for $0 \leq y \leq x \leq 2$, otherwise 0 .
\rightarrow Found that $f_{X}(x)=(5 / 32) x^{4}$ for $0 \leq x \leq 2$, otherwise 0 .
\rightarrow And that $f_{Y}(y)=\frac{15}{64}\left(4 y^{2}-y^{4}\right)$ for $0 \leq y \leq 2$, otherwise 0 .
\rightarrow Hence, for $0 \leq y \leq x \leq 2$, we have $f_{Y \mid X}(y \mid x)=\frac{f_{X, Y(x, y)}}{f_{X}(x)}=\frac{\frac{15}{32} x y^{2}}{(5 / 32) x^{4}}=3 x^{-3} y^{2}$.
\rightarrow So e.g. $\mathrm{P}(0 \leq Y \leq 1 \mid X=3 / 2)=\int_{0}^{1} f_{Y \mid X}(y \mid 3 / 2) d y=\int_{0}^{1}\left(3(3 / 2)^{-3} y^{2}\right) d y=$ $3(3 / 2)^{-3} \frac{1}{3}\left(1^{3}-0^{3}\right)=(3 / 2)^{-3}=8 / 27$.
\rightarrow Also $\mathrm{P}(0 \leq Y \leq 3 / 2 \mid X=3 / 2)=\int_{0}^{3 / 2} f_{Y \mid X}(y \mid 3 / 2) d y=\int_{0}^{3 / 2}\left(3(3 / 2)^{-3} y^{2}\right) d y=$ $3(3 / 2)^{-3} \frac{1}{3}\left((3 / 2)^{3}-0^{3}\right)=(3 / 2)^{-3}(3 / 2)^{3}=1$. Makes sense since here $0 \leq Y \leq X$.
\rightarrow Here $f_{X, Y}(x, y) \neq f_{X}(x) f_{Y}(y)$, and $f_{Y \mid X}(y \mid x) \neq f_{Y}(y)$, so not independent.
- Summary: X and Y are independent if and only if any one of:
$\rightarrow \mathrm{P}(X \in B, Y \in C)=\mathrm{P}(X \in B) \mathrm{P}(Y \in C)$ for all $B, C \subseteq \mathbf{R}$. (general)
$\rightarrow F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$ for all $x, y \in \mathbf{R}$. (general)
$\rightarrow p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$ for all $x, y \in \mathbf{R}$. (discrete)
$\rightarrow p_{Y \mid X}(y \mid x)=p_{Y}(y)$ for "all" $x, y \in \mathbf{R}$, or vice-versa. (discrete)
$\rightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ for "all" $x, y \in \mathbf{R}$. (abs. continuous)
$\rightarrow f_{Y \mid X}(y \mid x)=f_{Y}(y)$ for "all" $x, y \in \mathbf{R}$, or vice-versa. (abs. continuous)
Suggested Homework: 2.8.3, 2.8.4, 2.8.7, 2.8.8, 2.8.14, 2.8.15, 2.8.17.

END WEDNESDAY \#7

Multivariable Change-Of-Variable - Discrete

- Suppose X and Y are discrete, with joint probability function $p_{X, Y}(x, y)$.
- Suppose $(Z, W)=h(X, Y)$, for some function $h: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$.
- Then what is $p_{Z, W}(z, w):=\mathrm{P}(Z=z, W=w)$?
- By the Law of Total Probability,

$$
p_{Z, W}(z, w)=\mathrm{P}(h(X, Y)=(z, w))=\sum\left\{p_{X, Y}(x, y): h(x, y)=(z, w)\right\}
$$

- Similar to one-variable case. Not difficult.

Suggested Homework: 2.9.6, 2.9.9.

Multivariable Change-Of-Variable - Continuous

- Recall one-variable case: If $Y=h(X)$, where $h: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable and strictly increasing or decreasing, then $f_{Y}(y)=f_{X}\left(h^{-1}(y)\right) /\left|h^{\prime}\left(h^{-1}(y)\right)\right|$.
- Two-variable version? Trickier!
\rightarrow Now $(Z, W)=h(X, Y)$, where $h: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$.
\rightarrow i.e., $Z=h_{1}(X, Y)$ and $W=h_{2}(X, Y)$.
\rightarrow Need h to be (two-dimensional) differentiable, and one-to-one (invertible).
\rightarrow Then $f_{Z, W}(z, w)=f_{X, Y}\left(h^{-1}(z, w)\right) /\left|J_{h}\left(h^{-1}(z, w)\right)\right|$.
\rightarrow Here J_{h} is the Jacobian determinant: $J_{h}(x, y)=\operatorname{det}\left(\begin{array}{ll}\frac{\partial h_{1}}{\partial x} & \frac{\partial h_{1}}{\partial y} \\ \frac{\partial h_{2}}{\partial x} & \frac{\partial h_{2}}{\partial y}\end{array}\right)$.
\rightarrow See e.g. Textbook's Example 2.9.2 and Example 2.9.3 (page 111).
- e.g. Let U and V be independent Uniform $[0,1]$.
\rightarrow Then let $Z=\sqrt{2 \log (1 / U)} \cos (2 \pi V)$ and $W=\sqrt{2 \log (1 / U)} \sin (2 \pi V)$.
\rightarrow What are the distributions of Z and W ?
\rightarrow Fact (textbook pp. 111-112): Z and W are independent, and are both \ldots $\operatorname{Normal}(0,1)!!$ This is important! Best way to simulate normal random variables.

Suggested Homework: 2.9.2, 2.9.3, 2.9.4, 2.9.5, 2.9.11.

- Note: We are omitting a few related topics from the end of Chapter 2, e.g.:
\rightarrow Order Statistics (when you sort the sample values, from smallest to largest).
\rightarrow Simulating probability distributions on a computer: algorithms.
\rightarrow All interesting! Check them out! Try the exercises! Ask me questions!

[END OF TEXTBOOK CHAPTER \#2]

Expected Values: Discrete Case

- Intuitively, the expected or average or mean value of a random variable is what it equals "on average".
\rightarrow e.g. If $\mathrm{P}(X=0)=\mathrm{P}(X=12)=1 / 2$, then $\mathrm{E}(X)=6$, the average value.
\rightarrow e.g. If $\mathrm{P}(X=0)=2 / 3$ and $\mathrm{P}(X=12)=1 / 3$, then $\mathrm{E}(X)=4$: weighted av.
- Definition: If X is a discrete random variable, then its expected value is given by $\mathrm{E}(X)=\sum_{x \in \mathbf{R}} x \mathrm{P}(X=x)=\sum_{x \in \mathbf{R}} x p_{X}(x)$. (Also sometimes written as μ_{X}.)
\rightarrow If $\mathrm{P}\left(X=x_{i}\right)=p_{i}$ where $p_{i} \geq 0$ and $\sum_{i} p_{i}=1$, then $\mathrm{E}(X)=\sum_{i} x_{i} p_{i}$.
- e.g. If $\mathrm{P}(X=0)=\mathrm{P}(X=12)=1 / 2, \mathrm{E}(X)=0(1 / 2)+12(1 / 2)=6$.
\rightarrow Or, if $\mathrm{P}(X=0)=2 / 3$ and $\mathrm{P}(X=12)=1 / 3, \mathrm{E}(X)=0(2 / 3)+12(1 / 3)=4$.
\rightarrow Or, if $X=c$ is constant, i.e. $\mathrm{P}(X=c)=1$, then $\mathrm{E}(X)=c(1)=c$.
- e.g. If X is the number showing on a fair six-sided die, then $\mathrm{E}(X)=\sum_{x \in \mathbf{R}} x \mathrm{P}(X=$ $x)=\sum_{k=1}^{6} k(1 / 6)=(1+2+3+4+5+6) / 6=21 / 6=3.5 . \quad$ (Not 3!)
- e.g. If $X \sim \operatorname{Bernoulli}(\theta)$, then $\mathrm{E}(X)=0(1-\theta)+1(\theta)=\theta$.
- e.g. Suppose $Y \sim \operatorname{Binomial}(n, \theta)$. What is $\mathrm{E}(Y)$?
\rightarrow Well, $\mathrm{E}(Y)=\sum_{y \in \mathbf{R}} y \mathrm{P}(Y=y)=\sum_{k=0}^{n} k\binom{n}{k} \theta^{k}(1-\theta)^{n-k}=\sum_{k=0}^{n} k \frac{n!}{(n-k)!k!} \theta^{k}(1-$ $\theta)^{n-k}=\sum_{k=1}^{n} n \frac{(n-1)!}{(n-k)!(k-1)!} \theta^{k}(1-\theta)^{n-k}=n \theta \sum_{k=1}^{n}\binom{n-1}{k-1} \theta^{k-1}(1-\theta)^{n-k}$.
\rightarrow Now, set $j=k-1$, and use the Binomial Theorem again:
$\mathrm{E}(Y)=n \theta \sum_{j=0}^{n-1}\binom{n-1}{j} \theta^{j}(1-\theta)^{n-1-j}=n \theta[\theta+(1-\theta)]^{n-1}=n \theta$. Easier way?
\rightarrow e.g. Shoot $n=10$ free throws, prob $\theta=1 / 4$ on each: $\mathrm{E}(\#$ successes $)=2.5$.
- e.g. If $Z \sim \operatorname{Geometric}(\theta)$, then $\mathrm{E}(Z)=\sum_{z \in \mathbf{R}} z \mathrm{P}(Z=z)=\sum_{k=0}^{\infty} k(1-\theta)^{k} \theta=$??
\rightarrow Trick: Here $(1-\theta) \mathrm{E}(Z)=\sum_{k=0}^{\infty} k(1-\theta)^{k+1} \theta=\sum_{\ell=0}^{\infty} \ell(1-\theta)^{\ell+1} \theta$.
\rightarrow Letting $k=\ell+1$, this equals $\sum_{k=1}^{\infty}(k-1)(1-\theta)^{k} \theta$.
\rightarrow Hence, $\mathrm{E}(Z)-(1-\theta) \mathrm{E}(Z)=\sum_{k=1}^{\infty}(1)(1-\theta)^{k} \theta=\frac{1-\theta}{1-(1-\theta)} \theta=1-\theta$.
$\rightarrow \operatorname{But} \mathrm{E}(Z)-(1-\theta) \mathrm{E}(Z)=\theta \mathrm{E}(Z)$. Hence, $\mathrm{E}(Z)=\frac{1-\theta}{\theta}$. Phew!
\rightarrow e.g. if $\theta=1 / 2$ then $\mathrm{E}(Z)=1$, but if $\theta=1 / 5$ then $\mathrm{E}(Z)=4$.
- e.g. If $X \sim \operatorname{Poisson}(\lambda)$, then $\mathrm{E}(X)=\sum_{x \in \mathbf{R}} x \mathrm{P}(X=x)=\sum_{k=0}^{\infty} k e^{-\lambda} \lambda^{k} / k!=$ $e^{-\lambda} \lambda\left[\sum_{k=1}^{\infty} \lambda^{k-1} /(k-1)!\right]=e^{-\lambda} \lambda\left[\sum_{\ell=0}^{\infty} \lambda^{\ell} / \ell!\right]=e^{-\lambda} \lambda\left[e^{\lambda}\right]=\lambda$.
- e.g. Suppose $\mathrm{P}(X=2)=1 / 2, \mathrm{P}(X=4)=1 / 4, \mathrm{P}(X=8)=1 / 8$, and in general $\mathrm{P}\left(X=2^{k}\right)=2^{-k}$ for $k=1,2,3, \ldots$
\rightarrow Then $\mathrm{E}(X)=\sum_{k=1}^{\infty}\left(2^{k}\right)\left(2^{-k}\right)=\sum_{k=1}^{\infty}(1)=\infty$.
\rightarrow So, $\mathrm{E}(X)=\infty$, even though $\mathrm{P}(X<\infty)=1$. Infinite expectation!
- Can also sum to get expectations of functions of discrete random variables:
\rightarrow If $Z=g(X)$, then $\mathrm{E}(Z)=\mathrm{E}(g(X))=\sum_{z \in \mathbf{R}} z \mathrm{P}(Z=z)=\sum_{x \in \mathbf{R}} g(x) \mathrm{P}(X=x)$.
\rightarrow Or, if $Z=h(X, Y), \mathrm{E}(Z)=\sum_{z \in \mathbf{R}} z \mathrm{P}(Z=z)=\sum_{x, y \in \mathbf{R}} h(x, y) \mathrm{P}(X=x, Y=y)$.
\rightarrow (Here Z is also discrete; and get the same expected value either way.)
- e.g. if $X \sim \operatorname{Binomial}(3,1 / 4)$, then know $\mathrm{E}(X)=3(1 / 4)=3 / 4$, but also
$\mathrm{E}\left(5 X^{2}\right)=\sum_{x \in \mathbf{R}} 5 x^{2} \mathrm{P}(X=x)=\sum_{k=0}^{3} 5 k^{2}\binom{3}{k}(1 / 4)^{k}(3 / 4)^{3-k}$
$=5(0)^{2}\binom{3}{0}(1 / 4)^{0}(3 / 4)^{3}+5(1)^{2}\binom{3}{1}(1 / 4)^{1}(3 / 4)^{2}+5(2)^{2}\binom{3}{2}(1 / 4)^{2}(3 / 4)^{1}+5(3)^{2}\binom{3}{3}(1 / 4)^{3}(3 / 4)^{0}$
$=0+5 \cdot 1 \cdot 3 \cdot 3^{2} / 4^{3}+5 \cdot 4 \cdot 3 \cdot 3 / 4^{3}+5 \cdot 9 \cdot 1 \cdot 1 / 4^{3}=45 / 8=5.625$.
Suggested Homework: 3.1.1, 3.1.2, 3.1.3, 3.1.8, 3.1.9, 3.1.10, 3.1.14.
- If $Z=a X+b Y$, where $a, b \in \mathbf{R}$, and X and Y are discrete random variables, $\mathrm{E}(Z)=\sum_{z \in \mathbf{R}} z \mathrm{P}(Z=z)=\sum_{x, y \in \mathbf{R}}(a x+b y) \mathrm{P}(X=x, Y=y)$
$=a \sum_{x, y \in \mathbf{R}} x \mathrm{P}(X=x, Y=y)+b \sum_{x, y \in \mathbf{R}} y \mathrm{P}(X=x, Y=y)$
$=a \sum_{x \in \mathbf{R}} x \sum_{y \in \mathbf{R}} \mathrm{P}(X=x, Y=y)+b \sum_{y \in \mathbf{R}} y \sum_{x \in \mathbf{R}} \mathrm{P}(X=x, Y=y)$
$=a \sum_{x \in \mathbf{R}} x \mathrm{P}(X=x)+b \sum_{y \in \mathbf{R}} y \mathrm{P}(Y=y)=a \mathrm{E}(X)+b \mathrm{E}(Y)$. Linear property.
- If $Y \sim \operatorname{Binomial}(n, \theta)$, then we can think of Y as $Y=X_{1}+X_{2}+\ldots+X_{n}$ where
each $X_{i} \sim \operatorname{Bernoulli}(\theta)$. (e.g. $X_{i}=1$ if you score on the $i^{\text {th }}$ free throw, otherwise 0)
\rightarrow By linearity, $\mathrm{E}(Y)=\mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{2}\right)+\ldots+\mathrm{E}\left(X_{n}\right)=\theta+\theta+\ldots+\theta=n \theta$.
\rightarrow Same answer as before! Easier!

END MONDAY \#8

- e.g. Suppose $X \sim \operatorname{Binomial}(5,1 / 4)$, and $Y \sim \operatorname{Geometric}(1 / 3)$, and $Z=2 X-6 Y$.
\rightarrow Then from linearity and the above calculations, $\mathrm{E}(Z)=\mathrm{E}(2 X-6 Y)=2 \mathrm{E}(X)-$ $6 \mathrm{E}(Y)=2[(5)(1 / 4)]-6\left[\frac{2 / 3}{1 / 3}\right]=-19 / 2=-9.5$.
- Caution: This is only for linear functions! e.g. If $X \sim \operatorname{Bernoulli}(1 / 2)$, then $\mathrm{E}\left(X^{2}\right)=\mathrm{E}(X)=1 / 2$, which is not the same as $(\mathrm{E}(X))^{2}=(1 / 2)^{2}=1 / 4$.
- Suppose X and Y are discrete, and $X \leq Y$, i.e. $X(s) \leq Y(s)$ for all $s \in S$.
\rightarrow Or more generally, suppose that $\mathrm{P}(X \leq Y)=1$.
\rightarrow Let $Z=Y-X$. Then Z is discrete, and $\mathrm{P}(Z \geq 0)=1$.
\rightarrow So, $\mathrm{P}(Z=z)=0$ whenever $z<0$.
\rightarrow Hence, $\mathrm{E}(Z)=\sum_{z \in \mathbf{R}} z \mathrm{P}(Z=z)=\sum_{z \in[0, \infty)} z \mathrm{P}(Z=z) \geq 0$.
$\rightarrow \operatorname{But} \mathrm{E}(Z)=\mathrm{E}(Y-X)=\mathrm{E}(Y)-\mathrm{E}(X)$, so $\mathrm{E}(Y)-\mathrm{E}(X) \geq 0$, i.e. $\mathrm{E}(X) \leq \mathrm{E}(Y)$.
\rightarrow This is the monotonicity property: If $\mathrm{P}(X \leq Y)=1$, then $\mathrm{E}(X) \leq \mathrm{E}(Y)$.
Suggested Homework: 3.1.4, 3.1.5, 3.1.11(a), 3.1.15, 3.1.16.
- Also, expectation preserves products of independent random variables:
\rightarrow Suppose X and Y are discrete random variables which are independent.
\rightarrow Then $\mathrm{E}(X Y)=\sum_{x, y \in \mathbf{R}} x y \mathrm{P}(X=x, Y=y)=\sum_{x, y \in \mathbf{R}} x y \mathrm{P}(X=x) \mathrm{P}(Y=$ $y)=\left(\sum_{x \in \mathbf{R}} x \mathrm{P}(X=x)\right)\left(\sum_{y \in \mathbf{R}} y \mathrm{P}(Y=y)\right)=\mathrm{E}(X) \mathrm{E}(Y)$. Useful!
- e.g. Suppose $X \sim \operatorname{Binomial}(5,1 / 4)$, and $Y \sim \operatorname{Geometric}(1 / 3)$, and X and Y are independent, and $Z=X Y$.
\rightarrow Then $\mathrm{E}(Z)=\mathrm{E}(X Y)=\mathrm{E}(X) \mathrm{E}(Y)=[(5)(1 / 4)]\left[\frac{2 / 3}{1 / 3}\right]=10 / 4=2.5$.
- e.g. Suppose $X \sim \operatorname{Bernoulli}(1 / 2)$ and $Y=X$, and let $Z=X Y$.
\rightarrow Then $\mathrm{E}(X)=1 / 2$, and $\mathrm{E}(Y)=1 / 2$, and $\mathrm{E}(Z)=\mathrm{E}(X Y)=\mathrm{E}\left(X^{2}\right)=1 / 2$.
\rightarrow So $\mathrm{E}(X Y) \neq \mathrm{E}(X) \mathrm{E}(Y)$. Why not? Because X and Y are not independent!
Suggested Homework: 3.1.11(b), 3.1.12, 3.1.17, 3.1.20.

Expected Values: Absolutely Continuous Case

- If X is continuous, then $\mathrm{P}(X=x)=0$, so $\sum_{x \in \mathbf{R}} x \mathrm{P}(X=x)=0$. Useless!
\rightarrow Can we still "add up" the values times their probabilities?
\rightarrow Yes, by integrating instead of summing!
- Definition: If X is an absolutely continuous random variable, then its expected value is given by the integral $\mathrm{E}(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x$. (Sometimes written as μ_{X}.)
\rightarrow Intuitively, we are adding up values times little "bits" of probability.
- e.g. If $X \sim$ Uniform $[0,1]$, then what is $\mathrm{E}(X)$? We compute that:
$\mathrm{E}(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x(1) d x=\left.\frac{1}{2} x^{2}\right|_{x=0} ^{x=1}=\frac{1}{2}\left(1^{2}-0^{2}\right)=\frac{1}{2}$.
- e.g. If $X \sim$ Uniform $[L, R]$, then what is $\mathrm{E}(X)$? We compute that:
$\mathrm{E}(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{L}^{R} x\left(\frac{1}{R-L}\right) d x=\left.\frac{1}{2} x^{2}\left(\frac{1}{R-L}\right)\right|_{x=L} ^{x=R}=\frac{1}{2}\left(\frac{1}{R-L}\right)\left(R^{2}-L^{2}\right)=$ $\frac{1}{2}\left(\frac{1}{R-L}\right)(R-L)(R+L)=\frac{1}{2}(R+L)$.
\rightarrow e.g. If $X \sim$ Uniform[$-8,2$], then $\mathrm{E}(X)=\frac{1}{2}(-8+2)=-3$. Negative!
- If $Y \sim \operatorname{Exponential}(\lambda)$, then $\mathrm{E}(Y)=\int_{-\infty}^{\infty} y f_{Y}(y) d y=\int_{0}^{\infty} y \lambda e^{-\lambda y} d y=? ?$
\rightarrow Need to use "integration by parts"!
\rightarrow Set $u(y)=y$ and $v(y)=-e^{-\lambda y}$, then $d u=d y$ and $d v=\lambda e^{-\lambda y} d y$.
\rightarrow Then $\mathrm{E}(Y)=\int_{0}^{\infty} u d v=\left.u(y) v(y)\right|_{y=0} ^{y=\infty}-\int_{0}^{\infty} d u v=-\left.y e^{-\lambda y}\right|_{y=0} ^{y=\infty}-\int_{0}^{\infty} d y\left(-e^{-\lambda y}\right)=$ $-0+0+\int_{0}^{\infty} e^{-\lambda y} d y=-\left.\frac{1}{\lambda} e^{-\lambda y}\right|_{y=0} ^{y=\infty}=-\frac{1}{\lambda}(0-1)=\frac{1}{\lambda} . \quad(\operatorname{Not} \lambda$.
- If $Z \sim \operatorname{Normal}(0,1)$, then $\mathrm{E}(Z)=\int_{-\infty}^{\infty} z \phi(z) d z=\int_{-\infty}^{\infty} z \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z=? ?$
\rightarrow The integrand is an "odd" function, so by symmetry, $\mathrm{E}(Z)=0$.
- Now suppose $W \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$. Then what is $\mathrm{E}(W)$?
\rightarrow Well, this means that $W=\mu+\sigma Z$ where $Z \sim \operatorname{Normal}(0,1)$.
\rightarrow So, maybe $\mathrm{E}(W)=\mathrm{E}(\mu+\sigma Z)=\mu+\sigma \mathrm{E}(Z)=\mu+0=\mu$? Yes, because \ldots
- Expectation still satisfies the same general properties as for discrete r.v.:
- Can still calculate expectations of functions of abs. cont. random variables:
\rightarrow If $Z=g(X)$, then $\mathrm{E}(Z)=\mathrm{E}(g(X))=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$.
\rightarrow Or, if $Z=h(X, Y)$, then $\mathrm{E}(Z)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) f_{X, Y}(x, y) d x d y$.
\rightarrow (If Z is abs. cont. or discrete, then get the same expected value either way.)
- Expectation is still linear! Let $Z=a X+b Y$, where $a, b \in \mathbf{R}$, and X and Y are jointly absolutely continuous random variables. Then:
$\mathrm{E}(Z)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(a x+b y) f_{X, Y}(x, y) d x d y$
$=a \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X, Y}(x, y) d x d y+b \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{X, Y}(x, y) d x d y$
$=a \int_{-\infty}^{\infty} x\left(\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y\right) d x+b \int_{-\infty}^{\infty} y\left(\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x\right) d y$
$=a \int_{-\infty}^{\infty} x f_{X}(x) d x+b \int_{-\infty}^{\infty} y f_{Y}(y) d y=a \mathrm{E}(X)+b \mathrm{E}(Y)$.
- And, still monotone: If $\mathrm{P}(X \leq Y)=1$, and $Z=Y-X$, then $f_{Z}(z)=0$ whenever
$z<0$, so $\mathrm{E}(Z)=\int_{0}^{\infty} z f_{Z}(z) d z \geq 0$, so $\mathrm{E}(Y-X) \geq 0$, so $\mathrm{E}(X) \leq \mathrm{E}(Y)$.
- And, still preserves products of independent random variables:
\rightarrow Assume X and Y are jointly absolutely continuous, and independent.
\rightarrow Then $\mathrm{E}(X Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X, Y}(x, y) d x d y=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X}(x) f_{Y}(y) d x d y=$ $\left(\int_{-\infty}^{\infty} x f_{X}(x) d x\right)\left(\int_{-\infty}^{\infty} y f_{Y}(y) d y\right)=\mathrm{E}(X) \mathrm{E}(Y)$.

Suggested Homework: 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.2.6, 3.2.7, 3.2.9, 3.2.10, 3.2.12, 3.2.14, 3.2.15.

Variance and Standard Deviation

- Suppose X has expected value $\mathrm{E}(X)$, or μ_{X}. Does that tell us everything?
- e.g. $X_{1} \sim$ Uniform[4.9, 5.1], $X_{2} \sim$ Uniform[4, 6], $X_{3} \sim$ Uniform[0, 10].
\rightarrow Then $\mathrm{E}\left(X_{1}\right)=5$, and $\mathrm{E}\left(X_{2}\right)=5$, and $\mathrm{E}\left(X_{3}\right)=5$. All the same.
\rightarrow But X_{1} is always very close to 5 , while X_{3} can be quite far away. (X_{2} medium.)
- The variance of any random variable X is $\operatorname{Var}(X):=\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]$.
\rightarrow A measure of how far X usually is from μ_{X}.
\rightarrow Why not $\mathrm{E}\left(X-\mu_{X}\right)$? Always zero! Useless!
\rightarrow Why not $\mathrm{E}\left(\left|X-\mu_{X}\right|\right)$? That turns out to be less convenient ...
- So, we'll stick with $\operatorname{Var}(X):=\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]$.
\rightarrow But $\operatorname{Var}(X)$ has "squared units" (e.g. if X in meters (m), then $\operatorname{Var}(X)$ is in meters-squared $\left.\left(m^{2}\right)\right)$. This can be awkward.
\rightarrow So, often use the standard deviation, $\operatorname{Sd}(X):=\sqrt{\operatorname{Var}(X)}=\sqrt{\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]}$.
- e.g. $X \sim \operatorname{Bernoulli}(\theta)$. Then $\mu_{X}=\theta$, so $\operatorname{Var}(X)=\mathrm{E}\left[(X-\theta)^{2}\right]=(0-\theta)^{2}(1-$ $\theta)+(1-\theta)^{2}(\theta)=-\theta^{2}+\theta^{3}+\theta-\theta^{3}=-\theta^{2}+\theta=\theta(1-\theta)$.
- By linearity, we always have $\operatorname{Var}(X):=\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]=\mathrm{E}\left[X^{2}-2 X \mu_{X}+\left(\mu_{X}\right)^{2}\right]=$ $\mathrm{E}\left[X^{2}\right]-2 \mathrm{E}[X] \mu_{X}+\left(\mu_{X}\right)^{2}=\mathrm{E}\left[X^{2}\right]-\left(\mu_{X}\right)^{2}$.
\rightarrow So, if $X \sim \operatorname{Bernoulli}(\theta)$, then could instead compute $\operatorname{Var}(X)$ by: $\operatorname{Var}(X)=$ $\mathrm{E}\left[X^{2}\right]-\left(\mu_{X}\right)^{2}=0^{2}(1-\theta)+1^{2}(\theta)-(\theta)^{2}=\theta-\theta^{2}=\theta(1-\theta)$. Easier?
- Suppose $Y \sim$ Uniform[0, 1]. Know $\mu_{Y}=1 / 2$.
\rightarrow And, $\mathrm{E}\left(Y^{2}\right)=\int_{-\infty}^{\infty} y^{2} f_{Y}(y) d y=\int_{0}^{1} y^{2}(1) d y=\left.\frac{1}{3} y^{3}\right|_{y=0} ^{y=1}=\frac{1}{3}\left(1^{3}-0^{3}\right)=\frac{1}{3}$.
\rightarrow Hence, $\operatorname{Var}(Y)=\mathrm{E}\left(Y^{2}\right)-\left(\mu_{Y}\right)^{2}=(1 / 3)-(1 / 2)^{2}=(1 / 3)-(1 / 4)=1 / 12$.
\rightarrow So then $\operatorname{Sd}(Y)=\sqrt{\operatorname{Var}(Y)}=\sqrt{1 / 12}=1 / \sqrt{12}=1 /(2 \sqrt{3})$.
- Suppose $Z \sim \operatorname{Uniform}[L, R]$ (where $L<R$). Know that $\mu_{Z}=(L+R) / 2$.
\rightarrow And, $\mathrm{E}\left(Z^{2}\right)=\int_{-\infty}^{\infty} z^{2} f_{Z}(z) d z=\int_{L}^{R} z^{2} \frac{1}{R-L} d z=\left.\frac{1}{3(R-L)} z^{3}\right|_{z=L} ^{z=R}=\frac{1}{3(R-L)}\left(R^{3}-\right.$ $\left.L^{3}\right)=\frac{1}{3(R-L)}(R-L)\left(R^{2}+R L+L^{2}\right)=\frac{1}{3}\left(R^{2}+R L+L^{2}\right)$.
\rightarrow Hence, $\operatorname{Var}(Z)=\mathrm{E}\left(Z^{2}\right)-\left(\mu_{Z}\right)^{2}=\frac{1}{3}\left(R^{2}+R L+L^{2}\right)-\left(\frac{L+R}{2}\right)^{2}$.
\rightarrow After a bit of algebra (exercise!), this works out to $\ldots(R-L)^{2} / 12$.
\rightarrow So then $\operatorname{Sd}(Z)=\sqrt{\operatorname{Var}(Z)}=(R-L) / \sqrt{12}$.
- e.g. if $X_{1} \sim$ Uniform[4.9, 5.1], $X_{2} \sim$ Uniform[4, 6], and $X_{3} \sim$ Uniform[0, 10], then: $\operatorname{Var}\left(X_{1}\right)=(0.2)^{2} / 12 \doteq 0.0033, \operatorname{Var}\left(X_{2}\right)=(1)^{2} / 12=1 / 12 \doteq 0.083$, and $\operatorname{Var}\left(X_{3}\right)=$ $(10)^{2} / 12=100 / 12 \doteq 8.33$. So $\operatorname{Var}\left(X_{3}\right) \gg \operatorname{Var}\left(X_{2}\right) \gg \operatorname{Var}\left(X_{1}\right)$, which makes sense.
- In general, $\left(X-\mu_{X}\right)^{2} \geq 0$, so always have $\operatorname{Var}(X):=\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right] \geq 0$.
$\rightarrow \operatorname{But} \operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-\left(\mu_{X}\right)^{2}$, so $\mathrm{E}\left[X^{2}\right]-\left(\mu_{X}\right)^{2} \geq 0$, i.e. $\mathrm{E}\left[X^{2}\right] \geq\left(\mu_{X}\right)^{2}$.
\rightarrow And, since $\left(\mu_{X}\right)^{2} \geq 0$, always have $\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-\left(\mu_{X}\right)^{2} \leq \mathrm{E}\left[X^{2}\right]$, too.
- If $a, b \in \mathbf{R}$, then $\operatorname{Var}(a X+b)=\mathrm{E}\left[\left(a X+b-\mu_{a X+b}\right)^{2}\right]=\mathrm{E}\left[\left(a X+b-a \mu_{X}-b\right)^{2}\right]=$ $\mathrm{E}\left[\left(a\left(X-\mu_{X}\right)\right)^{2}\right]=a^{2} \mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]=a^{2} \operatorname{Var}(X)$. (Note: a^{2}, not a. And b irrelevant.)
\rightarrow Hence, $\operatorname{Sd}(a X+b)=\sqrt{\operatorname{Var}(a X+b)}=\sqrt{a^{2} \operatorname{Var}(X)}=|a| \operatorname{Sd}(X)$.
\rightarrow What about $\operatorname{Var}(X+Y)$ or $\operatorname{Var}(a X+b Y)$? Later!
- e.g. $W \sim \operatorname{Exponential}(\lambda)$. Know $\mu_{W}:=\mathrm{E}(W)=1 / \lambda . \operatorname{Var}(W)=$??
\rightarrow Well, $\mathrm{E}\left(W^{2}\right)=\int_{-\infty}^{\infty} w^{2} f_{W}(w) d w=\int_{0}^{\infty} w^{2} \lambda e^{-\lambda w} d w$.
\rightarrow Integration by parts (check!): this $=0-0+\int_{0}^{\infty} 2 w e^{-\lambda w} d w$.
\rightarrow Integration by parts again: this $=0-0+\int_{0}^{\infty} 2 \frac{1}{\lambda} e^{-\lambda w} d w$.
\rightarrow But $\int_{0}^{\infty} e^{-\lambda w} d w=-\left.\frac{1}{\lambda} e^{-\lambda w}\right|_{w=0} ^{w=\infty}=-\frac{1}{\lambda}(0-1)=\frac{1}{\lambda}$.
\rightarrow So, $\mathrm{E}\left(W^{2}\right)=2 \frac{1}{\lambda} \frac{1}{\lambda}=2 / \lambda^{2}$.
\rightarrow Then $\operatorname{Var}(W)=\mathrm{E}\left(W^{2}\right)-\left(\mu_{W}\right)^{2}=\left(2 / \lambda^{2}\right)-(1 / \lambda)^{2}=1 / \lambda^{2}$. Phew!
\rightarrow Hence, $\operatorname{Sd}(W)=1 / \lambda$.
- e.g. $Z \sim \operatorname{Normal}(0,1)$. We know $\mu_{Z}:=\mathrm{E}(Z)=0$.
\rightarrow Also $\mathrm{E}\left(Z^{2}\right)=\int_{-\infty}^{\infty} z^{2} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z$.
\rightarrow Then, integration by parts with $u=z$ and $v=-e^{-z^{2} / 2}$ and $d v=z e^{-z^{2} / 2} d z$ gives $\mathrm{E}\left(Z^{2}\right)=0-0+\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z=\int_{-\infty}^{\infty} \phi(z) d z=1$ since ϕ is a density.
\rightarrow Hence, $\operatorname{Var}(Z)=1-\left(\mu_{z}\right)^{2}=1-0^{2}=1$. (As expected.) Also $\operatorname{Sd}(Z)=\sqrt{1}=1$.
- Now suppose $W \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, where $\sigma>0$. What is $\operatorname{Var}(W)$?
\rightarrow Well, this means that $W=\mu+\sigma Z$ where $Z \sim \operatorname{Normal}(0,1)$.
\rightarrow So, $\operatorname{Var}(W)=\operatorname{Var}(\mu+\sigma Z)=\sigma^{2} \operatorname{Var}(Z)=\sigma^{2}$. Also $\operatorname{Sd}(W)=\sqrt{\sigma^{2}}=\sigma$.
- Suppose $X \sim \operatorname{Poisson}(\lambda)$. Know $\mathrm{E}(X)=\lambda$. What is $\operatorname{Var}(X)$?
\rightarrow We compute that: $\mathrm{E}\left(X^{2}\right)=\sum_{k=0}^{\infty} k^{2} e^{-\lambda} \frac{\lambda^{k}}{k!}=\lambda e^{-\lambda} \sum_{k=1}^{\infty}((k-1)+1) \frac{\lambda^{k-1}}{(k-1)!}=$ $\lambda e^{-\lambda}\left(\lambda \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!}+\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}\right)=\lambda e^{-\lambda}\left(\lambda e^{\lambda}+e^{\lambda}\right)=\lambda^{2}+\lambda$.
\rightarrow Then $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}=\left(\lambda^{2}+\lambda\right)-(\lambda)^{2}=\lambda$. Phew! Simple!
Suggested Homework: 3.3.1(b), 3.3.2(a, c), 3.3.4(first four), 3.3.10(first four), 3.3.11(first three).

END WEDNESDAY \#8

- We know that $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)$. What about $\operatorname{Var}(X+Y)$?
- Well, $\operatorname{Var}(X+Y)=\mathrm{E}\left[\left(X+Y-\mu_{X+Y}\right)^{2}\right]=\mathrm{E}\left[\left(X+Y-\mu_{X}-\mu_{Y}\right)^{2}\right]=\mathrm{E}[((X-$ $\left.\left.\left.\mu_{X}\right)+\left(Y-\mu_{Y}\right)\right)^{2}\right]=\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}+\left(Y-\mu_{Y}\right)^{2}+2\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]$.
- This equals $\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$, where
$\operatorname{Cov}(X, Y):=\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]$ is the covariance of X and Y.
\rightarrow We always have $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$.
\rightarrow If $\operatorname{Cov}(X, Y)>0$, then X and Y tend to increase together.
\rightarrow If $\operatorname{Cov}(X, Y)<0$, then X and Y tend to increase oppositely.
- Special case: If $Y=X$, then $\operatorname{Cov}(X, Y)=\operatorname{Cov}(X, X)=\mathrm{E}\left[\left(X-\mu_{X}\right)\left(X-\mu_{X}\right)\right]=$ $\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]=\operatorname{Var}(X) . \quad$ In particular, $\operatorname{Cov}(X, X) \geq 0$.
\rightarrow Or, if $Y=-X$, then $\operatorname{Cov}(X, Y)=\operatorname{Cov}(X,-X)=\mathrm{E}\left[\left(X-\mu_{X}\right)\left(-X-\mu_{-X}\right)\right]=$ $\mathrm{E}\left[-\left(X-\mu_{X}\right)^{2}\right]=-\operatorname{Var}(X) . \quad$ In particular, $\operatorname{Cov}(X,-X) \leq 0$.
- If X and Y are independent, then $\operatorname{Cov}(X, Y)=\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]$
$=\mathrm{E}\left[X-\mu_{X}\right] \mathrm{E}\left[Y-\mu_{Y}\right]=\left[\mu_{X}-\mu_{X}\right]\left[\mu_{Y}-\mu_{Y}\right]=0 \cdot 0=0$.
\rightarrow Then $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.
\rightarrow That is: variances add for sums of independent random variables.
\rightarrow Since $\operatorname{Sd}(X)=\sqrt{\operatorname{Var}(X)}$, can also write $\operatorname{Sd}(X+Y)=\sqrt{\operatorname{Sd}(X)^{2}+\operatorname{Sd}(Y)^{2}}$.
\rightarrow ("propagation of uncertainty" for independent sums; e.g. quantum mechanics?)
- e.g. If $Y \sim \operatorname{Binomial}(n, \theta)$, then we can think of Y as $Y=X_{1}+X_{2}+\ldots+X_{n}$ where each $X_{i} \sim \operatorname{Bernoulli}(\theta)$ and they are independent.
\rightarrow By independence, $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for all $i \neq j$.
\rightarrow Hence, $\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)=\theta(1-\theta)+\theta(1-\theta)+$ $\ldots+\theta(1-\theta)=n \theta(1-\theta)$. This gives the variance of the $\operatorname{Binomial}(n, \theta)$ distribution!
- In general, by multiplying out, we have $\operatorname{Cov}(X, Y)=\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=$ $\mathrm{E}\left[X Y-\mu_{X} Y-X \mu_{Y}+\mu_{X} \mu_{Y}\right]=\mathrm{E}[X Y]-\mu_{X} \mu_{Y}-\mu_{X} \mu_{Y}+\mu_{X} \mu_{Y}=\mathrm{E}[X Y]-\mu_{X} \mu_{Y}$. \rightarrow (Just like how $\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-\left(\mu_{X}\right)^{2}$. Makes sense.)
- We know that $\mathrm{E}(a X+b Y)=a \mathrm{E}(X)+b \mathrm{E}(Y)$, and $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.

But what about $\operatorname{Cov}(a X+b Y, Z)$?
\rightarrow Well, $\operatorname{Cov}(a X+b Y, Z)=\mathrm{E}\left[\left(a X+b Y-\mu_{a X+b Y}\right)\left(Z-\mu_{Z}\right)\right]$
$=\mathrm{E}\left[\left(a X+b Y-a \mu_{X}-b \mu_{Y}\right)\left(Z-\mu_{Z}\right)\right]=\mathrm{E}\left[\left(a\left(X-\mu_{X}\right)+b\left(Y-\mu_{Y}\right)\right)\left(Z-\mu_{Z}\right)\right]$
$\left.=a \mathrm{E}\left[\left(X-\mu_{X}\right)\left(Z-\mu_{Z}\right)\right]+b \mathrm{E}\left[\left(Y-\mu_{Y}\right)\right)\left(Z-\mu_{Z}\right)\right]=a \operatorname{Cov}(X, Z)+b \operatorname{Cov}(Y, Z)$.
\rightarrow Similarly, $\operatorname{Cov}(X, a Y+b Z)=a \operatorname{Cov}(X, Y)+b \operatorname{Cov}(X, Z)$. ("bilinear")

- Let $X \sim$ Uniform[5, 9], and $Y \sim \operatorname{Exponential(3),~with~} X$ and Y independent.
\rightarrow Then $\operatorname{Cov}(X, Y)=0$ (by independence).
\rightarrow And if $Z=3 X+2 Y$ and $W=X-5 Y$, then
$\operatorname{Cov}(Z, W)=\operatorname{Cov}(3 X+2 Y, X-5 Y)=3 \operatorname{Cov}(X, X-5 Y)+2 \operatorname{Cov}(Y, X-5 Y)$
$=3 \operatorname{Cov}(X, X)-15 \operatorname{Cov}(X, Y)+2 \operatorname{Cov}(Y, X)-10 \operatorname{Cov}(Y, Y)$
$=3 \operatorname{Var}(X)-15(0)+2(0)-10 \operatorname{Var}(Y)=3\left(4^{2} / 12\right)-10\left(1 / 3^{2}\right)=26 / 9$.
- Fact: If $X \sim \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$, and $Y \sim \operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$, with X and Y independent, then $X+Y$ is also normal (!). (Textbook Problem 2.9.14.)
\rightarrow What mean and variance?
\rightarrow By linearity and independence, $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)=\mu_{1}+\mu_{2}$, and $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)=\sigma_{1}^{2}+\sigma_{2}^{2}$, so $X+Y \sim \operatorname{Normal}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.
- Suppose now that $Y=c X$ for some constant $c \in \mathbf{R}$.
\rightarrow Then $\operatorname{Var}(Y)=c^{2} \operatorname{Var}(X)$, so $\operatorname{Sd}(Y)=|c| \operatorname{Sd}(X)$, and $\operatorname{Sd}(X) \operatorname{Sd}(Y)=|c| \operatorname{Var}(X)$.
\rightarrow Also, $\operatorname{Cov}(X, Y)=\operatorname{Cov}(X, c X)=c \operatorname{Cov}(X, X)=c \operatorname{Var}(X)$.
\rightarrow So, if $c \geq 0$, then $\operatorname{Cov}(X, Y)=\operatorname{Sd}(X) \operatorname{Sd}(Y)$.
\rightarrow Or, if $c<0$, then $\operatorname{Cov}(X, Y)=-\operatorname{Sd}(X) \operatorname{Sd}(Y)$.
- Prop: these are the extremes, i.e. always $-\operatorname{Sd}(X) \operatorname{Sd}(Y) \leq \operatorname{Cov}(X, Y) \leq \operatorname{Sd}(X) \operatorname{Sd}(Y)$.
\rightarrow That is, we always have $-\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)} \leq \operatorname{Cov}(X, Y) \leq \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}$.
- Proof: Use the "Cauchy-Schwarz Inequality" that $-\|u\|\|v\| \leq u \cdot v \leq\|u\|\|v\|$.
\rightarrow Here the "vector space" is all random variables with finite variance.
\rightarrow And, the "dot product" is $X \cdot Y=\operatorname{Cov}(X, Y)$.
\rightarrow So, $\|X\|=\sqrt{X \cdot X}=\sqrt{\operatorname{Cov}(X, X)}=\sqrt{\operatorname{Var}(X)}=\operatorname{Sd}(X)$.
\rightarrow So, the result follows by setting $u=X$ and $v=Y$.
- The correlation of X and Y is $\operatorname{Corr}(X, Y)=\operatorname{Cov}(X, Y) / \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}$.
\rightarrow So we always have $-1 \leq \operatorname{Corr}(X, Y) \leq 1$.
$\rightarrow \operatorname{Corr}(X, Y)$ is a "normalised" version of $\operatorname{Cov}(X, Y)$.
\rightarrow Can also be written as $\operatorname{Corr}(X, Y)=\operatorname{Cov}(X, Y) /[\operatorname{Sd}(X) \operatorname{Sd}(Y)]$.
\rightarrow (Requires first computing $\left.\mu_{X}, \mu_{Y}, \operatorname{Var}(X), \operatorname{Var}(Y), \operatorname{Cov}(X, Y), \ldots\right)$
- Now suppose that Y is a constant r.v., e.g. $Y=5$. Then what is $\operatorname{Cov}(X, 5)$?
\rightarrow Well, $\operatorname{Cov}(X, Y):=\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=\mathrm{E}\left[\left(X-\mu_{X}\right)(5-5)\right]=0$.
\rightarrow Of course! And what about $\operatorname{Corr}(X, 5)$?
\rightarrow Well, $\operatorname{Var}(Y)=0$, so $\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{0}{0}$. Undefined!
\rightarrow Correlation is only defined for non-constant r.v.: $\operatorname{Var}(X)>0$ and $\operatorname{Var}(Y)>0$.
- e.g. Suppose $Z=c Y$ for some $c>0$. How is $\operatorname{Corr}(X, Z)$ related to $\operatorname{Corr}(X, Y)$?
\rightarrow Here $\operatorname{Var}(Z)=c^{2} \operatorname{Var}(Y)$, so $\operatorname{Sd}(Z)=\sqrt{\operatorname{Var}(Z)}=\sqrt{c^{2} \operatorname{Var}(Y)}=c \operatorname{Sd}(Y)$.
\rightarrow But also, $\operatorname{Cov}(X, Z)=\operatorname{Cov}(X, c Y)=c \operatorname{Cov}(X, Y)$.
\rightarrow Hence, $\operatorname{Corr}(X, Z)=\frac{\operatorname{Cov}(X, Z)}{\operatorname{Sd}(X) \operatorname{Sd}(Z)}=\frac{c \operatorname{Cov}(X, Y)}{\operatorname{Sd}(X) c \operatorname{Sd}(Y)}=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Sd}(X) \operatorname{Sd}(Y)}=\operatorname{Corr}(X, Y)$.
\rightarrow That is, $\operatorname{Corr}(X, c Y)=\operatorname{Corr}(X, Y)$ Unaffected by the constant scale $c>0$.
- If instead $Z=c Y$ where $c<0$, then $\sqrt{c^{2}}=-c$, so $\operatorname{Corr}(X, c Y)=-\operatorname{Corr}(X, Y)$.
\rightarrow So, the sign of c is still important! (But not its magnitude.)
- We always have $\operatorname{Corr}(X, X)=\frac{\operatorname{Cov}(X, X)}{\operatorname{Sd}(X) \operatorname{Sd}(X)}=\frac{\operatorname{Var}(X)}{\operatorname{Var}(X)}=1$.
$\rightarrow \operatorname{And}, \operatorname{Corr}(X, c X)=\operatorname{sign}(c)$, i.e. $=1$ if $c>0$, or $=-1$ if $c<0$.
\rightarrow And what about if $c=0$? ...
Suggested Homework: 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.7, 3.3.10, 3.3.11, 3.3.12, 3.3.13, 3.3.14, 3.3.15, 3.3.29, 3.3.30.
[Reminder: Extra Prof office hours tomorrow; see web page.]
[Reminder: Midterm \#2 this Wednesday Nov 15 in EX200.]
END MONDAY $\# 9$
(Midterm \#2.)

END WEDNESDAY \#9

- e.g. Suppose $p_{X, Y}(5,1)=p_{X, Y}(5,9)=p_{X, Y}(7,3)=p_{X, Y}(7,7)=1 / 4$, otherwise 0 . What is $\operatorname{Cov}(X, Y)$? And, are X and Y independent? Diagram:
\rightarrow Here $\mu_{X}:=\mathrm{E}(X)=\sum_{x \in \mathbf{R}} x p_{X}(x)=\sum_{x, y \in \mathbf{R}} x p_{X, Y}(x, y)=5(1 / 4)+5(1 / 4)+$ $7(1 / 4)+7(1 / 4)=6$.
\rightarrow And $\mu_{Y}:=\mathrm{E}(Y)=\sum_{y \in \mathbf{R}} y p_{Y}(y)=\sum_{x, y \in \mathbf{R}} y p_{X, Y}(x, y)=1(1 / 4)+9(1 / 4)+$ $3(1 / 4)+7(1 / 4)=5$.
\rightarrow Also $\mathrm{E}(X Y)=\sum_{x, y \in \mathbf{R}}$ xy $p_{X, Y}(x, y)=(5)(1)(1 / 4)+(5)(9)(1 / 4)+(7)(3)(1 / 4)+$ (7) $(7)(1 / 4)=30$.
$\rightarrow \mathrm{So}, \operatorname{Cov}(X, Y)=\mathrm{E}(X Y)-\mu_{X} \mu_{Y}=30-(6)(5)=0$, i.e. $\mathrm{E}(X Y)=\mathrm{E}(X) \mathrm{E}(Y)$.
\rightarrow Hence, also, $\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=0$, too. ("Uncorrelated")
\rightarrow And also $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$, since $\operatorname{Cov}(X, Y)=0$.
\rightarrow So, does that mean that X and Y must be independent?
\rightarrow No, since e.g. $p_{X}(5)=1 / 4+1 / 4=1 / 2>0$ and $p_{Y}(3)=1 / 4>0$, but $p_{X, Y}(5,3)=0 \neq p_{X}(5) p_{Y}(3)$. So, X and Y are not independent!
\rightarrow Conclusion: independent \Rightarrow uncorrelated, but uncorrelated \nRightarrow independent.

Markov's Inequality

- Suppose $X \geq 0$, and $\mathrm{E}(X)=5$. Can $\mathrm{P}(X>100)$ be very large?
\rightarrow No, since then we would have $\mathrm{E}(X) \geq(100) \mathrm{P}(X>100) \gg 5$.
\rightarrow Indeed, to make $\mathrm{E}(X)=5$, we need to have $(100) \mathrm{P}(X>100) \leq 5$.
- Markov's Inequality: If $X \geq 0$, and $a>0$, then $\mathrm{P}(X \geq a) \leq \mathrm{E}(X) / a$.
- Proof: Define a new random variable Z by $Z=a I_{X \geq a}$.
\rightarrow That is, $Z=a$ whenever $X \geq a$, otherwise $Z=0$.
\rightarrow Then if $X \geq a$, then $Z=a$, so $X \geq Z$.
\rightarrow Or, if $X<a$, then $Z=0$, so $X \geq Z$ (since we've assumed $X \geq 0$).
\rightarrow Either way, $X \geq Z$. So, by monotonicity, $\mathrm{E}(X) \geq \mathrm{E}(Z)$.
$\rightarrow \operatorname{But} \mathrm{E}(Z)=\mathrm{E}\left[a I_{X \geq a}\right]=a \mathrm{P}(X \geq a)$. So, $\mathrm{E}(X) \geq a \mathrm{P}(X \geq a)$.
- e.g. If $X \geq 0$ and $\mathrm{E}(X)=5$, then must have $\mathrm{P}(X \geq 100) \leq 5 / 100=1 / 20$.
\rightarrow Also, $\mathrm{P}(X \geq 1000) \leq 5 / 1000=1 / 200$. Small!
- But this is only for non-negative random variables. Better is ...

Chebychev's Inequality

- Let Y be any random variable, with finite mean μ_{Y}.
\rightarrow If $\operatorname{Var}(Y)$ is small, then Y will usually be close to μ_{Y}. More precise?
- Chebychev's Inequality: For any $a>0, \mathrm{P}\left(\left|Y-\mu_{Y}\right| \geq a\right) \leq \operatorname{Var}(Y) / a^{2}$.
- Proof: Let $X=\left(Y-\mu_{Y}\right)^{2} \geq 0$. Then by Markov's Inequality, $\mathrm{P}\left(\left|Y-\mu_{Y}\right| \geq a\right)=$ $\mathrm{P}\left(\left(Y-\mu_{Y}\right)^{2} \geq a^{2}\right) \leq \mathrm{E}\left(\left(Y-\mu_{Y}\right)^{2}\right) / a^{2}=\operatorname{Var}(Y) / a^{2}$.
- e.g. Suppose Z has mean 5 and variance 9 . Then, $\mathrm{P}(Z \geq 17)=\mathrm{P}(Z-5 \geq 12) \leq$ $\mathrm{P}(|Z-5| \geq 12) \leq 9 / 12^{2}=9 / 144=1 / 16=0.0625$. Unlikely $!$
\rightarrow And, this is true for any random variable with this mean and variance.
\rightarrow If we also knew that $Z \geq 0$, then we could use Markov's inequality directly to get that $\mathrm{P}(Z \geq 17) \leq \mathrm{E}(Z) / 17=5 / 17 \doteq 0.294$. (Weaker bound.)

Suggested Homework: 3.6.1, 3.6.2, 3.6.3, 3.6.4, 3.6.5, 3.6.6, 3.6.8, 3.6.9, 3.6.10, 3.6.11, 3.6.12, 3.6.13, 3.6.14, 3.6.15, 3.6.18.

[END OF TEXTBOOK CHAPTER \#3]

Convergence of Random Variables

- Suppose we flip 100 coins.
\rightarrow Will the number of Heads be close to 50 ? How close?
\rightarrow Will the fraction of Heads be close to 0.5 ?
\rightarrow If we flip 1,000 coins, will it be closer to 0.5 ?
\rightarrow Maybe? Usually? For sure??
- [Try it in R: e.g. "mean($\operatorname{rbinom}(1000,1,1 / 2)$)", "mean($\operatorname{rgeom}(1000,1 / 5)$)", "mean($\operatorname{rpois}(1000,3)) ", " m e a n(\operatorname{rexp}(1000,3)) "]$
- If we flip n coins as $n \rightarrow \infty$, will the fraction get even closer to $1 / 2$?
\rightarrow Will the fraction converge to $1 / 2$? For sure? In what sense?
\rightarrow What does it mean for a random quantity to converge??

Convergence in Probability

- Defn: A sequence $X_{1}, X_{2}, X_{3}, \ldots$ of random variables converges in probability to another random variable (or constant) Y if: For all $\epsilon>0, \lim _{n \rightarrow \infty} \mathrm{P}\left(\left|X_{n}-Y\right| \geq \epsilon\right)=0$.
\rightarrow Or, equivalently: For all $\epsilon>0, \lim _{n \rightarrow \infty} \mathrm{P}\left(\left|X_{n}-Y\right|<\epsilon\right)=1$.
\rightarrow Sometimes written as: $\left\{X_{n}\right\} \xrightarrow{P} Y$, or just $X_{n} \xrightarrow{P} Y$.
- e.g. Suppose $X_{n} \sim \operatorname{Bernoulli}\left(\frac{1}{n}\right)$, i.e. $\mathrm{P}\left(X_{n}=1\right)=\frac{1}{n}$ and $\mathrm{P}\left(X_{n}=0\right)=1-\frac{1}{n}$.
\rightarrow Does $X_{n} \rightarrow 0$ in probability, i.e. $X_{n} \xrightarrow{P} 0$?
\rightarrow For any $\epsilon>0, \mathrm{P}\left(\left|X_{n}-0\right| \geq \epsilon\right) \leq \mathrm{P}\left(X_{n} \neq 0\right)=\mathrm{P}\left(X_{n}=1\right)=\frac{1}{n}$, and this probability $\rightarrow 0$ as $n \rightarrow \infty$. So, yes, $X_{n} \xrightarrow{P} 0$.
- In general, for any $\epsilon>0, \mathrm{P}\left(\left|X_{n}-Y\right| \geq \epsilon\right) \leq \mathrm{P}\left(X_{n} \neq Y\right)$.
\rightarrow So, if $\lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n} \neq Y\right)=0$, then $X_{n} \xrightarrow{P} Y$.
- e.g. Let $U \sim$ Uniform $[0,1]$, and $X_{n}=I_{U \leq(1 / 2)+\left(1 / 2^{n}\right)}$, and $Y=I_{U \leq 1 / 2}$.
\rightarrow Does $X_{n} \rightarrow Y$ in probability?
\rightarrow For any $\epsilon>0, \mathrm{P}\left(\left|X_{n}-Y\right| \geq \epsilon\right) \leq \mathrm{P}\left(X_{n} \neq Y\right)=\mathrm{P}\left(X_{n}=1\right.$ and $\left.Y=0\right)=$ $\mathrm{P}\left[1 / 2<U \leq(1 / 2)+\left(1 / 2^{n}\right)\right]=1 / 2^{n}$, and this probability $\rightarrow 0$ as $n \rightarrow \infty$. Yes!
- e.g. Let $Y \sim$ Uniform $[0,5]$, and $X_{n}=\left(1+\frac{1}{n}\right) Y$. Does $X_{n} \rightarrow Y$ in probability?
\rightarrow Here $\left|X_{n}-Y\right|=\left|\left(1+\frac{1}{n}\right) Y-Y\right|=\frac{1}{n} Y \leq 5 / n$.
\rightarrow Now, for any $\epsilon>0$, if $n>5 / \epsilon$, then $5 / n<\epsilon$.
\rightarrow Hence, for all $n>5 / \epsilon$, we must have $\left|X_{n}-Y\right| \leq 5 / n<\epsilon$.
\rightarrow This means that for all $n>5 / \epsilon, \mathrm{P}\left(\left|X_{n}-Y\right| \geq \epsilon\right)=0$.
\rightarrow So, yes, $\lim _{n \rightarrow \infty} \mathrm{P}\left(\left|X_{n}-Y\right| \geq \epsilon\right)=0$, i.e. $X_{n} \rightarrow Y$ in probability. Yes!
- e.g. Flip an infinite sequence of fair coins.
\rightarrow Let $X_{n}=I_{n^{\text {th }}}$ coin Heads, i.e. $X_{n}=1$ if the $n^{\text {th }}$ coin is Heads, otherwise 0 .
\rightarrow Does $X_{n} \rightarrow 1 / 2$ in probability?
\rightarrow No! For $0<\epsilon<1 / 2$, we have $\mathrm{P}\left(\left|X_{n}-(1 / 2)\right| \geq \epsilon\right)=1$, not $\rightarrow 0$.
\rightarrow But suppose instead we let $M_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\ldots+X_{n}\right)$.
\rightarrow Then M_{n} is the fraction of Heads in the first n coins.
\rightarrow Does $M_{n} \rightarrow 1 / 2$ in probability? Maybe!
Suggested Homework: 4.2.1, 4.2.2, 4.2.6, 4.2.7, 4.2.8, 4.2.14, 4.2.17.

END MONDAY \#10

Weak Law of Large Numbers (WLLN)

- Theorem: For any sequence of random variables $X_{1}, X_{2}, X_{3}, \ldots$ which are independent, and each have the same mean μ, and each have variance $\leq v$ for some constant $v<\infty$, if $M_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\ldots+X_{n}\right)$, then $M_{n} \rightarrow \mu$ in probability.
- Proof: We need to understand M_{n} better.
\rightarrow First, by linearity, $\mathrm{E}\left(M_{n}\right)=\frac{1}{n}\left[\mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{2}\right)+\ldots+\mathrm{E}\left(X_{n}\right)\right]=\frac{1}{n}[n \mu]=\mu$.
\rightarrow Then, since the $\left\{X_{n}\right\}$ are independent, $\operatorname{Var}\left(M_{n}\right)=\left(\frac{1}{n}\right)^{2}\left[\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\right.$ $\left.\ldots+\operatorname{Var}\left(X_{n}\right)\right] \leq\left(\frac{1}{n}\right)^{2}[v+v+\ldots+v]=\left(\frac{1}{n}\right)^{2}[n v]=v / n$. (Not just v.)
\rightarrow Now, let $\epsilon>0$, and consider $\mathrm{P}\left(\left|M_{n}-\mu\right| \geq \epsilon\right)$.
\rightarrow Use Chebychev's Inequality! Since $\mathrm{E}\left(M_{n}\right)=\mu$, therefore $\mathrm{P}\left(\left|M_{n}-\mu\right| \geq \epsilon\right) \leq \operatorname{Var}\left(M_{n}\right) / \epsilon^{2} \leq v / n \epsilon^{2}$, which $\rightarrow 0$ as $n \rightarrow \infty$.
\rightarrow So, $M_{n} \rightarrow \mu$ in probability.
- Often assume the $\left\{X_{n}\right\}$ are i.i.d., i.e. independent and identically distributed.
\rightarrow "identically distributed" means the X_{n} all have the same probabilities.
\rightarrow That is, $\mathrm{P}\left(a \leq X_{n} \leq b\right)$ is the same for all n (for any $a<b$).
\rightarrow In particular, the X_{n} all have the same mean μ and variance v.
\rightarrow Fact: If $\left\{X_{n}\right\}$ i.i.d., then the WLLN doesn't even need $v<\infty$.
- e.g. Flip an infinite sequence of fair coins, with $X_{n}=I_{n^{\text {th }} \text { coin Heads }}$.
\rightarrow Then $\left\{X_{n}\right\}$ independent (and i.i.d.), with $\mathrm{E}\left(X_{n}\right)=1 / 2=: \mu$, and $\operatorname{Var}\left(X_{n}\right)=$ $(1 / 2)(1-(1 / 2))=1 / 4=: v<\infty$.
\rightarrow So, if $M_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\ldots+X_{n}\right)$ is the fraction of Heads on the first n fair coin flips, then by WLLN, $M_{n} \rightarrow \mu=1 / 2$ in probability.
\rightarrow Hence, $\mathrm{P}\left(\left|M_{n}-(1 / 2)\right| \geq \epsilon\right) \rightarrow 0$ for all $\epsilon>0$.
\rightarrow e.g. $\epsilon=0.003: \mathrm{P}\left(\left|M_{n}-(1 / 2)\right| \geq 0.003\right) \rightarrow 0$.
\rightarrow So, for all sufficiently large $n, \mathrm{P}\left(\left|M_{n}-(1 / 2)\right| \geq 0.003\right)<0.01$ (say).
\rightarrow In particular, for those $n, \mathrm{P}\left(M_{n}-(1 / 2) \geq 0.003\right)<0.01$, i.e. $\mathrm{P}\left(M_{n} \geq 0.503\right)<$ 0.01 , i.e. $\mathrm{P}\left(M_{n}<0.503\right)>0.99$, etc.
- e.g. Roll an infinite sequence of fair dice, with X_{n} the result of the $n^{\text {th }}$ roll.
\rightarrow Then $\left\{X_{n}\right\}$ independent (and i.i.d.), and $\mathrm{E}\left(X_{n}\right)=3.5=: \mu$.
\rightarrow What about $\operatorname{Var}\left(X_{n}\right)$? Well, $\mathrm{E}\left(X_{n}^{2}\right)=\sum_{x \in \mathbf{R}} x^{2} \mathrm{P}\left(X_{n}=x\right)=\sum_{k=1}^{6} k^{2}(1 / 6)=$ 91/6. So $\operatorname{Var}\left(X_{n}\right)=91 / 6-(3.5)^{2} \doteq 2.92=: v<\infty$.
\rightarrow (Or, simpler: We always have $1 \leq X_{n} \leq 6$, so $\left|X_{n}-3.5\right| \leq 2.5$, so $\operatorname{Var}\left(X_{n}\right)=$ $\mathrm{E}\left(\left|X_{n}-3.5\right|^{2}\right) \leq(2.5)^{2}=: v<\infty$, since we only need the variances to be bounded.)
\rightarrow (Or, even simpler: since $\left\{X_{n}\right\}$ i.i.d., don't need to check variance.)
\rightarrow So, if $M_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\ldots+X_{n}\right)$ is the average value on the first n fair dice, then by WLLN, $M_{n} \rightarrow \mu=3.5$ in probability.
- e.g. Repeatedly take free throws, with independent probability $\theta=1 / 4$ of scoring each time. Let $X_{n}=I_{\text {score on } n^{\text {th }} \text { attempt }}$.
\rightarrow Then $\left\{X_{n}\right\}$ independent, $\mathrm{E}\left(X_{n}\right)=\theta=: \mu$, and $\operatorname{Var}\left(X_{n}\right)=\theta(1-\theta)=: v<\infty$.
\rightarrow So, if $M_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\ldots+X_{n}\right)$ is the fraction of scores on the first n attempts, then by WLLN, $M_{n} \rightarrow \mu=1 / 4$ in probability.
\rightarrow So, after e.g. 1,000 attempts, you will probably have about 250 scores.
- Again repeatedly take free throws, with independent probability $\theta=1 / 4$ of scoring each time. How many attempts to score 500 times?
\rightarrow Let X_{n} be the number of misses just before the $n^{\text {th }}$ score (i.e., in between the $(n-1)^{\text {th }}$ and $n^{\text {th }}$ scores).
\rightarrow Then $X_{n} \sim \operatorname{Geometric}(1 / 4)$, so $\mathrm{E}\left(X_{n}\right)=(1-\theta) / \theta=(3 / 4) /(1 / 4)=3$.
\rightarrow Let $Z_{n}=X_{n}+1$, so Z_{n} is the total number of attempts for the $n^{\text {th }}$ score.
$\rightarrow \mathrm{So}, \mathrm{E}\left(Z_{n}\right)=\mathrm{E}\left(X_{n}\right)+1=4$.
\rightarrow Then, $\mathrm{W}:=$ "\# attempts to score 500 times" $=Z_{1}+Z_{2}+\ldots+Z_{500}$.
\rightarrow Fact: Geometric $(1 / 4)$ has finite variance, which we'll call $v<\infty$.
\rightarrow (Actually $v=(1-\theta) / \theta^{2}$, see Problem 3.3.18, but we don't need that.)
\rightarrow (Or, even simpler: since $\left\{X_{n}\right\}$ and $\left\{Z_{n}\right\}$ i.i.d., don't need to check variance.)
\rightarrow So, if $M_{n}=\frac{1}{n}\left(Z_{1}+Z_{2}+\ldots+Z_{n}\right)$, then by WLLN, $M_{n} \rightarrow 4$ in probability.
\rightarrow So, $M_{500} \approx 4$, i.e. $W:=Z_{1}+Z_{2}+\ldots+Z_{500} \approx(4)(500)=2000$.
\rightarrow So, it will probably take about 2000 attempts to score 500 free throws.
Suggested Homework: 4.2.3, 4.2.4, 4.2.5, 4.2.10, 4.2.11. Optional: 4.2.12, 4.2.13.

Convergence Almost Surely (a.s.) (with Probability 1)

- Why is the above called just the "weak" law of large numbers?
\rightarrow e.g. For a sequence of fair coins, we know $M_{n} \xrightarrow{P} 1 / 2$.
\rightarrow This means that for large n, probably $M_{n} \approx 1 / 2$.
\rightarrow But does this mean the random sequence M_{n} actually converges to $1 / 2$?
\rightarrow What does that sort of convergence even mean?
- e.g. Define a sequence of r.v. $X_{1}, X_{2}, X_{3}, \ldots$ as follows.
$\rightarrow \underline{\text { Most }}$ of the X_{n} are equal to 5 .
\rightarrow However, one of variables $X_{1}, X_{2}, \ldots, X_{9}$ is selected (uniformly at random) and is instead set to be equal to 7 . (But the rest are still equal to 5 .)
\rightarrow And, one of variables $X_{10}, X_{11}, \ldots, X_{99}$ is selected (uniformly at random) and is instead set to be equal to 7 . (But the rest are still equal to 5 .)
\rightarrow And, one of variables $X_{100}, X_{101}, \ldots, X_{999}$ is selected (uniformly at random) and is instead set to be equal to 7 . (But the rest are still equal to 5 .)
\rightarrow And, one of variables $X_{1000}, X_{1001}, \ldots, X_{9999}$ is selected (uniformly at random) and is instead set to be equal to 7 . (But the rest are still equal to 5 .)
\rightarrow And so on. For each $k=1,2,3, \ldots$, one of the X_{n} for those n which have exactly k digits is selected (uniformly at random) and is instead set to be equal to 7 .
\rightarrow So, when we're done, the sequence $X_{1}, X_{2}, X_{3}, \ldots$ looks something like:
$5,5,5,7,5,5,5,5,5,5,5,5, \ldots, 5,5,7,5,5, \ldots \ldots, 5,5,7,5,5, \ldots \ldots \ldots, 5,5,7,5,5, \ldots \ldots \ldots \ldots \ldots$
- Does this sequence $X_{1}, X_{2}, X_{3}, \ldots$ converge to 5 in probability?
\rightarrow Well, for $1 \leq n \leq 9, \mathrm{P}\left(X_{n}=7\right)=1 / 9$ and $\mathrm{P}\left(X_{n}=5\right)=1-[1 / 9]$.
\rightarrow And, for $10 \leq n \leq 99, \mathrm{P}\left(X_{n}=7\right)=1 / 90$ and $\mathrm{P}\left(X_{n}=5\right)=1-[1 / 90]$.
\rightarrow And, for $100 \leq n \leq 999, \mathrm{P}\left(X_{n}=7\right)=1 / 900$ and $\mathrm{P}\left(X_{n}=5\right)=1-[1 / 900]$.
\rightarrow And, for $1000 \leq n \leq 9999, \mathrm{P}\left(X_{n}=7\right)=1 / 9000$ and $\mathrm{P}\left(X_{n}=5\right)=1-[1 / 9000]$.
\rightarrow In general, if n has k digits (in base 10), then we compute that:
$\mathrm{P}\left(X_{n}=7\right)=1 /\left(9 \cdot 10^{k-1}\right)$ and $\mathrm{P}\left(X_{n}=5\right)=1-\left[1 /\left(9 \cdot 10^{k-1}\right]\right.$.
$\rightarrow\left[\right.$ To be fancy, we could write this as: $\left.\mathrm{P}\left(X_{n}=7\right)=1 /\left(9 \cdot 10^{\left\lfloor\log _{10}(n)\right\rfloor}\right).\right]$
\rightarrow The key is that $\lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n}=7\right)=0$ and $\lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n}=5\right)=1$.
\rightarrow Hence, for any $\epsilon>0, \lim _{n \rightarrow \infty} \mathrm{P}\left(\left|X_{n}-5\right| \geq \epsilon\right) \leq \lim _{n \rightarrow \infty} \mathrm{P}\left(\left|X_{n}-5\right| \neq 0\right)=$ $\lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n}=7\right)=0$.
\rightarrow So, yes, $\left\{X_{n}\right\} \rightarrow 5$ in probability, i.e. $X_{n} \xrightarrow{P} 5$.
- Okay, great. But does the actual sequence $\left\{X_{n}\right\}$ actually converge to 5 ?
\rightarrow Recall that it looks something like:
$5,5,5,7,5,5,5,5,5,5,5,5, \ldots, 5,5,7,5,5, \ldots \ldots, 5,5,7,5,5, \ldots \ldots \ldots, 5,5,7,5,5$,
\rightarrow So, even though it usually equals 5 , it still equals 7 infinitely often.
\rightarrow But $X_{n} \rightarrow 5$ as a sequence means: For all $\epsilon>0$, there is $N \in \mathbf{N}$ such that for all $n \geq N$, we have $\left|X_{n}-5\right| \leq \epsilon$.
\rightarrow This cannot ever hold (for any $0<\epsilon<2$), since an infinite number of the X_{n} equal 7, with $\left|X_{n}-5\right|=|7-5|=2>\epsilon$. That is, $X_{n} \rightarrow 5$ as a sequence is impossible!
\rightarrow Conclusion: $\mathrm{P}\left(X_{n} \rightarrow 5\right.$ as a sequence of numbers $)=0$. Can never happen!
- So, just because $X_{n} \xrightarrow{P} 5$, that does not mean that $\mathrm{P}\left(X_{n} \rightarrow 5\right.$ as a sequence $)=1$; that probability could still be 0 . In this sense, convergence in probability is "weak".
- Defn: A sequence $X_{1}, X_{2}, X_{3}, \ldots$ of r.v. converges almost surely or converges a.s. or converges with probability 1 to another r.v. Y if $\mathrm{P}\left(X_{n} \rightarrow Y\right.$ as a sequence $)=1$, i.e. $\mathrm{P}\left(\lim _{n \rightarrow \infty} X_{n}=Y\right)=1$. This is sometimes written as: $X_{n} \xrightarrow{\text { a.s. }} Y$.
- So, in the above example $X_{n} \xrightarrow{P} 5$, but $X_{n} \xrightarrow{\text { a.s. }} 5$. i.e. we do not have $X_{n} \xrightarrow{\text { a.s. }} 5$.
- However, the converse always holds - convergence almost surely is "stronger":
- Theorem: If $X_{n} \xrightarrow{\text { a.s. }} Y$, then $X_{n} \xrightarrow{P} Y$. [That is, if $\left\{X_{n}\right\}$ converges to Y almost surely (i.e. with probability 1), then it also converges to Y in probability.]
- Proof: Fix $\epsilon>0$, and let A_{n} be the event that there is some $m \geq n$ with $\left|X_{m}-Y\right| \geq \epsilon$. That is, $A_{n}=\left\{\exists m \geq n\right.$ with $\left.\left|X_{m}-Y\right| \geq \epsilon\right\}$.
\rightarrow Or, as functions: $A_{n}=\left\{s \in S: \exists m \geq n\right.$ with $\left.\left|X_{m}(s)-Y(s)\right| \geq \epsilon\right\}$.
\rightarrow If $s \in \bigcap_{n=1}^{\infty} A_{n}$, this means we can always find some $m \geq n$ with $\mid X_{m}(s)-$ $Y(s) \mid \geq \epsilon$, i.e. the sequence $\left\{X_{n}(s)\right\}$ does not converge as a sequence to $Y(s)$.
\rightarrow This shows: $\mathrm{P}\left(\left\{X_{n}\right\}\right.$ does not converge as a sequence to $\left.Y\right) \geq \mathrm{P}\left(\bigcap_{n=1}^{\infty} A_{n}\right)$.
\rightarrow But if $X_{n} \xrightarrow{\text { a.s. }} Y$, then $\mathrm{P}\left(\left\{X_{n}\right\}\right.$ does converge as a sequence to $\left.Y\right)=1$, so $\mathrm{P}\left(\left\{X_{n}\right\}\right.$ does not converge as a sequence to $\left.Y\right)=0$. Hence, $\mathrm{P}\left(\bigcap_{n=1}^{\infty} A_{n}\right)=0$.
\rightarrow So what? Well, here $A_{n+1} \subseteq A_{n}$, i.e. the $\left\{A_{n}\right\}$ are decreasing.
\rightarrow So, by Continuity of Probabilities, $\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right)=\mathrm{P}\left(\bigcap_{n=1}^{\infty} A_{n}\right)=0$.
\rightarrow But $\mathrm{P}\left(\left|X_{n}-Y\right| \geq \epsilon\right) \leq \mathrm{P}\left(A_{n}\right)$, so $\lim _{n \rightarrow \infty} \mathrm{P}\left(\left|X_{n}-Y\right| \geq \epsilon\right)=0$.
\rightarrow Since this is true for any $\epsilon>0$, we must have $X_{n} \xrightarrow{P} Y$.
- Intuition from the proof: For all $\epsilon>0$, as $n \rightarrow \infty, \ldots$
\rightarrow For $X \xrightarrow{P} Y$, just need $\mathrm{P}\left(\left|X_{n}-Y\right| \geq \epsilon\right) \rightarrow 0$.
\rightarrow But for $X \xrightarrow{\text { a.s. }} Y$, need $\mathrm{P}\left(\exists m \geq n\right.$ with $\left.\left|X_{m}-Y\right| \geq \epsilon\right) \rightarrow 0$. (Stronger.)
Suggested Homework: 4.3.1, 4.3.2, 4.3.5, 4.3.10, 4.3.16, 4.3.17, 4.3.18, 4.3.19, 4.3.21, 4.3.22.

Strong Law of Large Numbers (SLLN)

- Theorem: For any sequence of random variables $X_{1}, X_{2}, X_{3}, \ldots$ which are i.i.d., each with the same mean μ, if $M_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\ldots+X_{n}\right)$, then $M_{n} \rightarrow \mu$ almost surely (i.e., a.s.) (i.e., with probability 1) (i.e., $M_{n} \xrightarrow{\text { a.s. }} \mu$).
\rightarrow Proof in more advanced books, e.g. http://probability.ca/grprob
\rightarrow Then, of course, also $M_{n} \xrightarrow{P} \mu$, too. (WLLN)
- e.g. Flip an infinite sequence of fair coins, with $X_{n}=I_{n^{\text {th }}}$ coin Heads.
\rightarrow Then $\left\{X_{n}\right\}$ i.i.d., with $\mathrm{E}\left(X_{n}\right)=1 / 2=: \mu$.
\rightarrow So, if $M_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\ldots+X_{n}\right)$ is the fraction of Heads on the first n fair coin flips, then by WLLN, $M_{n} \rightarrow \mu=1 / 2$ in probability.
\rightarrow Hence, for all $\epsilon>0, \mathrm{P}\left(\left|M_{n}-(1 / 2)\right| \geq \epsilon\right) \rightarrow 0$.
\rightarrow So, for all sufficiently large n, i.e. $\mathrm{P}\left(M_{n}<0.503\right)>0.99$, etc.
\rightarrow But the SLLN says more: $\mathrm{P}\left(M_{n} \rightarrow 1 / 2\right)=1$.
\rightarrow So, for all $\epsilon>0, \mathrm{P}\left(\left|M_{n}-0.5\right| \leq \epsilon\right.$ for all sufficiently large $\left.n\right)=1$.
\rightarrow So e.g. $\mathrm{P}\left(M_{n}<0.503\right.$ for all sufficiently large $\left.n\right)=1$.
\rightarrow In particular, $\mathrm{P}\left(\exists n: M_{n}<0.503\right)=1$.
\rightarrow That is, $\mathrm{P}\left(\exists n: X_{1}+X_{2}+\ldots+X_{n}<(0.503) n\right)=1$. etc.
- Try it out in R! File http://probability.ca/Rslln (first choose theta):
$\mathrm{N}=1000 ; \mathrm{M}=\operatorname{rep}(\mathrm{NA}, \mathrm{N}) ; \mathrm{X}=\operatorname{rbinom}(\mathrm{N}, 1$, theta)
for (i in 1:N) M[i] $=\operatorname{mean}(X[1: i])$
plot(M, type='l', col="blue", ylim=c(0,1), xlab="n", ylab="Mn")
abline(h=theta, col="red", lty="dotted")
Suggested Homework: 4.3.3, 4.3.4, 4.3.6, 4.3.7, 4.3.8, 4.3.9, 4.3.11, 4.3.12.

END WEDNESDAY \#10

Central Limit Theorem (CLT)

- Suppose X_{1}, X_{2}, \ldots are independent and identically distributed, each with finite mean μ and finite variance σ^{2}. What can we say about the probabilities of their sum?
\rightarrow Let $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$. So the average is $\frac{1}{n} S_{n}$.
\rightarrow We know that $\frac{1}{n} S_{n} \rightarrow \mu$. But how close?
\rightarrow What is the probability distribution of $\frac{1}{n} S_{n}-\mu$?
- Frequency histograms in R - file http://probability.ca/Rclt (first choose theta):
numrep=1000; $N=1000 ; D=\operatorname{rep}(N A$, numrep)
for (i in 1:numrep) $\{\mathrm{X}=\operatorname{rbinom}(\mathrm{N}, 1$, theta); $\mathrm{D}[\mathrm{i}]=\operatorname{mean}(\mathrm{X})$ - theta $\}$
hist(D, col="blue", xlab="Mn - mean", ylab="frequency", main="", breaks="Free")
- How does the frequency distribution look?
\rightarrow Usually centered near 0 (makes sense).
\rightarrow Width is fairly small (how small?).
\rightarrow Shape is approximately ... normal!?!
- For center, the mean is $\mathrm{E}\left[\frac{1}{n} S_{n}-\mu\right]=\frac{1}{n}(n \mu)-\mu=\mu-\mu=0$. (Of course.)
- For width, let's compute the standard deviation:
\rightarrow Well, since the $\left\{X_{i}\right\}$ are i.i.d., $\operatorname{Var}\left(\frac{1}{n} S_{n}-\mu\right)=\left(\frac{1}{n}\right)^{2} \operatorname{Var}\left(S_{n}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(X_{1}+X_{2}+\right.$ $\left.\ldots+X_{n}\right)=\frac{1}{n^{2}}\left[\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)\right]=\frac{1}{n^{2}}\left[n \operatorname{Var}\left(X_{i}\right)\right]=\frac{1}{n} \operatorname{Var}\left(X_{i}\right)$.
\rightarrow So, if $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, then $\operatorname{Var}\left(\frac{1}{n} S_{n}-\mu\right)=\sigma^{2} / n$. Small! Narrow!
\rightarrow So, $\operatorname{Var}\left(\left[\frac{1}{n} S_{n}-\mu\right] / \sqrt{\sigma^{2} / n}\right)=\operatorname{Var}\left(\frac{1}{n} S_{n}-\mu\right) /\left(\sqrt{\sigma^{2} / n}\right)^{2}=\left(\sigma^{2} / n\right) /\left(\sigma^{2} / n\right)=1$.
- So, let $Z_{n}=\left[\frac{1}{n} S_{n}-\mu\right] / \sqrt{\sigma^{2} / n}=\frac{S_{n}-n \mu}{\sqrt{n} \sigma}$. Then $\mathrm{E}\left(Z_{n}\right)=0$, and $\operatorname{Var}\left(Z_{n}\right)=1$.
\rightarrow Check: $\mathrm{E}\left(S_{n}\right)=n \mu$, and $\operatorname{Sd}\left(S_{n}\right)=\sqrt{n} \sigma$, so $Z_{n}:=\frac{S_{n}-n \mu}{\sqrt{n} \sigma}$ has mean 0 , var 1 .
\rightarrow But is it really approximately normal??
- Theorem (CLT): The probabilities of Z_{n} converge to those of $Z \sim \operatorname{Normal}(0,1)$.
\rightarrow This means that for each $z \in \mathbf{R}, \lim _{n \rightarrow \infty} \mathrm{P}\left(Z_{n} \leq z\right)=\mathrm{P}(Z \leq z)$.
\rightarrow i.e. $F_{Z_{n}}(z) \rightarrow F_{Z}(z)=: \Phi(z)$ for all $z \in \mathbf{R}$. (Convergence in distribution)
\rightarrow Equivalently, $\lim _{n \rightarrow \infty} \mathrm{P}\left(S_{n} \leq n \mu+\sqrt{n} \sigma z\right)=\mathrm{P}(Z \leq z) \equiv \Phi(z)$.
\rightarrow Or, $\lim _{n \rightarrow \infty} \mathrm{P}\left(\frac{1}{n} S_{n} \leq \mu+\frac{\sigma}{\sqrt{n}} z\right)=\mathrm{P}(Z \leq z) \equiv \Phi(z) . \quad($ e.g. $z=0: \lim =1 / 2)$
\rightarrow Equivalently, $\frac{S_{n}-n \mu}{\sqrt{n} \sigma} \approx Z$, and $\frac{1}{n} S_{n} \approx \mu+\frac{\sigma}{\sqrt{n}} Z$, where $Z \sim \operatorname{Normal}(0,1)$.
\rightarrow So, not only does $\frac{1}{n} S_{n}$ converge to μ (which we already knew from the Laws of Large Numbers), but its deviations from μ are $O(1 / \sqrt{n})$, with normal probabilities.
- Idea of proof: Use "moment-generating functions". (Textbook: Section 3.4.)
\rightarrow For any random variable X, its moment-generating function is the function $m_{X}(s)$ defined by $m_{X}(s)=\mathrm{E}\left[e^{s X}\right]$ for all $s \in \mathbf{R}$.
\rightarrow Assume that $m_{X}(s)<\infty$, at least in a neighbourhood of $s=0$.
\rightarrow (If not, can instead use the characteristic function $c_{X}(s)=\mathrm{E}\left[e^{i s X}\right]$ where $i=\sqrt{-1} \ldots$ similar but more complicated \ldots)
\rightarrow Useful properties, e.g. $m_{X}^{\prime}(s)=\frac{d}{d s} m_{X}(s)=\frac{d}{d s} \mathrm{E}\left[e^{s X}\right]=\mathrm{E}\left[\frac{\partial}{\partial s} e^{s X}\right]=\mathrm{E}\left[X e^{s X}\right]$, so $m_{X}^{\prime}(0)=\mathrm{E}[X]$. Similarly $m_{X}^{\prime \prime}(0)=\mathrm{E}\left[X^{2}\right], m_{X}^{\prime \prime \prime}(0)=\mathrm{E}\left[X^{3}\right]$, and in general for any $k \in \mathbf{N}$ we have $m_{X}^{(k)}(0)=\mathrm{E}\left[X^{k}\right]$. ("moments")
\rightarrow We need one key property: If $\lim _{n \rightarrow \infty} m_{X_{n}}(s)=m_{X}(s)$ for all s, at least in a neighbourhood of $s=0$, then for all $x \in \mathbf{R}, \lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n} \leq x\right)=\mathrm{P}(X \leq x)$, i.e.
$\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$, i.e. X_{n} converges to X in distribution.
\rightarrow Oh, also, if X and Y are independent, then $m_{X+Y}(s)=\mathrm{E}\left[e^{s(X+Y)}\right]=\mathrm{E}\left[e^{s X} e^{s Y}\right]=$ $\mathrm{E}\left[e^{s X}\right] \mathrm{E}\left[e^{s Y}\right]=m_{X}(s) m_{Y}(s)$.
- So, how can we prove the Central Limit Theorem?
\rightarrow Show that $\mathrm{E}\left(e^{s Z_{n}}\right) \rightarrow \mathrm{E}\left(e^{s Z}\right)$ for all $s \in \mathbf{R}$, where $Z \sim \operatorname{Normal}(0,1)$.
- For starters, if $Z \sim \operatorname{Normal}(0,1)$, then $m_{Z}(s)=\mathrm{E}\left[e^{s Z}\right]=\int_{-\infty}^{\infty} e^{s z} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z=$ $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{s z-\left(z^{2} / 2\right)} d z=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-(z-s)^{2} / 2+\left(s^{2} / 2\right)} d z=e^{s^{2} / 2} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-(z-s)^{2} / 2} d z$.
$\rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-(z-s)^{2} / 2} d z=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-w^{2} / 2} d w=1$, so $m_{Z}(s)=e^{s^{2} / 2}(1)=e^{s^{2} / 2}$.
- So, we need to show that $m_{Z_{n}}(s):=\mathrm{E}\left(e^{s Z_{n}}\right) \rightarrow e^{s^{2} / 2}$ for all $s \in \mathbf{R}$.
- Let $Y_{i}=\left(X_{i}-\mu\right) / \sigma$, so also i.i.d., with $\mathrm{E}\left(Y_{i}\right)=0$, and $\operatorname{Var}\left(Y_{i}\right)=\sigma^{2} / \sigma^{2}=1$.
\rightarrow Then $Z_{n}=\frac{S_{n}-n \mu}{\sqrt{n} \sigma}=\frac{\left(X_{1}+X_{2}+\ldots+X_{n}\right)-n \mu}{\sqrt{n} \sigma}=\frac{1}{\sqrt{n}}\left(Y_{1}+Y_{2}+\ldots+Y_{n}\right)$.
\rightarrow So, $m_{Z_{n}}(s)=m_{\frac{1}{\sqrt{n}}\left(Y_{1}+Y_{2}+\ldots+Y_{n}\right)}(s)=m_{\frac{1}{\sqrt{n}} Y_{1}}(s) \ldots m_{\frac{1}{\sqrt{n}} Y_{n}}(s)$.
\rightarrow Then, since $\left\{Y_{n}\right\}$ are i.i.d., $m_{Z_{n}}(s)=\left[m_{\frac{1}{\sqrt{n}} Y_{1}}(s)\right]^{n}$.
\rightarrow But $m_{\frac{1}{\sqrt{n}} Y_{1}}(s)=\mathrm{E}\left[e^{s\left(\frac{1}{\sqrt{n}} Y_{1}\right)}\right]=\mathrm{E}\left[e^{(s / \sqrt{n}) Y_{1}}\right]=m_{Y_{1}}(s / \sqrt{n})$.
\rightarrow So, $m_{Z_{n}}(s)=\left[m_{\frac{1}{\sqrt{n}} Y_{1}}(s)\right]^{n}=\left[m_{Y_{1}}(s / \sqrt{n})\right]^{n}$.
- Now, $m_{Y_{1}}(0)=\mathrm{E}\left[e^{0 Y_{1}}\right]=\mathrm{E}\left[e^{0}\right]=1$.
\rightarrow And, $m_{Y_{1}}^{\prime}(0)=\mathrm{E}\left[Y_{1}\right]=0$.
\rightarrow And, $m_{Y_{1}}^{\prime \prime}(0)=\mathrm{E}\left[\left(Y_{1}\right)^{2}\right]=\operatorname{Var}\left(Y_{1}\right)=1$.
\rightarrow Then we can use a Taylor series expansion around $s=0$:
\rightarrow For small $s, m_{Y_{1}}(s) \approx 1+0 \cdot s+1 \cdot \frac{s^{2}}{2!}+O\left(s^{3}\right) \approx 1+\frac{s^{2}}{2}+O\left(s^{3}\right)$.
\rightarrow Hence, as $n \rightarrow \infty, m_{Y_{1}}(s / \sqrt{n}) \approx 1+\frac{(s / \sqrt{n})^{2}}{2}=1+\frac{s^{2}}{2 n}+O\left(n^{-3 / 2}\right)$.
$\rightarrow \mathrm{So}, m_{Z_{n}}(s)=\left[m_{Y_{1}}(s / \sqrt{n})\right]^{n} \approx\left[1+\frac{s^{2}}{2 n}+O\left(n^{-3 / 2}\right)\right]^{n}$.
- Finally, for any $a \in \mathbf{R}$, as $n \rightarrow \infty,\left[1+\frac{a}{n}\right]^{n} \rightarrow e^{a}$.
\rightarrow Hence, $m_{Z_{n}}(s)=\left[m_{Y_{1}}(s / \sqrt{n})\right]^{n} \approx\left[1+\frac{s^{2}}{2 n}\right]^{n} \rightarrow e^{s^{2} / 2}$, as required.

END MONDAY \#11

Normal Approximations

- Okay, so we know that as $n \rightarrow \infty, \mathrm{P}\left(\frac{S_{n}-n \mu}{\sqrt{n} \sigma} \leq z\right) \rightarrow \Phi(z)$.
- Hence, for "reasonably large" n, we must have $\mathrm{P}\left(\frac{S_{n}-n \mu}{\sqrt{n} \sigma} \leq z\right) \approx \Phi(z)$.
\rightarrow How large? Depends on the distribution of the X_{i}.
\rightarrow Rough "rule of thumb": Pretty good approximation if $n \geq 30 \ldots$
- Example: Suppose $\left\{X_{n}\right\}$ are i.i.d. \sim Poisson(4).
\rightarrow What is a good approximation to $\mathrm{P}\left(X_{1}+X_{2}+\ldots+X_{900} \geq 3700\right)$?
\rightarrow Here $\mu:=\mathrm{E}\left(X_{i}\right)=\lambda=4$, and $\sigma:=\operatorname{Sd}\left(X_{i}\right)=\sqrt{\operatorname{Var}\left(X_{i}\right)}=\sqrt{\lambda}=2$.
\rightarrow Let $S_{900}=X_{1}+X_{2}+\ldots+X_{900}$.
\rightarrow Then $\mathrm{P}\left(X_{1}+X_{2}+\ldots+X_{900} \geq 3700\right)=\mathrm{P}\left(S_{900} \geq 3700\right)$

$$
=\mathrm{P}\left(\frac{S_{900}-900(4)}{\sqrt{900}(2)} \geq \frac{3700-900(4)}{\sqrt{900}(2)}\right)=\mathrm{P}\left(\frac{S_{900}-900(4)}{\sqrt{900}(2)} \geq 5 / 3\right)
$$

$=\mathrm{P}\left(Z_{900} \geq 5 / 3\right) \approx \mathrm{P}(Z \geq 5 / 3)=\mathrm{P}(Z \leq-5 / 3)=\Phi(-5 / 3) \doteq 0.0478$.
\rightarrow Here the value of $\Phi(-5 / 3)$ can found from software [e.g. "pnorm $(-5 / 3)$ " in R$]$, or from a table like Table D.2. (Both use numerical integration.)
\rightarrow [On an exam, if there is no table, you could just leave it as " $\Phi(-2)$ ".]

- Example: Suppose $\left\{X_{n}\right\}$ are independent, each \sim Uniform $[2,5]$.
\rightarrow What is a good approximation to $\mathrm{P}\left(X_{1}+X_{2}+\ldots+X_{400} \leq 1420\right)$?
\rightarrow Here $\mu:=\mathrm{E}\left(X_{i}\right)=(2+5) / 2=3.5$, and $\sigma:=\operatorname{Sd}\left(X_{i}\right)=\sqrt{\operatorname{Var}\left(X_{i}\right)}=$ $\sqrt{(5-2)^{2} / 12} \doteq 0.866$.
\rightarrow Let $S_{400}=X_{1}+X_{2}+\ldots+X_{400}$.
\rightarrow Hence, $\mathrm{P}\left(X_{1}+X_{2}+\ldots+X_{400} \leq 1420\right)=\mathrm{P}\left(S_{400} \leq 1420\right)$

$$
\begin{aligned}
& =\mathrm{P}\left(\frac{S_{400}-400(3.5)}{\sqrt{400}(0.866)} \leq \frac{1420-400(3.5)}{\sqrt{400}(0.866)}\right) \doteq \mathrm{P}\left(\frac{S_{400}-400(3.5)}{\sqrt{400}(0.866)} \leq 1.15\right) \\
& \approx \mathrm{P}(Z \leq 1.15)=\Phi(1.15)=1-\Phi(-1.15) \doteq 1-0.1251=0.8749 .
\end{aligned}
$$

Suggested Homework: 4.4.5, 4.4.6, 4.4.7, 4.4.12, 4.4.13, 4.4.22, 4.4.23.

Estimation and Confidence Intervals

- Fact: $\Phi(-1.96) \doteq 0.025$. So, if $Z \sim \operatorname{Normal}(0,1)$, then $\mathrm{P}(Z \leq-1.96) \doteq 0.025$, and $\mathrm{P}(Z \geq+1.96) \doteq 0.025$, so $\mathrm{P}(-1.96 \leq Z \leq+1.96) \doteq 1-0.025-0.025=0.95$:

\rightarrow That is, Z will be between -1.96 and +1.96 with probability 0.95 , or 95%, or "19 times out of 20 ".
- So, if $\frac{S_{n}-n \mu}{\sqrt{n} \sigma} \approx Z$, then $\mathrm{P}\left(-1.96 \leq \frac{S_{n}-n \mu}{\sqrt{n} \sigma} \leq+1.96\right) \approx 0.95$, too.
- Probability interpretation: $\mathrm{P}\left(n \mu-1.96 \sqrt{n} \sigma \leq S_{n} \leq n \mu+1.96 \sqrt{n} \sigma\right) \approx 0.95$.
\rightarrow Tells us the probabilities for S_{n}, if we know μ and σ.
- e.g. If $\left\{X_{n}\right\}$ i.i.d. $\sim \operatorname{Exponential(5),~then~} \mu=1 / 5$ and $\sigma=1 / 5$, so if $S_{n}=$ $X_{1}+X_{2}+\ldots+X_{n}$, then $\mathrm{P}\left(\frac{1}{5}(n-1.96 \sqrt{n}) \leq S_{n} \leq \frac{1}{5}(n+1.96 \sqrt{n}) \approx 0.95\right.$.
\rightarrow So e.g. with $n=200$, we get $\mathrm{P}\left(34.45 \leq X_{1}+X_{2}+\ldots+X_{200} \leq 45.54\right) \approx 0.95$.
\rightarrow That is, $X_{1}+X_{2}+\ldots+X_{200}$ will "usually" be in the interval [34.5, 45.5].
\rightarrow Try it in R: sum $(\operatorname{rexp}(200,5))$
- Statistics interpretation: $\mathrm{P}\left(\frac{1}{n} S_{n}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \frac{1}{n} S_{n}+1.96 \frac{\sigma}{\sqrt{n}}\right) \approx 0.95$.
\rightarrow Different perspective: Trying to "estimate" μ, if we know S_{n} (and σ ?).
\rightarrow Statistics: Observe the variable values, then estimate the parameter(s).
\rightarrow By LLN, a good estimate of μ is $M_{n}:=\frac{1}{n} S_{n}$. But how accurate is it?
- Well, if $M_{n}:=\frac{1}{n} S_{n}$, then $\mathrm{P}\left(M_{n}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq M_{n}+1.96 \frac{\sigma}{\sqrt{n}}\right) \approx 0.95$.
\rightarrow Sometimes write $\bar{X}_{n}:=\frac{1}{n} S_{n}$, so $\mathrm{P}\left(\bar{X}_{n}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}_{n}+1.96 \frac{\sigma}{\sqrt{n}}\right) \approx 0.95$.
- Example: Suppose $X_{1}, X_{2}, \ldots, X_{500} \sim$ Uniform $[a-1, a+1]$.
\rightarrow Suppose we observe the values $X_{1}, X_{2}, \ldots, X_{500}$, but a is unknown.
\rightarrow Well, here $n=500$, and $\mu=\mathrm{E}\left[X_{i}\right]=[(a-1)+(a+1)] / 2=a$.
\rightarrow Also $\sigma=\operatorname{Sd}\left(X_{i}\right)=\sqrt{[R-L]^{2} / 12}=\sqrt{[(a+1)-(a-1)]^{2} / 12}=\sqrt{1 / 3} \doteq 0.577$.
\rightarrow But if $M_{n}:=\frac{1}{n} S_{n}$, then $\mathrm{P}\left(M_{n}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq M_{n}+1.96 \frac{\sigma}{\sqrt{n}}\right) \approx 0.95$.
\rightarrow Hence, $\mathrm{P}\left(M_{500}-1.96 \frac{0.577}{\sqrt{500}} \leq a \leq M_{500}+1.96 \frac{0.577}{\sqrt{500}}\right) \approx 0.95$.
\rightarrow That is, $\mathrm{P}\left(M_{500}-0.051 \leq a \leq M_{500}+0.051\right) \approx 0.95$.
\rightarrow Hence, a will "usually" be in the interval $\left[M_{500}-0.051, M_{500}+0.051\right]$.
- In the above example, suppose we observe that $X_{1}+X_{2}+\ldots+X_{500}=29$.
\rightarrow Then $M_{500}=\frac{29}{500} \doteq 0.058$, so $\left[M_{500}-0.051, M_{500}+0.051\right]=[0.007,0.109]$.
\rightarrow Can we say that $\mathrm{P}(0.007 \leq a \leq 0.109) \approx 0.95$?
\rightarrow Not really, since a is not random (just unknown) - so no probabilities!
\rightarrow And yet, we're still fairly "confident" that a is in [0.007, 0.109].
\rightarrow Here, $[0.007,0.109]$ is called a 95% confidence interval for a.
\rightarrow [Aside: Alternative "Bayesian" perspective treats parameters like a as random.]
- In general, recall that $\mathrm{P}\left(\frac{1}{n} S_{n}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \frac{1}{n} S_{n}+1.96 \frac{\sigma}{\sqrt{n}}\right) \approx 0.95$.
\rightarrow Hence, $\left[\frac{1}{n} S_{n}-1.96 \frac{\sigma}{\sqrt{n}}, \frac{1}{n} S_{n}+1.96 \frac{\sigma}{\sqrt{n}}\right]$ is a 95% confidence interval for μ.
- The value 95% is "usual", but other values are also possible. (e.g. 99%, etc.)
\rightarrow e.g. $\Phi(-3) \doteq 0.00135$, so $\mathrm{P}(-3 \leq Z \leq 3) \doteq 1-0.00135-0.00135=0.9973$.
\rightarrow So, $\mathrm{P}\left(\frac{1}{n} S_{n}-3 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \frac{1}{n} S_{n}+3 \frac{\sigma}{\sqrt{n}}\right) \approx 0.9973$. (textbook: "virtual certainty")
\rightarrow Hence, $\left[\frac{1}{n} S_{n}-3 \frac{\sigma}{\sqrt{n}}, \frac{1}{n} S_{n}+3 \frac{\sigma}{\sqrt{n}}\right]$ is a 99.73% confidence interval for μ.
- Suppose now that $Y \sim \operatorname{Binomial}(n, \theta)$.
\rightarrow Then we can think of Y as $Y=X_{1}+X_{2}+\ldots+X_{n}$ where each $X_{i} \sim \operatorname{Bernoulli}(\theta)$ and they are independent. (e.g. $X_{i}=1$ if you score on the $i^{\text {th }}$ free throw, otherwise 0)
\rightarrow So, $M_{n}=\frac{1}{n} Y$, and $\mu=\theta$, and $\sigma=\sqrt{\theta(1-\theta)}$.
\rightarrow Suppose θ is unknown. 95% confidence interval?
\rightarrow Well, we know that $\mathrm{P}\left(M_{n}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq M_{n}+1.96 \frac{\sigma}{\sqrt{n}}\right) \approx 0.95$.
\rightarrow That is, $\mathrm{P}\left(M_{n}-1.96 \sqrt{\theta(1-\theta) / n} \leq \theta \leq M_{n}+1.96 \sqrt{\theta(1-\theta) / n}\right) \approx 0.95$.
\rightarrow So, $\left[M_{n}-1.96 \sqrt{\theta(1-\theta) / n}, M_{n}+1.96 \sqrt{\theta(1-\theta) / n}\right]$ is 95% confidence interval.
\rightarrow Problem: θ is unknown! What to do?
\rightarrow Usual solution: By LLN, probably $M_{n} \approx \theta$. So, approximate the true standard deviation $\sigma=\sqrt{\theta(1-\theta)}$ by the estimate $\sigma_{n}:=\sqrt{M_{n}\left(1-M_{n}\right)}$. ("standard error")
\rightarrow So, use the interval $\left[M_{n}-1.96 \sqrt{M_{n}\left(1-M_{n}\right) / n}, M_{n}+1.96 \sqrt{M_{n}\left(1-M_{n}\right) / n}\right]$.
\rightarrow [Aside: sometimes "standard error" is taken to mean the estimate of σ divided by \sqrt{n}, e.g. $\sqrt{M_{n}\left(1-M_{n}\right) / n}$. So, best to just say "estimate of σ ".]
- Aside. Alternative solution: always have $\theta(1-\theta) \leq(1 / 2)(1 / 2)=1 / 4$.
\rightarrow So, use the "conservative" interval $\left[M_{n}-1.96 / 2 \sqrt{n}, M_{n}+1.96 / 2 \sqrt{n}\right]$ instead.
\rightarrow (Here "conservative" means the interval is a little bit larger than necessary, i.e. the probability that μ will be within the interval is a little bit more than 95%. So, the interval is slightly "wasteful", but still okay and useful, and more reliable.)
- Now, the above discussion is in terms of general n and $S_{n}\left(\right.$ or $M_{n}:=S_{n} / n$).
\rightarrow If we observe a specific value of S_{n} for some specific n, then we can get a specific quantitative confidence interval.
- Example: Suppose you're shooting free throws, and score 86 out of 250 of them.
\rightarrow The number of scores is $S_{250} \sim \operatorname{Binomial}(250, \theta)$, with θ unknown.
\rightarrow Here $n=250$, and $\mu=\theta$ (unknown).
\rightarrow Also $\sigma=\sqrt{\theta(1-\theta)}$, unknown. (But $\leq 1 / 2$.)
\rightarrow So, if $M_{n}:=\frac{1}{n} S_{n}$, then $\mathrm{P}\left(M_{n}-1.96 \frac{\sigma}{\sqrt{n}} \leq \theta \leq M_{n}+1.96 \frac{\sigma}{\sqrt{n}}\right) \approx 0.95$.
\rightarrow Hence, $\mathrm{P}\left(M_{250}-1.96 \sqrt{\theta(1-\theta) / 250} \leq \theta \leq M_{250}+1.96 \sqrt{\theta(1-\theta) / 250}\right) \approx 0.95$.
$\rightarrow 95 \%$ confidence interval: $\left[M_{250}-1.96 \sqrt{\theta(1-\theta) / 250}, M_{250}+1.96 \sqrt{\theta(1-\theta) / 250}\right]$.
\rightarrow Usual solution: $\theta \approx 86 / 250 \doteq 0.344$, so $\theta(1-\theta) \doteq 0.344(1-0.344) \doteq 0.226$.
\rightarrow Then $M_{250}-1.96 \sqrt{\theta(1-\theta) / 250} \doteq(86 / 250)-1.96 \sqrt{0.226 / 250} \doteq 0.285$.
\rightarrow And, $M_{250}+1.96 \sqrt{\theta(1-\theta) / 250} \doteq(86 / 250)+1.96 \sqrt{0.226 / 250} \doteq 0.403$.
\rightarrow Hence, $[0.285,0.403]$ is a 95% confidence interval for θ.
- Aside. Alternative conservative solution in above example: Use that $\theta(1-\theta) \leq 1 / 4$.
\rightarrow So, $M_{250}-1.96 \sqrt{\theta(1-\theta) / 250} \geq(86 / 250)-1.96 / 2 \sqrt{250} \doteq 0.282$.
\rightarrow And, $M_{250}+1.96 \sqrt{\theta(1-\theta) / 250} \leq(86 / 250)-1.96 / 2 \sqrt{250} \doteq 0.406$.
\rightarrow Hence, $[0.282,0.406]$ is a "conservative" 95% confidence interval for θ.
Suggested Homework: 4.5.4, 4.5.7, 4.5.8, 4.5.9, 4.5.10, and the following.
Q1. Suppose $Y \sim \operatorname{Binomial}(600, \theta)$, where θ is unknown. Suppose we observe that there were 483 out of 600 successes. Based on these observations, compute a 95% confidence interval for θ, and also a 99.73% confidence interval for θ.
Q2. Suppose $\left\{X_{n}\right\}$ are i.i.d. $\sim \operatorname{Uniform}[\mu-5, \mu+5]$, where μ is unknown. Compute a 95% confidence interval for μ, both:
(a) in terms of general n and S_{n}.
(b) based on the observation that $X_{1}+X_{2}+\ldots+X_{64}=300$.

Q3. Suppose $\left\{X_{n}\right\}$ are i.i.d. $\sim \operatorname{Exponential}(\lambda)$, where λ is unknown. Compute a 95% confidence interval for λ. [Hint: What is μ ? And, how to approximate σ ?]
Q4. Suppose $\left\{X_{n}\right\}$ are i.i.d. $\sim \operatorname{Poisson}(\lambda)$, where λ is unknown. Compute a 95% confidence interval for λ. [Recall that Poisson (λ) has mean λ and variance λ.]
Q5. Suppose $\left\{X_{n}\right\}$ are i.i.d. $\sim \operatorname{Uniform}[0, a]$, where a is unknown. Compute a 95% confidence interval for a. [Hint: What are μ and σ in terms of a ?]

Monte Carlo Approximations

- e.g. Suppose $U \sim \operatorname{Uniform}[0,1]$. What is $\mu:=\mathrm{E}\left(U^{3}\left[\sin \left(U^{4}\right)+\cos \left(U^{5}\right)\right] e^{-U^{6}}\right)$?
\rightarrow In principle, this equals $\int_{0}^{1} u^{3}\left[\sin \left(u^{4}\right)+\cos \left(u^{5}\right)\right] e^{-u^{6}} d u$. How to compute??
\rightarrow One method: Use a "Monte Carlo algorithm". What is that?
\rightarrow A wealthy region in Monaco with yachts and a big casino?

\rightarrow A nice place for a conference?

\rightarrow Well, yes . . . but also a method of computing by using randomness.
\rightarrow To compute $\mu:=\mathrm{E}\left(U^{3}\left[\sin \left(U^{4}\right)+\cos \left(U^{5}\right)\right] e^{-U^{6}}\right)$, first generate i.i.d. random values $U_{1}, U_{2}, \ldots, U_{n} \sim \operatorname{Uniform}[0,1]$ on a computer.
\rightarrow Then set $X_{i}=U_{i}^{3}\left[\sin \left(U_{i}^{4}\right)+\cos \left(U_{i}^{5}\right)\right] e^{-U_{i}^{6}}$, for $i=1,2,3, \ldots$.
\rightarrow Since the $\left\{U_{i}\right\}$ are i.i.d., therefore the $\left\{X_{i}\right\}$ are i.i.d. too.
\rightarrow Now, recall that $\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$. Hence, $\mathrm{E}\left(X_{i}\right):=\mathrm{E}\left(U_{i}^{3}\left[\sin \left(U_{i}^{4}\right)+\right.\right.$ $\left.\left.\left.\cos \left(U_{i}^{5}\right)\right] e^{-U_{i}^{5}}\right)\right]=\int_{0}^{1} u^{3}\left[\sin \left(u^{4}\right)+\cos \left(u^{5}\right)\right] e^{-u^{6}}(1) d u \equiv \mu$ for each i.
\rightarrow Hence, if $M_{n}=\frac{1}{n} S_{n}:=\frac{1}{n}\left(X_{1}+X_{2}+\ldots+X_{n}\right)$, then $M_{n} \approx \mu$ for large n.
\rightarrow That is, M_{n} (observed) is a good estimate of μ (unknown).
$\rightarrow \mathrm{I}$ ran it in R , with $n=50,000$:
$\mathrm{U}=\operatorname{runif}(50000)$; sum(U^3*(sin(U^4)+cos(U^5))*exp(-U^6)) / 50000
$\rightarrow \mathrm{I}$ got $S_{50000}=11319.6$, which gives estimate $=M_{n}=11319.6 / 50000 \doteq 0.2264$.
\rightarrow Accurate??
- Well, $\left[\frac{1}{n} S_{n}-1.96 \frac{\sigma}{\sqrt{n}}, \frac{1}{n} S_{n}+1.96 \frac{\sigma}{\sqrt{n}}\right]$ is a 95% confidence interval for μ.
$\rightarrow \sigma$ unknown, but $\left|X_{n}\right| \leq 2$, so $\sigma^{2}:=\operatorname{Var}\left(X_{n}\right) \leq \mathrm{E}\left[\left(X_{n}\right)^{2}\right] \leq 4$, and $\sigma \leq 2$.
\rightarrow So, $\left[\frac{1}{n} S_{n}-1.96 \frac{2}{\sqrt{n}}, \frac{1}{n} S_{n}+1.96 \frac{2}{\sqrt{n}}\right]$ is a 95% confidence interval.
\rightarrow In our case, this works out to:
$=\left[\frac{1}{50000}(11319.6)-1.96 \frac{2}{\sqrt{50000}}, \frac{1}{50000}(11319.6)+1.96 \frac{2}{\sqrt{50000}}\right] \doteq[0.209,0.244]$.
\rightarrow So, $\underline{95 \%}$ confident that $\mu:=\mathrm{E}\left[U^{3}\left(\sin \left(U^{4}\right)+\cos \left(U^{5}\right)\right) e^{-U^{6}}\right] \in[0.209,0.244]$.
\rightarrow Of course, μ isn't really random. Good estimate? Inside interval??
\rightarrow Numerical integration in Mathematica: $\mu \doteq 0.2258 \approx M_{n}$. Yes, inside! Good!
- Can also use Monte Carlo to estimate the value of integrals!
\rightarrow Idea: first re-write the integral as an expected value.
- e.g. Compute $I:=\int_{0}^{1} e^{\cos (x)} d x$.
\rightarrow Use calculus? Too hard! (No closed-form solution?)
\rightarrow Instead, note that $I=\mathrm{E}\left[e^{\cos (U)}\right]$ where $U \sim$ Uniform $[0,1]$.
$\rightarrow \mathrm{So}$, as before, first generate random i.i.d. values $U_{1}, U_{2}, \ldots, U_{n} \sim \operatorname{Uniform}[0,1]$.
\rightarrow Then set $X_{i}=e^{\cos \left(U_{i}\right)}$, so $\mu:=\mathrm{E}\left[X_{i}\right]=I$. And $\sigma \leq \sqrt{\mathrm{E}\left[\left(X_{i}\right)^{2}\right]} \leq \sqrt{e^{2}}=e$.
\rightarrow Then $\frac{1}{n} S_{n} \approx \mu$, so $\frac{1}{n} S_{n}$ gives a good estimate of I.
\rightarrow And, $\left[\frac{1}{n} S_{n}-1.96 \frac{e}{\sqrt{n}}, \frac{1}{n} S_{n}+1.96 \frac{e}{\sqrt{n}}\right]$ is a conservative 95% conf. int. for I.
- Many other integrals can also be converted to expected values:
\rightarrow e.g. $\int_{5}^{8} \cos \left(x^{7}\right) d x=\int_{5}^{8}\left[3 \cos \left(x^{7}\right)\right] \frac{1}{3} d x=\mathrm{E}\left[3 \cos \left(X^{7}\right)\right]$ where $X \sim$ Uniform $[5,8]$.
\rightarrow e.g. $\int_{0}^{\infty} \cos \left(x^{7}\right) e^{-5 x} d x=\int_{0}^{\infty}\left[\frac{1}{5} \cos \left(x^{7}\right)\right] 5 e^{-5 x} d x=\mathrm{E}\left[\frac{1}{5} \cos \left(Y^{7}\right)\right]$ where $Y \sim$ Exponential(5).
\rightarrow e.g. $\int_{-\infty}^{\infty} \cos \left(x^{7}\right) e^{-x^{2} / 2} d x=\int_{-\infty}^{\infty}\left[\sqrt{2 \pi} \cos \left(x^{7}\right)\right] \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x=\mathrm{E}\left[\sqrt{2 \pi} \cos \left(Z^{7}\right)\right]$ where $Z \sim \operatorname{Normal}(0,1)$.
\rightarrow And sums too, e.g. $\sum_{j=0}^{\infty} \cos \left(j^{7}\right)(2 / 3)^{j}=\sum_{j=0}^{\infty}\left[3 \cos \left(j^{7}\right)\right][1-(1 / 3)]^{j}(1 / 3)=$ $\mathrm{E}\left[3 \cos \left(X^{7}\right)\right]$ where $X \sim \operatorname{Geometric}(1 / 3)$.
\rightarrow etc. And then each one can be approximated by similar Monte Carlo, too!

World's Oldest Monte Carlo: Buffon's Needle

- A Monte Carlo method from 1733, to compute the value of π !
- Suppose we toss a needle randomly onto a lined surface.
\rightarrow Suppose the needle length L is equal to the space between the lines.
\rightarrow Try it out in R: source("http://probability.ca/mc/Rbuffon"); buffon()
- What is the probability that a needle will touch a line?
\rightarrow Well, let α be the angle that the needle makes with the line direction.
\rightarrow Then in terms of α, the needle covers vertical distance $L \sin (\alpha)$.
\rightarrow So, the probability it touches a line is $\frac{L \sin (\alpha)}{L}=\sin (\alpha)$.
\rightarrow e.g. If $\alpha=0^{\circ}$, then prob $=0$. If $\alpha=90^{\circ}, \operatorname{prob}=1$. If $\alpha=30^{\circ}$, prob $=1 / 2$.
\rightarrow But this depends on α, which is random. Need to average!
- That is, the probability that the needle will touch the line is equal to the average value of $\sin (\alpha)$, as α ranges over all of its possible (random) values.
\rightarrow Here $\alpha \sim$ Uniform $\left[0^{\circ}, 180^{\circ}\right]$, i.e. $\alpha \sim$ Uniform $[0, \pi]$ in radians.
\rightarrow So, P (needle touches line) $=\mathrm{E}[\sin (\alpha)]=\frac{1}{\pi} \int_{0}^{\pi} \sin (x) d x=\left.\frac{1}{\pi}[-\cos (x)]\right|_{x=0} ^{x=\pi}$
$=\frac{1}{\pi}[-\cos (\pi)+\cos (0)]=\frac{1}{\pi}[-(-1)+(1)]=2 / \pi . \quad$ (Depends on $\left.\pi!\right)$
- Suppose we throw a large number N of needles, of which M touch a line.
\rightarrow Then, we know that each one had success probability $\theta=2 / \pi$.
\rightarrow So, for large N, we should have $M / N \approx \theta=2 / \pi$.
\rightarrow This means that $\pi \approx 2 N / M$, so $2 N / M$ is a possible estimate of π.
\rightarrow This is a Monte Carlo method to approximately compute π !
\rightarrow Try it out in R: source("http://probability.ca/mc/Rbuffon"); buffon()
- First proposed by George-Louis Leclerc, Comte de Buffon, back in 1733 (!).
- In 1864, injured civil war Captain O.C. Fox experimented three times:
$\rightarrow \# 1: \mathrm{N}=500$, est $=3.1780$. \#2: $\mathrm{N}=530$, est $=3.1423$. \#3: $\mathrm{N}=590$, est $=3.1416$.
- (See the textbook Challenge 4.5.25 and Discussion 4.5.28.)
- Aside: There are other, better ways to estimate π :
$\rightarrow \pi / 4=\arctan (1)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots . \quad$ [trigonometry / calculus]
$\rightarrow \pi=3+\frac{4}{2 \cdot 3 \cdot 4}+\frac{4}{4 \cdot 5 \cdot 6}+\frac{4}{6 \cdot 7 \cdot 8}+\frac{4}{8 \cdot 9 \cdot 10}+\ldots . \quad$ [Nilakantha, India, 1444-1550]
\rightarrow But Buffon's Needle is more fun. And it uses probabilities!

Distributions Related to the Normal

- Because of the CLT, the normal distribution is extremely important!
\rightarrow Nearly everything becomes approximately normal for large n.
- So, other distributions related to the normal also become important:
- If $X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Normal}(0,1)$ are i.i.d., then the distribution of their sum of squares $X_{1}^{2}+X_{2}^{2}+\ldots+X_{n}^{2}$ is called the chi-squared distribution with n degrees of freedom, also written $\chi^{2}(n)$.
- If $Z, X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Normal}(0,1)$ are i.i.d., the distribution of $\frac{Z}{\sqrt{\left(X_{1}^{2}+X_{2}^{2}+\ldots+X_{n}^{2}\right) / n}}$ is called the t-distribution with n "degrees of freedom", sometimes written $t(n)$.
- If $X_{1}, X_{2}, \ldots, X_{m}, Y_{1}, Y_{2}, \ldots, Y_{n}, \sim \operatorname{Normal}(0,1)$ are i.i.d., then the distribution of $\frac{\left(X_{1}^{2}+X_{2}^{2}+\ldots+X_{m}^{2}\right) / m}{\left(Y_{1}^{2}+Y_{2}^{2}+\ldots+Y_{n}^{2}\right) / n}$ is called the F-distribution with m and n degrees of freedom.
- The above distributions all have corresponding densities, and expected values, and variances, and various interesting properties. (See textbook Section 4.6.)
\rightarrow And their probabilities can be computed by statistical software (e.g. R).
\rightarrow And some statistics textbooks even have tables of their values.
\rightarrow And they are used for lots of statistical tests and analyses. (See e.g. the second half of the textbook, and the follow-up course STA261.)

END MONDAY \#12

Final Announcements

- No lecture this Wednesday. (I will still come to class in case you have questions.)
- Please complete the online course evaluation!
- During the coming days: TA tutorials and office hours (and Piazza).
- Instructor Office Hours: Fri Dec 8 from 1:10 to 2:30 in SS 2125. [Exam Jam]
- AND MOST IMPORTANT OF ALL:

FINAL EXAM: Sat Dec 9 from 2:00 to 5:00 pm, in NEW ROOMS by Last Name: ** MP 102 A-HU; MP 103 HUA-NA; MP 202 NE-WA; MP 203 WE-Z.

All in the MP (physics) building, NOT in other buildings!
***** Good luck on the exam, and with all of your future studies!

