
STA257 (Probability and Statistics I) Lecture Notes, Fall 2023

by Jeffrey S. Rosenthal, University of Toronto, www.probability.ca

(Last updated: December 4, 2023)

Note: I will update these notes regularly, by posting them on the course web page
each evening after lectures. However, they are just rough, point-form notes, with
no guarantee of completeness or accuracy. They should in no way be regarded as
a substitute for attending and learning from all the lectures, studying the course
textbook, or doing the suggested homework exercises.

Introduction

• Course Information: See the course web page at: probability.ca/sta257

• Who here is doing a specialist or major program involving: Statistics / Data Sci-

ence? Mathematics? Actuarial Science? Computer Science? Economics/Commerce?

Physics/Chemistry/Biology? Education? Psychology/Sociology? Engineering? Other?

• Who here has seen probabilities in elementary school? high school? STA130?

→ Don’t worry, we will start from scratch. (Just need math.)

• Life is full of randomness and uncertainty: lotteries, card games, computer games,

gambling, weather, TTC, airplanes, friends, jobs, classes, science, finance, elections,

diseases, safety/risk, demographics, internet routing, legal cases, . . . whenever we’re

not sure of the outcome or what will happen next.

• Lots of interesting probability questions to solve! Such as . . .

→ What’s the probability you’ll win the Lotto Max jackpot, i.e. that you will

choose the correct 7 distinct numbers between 1 and 50?

→ If 200 students each flip a fair coin, then how many Heads is most likely?

What’s the probability of more than 150 Heads?

→ If you repeatedly roll a fair 6-sided die [show], then how many rolls will there

be on average before the first 5?

→ At a party of 40 people, what is the probability that some pair of them have

the same birthday?

→ If a disease affects one person in a thousand, and a test for the disease has 99%

accuracy, and you test positive, then what is the probability you have the disease?

→ If you pick a number uniformly at random between 0 and 1, then what is the

probability that you pick exactly the number 3/4?

→ Three-Card Challenge. [demonstration] What are the probabilities of the initial

(front) colour? Then, what are the probabilities of the back colour?

• History of Mathematical Probability Theory (in brief):

→ Mathematics is very precise and certain. For thousands of years, it simply

ignored the uncertainty of probabilities.

→ Then, in 1654, the French writer Antoine Gombaud (the “Chevalier de Méré”)

asked the mathematician Pierre de Fermat some gambling questions:
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→ Which is more likely (or are they the same) (and are they more than 50%):

(a) Get at least one six when rolling a fair six-sided die 4 times; or

(b) Get at least one pair of sixes when rolling two fair six-sided dice 24 times?

→ He thought (a) was 4× (1/6) = 2/3, and (b) was 24× (1/36) = 2/3. Correct?

→ Also: (c) Suppose a gambler is playing a best-of-seven match, where whoever

wins 4 (fair) games first in the winner, and so far they have won 3 times and lost 1,

but then the match gets interrupted. What is the probability that they would have

won the match, if it had been allowed to continue?

→ Fermat then corresponded with the mathematician Blaise Pascal to solve these

questions (later!), and mathematical probability theory was born!

• So, can probabilities be studied mathematically?

→ Can we use certain mathematics to study the uncertainty of probabilities?

→ Yes! That’s why we’re here! To be certain about our uncertainty!

→ But we have to define our terms carefully . . .

Sample Space

• The first part of any probability model is the sample space, written S, which is

the set of all possible outcomes.

→ e.g. flip a coin: S = {Heads, Tails}, or S = {H,T}.
→ e.g. flip a coin three times in a row:

S = {HHH,HHT,HTH,HTT , THH, THT, TTH, TTT}.
→ Or, if we only care about the number of Heads: S = {0, 1, 2, 3}.
→ e.g. tonight’s dinner: S = {Beef, Chicken, Fish}.
→ e.g. the number of bees I will see on my walk home: S = {0, 1, 2, 3, . . .}.
→ e.g. the price of IBM stock next month: S = [0,∞).

→ e.g. the height (in cm) of the next student I meet: S = (0,∞). (Or . . . )

→ e.g. your grade in this class: S = {0, 1, 2, 3, . . . , 100}.
→ e.g. roll one six-sided die: S = {1, 2, 3, 4, 5, 6}.
→ e.g. roll two six-sided dice: S = {1, 2, 3, 4, 5, 6}2, i.e.

S = {11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26,

31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46,

51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}.
→Or, if we only care about the sum, instead maybe take S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
→ e.g. “Pick any integer between 1 and 10”: S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
→ e.g. “Pick any number between 0 and 1”: S = [0, 1]. (important case!)

• Summary: The sample space S can be any non-empty set which contains all of

the possible outcomes. Simple!

• But it gets more interesting when we also have . . .
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Probabilities and Events

• An event A is “any” subset A ⊆ S.

• For any event A, we can define the probability P(A) that it will occur.

→ e.g. flip a “fair” coin: P(H) = P(T ) = 1/2.

→ (Note: We often use e.g. “P(H)” as shorthand for “P({H})”, etc.)

→ e.g. roll a fair six-sided die: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.

→ e.g. tonight’s dinner: maybe P(Beef)=0.40, P(Chicken)=0.15, and P(Fish)=0.45.

→ (Note: We could also write P(Fish) = 45%, etc. Usually percentages are good

for intuition, but pure probabilities (not percentages) are better for calculation.)

→ e.g. flip three fair coins: P(HHH) = P(HHT ) = . . . = P(TTT ) = 1/8.

→ e.g. roll two fair dice: P(11) = P(12) = . . . = P(65) = P(66) = 1/36.

→ e.g. Pick any integer between 1 and 10. [Try it!]

Could be “uniform”, i.e. P(1) = P(2) = . . . = P(10) = 1/10. Or instead, maybe . . .

P(3)=P(6)=P(7)=0.2, and P(5)=0.1, and P(1)=P(2)=P(4)=P(8)=P(9)=P(10)=0.05.

→ e.g. Pick any number between 0 and 1, “uniformly”:

P([0, 1/2]) = 1/2, P([1/2, 1]) = 1/2, P([0, 1/3]) = 1/3, P([1/3, 2/3]) = 1/3,

and in general P([a, b]) = b− a whenever 0 ≤ a ≤ b ≤ 1. [Diagram]

Basic Properties of Probabilities

• Let’s begin with a specific example (and then we will generalise):

• e.g. tonight’s dinner, with P(Beef)=0.40, P(Chicken)=0.15, and P(Fish)=0.45.

→ Probability of Beef or Chicken = P({Beef, Chicken}) = P({Beef}) + P({Chicken})
= 0.40 + 0.15 = 0.55.

→ Probability of any dinner = Probability of Beef or Chicken or Fish = P({Beef,

Chicken, Fish}) = P({Beef}) + P({Chicken}) + P({Fish}) = 0.40 + 0.15 + 0.45 = 1.

→ Probability of No dinner = P(∅) = 0.

• In general, certain properties must hold for any probability model (“axioms”):

• If A is an event, then 0 ≤ P(A) ≤ 1.

• If A = S is the event corresponding to all outcomes, then P(A) = P(S) = 1.

• Or, if A = ∅ is the event corresponding to no outcomes, then P(A) = P(∅) = 0.

• Additivity: If A and B are disjoint events (i.e. A ∩B = ∅), e.g. A = {Beef} and

B = {Chicken}, then P(A ∪B) = P(A) + P(B).

• More generally, if A1, A2, A3, . . . are any sequence (finite or infinite) of disjoint

events (i.e. Ai ∩ Aj = ∅ whenever i 6= j), then P
(⋃

iAi

)
=
∑

i P(Ai).

→ So, in particular, since P(S) = 1, all of the probabilities have to add up to 1.

→ e.g. P(Heads) + P(Tails) = 0.5 + 0.5 = 1.

→ e.g. P(Beef) + P(Chicken) + P(Fish) = 0.40 + 0.15 + 0.45 = 1.
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Suggested Homework: 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.8, 1.2.9, 1.2.10, 1.2.11, 1.2.12.

Derived Properties of Probabilities

• Once we know the above properties, then we can use them to prove others too:

• Fact: If AC is the complement of A, i.e. the set of all outcomes which are not in

A, then P(AC) = 1− P(A). (Important! Remember this! Use this!)

→ Proof: Note that A and AC are disjoint, so P(A ∪ AC) = P(A) + P(AC). But

P(A ∪ AC) = P(S) = 1, so 1 = P(A) + P(AC), i.e. P(AC) = 1− P(A).

→ e.g. P(Fish) = P(not Beef or Chicken) = 1− P(Beef or Chicken) = 1− 0.55 =

0.45.

• Fact: For any events A and B [Diagram], P(A) = P(A ∩B) + P(A ∩BC). (∗)
→ Proof: The events A∩B and A∩BC are disjoint, and (A∩B)∪ (A∩BC) = A

[Diagram], so by additivity, P(A ∩B) + P(A ∩BC) = P(A).

→ e.g. integer between 1 and 10: P(even) = P(even and ≤ 4) + P(even and ≥ 5)

= P({2, 4}) + P({6, 8, 10}).

—————————— END MONDAY #1 ——————————

• Re-arranging (∗) also gives that: P(A ∩BC) = P(A)− P(A ∩B). (∗∗)

• Fact: If A ⊇ B, then P(A) = P(B) + P(A ∩BC). (∗ ∗ ∗)
→ Proof: This follows from (∗), since if A ⊇ B, then A ∩B = B.

→ e.g. integer between 1 and 10: P(≤ 7) = P(≤ 4) + P(≤ 7 but ≥ 5).

• Monotonicity: If A ⊇ B, then P(A) ≥ P(B). (Remember this!)

→ Proof: We must have P(A∩BC) ≥ 0, so from (∗∗∗), P(A) = P(B)+P(A∩BC) ≥
P(B) + 0 = P(B).

→ e.g. P({Beef, Chicken}) = 0.55 ≥ 0.40 = P({Beef}).

• Law of Total Probability – Unconditioned Version: Suppose A1, A2, . . . are a

sequence (finite or infinite) of events which form a partition of S, i.e. they are disjoint

(Ai∩Aj = ∅ for all i 6= j) and their union equals the entire sample space (
⋃
iAi = S),

and let B be any event. Diagram:

Then P(B) =
∑

i P(Ai ∩B). That is: P(B) = P(A1 ∩B) + P(A2 ∩B) + . . ..

→ Proof: Since the {Ai} are disjoint, and Ai ∩ B ⊆ Ai, therefore the {Ai ∩ B}
are also disjoint. Furthermore, since

⋃
iAi = S, therefore

⋃
i(Ai ∩ B) = S ∩ B = B.

Hence, P(B) = P
(⋃

i(Ai ∩B)
)

=
∑

i P(Ai ∩B).

→ e.g. integer between 1 and 10: Suppose A1 = {≤ 4} = {1, 2, 3, 4}, and A2 =

{≥ 5} = {5, 6, 7, 8, 9, 10}, and B = {even} = {2, 4, 6, 8, 10}. Then P(even) = P(even

and ≤ 4) + P(even and ≥ 5), i.e. P({2, 4, 6, 8, 10}) = P({2, 4}) + P({6, 8, 10}).
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• Principle of Inclusion-Exclusion: P(A ∪B) = P(A) + P(B)− P(A ∩B).

→ (Of course, if they’re disjoint (A ∩B = ∅), then P(A ∪B) = P(A) + P(B).)

→ Intuition: P(A) + P(B) counts each element of A ∩ B twice, so we have to

subtract one of them off.

→ Proof: The events A ∩B, and A ∩BC , and AC ∩B, are all disjoint, and their

union is A∪B. [Diagram.] Hence, P(A∪B) = P(A∩B) + P(A∩BC) + P(AC ∩B).

Then, from (∗∗), P(A∩BC) = P(A)−P(A∩B) and P(AC∩B) = P(B)−P(A∩B).

Hence, P(A ∪B) = P(A ∩B) +
[
P(A)− P(A ∩B)

]
+
[
P(B)− P(A ∩B)

]
= P(A) + P(B)− P(A ∩B).

→ e.g. integer between 1 and 10: P(even or ≤ 4) = P(even) + P(≤ 4) − P(even

and ≤ 4) = P({2, 4, 6, 8, 10}) + P({1, 2, 3, 4})− P({2, 4}).
→ Or, P(even or perfect square) = P(even) + P(perfect square) − P(even and

perfect square) = P({2, 4, 6, 8, 10}) + P({1, 4, 9})− P({4}).

• P(A ∩B) ≥ 0, so P(A ∪B) = P(A) + P(B)− P(A ∩B) ≤ P(A) + P(B). Indeed:

• Subadditivity: For any sequence of events A1, A2, . . ., not necessarily disjoint, we

still always have P(A1 ∪ A2 ∪ . . .) ≤ P(A1) + P(A2) + . . ..

→ (Of course, it would be equal if they are disjoint.)

→ Proof: Let B1 = A1, and B2 = A2 ∩ (A1)C , and B3 = A3 ∩ (A1 ∪ A2)C , and

B4 = A4 ∩ (A1 ∪A2 ∪A3)C , and so on. (That is, each new Bn is the part of An which

is not already part of A1, . . . , An−1.) Diagram:

The {Bi} are disjoint, and
⋃
iBi =

⋃
iAi. Also Bi ⊆ Ai so P(Bi) ≤ P(Ai). Hence,

P(A1 ∪A2 ∪ . . .) = P(B1 ∪B2 ∪ . . .) = P(B1) + P(B2) + . . . ≤ P(A1) + P(A2) + . . ..

→ Alternative proof (for a finite number of events): Use induction! For n = 2

events, this follows from Inclusion-Exclusion. Then for n ≥ 3 events, P(A1∪. . .∪An) =

P
(
(A1∪. . .∪An−1)∪An

)
, which by Inclusion-Exclusion is≤ P

(
A1∪. . .∪An−1

)
+P(An),

which by induction is ≤
(
P(A1) + . . .+ P(An−1)

)
+ P(An).

→ e.g. integer between 1 and 10: P(even or ≤ 4) ≤ P(even) + P(≤ 4), i.e.

P({1, 2, 3, 4, 6, 8, 10}) ≤ P({2, 4, 6, 8, 10}) + P({1, 2, 3, 4}).

Suggested Homework: 1.2.13, 1.2.14, 1.2.15. (more theoretical)

Suggested Homework: 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.3.7, 1.3.8, 1.3.9.

Optional: A more general Inclusion-Exclusion formula is in Challenge 1.3.10.

Uniform Probabilities on Finite Spaces

• Suppose S = {s1, s2, . . . , sn} is some finite sample space, of finite size |S| = n,

and each element is equally likely.

→ Then P(s1) = P(s2) = . . . = P(sn) = 1/n. (“discrete uniform distribution”)
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→ And for any event A = {a1, a2, . . . , ak}, by additivity we have

P(A) = P(a1) + P(a2) + . . .+ P(ak) =
1

n
+

1

n
+ . . .+

1

n
=

k

n
=
|A|
|S|

.

→ So, in this case, we just need to count the number of elements in A, and divide

that by the number of elements in S. Easy!?! Sometimes!

• e.g. Roll a fair six-sided die. What is P(≥ 5)?

→ Here S = {1, 2, 3, 4, 5, 6} so |S| = 6. All equally likely.

→ Also A = {5, 6} so |A| = 2.

→ So, P(≥ 5) = P(A) = |A|
/
|S| = 2/6 = 1/3. Easy!

• e.g. Roll one fair six-sided die, and flip two fair coins.

What is P(# Heads = Number Showing On The Die)?

→ Here S = {1HH, 1HT, 1TH, 1TT, 2HH, . . . , 6TT}. All equally likely.

→ But what is |S|?
→ Multiplication Principle: If S is made up by choosing one element of each of

the subsets S1, S2, . . . , Sk, i.e. if S = S1 × S2 × . . .× Sk, then what is |S|? Well, . . .

|S| = |S1| |S2| . . . |Sk|.
→ In our example, S1 = {1, 2, 3, 4, 5, 6}, and S2 = {H,T}, and S3 = {H,T}, so

|S| = |S1| |S2| |S3| = 6 · 2 · 2 = 24.

→ And what about A? Well, think about the possibilities . . .

A = {1HT, 1TH, 2HH}. (No other combination works. Why?) So, |A| = 3.

→ Hence, P(# Heads = Number Showing On The Die) = |A|
/
|S| = 3/24 = 1/8.

• e.g. Roll three fair six-sided dice. What is P(sum ≥ 17)?

→ Here S = {1, 2, 3, 4, 5, 6}3 so |S| = 63 = 216. All equally likely.

→ But what is A? Think about it . . .

Here A = {666, 566, 656, 665} (why?), so |A| = 4.

→ So, P(sum ≥ 17) = P(A) = |A|
/
|S| = 4/216 = 1/54.

→ Exercise: What about P(sum ≥ 16)? P(sum ≥ 15)?

• Chevalier’s questions:

• (a) What is P(get at least one six when rolling a fair six-sided die 4 times)?

→ Here S = {1, 2, 3, 4, 5, 6}4, so |S| = 64 = 1296. All equally likely.

→ And what is |A|? Tricky. Easier to consider . . .

→ AC = {no sixes in four rolls} = {1, 2, 3, 4, 5}4, so |AC | = 54 = 625.

→ So, P(AC) = |AC |
/
|S| = 54 / 64 = 625 / 1296

.
= 0.482.

→ So, P(A) = 1− P(AC)
.
= 1− 0.482 = 0.518. More than 50%.

→ (Alternatively: By “independence” [later], P(A) = 1− (5/6)4 .
= 0.518.)

• (b) What is P(get at least one pair of sixes when rolling a pair of fair six-sided

dice 24 times)?
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→ Here S =
(
{1, 2, 3, 4, 5, 6}2

)24

, so |S| = (62)24 = 648 (>1037). All equally likely.

→ And what is |A|? Tricky. Again, easier to consider . . .

→ AC = {no pair of sixes in 24 rolls} = {11, 12, 13, . . . , 64, 65}24, so |AC | = 3524.

→ So, P(AC) = |AC |
/
|S| = 3524/648 .

= 0.509.

→ So, P(A) = 1− P(AC)
.
= 1− 0.509 = 0.491. Less than 50%.

→ (Again, alternatively by independence [later], P(A) = 1− (35/36)24 .
= 0.491.)

• (c) In a best-of-seven match with fair (50%) games, if a player has won 3 games

and lost 1, then what is the probability they will win the match?

→ Various paths to victory: win right away, lose then win, etc. Tricky.

→ One solution: Pretend 3 more games will always be played. (Result same.)

→ Then S = {Win, Lose}3, so |S| = 23 = 8, all equally likely.

→ What about A? Well, here AC = {Lose, Lose, Lose}, so |AC | = 1.

→ Hence, P(AC) = |AC |/|S| = 1/8, and so P(A) = 1− P(AC) = 7/8.

→ Exercise: What if the player has won just 2 games and lost 1? (Trickier.)

Suggested Homework: 1.4.1, 1.4.2, 1.4.3, 1.4.9, 1.4.10, 1.4.11, 1.4.12, 1.4.13.

Warning about Non-Uniform Probabilities

• e.g. Roll two fair dice. What is P(sum is ≤ 3)?

→ POSSIBLE SOLUTION: The sum is in S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. So,

|S| = 11. And, the event “≤ 3” corresponds to A = {2, 3}, so |A| = 2. Hence,

P(sum is ≤ 3) = |A|/|S| = 2/11. Right?

→ WRONG! These sums are not all equally likely, i.e. it is not uniform! So,

P(A) 6= |A|/|S|. That formula is only when all outcomes are equally likely. Important!

→ INSTEAD: Let S = {all ordered pairs of two dice}, i.e. S = {11, 12, 13, . . . , 65, 66}.
Then |S| = 36. Now each outcome in S is equally likely. And, now A = {11, 12, 21}.
So, P(A) = |A|/|S| = 3/36 = 1/12. Correct!

• And sometimes the sample space S is a discrete infinite set:

→ e.g. S = N := {1, 2, 3, . . .}, with P(i) = 2−i for each i ∈ S.

→ Valid? Yes, since 2−i ≥ 0, and
∑∞

i=1 2−i = 2−1

1−2−1 = 1. (Geometric series.)

→ Then e.g. P(Even Number) =
∑

i=2,4,6,... 2
−i = 1

4
+ 1

16
+ 1

64
+ . . . = 1/4

1−(1/4)
= 1/3.

→ And, P(≤ 10) =
∑10

i=1 2−i = 2−1−2−11

1−2−1 = (1/2)−(1/2048)
1−(1/2)

= 1023/1024. Close to 1.

→ On a discrete infinite space, cannot have a uniform distribution!

• Summary: Don’t assume it’s uniform when it isn’t!

————————— END WEDNESDAY #1 —————————
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More Finite Uniform Probabilities

• e.g. Suppose there are ten people at a party, and you randomly pick three of the

people, in order (1-2-3). What is the probability that your choices will also be the

three richest people at the party (in the same order)?

→ S is the set of all ways of picking three people, in order. All equally likely.

→ But what is |S|?
→ The first person can be picked in 10 different ways.

→ Then, the second person can be picked in 9 different ways.

→ Then, the third person can be picked in 8 different ways.

→ So, |S| = 10 · 9 · 8 = 720.

→ Also, |A| = 1 since there is only one matching choice.

→ So, P(you picked the three richest, in order) = |A|/|S| = 1/720.

• More generally, the number of ways of picking k distinct items, in order, out of n

items total, is equal to n(n−1)(n−2) . . . (n−k+ 1) = n!/(n−k)!. (“permutations”)

→ In particular, if k = n, then the number of ways of picking all n items in order

is equal to n(n− 1)(n− 2) . . . (1) = n!. (“n factorial”)

• “The Birthday Problem”: Suppose 40 (say) people at a party are each equally

likely to be born on any one of 365 days of the year. Then what is the probability

that at least one pair of them have the same birthday? (Any guesses?)

→ Here, S is the set of all 40-tuples of possible birthdays. All equally likely.

→ (Count them in order, since they might not all be distinct.)

→ So, by the Multiplication Principle, |S| = 36540.

→ What about |A|? Not easy . . .

→ Instead, consider AC . (Then can use that P(A) = 1− P(AC).)

→ AC is the set of all ways of picking 40 distinct birthdays, in order.

→ So, |AC | = 365 · 364 · 363 · . . . · 326 = 365!
/

325!.

→ So, P(AC) =
(
365!

/
325!

) /
36540 .

= 0.109.

→ So, P(A) = 1− P(AC)
.
= 0.891. Over 89%. Very likely! (Make a bet?)

→ (Generalisation to “C” people in the textbook’s Challenge 1.4.21 . . . )

• But suppose instead that we don’t care about the order. Then, we have to divide

by k! = k(k − 1)(k − 2) . . . (2)(1), the number of different orderings of k items.

→ So, the number of ways of picking k distinct items out of n items total, ignoring

order, is equal to n(n−1)(n−2) . . . (n−k+1)
/
k! = n!/(n−k)! k!. (“combinations”;

“choose formula”, or “binomial coefficient”) Also written as:
(
n
k

)
.

• e.g. Suppose there are ten people at a party, and you randomly pick a collection

of three of the people, but ignoring order. What is the probability that your choices

will also be the three richest people at the party (in any order)?

→ S is all ways of picking three people (ignoring order). All equally likely.
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→ But what is |S|?
→ Here |S| =

(
10
3

)
= 10!

/
(7! 3!) = 120.

→ And, again |A| = 1 since there is only one matching choice.

→ So, P(you picked the three richest, ignoring order) = |A|/|S| = 1/120.

→ Six times as large as before! Makes sense since 3! = 6.

• e.g. Lotto Max jackpot:

→ Here S = {all choices of 7 distinct numbers between 1 and 50}.
→ All equally likely. And, we do not care about the order.

→ So, |S| = 50!
/

(43! 7!) = 99, 884, 400
.
= 100 million.

→ Also, A is the one correct choice. So, |A| = 1.

→ So, P(jackpot) = P(choose the correct 7 distinct numbers between 1 and 50)

= |A|
/
|S| = 1/99, 884, 400

.
= 1/100, 000, 000 = 0.000001%. Very small!

→ (For $5, you get three choices of 7 numbers, which increases P(jackpot) to 3 /

99,884,400 = 1 /33,294,800 . . . still very small . . . )

• Recall that a standard deck of playing cards has four suits (Clubs, Spades, Hearts,

Diamonds), and each suit has 13 ranks (A,2,3,4,5,6,7,8,9,10,J,Q,K), so 52 cards total:

• A card’s value is its number, counting A as 1, J as 11, Q as 12, and K as 13.

• Suppose we pick one playing card from a standard deck, uniformly at random.

→ So S is the set of all cards in the deck, with |S| = 52, all equally likely.

→ Then what is P(Club or 7)? Can solve this directly, or . . .

→ Here P(Club) = 13/52 = 1/4, and P(7) = 4/52 = 1/13.

→ Also, P(Club and 7) = P(7-of-Clubs) = 1/52.

→ So, by Inclusion-Exclusion, P(Club or 7) = P(Club) + P(7) − P(Club and 7)

= 1/4 + 1/13 − 1/52 = 16/52 = 4/13.

• Or, suppose we draw a pair of distinct cards uniformly from a standard deck.

→ What is P(both are Face Cards), i.e. P(both are J/Q/K)?

→ Here S = {all distinct pairs of cards, ignoring order}.
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→ So, |S| =
(

52
2

)
= 52 · 51/2 = 1326.

→ And A = {all distinct pairs of Face Cards}, so |A| =
(

12
2

)
= 12 · 11/2 = 66.

→ So, P(A) = |A|/|S| = 66/1326
.
= 0.0498

.
= 1/20.

→ Alternatively, could let S = {all distinct pairs of cards in order}. Then |S| =
52 · 51 = 2652, and |A| = 12 · 11 = 132. So, P(A) = |A|/|S| = 132/2652, which gives

the same answer as before.

→ (Or, conditional probability [next]: P(A) = (12/52) · (11/51) = 132/2652.)

• e.g. Flip 4 fair coins. What is P(exactly 2 Heads)?

→ Here S = all 4-tuples of H and T (in order). |S| = 24 = 16. All equally likely.

→ And A = all 4-tuples with two H and two T. What is |A|?
→ Can write them all out [let’s do it now]:

→ So |A| = 6, and P (A) = |A|/|S| = 6/16 = 3/8. Simpler way?

→ Each element of A can be specified by choosing which 2 of the 4 coins were H

(without caring about the order).

→ So, |A| = number of choices of 2 coins out of 4 =
(

4
2

)
= 4!

/
((4 − 2)! 2!) =

24/(2 · 2) = 6, and P (A) = |A|/|S| = 6/16.

→ Same answer as before, but more systematic, and easier to use when we have

lots of coins. Clear?

• e.g. Suppose we flip ten fair coins. What is P(exactly six Heads)?

→ S is the set of all “10-tuples” of H and T, i.e. length-10 sequences (in order) of

H and T.

→ All equally likely. But what is |S|? Well, by the Multiplication Principle,

|S| = 2 · 2 · . . . · 2 = 210 = 1024.

→ What about |A|? Well, A = {HHHHHHTTTT,HHHHHTHTTT, . . . ,
TTTTHHHHHH}. But how many elements does it include?

→ Well, an element of A is specified by “choosing” which 6 of the 10 coins are

Heads. So, the size of A is equal to the corresponding binomial coefficient:

|A| =

(
10

6

)
=

10!

6! (10− 6)!
=

10!

6! 4!
=

10 · 9 · 8 · 7
4 · 3 · 2 · 1

=
5040

24
= 210 .

→ So, P(exactly six Heads) = |A|
/
|S| = 210/1024 = 105/512

.
= 0.205 = 20.5%.

• In general, if flip n fair coins, then P(exactly k Heads) =
(
n
k

)/
2n, for 0 ≤ k ≤ n.

→ (Special case of the “Binomial Distribution” – more later.)

Suggested Homework: 1.3.6, 1.4.4, 1.4.6, 1.4.7, 1.4.8, 1.4.15, 1.4.16, 1.4.17, 1.4.19,

1.4.21.

—————————— END MONDAY #2 ——————————

p.10



Simulating Using the Computer Software “R”

• There is lots of computer software available for statistical computation. (Even

spreadsheets etc.) One package used by most statisticians (and STA courses) is “R”.

→ Free and easy to install on any computer, e.g. on your laptop!

→ For some basic info and links, see: http://probability.ca/Rinfo.html

→ Also discussed in Appendix B of the textbook.

→ In this course, you do not need to learn it.

→ But I will use it for occasional demonstrations.

→ It is interesting, and insightful, and used in other courses. [Try it!]

• For now, just a few simulation commands to get us started:

→ sample(c(”H”,”T”), 1) [one random sample from {H,T}]
→ sample(1:6, 1) [one random sample from {1, 2, 3, 4, 5, 6}]
→ sample(1:6, 3, replace=TRUE) [three samples, with replacement]

→ sample(c(”Beef”,”Chicken”,”Fish”), 1, prob=c(0.40,0.15,0.45)) [with probs]

→ rgeom(1, 1/2) + 1 [sample where P (i) = 2−i]

Conditional Probability

• e.g. Flip three fair coins.

→ Then S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.
→ All equally likely. So, P(first coin Heads) = 4/8 = 1/2.

→ Suppose we are told that exactly 2 coins were Heads.

→ Now what is the probability that the first coin was Heads?

→ Well, the outcome must be in {HHT,HTH, THH}. Still all equally likely.

→ And, two of these three outcomes have the first coin Heads.

→ So, now the probability that the first coin was Heads is equal to 2/3.

→ That is: The probability that the first coin was Heads, given that 2 coins were

Heads, is equal to 2/3.

→ In symbols: P(first coin Heads | 2 coins were Heads) = 2/3.

• In general, if A and B are two events, then the conditional probability of A given

B is written as P(A |B), and represents the fraction of the times when B occurs, in

which A also occurs. [Diagram.] So, it is equal to:

P(A |B) =
P(A ∩B)

P(B)
.

• Note: If P(B) = 0, then P(A |B) is . . .

undefined! It only makes sense if P(B) > 0.

→ (Reasonable since if P(B) = 0, then B will “never” happen.)

• In the above example, A = {first coin Heads}, and B = {2 coins Heads}.
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→ Then, B = {HHT,HTH, THH}, so P(B) = |B|
/
|S| = 3/8.

→ Also, A ∩B = {HHT,HTH}, so P(A ∩B) = |A ∩B|
/
|S| = 2/8.

→ Hence, P(A |B) = P(A ∩B)
/

P(B) = (2/8)
/

(3/8) = 2/3, same as before.

• e.g. Roll three fair six-sided dice. What is P(first die is 3 | at least one 3)?

→ Here S = {111, 112, . . . , 665, 666}. So, |S| = 6 · 6 · 6 = 63 = 216.

→ Here A = {first die is 3}, and B = {at least one 3}. What is P(B)?

→ Well, BC = {no 3}, i.e. each die in {1, 2, 4, 5, 6}. (So, 5 choices.)

→ So, |BC | = 53, and P(BC) = |BC |/|S| = 53/63 = 125/216.

→ Then, P(B) = 1− P(BC) = 1− 125/216 = 91/216. What about P(A)?

→ Well, A = {311, 312, . . . , 366}, so |A| = 62 = 36, and P(A) = 36/216 = 1/6.

(Of course – “independence” – coming soon.) But what we really need is . . .

→ P(A ∩B). But A ⊆ B, so A ∩B = A, so P(A ∩B) = P(A) = 36/216 = 1/6.

→ Hence, P(A |B) = P(A ∩ B)/P(B) = (1/6)/(91/216) = (36/216)/(91/216) =

36/91
.
= 0.396. Much more than 1/6

.
= 0.167. Surprising?

• e.g. Roll three fair six-sided dice. What is P(at least one 3 | sum is ≤ 5)?

→ Here S = {111, 112, . . . , 665, 666}. So, |S| = 6 · 6 · 6 = 216.

→ Here A = {at least one 3}, and B = {sum is ≤ 5}. What is |B|?
→ Well, B = {111, 112, 113, 121, 122, 131, 211, 212, 221, 311}.
→ So, |B| = 10, and P(B) = |B|

/
|S| = 10/216.

→ What about A? Well, A = {311, 312, 313, . . .}. Tricky? Use AC !

→ Here |AC | = 53 = 125, so P(AC) = 125/216
.
= 0.579, so P(A)

.
= 0.421.

→ But wait, here we don’t need to know A, we only need A ∩B!

→ By looking at B, we see that A ∩B = {113, 131, 311}.
→ So, |A ∩B| = 3, and P(A ∩B) = |A ∩B|

/
|S| = 3/216.

→ Then P(A |B) = P(A ∩B)
/

P(B) = (3/216) / (10/216) = 3/10 = 30%.

• Conditional Multiplication Formula: Since P(A |B) = P(A ∩ B)
/

P(B), therefore

P(A ∩B) = P(B) P(A |B). Similarly, P(A ∩B) = P(A) P(B |A). Useful!

• e.g. Suppose we are dealt two cards, in order, from a standard deck.

→ What is P(both are Face Cards)? Can instead use conditional prob . . .

→ Let A = {first card is Face Card}, and B = {second card is Face Card}.
→ Then P (A) = 12/52. What about P(B |A)?

→ Well, once we know that the first card is a Face Card, then there are 11 Face

Cards remaining, out of 51 total remaining cards. So, P(B |A) = 11/51.

→ Then P(A ∩B) = P(A) P(B |A) = (12/52) (11/51). Same as before. Easier?

• Combining this Conditional Multiplication Formula with our previous Law of

Total Probability gives a new version:

• Law of Total Probability – Conditioned Version: Suppose A1, A2, . . . are a se-

quence (finite or infinite) of events which form a partition of S, i.e. they are dis-
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joint (Ai ∩ Aj = ∅ for all i 6= j) and their union equals the entire sample space

(
⋃
iAi = S), and let B be any event. Then P(B) =

∑
i P(Ai) P(B |Ai), or equiva-

lently P(B) = P(A1) P(B |A1) + P(A2) P(B |A2) + . . ..

• e.g. Flip one fair coin. If Heads, roll one die; if Tails, roll two dice. What is P(get

at least one 5)?

→ Here B = {at least one 5}, and A1 = {Heads}, and A2 = {Tails}.
→ Then A1, A2 form a partition. And P(A1) = P(A2) = 1/2. Need P(B |Ai).
→ Well, P(B |A1) = P(get at least one 5 when you roll one die) = 1/6.

→ Also, P(B |A2) = P(get at least one 5 when you roll two dice) = ??

→ Well, its complement is P(get no 5 when you roll two dice) = 52/62 = 25/36.

→ So, P(B |A2) = 1− (25/36) = 11/36.

→ Then, from the above Law of Total Probability,

P(B) =
∑
i

P(Ai) P(B |Ai) = P(A1) P(B |A1) + P(A2) P(B |A2)

= (1/2)(1/6) + (1/2)(11/36) = 17/72
.
= 0.236 .

• Three-Card Challenge: Have three cards: C1=Blue-Blue, C2=Yellow-Yellow,

C3=Blue-Yellow. Pick a card uniformly at random. Then pick one side of that

card, uniformly at random. What is P(the card is C2 | the side is Yellow)?

→ Let B = {the side is Yellow}. First of all, what is P(B)?

→ Use Law of Total Probability! Since we pick one of the three cards, the three

cards C1,C2,C3 form a partition.

→ So, P(B) = P(C1) P(B |C1) + P(C2) P(B |C2) + P(C3) P(B |C3)

= (1/3)(0) + (1/3)(1) + (1/3)(1/2) = 1/3 + 1/6 = 1/2. (Of course.)

→ Now, let A = {the card is C2}. Then what is P(A ∩B)?

→ Well, A ∩B = {choose C2, then Yellow} = {choose C2, then either side}.
→ So, P(A ∩B) = P(A) P(B |A) = P(C2) P(Yellow Side |C2) = (1/3) (1) = 1/3.

→ Hence, P(the card is C2 | the side is Yellow) = P(A |B) = P(A ∩ B)/P(B) =

(1/3)/(1/2) = 2/3. Surprising? (Try it!)

→ Intuition: We picked one of the three Yellow sides, of which two are on C2.

• e.g. Suppose a disease affects one person in a thousand, and a test for the disease

has 99% accuracy. Someone is selected at random, and tested for the disease.

→ (a) What is P(they test positive)?

→ Use the Law of Total Probability! Here B = {test positive}. And, partition is

A1 = {have disease} and A2 = {do not have disease}.
→ So, P(B) = P(A1) P(B |A1) + P(A2) P(B |A2)

= (1/1000)(0.99) + (999/1000)(0.01) = 0.01098.

→ (b) Given that they tested positive (i.e., conditional on them testing positive),

what is the conditional probability that they have the disease?

→ This is P(A1 |B) = P(A1 ∩B)/P(B). But how do we compute P(A1 ∩B)?
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→Use the Conditional Multiplication Formula! Here P(A1∩B) = P(A1) P(B |A1) =

(1/1000)(0.99) = 0.00099.

→ So, P(A1 |B) = P(A1 ∩ B)/P(B) = (0.00099)/(0.01098) = 0.0901639
.
= 9%

.
=

1/11. Small! Why?

→ Intuition: So many more people do not have the disease, that even their false

positives (1%) are more than the number of people who have the disease (0.1%).

• In the above example, we knew P(B |A1) (it was 99%), but we wanted P(A1 |B).

→ What is the connection between them?

• In general, P(B |A) = P(A ∩B)
/

P(A), and P(A |B) = P(A ∩B)
/

P(B).

→ So . . . P(A |B) = P(A)
P(B)

P(B |A). (“Bayes Theorem”, or “Bayes Rule”)

→ (Aside: This formula is the inspiration for “Bayesian Statistics” . . . )

Suggested Homework: 1.5.1, 1.5.2, 1.5.3, 1.5.4, 1.5.6, 1.5.7, 1.5.8, 1.5.10, 1.5.11,

1.5.12, 1.5.13, 1.5.16, 1.5.17.

Independence

• Recall: If we roll three fair six-sided dice, then P(first die shows 5) = . . .

1/6. Of course! Why? Because the first die doesn’t “care” about the other dice!

→ And, P(first die shows 5 | second die shows 4) = 1/6, too. Doesn’t care!

→ More formally, we say the first die is “independent” of the other dice.

• If A and B are any two events, then saying they are independent means that they

do not affect each others’ probabilities, i.e. that P(A |B) =

P(A), and P(B |A) = P(B).

→ But P(A |B) = P(A ∩B) /P(B), so P(A |B) = P(A) if and only if . . .

P(A∩B) = P(A) P(B). This is the official definition of independence. (Better, since

it is symmetric in A and B, and it is valid even if P(A) = 0 or P(B) = 0.)

→ If A and B are independent, and P(B) > 0, then P(A |B) = P(A).

————————— END WEDNESDAY #2 —————————

• If two parts of an experiment are physically completely unrelated, like two different

coins, or a coin and a die, or multiple dice, then they must be independent.

→ We already implicitly used this fact, e.g. if you flip two coins, then P(both

Heads) = P(first is Heads) P(second is Heads) = (1/2)(1/2) = 1/4, and so on.

→ But now we know why it was okay to multiply!

• e.g. Flip two fair coins. So, S = {HH,HT, TH, TT}, |S| = 4, all equally likely.

→ Let A = {first coin Heads}, B = {second coin Heads}, and

C = {both coins are the same}.
→ Are A and B independent? Yes, of course! (physically unrelated)

→ Check: P(A) = |{HH,HT}| / 4 = 2/4 = 1/2, and P(B) = |{HH,TH}| / 4 =

2/4 = 1/2, and P(A ∩B) = |{HH}| / 4 = 1/4 = (1/2)(1/2) = P(A) P(B).
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→ What about A and C? Well, P(C) = |{HH,TT}| / 4 = 2/4 = 1/2, and

P(A ∩ C) = |{HH}| / 4 = 1/4, So, P(A ∩ C) = 1/4 = (1/2)(1/2) = P(A) P(C).

→ So, A and C are independent! And similarly, B and C are independent.

→ So, A and B and C are all pairwise independent.

→ Hence, P(A |C) = P(A) = 1/2, and P(C |A) = P(C) = 1/2, etc. Surprising?

→ But are they all truly independent? Well, suppose we know A and also know

B. Then we would know that C is true, too!

→ That is, P(C |A ∩B) = 1 6= 1/2 = P(C).

→ Why? Since P(A ∩B ∩ C) = |{HH}| / 4 = 1/4 6= (1/2)(1/2)(1/2).

→ For A and B and C to be truly independent, we also need P(A ∩ B ∩ C) =

P(A) P(B) P(C). That would guarantee that e.g. P(C |A ∩B) = P(C), etc.

• In general, a collection A1, A2, A3, . . . of events are called independent if P(Ai1 ∩
Ai2 ∩ . . . ∩ Aik) = P(Ai1) P(Ai2) . . . P(Aik) for any subcollection of the events.

→ If truly independent, then we can always multiply the probabilities.

→ e.g. Flip 5 fair coins: P(all Heads) = (1/2)(1/2)(1/2)(1/2)(1/2) = 1/32.

• Does it matter? Ask Sally Clark! Solicitor in Cheshire, Eng-

land. Had two sons; each suffocated and died in infancy.

→ Sudden Infant Death Syndrome (SIDS)? Or murder!?!

→ 1999 testimony by paediatrician Sir Roy Meadow: “the odds

against two [SIDS] in the same family are 73 million to one”.

→ Sally Clark was arrested, jailed, and vilified, and her third

son was temporarily taken away. Was this justified?

→ How did Meadow compute that “73 million to one”?

→ He said the probability of one child dying of SIDS was one

in 8,543, so for two children dying, we multiply:

(1/8, 543)× (1/8, 543) = 1/72, 982, 849 ≈ 1/73, 000, 000. Was this valid?

→ No! We can’t just multiply, since SIDS tends to run in families, i.e. not inde-

pendent. Given one SIDS death, a second one is about 10 times more likely!

→ (Also, even the figure “one in 8,543” was misleading, since he included factors

which lower the SIDS probability, but neglected other factors which raise it.)

→ (Separate point: Even if two SIDS deaths are quite unlikely, two murders are

also unlikely! So, how to compare and evaluate? Even unlikely things will happen

sometime to someone. Statistical inference! Interesting, but not part of this course.)

→ So what happened? Convicted! Jailed for three years! Then overturned.

→ More info in my article: probability.ca/justice

Suggested Homework: 1.5.9, 1.5.14, 1.5.15, 1.5.20.

Continuity of Probabilities
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• Recall: For a function f : R → R, “continuity” means if lim
n→∞

xn = x, then

lim
n→∞

f(xn) = f(x). Is there something similar for probabilities P(An)? Sort of . . .

• e.g. S = N := {1, 2, 3, . . .}, with P(i) = 2−i for each i ∈ S.

• Question: In this example, what is lim
n→∞

P(≤ n), i.e. lim
n→∞

P{1, 2, . . . , n}?

→ It must be 1, of course. Not just in this example, but in general:

• Definition: Write that {An} ↗ A if
⋃
nAn = A, and they are “nested increasing”,

i.e. An ⊆ An+1 for all n, i.e. A1 ⊆ A2 ⊆ A3 ⊆ . . .. Like lim
n→∞

An = A. Diagram:

→ e.g. if An = {1, 2, . . . , n}, then {An} ↗ N. [Check!] And therefore?

• Continuity Of Probabilities Theorem: If {An} ↗ A, then lim
n→∞

P(An) = P(A).

→ Proof: Let B1 = A1, and Bn = An ∩ ACn−1 for n ≥ 2.

→ Then A is the disjoint union of all of the Bn. [Diagram.]

→ Hence, by additivity, P(A) =
∑∞

i=1 P(Bi) := limn→∞
∑n

i=1 P(Bi).

→ But also, An is the disjoint union of just B1, B2, . . . , Bn.

→ So, by additivity, P(An) =
∑n

i=1 P(Bi).

→ Combining these two, P(A) = limn→∞
∑n

i=1 P(Bi) = limn→∞ P(An).

• Similarly, write that {An} ↘ A if
⋂
nAn = A, and they are nested decreasing,

i.e. An ⊇ An+1 for all n, i.e. A1 ⊇ A2 ⊇ A3 ⊇ . . .. Diagram:

→ It follows that {An} ↘ A if and only if {ACn } ↗ AC . [Exercise!]

→ Hence, if {An} ↘ A, then {ACn } ↗ AC , so limn→∞ P(ACn ) = P(AC), i.e.

limn→∞[1− P(An)] = 1− P(A), so limn→∞ P(An) = P(A), just like before.

• e.g. Suppose we have any probablities P defined on S = N = {1, 2, 3, . . .}.
→ Does there necessarily exist some finite number n ∈ N with P{1, 2, . . . , n} = 1?

→No! e.g. in above example with P(i) = 2−i, we have P{1, 2, . . . , n} =
∑n

i=1 2−i =
2−1−2−n−1

1−2−1 = 1− 2−n, which is always < 1.

→ Is it necessarily true that limn→∞ P{1, 2, . . . , n} = 1?

→ Yes! Since {1, 2, . . . , n} ↗ N = S, by Continuity Of Probabilities, we must

have limn→∞ P{1, 2, . . . , n} = P(S) = 1.

→ Does there necessarily exist some finite n ∈ N with P{1, 2, . . . , n} > 0.99?

→ Yes! Since limn→∞ P{1, 2, . . . , n} = 1, therefore P{1, 2, . . . , n} > 0.99 for all

sufficiently large n.

• Suppose we flip an infinite number of fair coins. (!)
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→ What is P(all the coins are Heads)? How to even think about that?

→ Let A = {all the coins are Heads}, and An = {the first n coins are Heads}.
→ Then An ⊇ An+1. Also

⋂∞
n=1An = A. So, {An} ↘ A.

→ Hence, P(all coins Heads) = limn→∞ P(An) = limn→∞(1/2)n = 0.

→ (So, {all coins Heads} is “possible”, but has probability 0; will never happen.)

—————————— END MONDAY #3 ——————————

• e.g. Suppose we pick a number between 0 and 1. Diagram:

→ Suppose P
(
[a, b]

)
= b− a whenever 0 ≤ a < b ≤ 1, e.g. P

(
[1
2
, 2

3
]
)

= 2
3
− 1

2
= 1

6
.

→ What about the open interval P
(
(1

2
, 2

3
)
)
? Is it necessarily the same?

→ Use Continuity Of Probabilities!

→ Let A = (1
2
, 2

3
), and An =

[
1
2

+ 1
n
, 2

3
− 1

n

]
. Diagram:

→ Then An+1 ⊇ An, and
⋃∞
n=1 An = A, so {An} ↗ A.

→ Also, we know that P
([

1
2

+ 1
n
, 2

3
− 1

n

])
= [2

3
− 1

n
]− [1

2
+ 1

n
] = 1

6
− 2

n
.

→ Hence, by Continuity Of Probabilities, P(A) = limn→∞ P(An),

i.e. P
(
(1

2
, 2

3
)
)

= limn→∞[1
6
− 2

n
] = 1

6
.

→ Similarly, must have P
(
(a, b)

)
= b− a whenever 0 ≤ a < b ≤ 1.

→ What about P({a}), for a ∈ R? Zero? Again by Continuity of Probabilities,

P({a}) = limn→∞ P([a− 1
n
, a+ 1

n
]) = limn→∞((a+ 1

n
)− (a− 1

n
)) = limn→∞

2
n

= 0.

Suggested Homework: 1.6.1, 1.6.2, 1.6.3, 1.6.4, 1.6.5, 1.6.6, 1.6.7, 1.6.8, 1.6.9,

1.6.10. Optional: 1.6.11.

[END OF TEXTBOOK CHAPTER #1]

Random Variables

• A random variable is “any” function from S to R.

→ Intuitively, it represents some random quantity in an experiment.

• e.g. Roll 3 dice: X = number showing on the first die.

→ X could be 1,2,3,4,5,6, depending on result: X(265) = 2, X(513) = 5, etc.

→ Or, Y = sum of the three numbers showing, so Y (265) = 13, Y (513) = 9, etc.

→ Or, Z = first number divided by third number: Z(265) = 2/5, Z(513) = 5/3.

p.17



• Or: Roll three fair dice, X(s) = number of 5’s, Y (s) = number of 3’s, Z = X−Y .

→ Then X(335) = 1, Y (335) = 2, Z(335) = −1, etc. Values can be negative, too!

• e.g. Flip 10 coins: X = # of Heads, or Y = (# of Heads)2, or

Z = 1 if first coin Heads otherwise Z = 0, etc.

→ So X(HHHTTTHTTT ) = 4, X(TTHHHHHHHT ) = 7, etc.

→ In this example, can also write Y = X2 (function of another random variable).

• e.g. X(s) = 5 for all s ∈ S: “constant random variable”. (Or any constant.)

• Special case: IA(s) = 1 if s ∈ A otherwise IA(s) = 0. “indicator function”

• e.g. S = N := {1, 2, 3, . . .}, with P(i) = 2−i for each i ∈ S.

→ Maybe X(s) = s, and Y (s) = s2. What are their largest possible values?

→ None! They can be arbitrarily large. “unbounded random variables”

→ Also, for all s ∈ S we have s ≤ s2, i.e. X(s) ≤ Y (s) for all s ∈ S, so “X ≤ Y ”.

Suggested Homework: 2.1.1, 2.1.2, 2.1.4, 2.1.5, 2.1.6, 2.1.10, 2.1.11, 2.1.12, 2.1.15.

Distributions of Random Variables

• The distribution of a random variable is the collection of all of the probabilities

of the variable being in every possible subset of R.

• e.g. tonight’s dinner, with S = {Beef, Chicken, Fish}, and P(Beef)=0.40, P(Chicken)=0.15,

and P(Fish)=0.45.

→ Let X(Beef) = 1, X(Chicken) = 2, X(Fish) = 5. Probabilities for X?

→ Here P(X = 1) = P{Beef} = 0.40, and P(X = 2) = P{Chicken} = 0.15, and

P(X = 5) = P{Fish} = 0.45. What about P(X ≤ 3)?

→Well, P(X ≤ 3) = P{Beef, Chicken} = 0.40 + 0.15 = 0.55. And P(X = 7) = 0.

→ And P(X < 20) = P{Beef, Chicken, Fish} = 0.40 + 0.15 + 0.45 = 1.

→ And P(1 < X < 6) = P{Chicken, Fish} = 0.15 + 0.45 = 0.60. And so on.

→ Can also write that for “any” subset B ⊆ R, we have

P(X ∈ B) = 0.40 IB(1) + 0.15 IB(2) + 0.45 IB(5).

→ e.g. If B is the event “≤ 3”, then IB(1) = 1, IB(2) = 1, and IB(5) = 0, so

P(X ∈ B) = 0.40 (1) + 0.15 (1) + 0.45 (0) = 0.55, like before.

• In general, “P(X ∈ B)” means P(X−1(B)) := P{s ∈ S : X(s) ∈ B}.
→ e.g. If B is the event “≤ 3”, then B = {x ∈ R : x ≤ 3}, so P(X ∈ B) = P(X ≤

3) = P
(
X ∈ (−∞, 3]

)
= P

(
X−1(−∞, 3]

)
.

Suggested Homework: 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.6, 2.2.8, 2.2.9, 2.2.10.

Discrete Random Variables

• A random variable is called discrete if
∑

x∈R P(X = x) = 1.

→ i.e., all of its probability is on individual values.
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→ Not always true! e.g. if we “pick a number uniformly between 0 and 1”, then

we know that P(X = x) = 0 for all values of x, so
∑

x∈R P(X = x) = 0 < 1.

• If it’s true, there’s a distinct sequence x1, x2, x3, . . . ∈ R, and corresponding

probabilities p1, p2, p3, . . . ≥ 0, with
∑

i pi = 1, such that P(X = xi) = pi for each i.

→ In above example, x1 = 1, x2 = 2, x3 = 5, with p1 = 0.40, p2 = 0.15, p3 = 0.45.

• Can also define the “probability function” as pX(x) := P(X = x).

→ So, pX(xi) = pi for all i, with pX(x) = 0 for all x 6∈ {x1, x2, . . .}.
→ In above example, pX(1)=0.40, pX(2)=0.15, pX(3)=0.45, otherwise pX(x)=0.

• e.g. Flip one fair coin, and let X = # Heads.

→ Then P(X = 0) = 1/2, and P(X = 1) = 1/2.

→ So, here x1 = 0, and x2 = 1, and p1 = p2 = 1/2.

→ Also, pX(0) = 1/2 and pX(1) = 1/2, with pX(x) = 0 for all x 6= 0, 1.

• e.g. Flip two fair coins, and let X = # Heads. Then P(X = 0) =
(

2
0

)
/22 = 1/4,

and P(X = 1) =
(

2
1

)
/22 = 2/4 = 1/2, and P(X = 2) =

(
2
2

)
/22 = 1/4.

→ So x1 = 0, and x2 = 1, and x3 = 2, and p1 = 1/4, and p2 = 1/2, and p3 = 1/4.

→ Also, pX(0) = 1/4 and pX(1) = 1/2 and pX(2) = 1/4, otherwise pX(x) = 0.

Suggested Homework: 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5.

Some Important Discrete Distributions

• e.g. Shoot one “free throw” in basketball, with

probability “θ” of scoring (for some value of θ with

0 < θ < 1, e.g. θ = 0.5, or θ = 1/3, or . . . ).

→ Let X = 1 if you score, or X = 0 if you

miss. Probabilities for X?

→ Here P(X = 1) = P{score} = θ, and

P(X = 0) = P{miss} = 1− θ.
→ This is the “Bernoulli(θ) distribution”.

→ Can also write X ∼ Bernoulli(θ).

→ Then pX(0) = 1− θ and pX(1) = θ, with pX(x) = 0 for all x 6= 0, 1.

→ e.g. Bernoulli(0.5), or Bernoulli(1/3), or . . .

→ (Of course, it doesn’t have to be free throws! This distribution applies to any

situation involving any “attempt” or “trial” having probability θ of “success” and

probability 1− θ of “failure”. And similarly for the below, too.)

• e.g. Shoot 2 free throws, each independent with probability θ of scoring (for some

value of θ with 0 < θ < 1 like 0.5 or 1/3).

→ Let X = # Successes. Probabilities for X?

→ Here P(X = 0) = P{miss-miss} = (1− θ)(1− θ) = (1− θ)2.

(We can multiply because they are independent.)
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→ And, P(X = 2) = P{score-score} = (θ)(θ) = θ2.

→ And, P(X = 1) = P{score-miss, miss-score} = (θ)(1−θ)+(1−θ)(θ) = 2θ(1−θ).
→ This is the “Binomial(2, θ) distribution”.

→ Then pX(0) = (1− θ)2, pX(1) = 2θ(1− θ), pX(2) = θ2, otherwise pX(x) = 0.

• e.g. Shoot “n” free throws, each independent with probability θ of scoring (for

some value of θ with 0 < θ < 1, and some value of n ∈ N like 2 or 10 or 286).

→ Let X = # Successes. Probabilities for X?

→ Here P(X = 0) = P{miss-miss-. . . -miss} = (1− θ)n.

→ And, P(X = n) = P{score-score-. . . -score} = θn.

→ And, P(X = 1) = P{score-miss-. . . -miss, miss-score-miss-. . . -miss, . . . } = ??

→ Well, each such sequence has probability θ(1− θ) . . . (1− θ) = θ(1− θ)n−1.

→ And, there are n such sequences (one for each shot which could score).

→ So, P(X = 1) = nθ(1− θ)n−1.

→ What about P(X = k) for any integer k ∈ {0, 1, 2, . . . , n}?
→ Well, P(X = k) = P{all sequences of k scores and n− k misses}.
→ Each such sequence has probability θk(1− θ)n−k.
→ And, the number of such sequences is

(
n
k

)
. (“Choose” which k shots scored.)

→ So, pX(k) := P(X = k) =
(
n
k

)
θk (1− θ)n−k, for any k ∈ {0, 1, 2, . . . , n}.

→ This is the “Binomial(n, θ) distribution”. Can write X ∼ Binomial(n, θ).

→ Check: k = 0: P(X = 0) =
(
n
0

)
θ0(1− θ)n−0 = (1− θ)n. Yep!

→ Check: k = n: P(X = n) =
(
n
n

)
θn(1− θ)n−n = θn. Yep!

→ Check: k = 1: P(X = 1) =
(
n
1

)
θ1(1− θ)n−1 = nθ(1− θ)n−1. Yep!

→ Check: P(X = k) ≥ 0. Yep!

→ Check:
n∑
k=0

P(X = k) =
n∑
k=0

(
n
k

)
θk(1− θ)n−k = ??

= [θ + (1− θ)]n = 1n = 1 (by using the “Binomial Theorem”). Yep!

• Special case: Binomial(1, θ) is the same as Bernoulli(θ).

• Suppose X1, X2, . . . , Xn ∼ Bernoulli(θ), for independent trials.

→ Let Y = X1 +X2 + . . .+Xn. What is the distribution of Y ?

→ Here Y represents the number of successes in n independent attempts, each

with probability θ of success, so Y ∼ Binomial(n, θ).

→ Special case: if θ = 1/2, then the Binomial(n, 1/2) distribution has

P(X = k) =
(
n
k

)
(1/2)k(1− (1/2))n−k =

(
n
k

)
(1/2)n =

(
n
k

) /
2n, same as before.

• e.g. Suppose 1/4 of students have long hair. You pick four students at random,

with replacement. What is P(exactly 2 of them have long hair)?

→ Let Y = # students with long hair. Then Y ∼ Binomial(4, 1/4). So,

P(Y = 2) =
(

4
2

)
(1/4)2

(
1− (1/4)

)4−2

= 6(1/4)2(3/4)2 = 54/256 = 27/128
.
= 0.21.
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• e.g. Repeatedly shoot free throws, each independent with probability θ of scoring.

Let Z = # misses before the first score. Probabilities for Z?

→ Here P(Z = 0) = P(score first time) = θ.

→ And, P(Z = 1) = P(miss-score) = (1− θ)θ.
→ And, P(Z = 2) = P(miss-miss-score) = (1− θ)2θ.

→ In general, P(Z = k) = P(miss-miss-. . . -miss-score) = (1 − θ)kθ, valid for all

k = 0, 1, 2, 3, . . ..

→ This is the “Geometric(θ) distribution”. Can write Z ∼ Geometric(θ).

→ Check: P(Z = k) ≥ 0 for all k. Yep!

→ Check:
∑∞

k=0(1− θ)kθ = θ[1 + (1− θ) + (1− θ)2 + (1− θ)3 + . . .]

= θ[ 1
1−(1−θ) ] = θ[1

θ
] = 1. (Geometric series.) Yep!

• [Some books count # attempts up to and including first success: one more.]

• e.g. Suppose 1/4 of students have long hair. You repeatedly pick students at

random, with replacement. What is P(the sixth student is the first with long hair)?

→ Let X = # students before first one with long hair. Then we want to find

P(X = 5). And, here X ∼ Geometric(1/4).

→ So, P(X = 5) = (1/4)
(
1− (1/4)

)5
= (1/4)(3/4)5 = 243/4096

.
= 0.059.

• Suppose again that X ∼ Geometric(1/4). What is P(X =∞)?

→ Well, P(X ≤ m) =
∑m

k=0 P(X = k) =
∑m

k=0(1/4)(3/4)k = (1/4)[1 + (3/4) +

(3/4)2 + . . .+ (3/4)k] = (1/4)1−(3/4)m+1

1−(3/4)
= 1− (3/4)m+1. This is < 1.

→ So, P(X > m) = 1− P(X ≤ m) = 1− [1− (3/4)m+1] = (3/4)m+1.

→ Hence, P(X > m) > 0 for any m ∈ N. (“unbounded random variable”)

→ But also, {X > m} ↘ {X =∞}. [check!]

→ Hence, by Continuity of Probabilities,

P(X =∞) = limm→∞ P(X > m) = limm→∞(3/4)m+1 = 0. Phew!

Suggested Homework: 2.3.6, 2.3.7, 2.3.10, 2.3.11, 2.3.14, 2.3.15, 2.3.16(a,b), 2.3.23,

2.3.24, 2.3.27.

————————— END WEDNESDAY #3 —————————

• Now, if X is a discrete variable which always equals one of the values x1, x2, . . .,

then the events {X = xi} form a partition. So, we get that . . .

• [Law of Total Probability – Discrete Random Variable Version]

If X is a discrete random variable, with possible values x1, x2, . . ., and corresponding

probabilities p1, p2, . . ., and B is any event, then

P(B) =
∑

i P(X = xi) P(B |X = xi) =
∑

i pi P(B |X = xi).

→ In fact, since P(X = x) = 0 for all other x, we can also write this as:

P(B) =
∑

x∈R P(X = x) P(B |X = x).

• e.g. Suppose we roll one fair six-sided die, and then flip a number of coins equal

to the number showing on the die. Let X = # Heads. Compute P(X = 3).
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→ Let Y = number on die. Then Y is discrete, with possible values {1, 2, 3, 4, 5, 6}.
→ Use the values of Y as a partition! Then . . .

P(X = 3) =
∑

y∈R P(Y = y) P(X = 3 |Y = y) =
∑6

y=1 P(Y = y) P(X = 3 |Y =

y) =
∑6

y=3(1/6) [
(
y
3

) /
2y] = 1

6

(
1
8

+ 4
16

+ 10
32

+ 20
64

)
= 1/6. (Just like before.)

→ And, P(X = 4) =
∑

y∈R P(Y = y) P(X = 4 |Y = y) =
∑6

y=1 P(Y = y) P(X =

4 |Y = y) =
∑6

y=4(1/6) [
(
y
4

) /
2y] = 1

6

(
1
16

+ 5
32

+ 15
64

)
= 29/384

.
= 0.0755.

• e.g. Suppose we roll one fair six-sided die, and then attempt a number of free

throws equal to the number showing on the die. Assume we have independent prob-

ability 1/3 of scoring on each free throw. Let X = # Scores. Compute P(X = 3).

→ Let Y = number on die. Then by the Law of Total Probability,

P(X = 3) =
∑

y∈R P(Y = y) P(X = 3 |Y = y) =
∑6

y=1 P(Y = y) P(X = 3 |Y =

y) =
∑6

y=3(1/6)
[(

y
3

)
(1/3)3(2/3)y−3

]
= (1/6)

[
(1)(1/3)3(2/3)0 + (4)(1/3)3(2/3)1 +

(10)(1/3)3(2/3)2 + (20)(1/3)3(2/3)3
]

= . . . = (1/6) [379/729]
.
= 0.087.

Poisson Distribution

• e.g. Suppose Toronto has an average of λ = 5 house fires per day.

→ Intuitively, this is caused by a very large number n of buildings, each of which

has a very small probability θ of having a fire.

→ Let λ = nθ, i.e. θ = λ/n. (Then λ is the “average” number of fires – later.)

→ Then the number of fires has the distribution Binomial(n, λ/n), so

P(#fires = k) =

(
n

k

)
θk(1− θ)n−k

=
n(n− 1)(n− 2) . . . (n− k + 1)

k!
(λ/n)k [1− (λ/n)]n−k .

→ Now, what happens as n→∞, for a fixed value k ∈ {0, 1, 2, . . .}?
→ Well, since k � n, we have n

n
= 1, n−1

n
→ 1, n−2

n
→ 1, . . . n−k+1

n
→ 1.

→ Hence, n(n−1)(n−2)...(n−k+1)
nk → 1.

→ Also, from calculus, ex = 1 + x+ x2

2!
+ . . ., so for small x ∈ R, ex ≈ 1 + x.

→ So, [1− (λ/n)]n−k ≈ [1− (λ/n)]n ≈ [e−λ/n]n = e−λ.

→ Hence, as n→∞, we have P(#fires = k) → 1
k!
λke−λ = e−λ λ

k

k!
.

→ This is the Poisson(λ) distribution: P(k) = e−λ λk

k!
, for k = 0, 1, 2, 3, . . ..

• Check:
∑∞

k=0 e
−λ λk

k!
= e−λ [1 + λ+ λ2

2!
+ λ3

3!
+ . . .] = e−λ [eλ] = 1. Yep!

• In general, if n is very large, and θ is very small, then Binomial(n, θ) is well

approximated by Poisson(λ) where λ = nθ. “Poisson approximation”

• e.g. Suppose Y ∼ Poisson(3). What is P(Y = 4)?

→ Well, P(Y = 4) = e−λ λk

k!
= e−3 34

4!
= e−3 81

24

.
= 0.168.

• e.g. Suppose Y ∼ Binomial(20000, 0.0001).
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→ Then P(Y = 4) =
(

20000
4

)
(0.0001)4(0.9999)20000−4 .

= 0.09022352216.

→ Poisson Approximation: Here λ = nθ = 20000 · 0.0001 = 2.

→ So, P(Y = 4) ≈ e−2 (2)4

4!

.
= 0.09022352178.

• Or, if Y ∼ Binomial(200, 0.01), then still λ = 200 · 0.01 = 2, so Poisson approxi-

mation is the same, but now P(Y = 4) =
(

200
4

)
(0.01)4(0.99)200−4 .

= 0.0902197.

→ Still pretty close, but not as close.

Suggested Homework: 2.3.8, 2.3.12, 2.3.19, 2.3.27. Optional: 2.3.18, 2.3.30.

Understanding Distributions Using the Computer Software “R”

• Recall – basic info and links at: http://probability.ca/Rinfo.html

→ Also discussed in Appendix B of the textbook.

• Can use “R” to simulate from probability distributions!

→ e.g. “rbinom(1,10,1/2)”, “rgeom(1,0.2)”, “rpois(1,5)”.

• Can also plot probabilities, e.g. “plot(dbinom(0:10,10,1/2))”, “plot(dgeom(0:10,0.2))”

→ [Also: other parameter values, and different options like “type=’b’ ”, etc.]

Some Additional Discrete Distributions

• e.g. Repeatedly attempt free throws, with independent probability θ each time.

Let r ∈ N, and Y be the number of misses before the rth score. What is P(Y = k)?

→ Well, if Y = k, then the first r − 1 + k shots must have included r − 1 scores

and k misses. Binomial Distribution! This probability is
(
r−1+k
r−1

)
θr−1 (1− θ)k.

→ Then we had to score on the final attempt, which has probability θ.

→ So, P(Y = k) =
(
r−1+k
r−1

)
θr−1 (1− θ)k θ =

(
r−1+k
k

)
θr (1− θ)k, for k = 0, 1, 2, . . ..

→ This is the Negative-Binomial(r, θ) Distribution.

→ Special case: If r = 1, then P(Y = k) =
(

1−1+k
k

)
θ1 (1− θ)k = θ (1− θ)k.

This is the same as the Geometric(θ) Distribution (of course!).

• e.g. Suppose an urn contains N balls, of which M are Red and N −M are Blue.

→We draw n balls from the urn without replacement, so each collection of n balls

has the same probability 1/
(
N
n

)
.

→ Let X be the number of Red balls drawn. Probabilities?

→ Clearly X ≤ n, and X ≤M , so X ≤ min(n,M). And X ≥ 0.

→ Also, at most N −M balls could be Blue, so X ≥ n− (N −M) = n+M −N .

→ So, we want to find P(X = k), where max(0, n+M −N) ≤ k ≤ min(n,M).

→ Well, X = k if we chose k Red and n− k Blue.

→ The number of such choices is
(
M
k

) (
N−M
n−k

)
.

→ Hence, P(X = k) =
(
M
k

) (
N−M
n−k

) / (
N
n

)
.

→ This is the Hypergeometric(N,M, n) Distribution.
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Suggested Homework: 2.3.9, 2.3.13, 2.3.16(c).

—————————— END MONDAY #4 ——————————

Continuous Random Variables

• A random variable X is continuous if P(X = x) = 0 for all x.

→ Then
∑

x∈R P(X = x) =
∑

x∈R 0 = 0. The “opposite” of discrete!

• e.g. The Uniform[0,1] distribution (already mentioned):

→ X ∼ Uniform[0, 1] if P(a ≤ X ≤ b) = b− a whenever 0 ≤ a ≤ b ≤ 1.

→ Then e.g. P(X ∈ [0, 1]) = P(0 ≤ X ≤ 1) = 1− 0 = 1,

P(1/3 ≤ X ≤ 3/4) = (3/4)− (1/3) = 5/12,

P(X ≥ 2/3) = P(2/3 ≤ X ≤ 1) = 1− (2/3) = 1/3, etc.

→ Also, P(X > 1) = 0, and P(X < 0) = 0, so e.g. P(1/3 ≤ X ≤ 5) = P(1/3 ≤
X ≤ 1) = 1− (1/3) = 2/3, etc.

→ And, we previously showed (using Continuity Of Probabilities) that we can

always replace “≤” with “<”, or “>” by “≥”, etc. (Also true since P(X = x) = 0.)

−0.5 0.0 0.5 1.0 1.5
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0

0.
2

0.
4

0.
6

0.
8

1.
0

x

f(
x)

• Alternative representation: Let

f(x) =


0, x < 0

1, 0 ≤ x ≤ 1

0, x > 1

→ Then for any a ≤ b,

P(a ≤ X ≤ b) =

∫ b

a

f(x) dx .

→ And as a check, f(x) ≥ 0, and
∫∞
−∞ f(x) dx = 1. More complicated, but . . .

• A density function is “any” f : R→ R with f(x) ≥ 0 and
∫∞
−∞ f(x) dx = 1.

→ Given any density function, can define P(a ≤ X ≤ b) =
∫ b
a
f(x) dx for a ≤ b.

→ This defines a new distribution! Very general! (“absolutely continuous”)

• Follows that P(X = a) = P(a ≤ X ≤ a) =
∫ a
a
f(x) dx = 0, i.e. X is continuous.

• If f(x) is the density function for a random variable X, write it as fX(x).

• e.g. the Uniform[5,12] distribution has density: fX(x) =


0, x < 5

1/7, 5 ≤ x ≤ 12

0, x > 12

→ Then fX(x) ≥ 0, and
∫∞
−∞ fX(x) dx =

∫ 5

−∞(0) dx +
∫ 12

5
(1/7) dx +

∫∞
12

(0) dx =

0 + (1/7)(7) + 0 = 1. Good.

→ And then for 5 ≤ a ≤ b ≤ 12, we have P (a ≤ X ≤ b) = 1
7

(b− a).
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• For any L < R, the Uniform[L,R] density is: fX(x) =


0, x < L

1/(R− L), L ≤ x ≤ R

0, x > R

→ Then fX(x) ≥ 0, and
∫∞
−∞ fX(x) dx =

∫ L
−∞(0) dx +

∫ R
L

1
R−L dx +

∫∞
R

(0) dx =

0 + 1
R−L (R− L) + 0 = 1. Good.

→ And then whenever L ≤ a ≤ b ≤ R, then P (a ≤ X ≤ b) = b−a
R−L .

• e.g. Let f(x) = e−x for x ≥ 0, otherwise f(x) = 0.

→ Then f(x) ≥ 0, and
∫∞
−∞ f(x) dx =

∫ 0

−∞(0) dx+
∫∞

0
e−x dx = (0)+(−e−x)

∣∣∣x=∞

x=0
=

(−0)− (−1) = 1.

→ If X has this density f , for 0 ≤ a ≤ b, P(a ≤ X ≤ b) =
∫ b
a
e−x dx = e−a − e−b.

→ Also P(X ≥ a) = e−a. This is the Exponential(1) distribution.

• More generally, for any λ > 0, let f(x) = λ e−λx for x ≥ 0, otherwise f(x) = 0.

→ Then f(x) ≥ 0, and
∫∞
−∞ f(x) dx =

∫ 0

−∞(0) dx+
∫∞

0
(λ e−λx) dx = −e−λx

∣∣∣x=∞

x=0
=

(−0)− (−1) = 1.

→ If X has this density f , for 0 ≤ a ≤ b, P(a ≤ X ≤ b) = e−λa − e−λb.
→ Also P(X ≥ a) = e−λa. This is the Exponential(λ) distribution.

→ Many useful properties. Good model of e.g. how long a lightbulb will last.

Suggested Homework: 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9,

2.4.10, 2.4.11, 2.4.12, 2.4.14.

The Normal Distribution
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• Let φ(x) = 1√
2π
e−x

2/2 for x ∈ R.

→ “Standard normal density”

→ “bell curve”, “Gaussian”

→ Clearly φ(x) ≥ 0.

→ Fact:
∫∞
−∞ φ(x) dx = 1.

→ (Proof uses polar coordinates: p. 126.)

→ So, it’s a density. Important! Amazing!

• If X has density φ, then we say that X has the Normal(0,1) or N(0,1) distribution.

→ Then P(a ≤ X ≤ b) =
∫ b
a
φ(x) dx =

∫ b
a

1√
2π
e−x

2/2 dx for all a ≤ b.

→ Cannot be computed analytically. (No exact anti-derivative function.)

→ But can be computed using software, or tables like Appendix D.2.

• More generally, for any µ ∈ R and σ > 0, let f(x) = 1
σ
√

2π
e−(x−µ)2/2σ2

.

→ Then f(x) ≥ 0. By change-of-variable theorem,
∫∞
−∞ f(x) dx =

∫∞
−∞ φ(x) dx = 1.

→ This is the density of the Normal(µ, σ2) or N(µ, σ2) distribution.

→ Previous case was: µ = 0, σ = 1. (“Standard normal distribution”)

→ Curve is centered at µ, so changing µ “shifts” it.
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→ Increasing σ makes it “fatter”; decreasing σ makes it “thinner”.

→ [Plot in R: e.g. “plot(\(x) dnorm(x,2,3), xlim=c(-4,4), ylim=c(0,1))”]

• In fact, if Z ∼ Normal(0, 1), and W = µ + σ Z, then by the change-of-variable

formula (coming soon), W ∼ Normal(µ, σ2).

• So, there is a normal density for every “location” µ and “scale” σ.

→ Good model for e.g. human heights, weights of eggs, etc.

→ See e.g. https://www.statology.org/example-of-normal-distribution/

→ The key distribution for the Central Limit Theorem and more! (Later.)

Suggested Homework: 2.4.13, 2.4.26.

Cumulative Distribution Functions (cdf)

• For any random variable X, the cumulative distribution function (cdf) is the

function FX defined by FX(x) = P(X ≤ x) for all x ∈ R.

→ If X is discrete, then FX(x) =
∑

u≤x P(X = u).

→ Or, if X is absolutely continuous, then FX(x) =
∫ x
−∞ fX(u) du.

• Then for any a < b, P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a) = FX(b)− FX(a).

→ Also, by Continuity Of Probabilities, P(a ≤ X ≤ b) = P(X ≤ b)−P(X < a) =

P(X ≤ b)− limn→∞ P(X ≤ a− 1
n
) = FX(b)− limn→∞ FX(a− 1

n
).

→ Special case: P(X = a) = P(a ≤ X ≤ a) = FX(a)− limn→∞ FX(a− 1
n
).

→ (In particular, if FX is continuous, then P(a ≤ X ≤ b) = FX(b)− FX(a).)

→ So, all probabilites for X can be found from FX . (“distribution function”)

• Basic properties of any cumulative distribution function FX :

→ 0 ≤ FX(x) ≤ 1 for all x ∈ R.

→ If x ≤ y, then FX(x) ≤ FX(y), i.e. FX is an increasing function.

→ What about limx→−∞ FX(x) and limx→∞ FX(x)?

→ By Continuity of Probabilities, limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

[Reminder: No lecture nor tutorial next Monday Oct 9 (Thanksgiving).]

[Reminder: Extra TA and Prof office hours added on web page.]

[Reminder: Midterm #1 next Wednesday Oct 11 in EX200.]

————————— END WEDNESDAY #4 —————————

(Thanksgiving holiday.)

—————————— END MONDAY #5 ——————————
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(Midterm #1.)

————————— END WEDNESDAY #5 —————————

• Are cumulative distribution functions (cdfs) continuous?

• If A = (−∞, x] and An = (−∞, x+ 1
n
], then:

{An} ↘ A, so P(An)→ P(A), i.e. FX(x+ 1
n
)→ FX(x). “right-continuous”

• If A = (−∞, x] and An = (−∞, x− 1
n
], does {An} ↗ A?

→ No! {An} ↗ (−∞, x). [Since x 6∈ An for any n.]

→ So, P(An)→ P((−∞, x)) = P(X < x). [Not P(X ≤ x).]

→ i.e. FX(x− 1
n
)→ P(X < x) = P(X ≤ x)− P(X = x) = FX(x)− P(X = x).

• If P(X=x) = 0, e.g. X continuous, then FX(x− 1
n
)→ FX(x). “left-continuous”

→ And, if it’s right-continuous and left-continuous, then it is continuous!

• But if P(X = x) > 0, then FX(x) is discontinuous at x.

→ Furthermore, the jump-size at x is equal to P(X = x).

• e.g. Flip 3 coins, X = # Heads.

→ Know P(X = 0) = 1/8, P(X = 1) = 3/8, P(X = 2) = 3/8, P(X = 3) = 1/8.

→ So, for x < 0, FX(x) = P(X ≤ x) = 0.

→ And, for 0 ≤ x < 1, FX(x) = P(X ≤ x) = P(X = 0) = 1/8.
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→ And, for 1 ≤ x < 2, FX(x) =

P(X ≤ x) = P(X = 0) + P(X = 1) =

1/8 + 3/8 = 4/8 = 1/2.

→ And, for 2 ≤ x < 3, FX(x) =

P(X ≤ x) = P(X = 0) + P(X = 1) +

P(X = 2) = 1/8 + 3/8 + 3/8 = 7/8.

→ And, for x ≥ 3, FX(x) = P(X ≤ x) = P(X = 0) + P(X = 1) + P(X =

2) + P(X = 3) = 1/8 + 3/8 + 3/8 + 1/8 = 1.

→ [Graph.] All properties satisfied!

• All discrete distributions have somewhat similar cdfs. (piecewise-constant)

• e.g. Y = roll of one fair six-sided die.
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FY (y) =



0, y < 1

1/6, 1 ≤ y < 2

2/6, 2 ≤ y < 3

3/6, 3 ≤ y < 4

4/6, 4 ≤ y < 5

5/6, 5 ≤ y < 6

1, y ≥ 6

• Continuous? e.g.X ∼ Uniform[0, 1].

→ Then P(X ≤ x) = 0 for x < 0.
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→ And, P(X ≤ x) = 1 for x > 1.

→ For 0 ≤ x ≤ 1, P(X ≤ x) =

P(0 ≤ X ≤ x) = x− 0 = x.

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

F
_Z

(z
) 

fo
r 

U
ni

f[0
,1

]

→Hence, FX(x) =


0, x < 0

x, 0 ≤ x < 1

1, x ≥ 1

• e.g. Z ∼ Uniform[L,R] for some

L < R. Then, similarly, FZ(z) =
0, z < L
z−L
R−L , L ≤ z < R

1, z ≥ R

→ So e.g. if L = 2 and R = 5, then FZ(z) = z−2
3

for 2 ≤ z ≤ 5.
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• e.g. X ∼ Exponential(1).

→ Then P(X < 0) = 0.

→ So, for x < 0, FX(x) = 0.

→ For x ≥ 0, FX(x) = P(X ≤
x) =

∫ x
−∞ fX(u) du =

∫ x
0
e−u du = 1 −

e−x. [Graph.] All properties satisfied!

• e.g. Y ∼ Exponential(5).

→ Then P(Y < 0) = 0. So, for y < 0, FY (y) = 0.

→ For y ≥ 0, FY (y) = P(Y ≤ y) =
∫ y
−∞ fY (u) du =

∫ y
0

5 e−5u du = 1− e−5y.

• In general, if W ∼ Exponential(λ) for some λ > 0, then FW (w) = 0 for w < 0,

otherwise FW (w) = 1− e−λw.

• e.g. Suppose X ∼ Exponential(3). What is P(X ≥ 2.6)?

→ Here FX is continuous, so P(X ≥ 2.6) = 1− P(X < 2.6) = 1− P(X ≤ 2.6) =

1− FX(2.6) = 1− [1− e−3(2.6)] = e−3(2.6) = e−7.8 .
= 0.00041.

Suggested Homework: 2.5.2, 2.5.3, 2.5.7, 2.5.8, 2.5.9, 2.5.12.
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)• e.g. Z ∼ Normal(0, 1).

→ Then FZ(x) = P(Z ≤ x) =∫ x
−∞ φ(u) du =

∫ x
−∞

1√
2π
e−u

2/2 du.

→ [Graph.] All properties satisfied!

→ Formula for this FZ(x)?

→ There isn’t one!

→ But it is so important that it has its own symbol: Φ(x).

→ It can be computed using software (R: “pnorm”), or tables like Appendix D.2.

→ By symmetry, P(Z ≤ x) = P(Z ≥ −x). So, Φ(x) = 1 − Φ(−x) for all x ∈ R,

i.e. Φ(x) + Φ(−x) = 1. Also, Φ(0) = 1/2.

• e.g. Suppose Z ∼ Normal(0, 1). What is P(Z ≤ 1.43)?
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→ Well, P(Z ≤ 1.43) = Φ(1.43) = 1− Φ(−1.43).

→ From the table in Appendix D.2, this is
.
= 1− (0.0764) = 0.9236.

• e.g. Suppose W ∼ Normal(5, 42). What is P(6 ≤ W ≤ 8)?

→ Well, here W = 5 + 4Z where Z ∼ Normal(0, 1).

→ So, P(6 ≤ W ≤ 8) = P(6 ≤ 5 + 4Z ≤ 8) = P(1/4 ≤ Z ≤ 3/4).

→ By definition of Φ, this is P(Z ≤ 3/4)− P(Z ≤ 1/4) = Φ(3/4)− Φ(1/4).

→ Then, this equals [1 − Φ(−3/4)] − [1 − Φ(−1/4)] = Φ(−1/4) − Φ(−3/4) =

Φ(−0.25)− Φ(−0.75).

→ From the Appendix D.2 table, this is
.
= 0.4013− 0.2266 = 0.1747.

→ So, here P(6 ≤ W ≤ 8)
.
= 0.1747.

Suggested Homework: 2.5.4, 2.5.5.

—————————— END MONDAY #6 ——————————

• Suppose that X is absolutely continuous, with density function fX(x), and cumu-

lative distribution function FX(x). What is the relationship between fX and FX?

→ Well, we know that FX(x) := P(X ≤ x) =
∫ x
−∞ fX(u) du.

→ So, by the Fundamental Theorem of Calculus,

the derivative F ′X(x) := d
dx
FX(x) equals fX(x), at least if fX is continuous at x.

→ That is, the derivative of the cdf is the density!

• e.g. Suppose X ∼ Exponential(1). Then we know FX(x) = 1− e−x for x ≥ 0.

→ Then for x > 0, F ′X(x) = d
dx

[1− e−x] = −(−e−x) = e−x = fX(x). Yep!

• e.g. Similarly, for any λ > 0, if Y ∼ Exponential(λ), then for y > 0, FY (y) =

1− e−λy, and F ′Y (y) = d
dy

[1− e−λy] = (−λ)(−e−λy) = λe−λy = fY (y). Yep!

• If Z ∼ Normal(0, 1), then we know Φ′(z) = φ(z) = 1√
2π
e−z

2/2.

→ Even though we don’t really know exactly what Φ(z) is!

• e.g. Suppose a r.v. X has cdf FX(x) =


0, x < 5

(x− 5)4, 5 ≤ x < 6

1, x ≥ 6

→ Valid cdf? (Yes! Increases from 0 to 1, right-continuous . . . )

→ Then e.g. P(3 < X ≤ 5.5) = FX(5.5)− FX(3) = (5.5− 5)4 − 0 = 0.0625.

→ e.g. Also, X has density function fX(x) = F ′X(x) =


0, x < 5

4(x− 5)3, 5 < x < 6

0, x > 6

• Mixture Distributions: e.g. Consider the following random variables:

→ Y is the result of rolling one fair six-sided die, with cdf FY (y) as above.

→ Z ∼ Uniform[2, 5], with cdf FZ(z) = z−2
3

for 2 ≤ z ≤ 5 as above.

→ W ∼ Bernoulli(1/3) (indep.), so P(W = 1) = 1/3 and P(W = 0) = 2/3.
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→ Then, we let X =

{
Y, W = 1

Z, W = 0

→ Intuitively, X is equal either to the result of the die (with probability 1/3), or

to a Uniform[2,5] variable (with probability 2/3).

→ Then what is, say, FX(4.4)?

→ Well, by the Law of Total Probability, FX(4.4) := P(X ≤ 4.4)

= P(X ≤ 4.4, W = 1) + P(X ≤ 4.4, W = 0)

= P(Y ≤ 4.4, W = 1) + P(Z ≤ 4.4, W = 0)

= P(Y ≤ 4.4) P(W = 1) + P(Z ≤ 4.4) P(W = 0)

= FY (4.4) (1/3) + FZ(4.4) (2/3) = (4/6) (1/3) + (2.4/3) (2/3).

→ More generally, FX(x) = (1/3)FY (x) + (2/3)FZ(x), for all x ∈ R.

→ (Can then plug in FY (x) and FZ(x) to compute FX(x).)

→ The distribution of X is a mixture of the distributions of Y and of Z.

• In this example, is X continuous?

→ No! By independence, we have that e.g. P(X = 2) = P(W = 1, Y = 2) =

P(W = 1) P(Y = 2) = (1/3)(1/6) = 1/18 > 0. Not zero, like for the continuous case.

• Ah, so then is X discrete?

→ No! Here
∑

x∈R P(X = x) =
∑6

x=1 P(X = x) =
∑6

x=1 P(W = 1, Y = x) =∑6
x=1 P(W = 1) P(Y = x) =

∑6
x=1(1/3)(1/6) = 1/3 < 1. Not one, like for the

discrete case.

• Here X is has a mixture distribution. Neither discrete nor continuous!

→ (In this course we’ll usually stick with either discrete or absolutely continuous.

But there are other kinds of random variables too. Even beyond mixtures!)

Suggested Homework: 2.5.6, 2.5.13, 2.5.14, 2.5.15, 2.5.17, 2.5.18.

Change of Variable Formula (one-dimensional)

• Suppose X is a random variable, and h : R→ R is some function.

→ Then we can define Y = h(X), i.e. Y (s) = h(X(s)) for all s ∈ S. (e.g. Y = X2)

→ Then Y is another random variable. (“function of a random variable”)

→ So, Y has its own distribution. What is it??

• Discrete Case: Suppose X discrete: P(X = xi) = pi where pi ≥ 0 and
∑

i pi = 1.

→ Then, Y is discrete too, with P(Y = y) = P(h(X) = y) =
∑
{pi : h(xi) = y}.

→ That is, P(Y = y) = P(X ∈ {x : h(x) = y}).
→ Or, in terms of probability functions, pY (y) =

∑
x :h(x)=y pX(x).

→ Discrete Change-of-Variable Theorem.

• e.g. X = roll of fair die, and Y = (X − 3)2. What is P(Y = 4)?

→Well, P(Y = 4) = P(X ∈ {x : (x−3)2 = 4}) = P(X ∈ {1, 5}) = (1/6)+(1/6) =

2/6 = 1/3.
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→ Also, P(Y = 1) = P(X ∈ {x : (x−3)2 = 1}) = P(X ∈ {2, 4}) = (1/6)+(1/6) =

2/6 = 1/3.

→ And, P(Y = 9) = P(X ∈ {x : (x− 3)2 = 9}) = P(X ∈ {6}) = (1/6). More?

→ Yes! Also P(Y = 0) = P(X ∈ {x : (x− 3)2 = 0}) = P(X ∈ {3}) = (1/6).

→ That is, pY (y) = 1/3 for y = 1, 4; pY (y) = 1/6 for y = 0, 9; otherwise 0.

• Easy! But what if X is continuous? Trickier!

• Absolutely Continuous Case: Suppose X has density fX(x), and Y = h(X).

→ Then what is the density function fY (y) for Y ?

→ Will Y necessarily even be absolutely continuous too??

→ No, not necessarily!

• e.g. X ∼ Uniform[0, 1], and h(x) =

{
2, x ≤ 1/3

4, x > 1/3

→ Then if Y = h(X), then P(Y = 2) = P(X ≤ 1/3) = 1/3, and P(Y = 4) =

P(X > 1/3) = 1− (1/3) = 2/3. That is, pY (2) = 1/3, and pY (4) = 2/3.

→ So, Y is discrete! Not continuous at all!

• But what if h is strictly increasing? (or decreasing?) Then what is fY (y)?

• Absolutely Continuous Change-of-Variable Theorem: Suppose X has density

fX(x), and Y = h(X), where h : R → R is differentiable and strictly increasing

or decreasing (at least on {x : fX(x) > 0}), with inverse function h−1(y). Then Y is

also absolutely continuous, with density function fY (y) = fX
(
h−1(y)

) / ∣∣h′(h−1(y)
)∣∣.

• Proof: Suppose h is strictly increasing.

→ Then h has an inverse function, h−1(y). So, X = h−1(Y ).

→ Also assume h has a derivative, h′(x).

→ Then by the Inverse Function Theorem, d
dy
h−1(y) :=

(
h−1
)′

(y) = 1
/
h′(h−1(y)).

• Method #1:

→ Then P(a ≤ Y ≤ b) = P(h−1(a) ≤ X ≤ h−1(b)) =
∫ h−1(b)

h−1(a)
fX(x) dx.

→ We now make the “substitution” x = h−1(y).

→ Then by “integration by subsitution” or the “chain rule” from calculus, we

have dx = d
(
h−1(y)

)
=
(
h−1
)′

(y) dy = [1
/
h′(h−1(y))] dy.

→ Hence, from above, P(a ≤ Y ≤ b) =
∫ b
a

[fX
(
h−1(y)

)/
h′(h−1(y))] dy, ∀a ≤ b.

→ But this equals
∫ b
a
fY (y) dy, so we must have fY (y) = fX

(
h−1(y)

)/
h′
(
h−1(y)

)
.

→ (The first part fX
(
h−1(y)

)
is intuitive. The rest is from the chain rule.)

• Method #2:

→ Then FY (y) = P(Y ≤ y) = P(h(X) ≤ y) = P(X ≤ h−1(y)) = FX
(
h−1(y)

)
.

→ So, fY (y) = d
dy
FY (y) = d

dy
FX
(
h−1(y)

)
= fX

(
h−1(y)

)
d
dy
h−1(y)

= fX
(
h−1(y)

)
[1/ h′

(
h−1(y)

)
] = fX

(
h−1(y)

)
/ h′
(
h−1(y)

)
.

• Note: We need h to be increasing only where fX(x) > 0; other x don’t matter.
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• If instead h is strictly decreasing, then everything is still the same, except that h′

and (h−1)′ are negative, so we need to put an absolute value sign on it.

→ Or, in Method #2, P(Y ≤ y) = P(X ≥ h−1(y)) = 1 − P(X ≤ h−1(y)) =

1− FX(h−1(y)) which gives a negative.

• e.g. Suppose X ∼ Uniform[0, 1], and Y = 5X + 4.

→ Then fX(x) = 1 for 0 ≤ x ≤ 1, otherwise 0.

→ Also h(x) = 5x+ 4, strictly increasing, h′(x) = 5.

→ And, if y = 5x+ 4, then x = (y − 4)/5, so h−1(y) = (y − 4)/5.

→ So, fX(h−1(y)) = fX
(
(y − 4)/5

)
, which = 1 for 4 ≤ y ≤ 9 otherwise 0.

→ And, h′
(
h−1(y)

)
= h′

(
(y − 4)/5

)
= 5.

→ So, fY (y) = fX
(
h−1(y)

) / ∣∣h′(h−1(y)
)∣∣ = 1

/
5 for 4 ≤ y ≤ 9 otherwise 0.

→ That is, Y ∼ Uniform[4, 9], a familiar distribution! (Makes sense.)

• Alternatively, use cdfs!

→ In above example, for 4 ≤ y ≤ 9:

→ FY (y) = P(Y ≤ y) = P(5X + 4 ≤ y) = P(X ≤ (y − 4)/5) = (y − 4)/5.

→ Hence, for 4 ≤ y ≤ 9, fY (y) = d
dy
FY (y) = d

dy
(y − 4)/5 = 1/5. Same as before!

• e.g. Suppose X ∼ Uniform[0, 1], and Y = X2.

→ Then fX(x) = 1 for 0 ≤ x ≤ 1, otherwise 0.

→ Also h(x) = x2, strictly increasing for x ≥ 0, and h′(x) = 2x.

→ And, h−1(y) =
√
y for y ≥ 0, so fX(h−1(y)) is 1 for 0 < y ≤ 1 otherwise 0.

→ Therefore, h′(h−1(y)) = 2h−1(y) = 2
√
y for y > 0, otherwise 0.

→ So, fY (y) = fX
(
h−1(y)

) / ∣∣h′(h−1(y)
)∣∣ = 1

/
(2
√
y) for 0 < y ≤ 1 otherwise 0.

→ Is that really correct? Check:
∫∞
−∞ fY (y) dy =

∫ 1

0
[1/(2

√
y)] dy = 1

2

∫ 1

0
y−1/2 dy =

1
2

(
2y1/2

)∣∣∣y=1

y=0
= 1

2

(
2[11/2 − 01/2]

)
= 1

2
· 2 · 1 = 1. Phew! (And Y is not uniform.)

→ Alternatively: For 0 ≤ y ≤ 1, Fy(y) = P(Y ≤ y) = P(X2 ≤ y) = P(X ≤
√
y) =

√
y, so fY (y) = d

dy
FY (y) = d

dy

√
y = d

dy
y1/2 = (1/2)y−1/2 = 1/(2

√
y).

Suggested Homework: 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.6.6, 2.6.7, 2.6.9, 2.6.10,

2.6.12, 2.6.14, 2.6.15.

————————— END WEDNESDAY #6 —————————

• e.g. Suppose X ∼ Exponential(5), and Y = X2.

→ Then for y > 0, Fy(y) = P(Y ≤ y) = P(X2 ≤ y) = P(X ≤ √y) = 1− e−5
√
y.

→ So, for y > 0, fY (y) = d
dy
FY (y) = d

dy
[1 − e−5

√
y] = −e−5

√
y (−5y−1/2/2)) =

(5/2)e−5
√
y/
√
y. (Otherwise fY (y) = 0.) Crazy, but true! [Check: Integrates to 1.]

→ Or, use the usual Theorem: Again h(x) = x2, strictly increasing for x ≥ 0,

h′(x) = 2x, h−1(y) =
√
y for y ≥ 0, and here fX(x) = 5e−5x for x ≥ 0, so for y ≥ 0,

fY (y) = fX
(
h−1(y)

) / ∣∣h′(h−1(y)
)∣∣ = 5e−5

√
y
/

2
√
y. Same!

p.32



• e.g. Suppose Z ∼ Normal(0, 1), and Y = 6 + 3Z.

→ Then fZ(z) = φ(z) = 1√
2π
e−z

2/2.

→ Also h(z) = 6+3z, strictly increasing, with h′(z) = 3. And, h−1(y) = (y−6)/3.

→ So, fY (y) = fZ
(
h−1(y)

) / ∣∣h′(h−1(y)
)∣∣ = φ

(
(y − 6)/3

) /
3

= 1√
2π
e−[(y−6)/3]2/2

/
3 = 1

3
√

2π
e−(y−6)2/(2·32).

→ This is the same as 1
σ
√

2π
e−(y−µ)2/(2σ2) where µ = 6 and σ = 3.

→ Hence, Y ∼ Normal(6, 32), as we expected.

→ (Similarly for any µ besides 6, and σ besides 3.)

→ This demonstrates that if Z ∼ Normal(0, 1), and Y = µ + σZ, then Y ∼
Normal(µ, σ2), as we claimed before. (Phew.)

Joint Distributions

• Suppose X and Y are two random variables.

→ Suppose we know the distribution of X and also know the distribution of Y .

→ Does that tell us the whole story? Maybe not!

• e.g. Suppose we flip two fair (independent) coins.

→ Let X = Ifirst coin Heads, i.e. X = 1 if first coin Heads, otherwise X = 0.

→ Then X ∼ Bernoulli(1/2), i.e. P(X = 0) = P(X = 1) = 1/2.

→ Let Y1 = X, Y2 = 1−X, and Y3 = Isecond coin Heads. Distributions?

→ Here Y1 ∼ Bernoulli(1/2), and Y2 ∼ Bernoulli(1/2), and Y3 ∼ Bernoulli(1/2).

→ But what about their relationships to X? e.g. P(X = 1, Yi = 1)?

→ Here P(X = 1, Y1 = 1) = 1/2, and P(X = 1, Y2 = 1) = 0, and P(X = 1, Y3 =

1) = 1/4. All different!

• To really understand multiple variables, we need their joint distribution.

→ How to keep track? Joint probability functions (discrete case), joint density

functions (absolutely continuous case), joint cdfs (most general; we’ll do them first).

Joint Cumulative Distribution Functions

• Given random variables X and Y , their joint cumulative distribution function or

joint cdf is the function FX,Y : R2 → [0, 1] given by FX,Y (x, y) = P(X ≤ x, Y ≤ y) ≡
P(X ≤ x and Y ≤ y). Can get tricky!

• Again let X = Ifirst coin Heads, Y1 = X, Y2 = 1−X, and Y3 = Isecond coin Heads.

→ If x < 0 or y < 0 (or both), then FX,Yi(x, y) = 0 for each i (of course).

→ If x ≥ 1 and y ≥ 1, then FX,Yi(x, y) = 1 for each i (of course).

→ For Y1 = X: If 0 ≤ min[x, y] < 1, then FX,Y1(x, y) = P(X ≤ x, Y1 ≤ y) =

P(X ≤ x, X ≤ y) = P(X ≤ min[x, y]) = P(X = 0) = 1/2. Hence,

FX,Y1(x, y) =


1, x ≥ 1 and y ≥ 1

1/2, 0 ≤ min[x, y] < 1

0, x < 0 or y < 0 or both
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→ Alternatively (easier?), compute FX,Y1(x, y) systematically using a big table:

FX,Y1(x, y) x < 0 0 ≤ x < 1 x ≥ 1

y < 0 0 0 0
0 ≤ y < 1 0 1/2 1/2
y ≥ 1 0 1/2 1

→ What about Y2 = 1 − X? Well, if 0 ≤ x < 1 and y ≥ 1, then FX,Y2(x, y) =

P(X ≤ x, Y1 ≤ y) = P(X ≤ x, 1−X ≤ y) = P(X = 0, 1−X = 1) = P(X = 0) =

1/2. Also true if 0 ≤ y < 1 and x ≥ 1. But if x < 1 and y < 1, then cannot have

both X ≤ x and 1−X ≤ y, so FX,Y2(x, y) = 0. Hence,

FX,Y2(x, y) x < 0 0 ≤ x < 1 x ≥ 1

y < 0 0 0 0
0 ≤ y < 1 0 0 1/2
y ≥ 1 0 1/2 1

→ What about Y3 = Isecond coin Heads? Well, if 0 ≤ x < 1 and y ≥ 1, then

FX,Y3(x, y) = P(X ≤ x, Y1 ≤ y) = P(X = 0) = 1/2. Also true if 0 ≤ y < 1 and

x ≥ 1. But if 0 ≤ x < 1 and 0 ≤ y < 1, then P(X ≤ x, Y ≤ y) = P(X = 0, Y =

0) = (1/2)(1/2) = 1/4. Hence,

FX,Y3(x, y) x < 0 0 ≤ x < 1 x ≥ 1

y < 0 0 0 0
0 ≤ y < 1 0 1/4 1/2
y ≥ 1 0 1/2 1

→ So, e.g. FX,Y1(1/2, 1/2) = 1/2, FX,Y2(1/2, 1/2) = 0, FX,Y3(1/2, 1/2) = 1/4.

→ All different! Relationships matter! (But FX,Y (x, y) awkward to work with.)

• Some “limit” properties of FX,Y (x, y) := P(X ≤ x, Y ≤ y):

→ lim
x→−∞

FX,Y (x, y) = 0 for all y, and lim
y→−∞

FX,Y (x, y) = 0 for all x.

→ lim
x→+∞

FX,Y (x, y) = FY (y) for all y, and lim
y→+∞

FX,Y (x, y) = FX(x) for all x.

→ “Marginal cdfs”: the joint cdf tells us all about the individual ones.

→ In above example, bottom row is FX(x), and right column is FY (y).

• What about P(a < X ≤ b, c < Y ≤ d)?

→ Well, P(a < X ≤ b, Y ≤ d) = P(X ≤ b, Y ≤ d) − P(X ≤ a, Y ≤ d) =

FX,Y (b, d)− FX,Y (a, d).

→ Hence, P(a < X ≤ b, c < Y ≤ d) = P(a < X ≤ b, Y ≤ d) − P(a < X ≤
b, Y ≤ c) = [FX,Y (b, d)− FX,Y (a, d)]− [FX,Y (b, c)− FX,Y (a, c)],

→ So, P(a < X ≤ b, c < Y ≤ d) = FX,Y (b, d)−FX,Y (a, d)−FX,Y (b, c)+FX,Y (a, c).

→ Intuitive from Diagram:
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Suggested Homework: 2.7.1, 2.7.2, 2.7.5, 2.7.6(a), 2.7.11.

—————————— END MONDAY #7 ——————————

Joint Probability Functions

• If X and Y are discrete, then we can keep track of their relationship by the joint

probability function pX,Y (x, y) := P(X = x, Y = y).

• e.g. In above example, pX,Y1(1, 1) = 1/2 and pX,Y1(0, 0) = 1/2 (otherwise pX,Y1(x, y) =

0, e.g. pX,Y1(1, 0) = 0). Also pX,Y2(1, 0) = 1/2 and pX,Y2(0, 1) = 1/2. Also pX,Y3(1, 1) =

1/4 and pX,Y3(1, 0) = 1/4 and pX,Y3(0, 1) = 1/4 and pX,Y3(0, 0) = 1/4.

• If we know pX,Y (x, y), can we find pX(x) and pY (y)?

→ Yes! From the Law of Total Probability (Unconditioned Version), pX(x) =

P(X = x) =
∑

y P(X = x, Y = y) =
∑

y pX,Y (x, y) for all x. Similarly pY (y) =∑
x pX,Y (x, y) for all y. (“marginals”) So, pX,Y (x, y) has all the information.

• e.g. In above example, pX(1) = pX,Y3(1, 0) + pX,Y3(1, 1) = 1/4 + 1/4 = 1/2, etc.

→ Can also write e.g. pX,Y3(x, y) in a table, with pX(x) and pY3(y) at the right

and bottom margins, which is why they are called the “marginals”:

Y3 = 0 Y3 = 1 pX(x)

X = 0 1/4 1/4 1/2
X = 1 1/4 1/4 1/2

pY3(y) 1/2 1/2

• Then e.g. P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∑

a≤x≤b
∑

c≤y≤d pX,Y (x, y), etc.

Suggested Homework: 2.7.3, 2.7.6.

Joint Density Functions

• Random variables X and Y are jointly absolutely continuous if there is a joint

density function fX,Y : R2 → R, which is ≥ 0, with
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dx dy = 1,

such that P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ d
c

∫ b
a
fX,Y (x, y) dx dy for all a ≤ b and c ≤ d.

• Two-dimensional (“iterated”) integral! (e.g. Appendix A.6.) [MAT237 – later]

→ Compute the “inner” integral first, treating the outer variable as constant.

→ Then, integrate the resulting expression as the outer integral.

→ Trickiest part: specify the inner limits of integration correctly, to ensure that

the point (x, y) is always within the correct region (see example below).

→ Can integrate in either order (“Fubini’s Thm”), provided you do it correctly!

• Marginals? Similar to discrete case – “add up” the other variable.

→ P(a ≤ X ≤ b) = P(a ≤ X ≤ b, −∞ < Y <∞) =
∫∞
−∞

∫ b
a
fX,Y (x, y) dx dy.

→ But P(a ≤ X ≤ b) =
∫ b
a
fX(x) dx, for all a ≤ b.

→ So, fX(x) =
∫∞
−∞ fX,Y (x, y) dy.
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→ Similarly, fY (y) =
∫∞
−∞ fX,Y (x, y) dx.

• Running example: fX,Y (x, y) = 15
32
xy2 for 0 ≤ y ≤ x ≤ 2, otherwise 0. Diagram:

• Valid joint density function?

→Here fX,Y ≥ 0, and
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dx dy =

∫ 2

0

∫ 2

y
(15

32
xy2) dx dy =

∫ 2

0
(15

32
1
2
x2y2)

∣∣∣x=2

x=y
dy =∫ 2

0
[15
64

(22 − y2)y2] dy = 15
64

[22 1
3
y3 − 1

5
y5]
∣∣∣y=2

y=0
= 15

64
[4
3
(23 − 0)− 1

5
(25 − 0)] = 1. So, yes!

• What is P(0 ≤ X ≤ 1/2, 0 ≤ Y ≤ 1/4)? We compute this as . . .

→
∫ 1/4

0

∫ 1/2

y
(15

32
xy2) dx dy =

∫ 1/4

0
(15

32
1
2
x2y2)

∣∣∣x=1/2

x=y
dy =

∫ 1/4

0
[15
64

((1/2)2 − y2)y2] dy =

15
64

[(1/2)2 1
3
y3 − 1

5
y5]
∣∣∣y=1/4

y=0
= 15

64
[ 1
12

((1/4)3 − 0)− 1
5
((1/4)5 − 0)] = 17/65536

.
= 0.00026.

→ Exercise: Compute P(7/4 ≤ X ≤ 2, 3/2 ≤ Y ≤ 2). Is it larger?

• What is fX(x), the density function of X?

→ For 0 ≤ x ≤ 2, fX(x) =
∫∞
−∞ fX,Y (x, y) dy =

∫ x
0

(15
32
xy2) dy = (15

32
1
3
xy3)

∣∣∣y=x

y=0
=

15
32

1
3
x(x3 − 03) = (5/32)x4. (Otherwise fX(x) = 0 if x < 0 or x > 2.)

→ Check:
∫∞
−∞ fX(x) dx =

∫ 2

0
(5/32)x4 dx = (5/32) 1

5
x5
∣∣∣x=2

x=0
= (5/32) 1

5
(25 − 05) =

1. Phew!

→ So e.g. P(X ≤ 1/3) =
∫ 1/3

0
fX(x) dx =

∫ 1/3

0
(5/32)x4 dx = (5/32)1

5
x5
∣∣∣x=1/3

x=0
=

(5/32)1
5
((1/3)5 − 05) = 1/7776

.
= 0.00013.

• What is fY (y), the density function of Y ?

→ For 0 ≤ y ≤ 2, fY (y) =
∫∞
−∞ fX,Y (x, y) dx =

∫ 2

y
(15

32
xy2) dx = (15

32
1
2
x2y2)

∣∣∣x=2

x=y
=

15
32

1
2
(22 − y2)y2 = 15

64
(4y2 − y4). (Otherwise fY (y) = 0 if y < 0 or y > 2.)

→ Check:
∫∞
−∞ fY (y) dy =

∫ 2

0
15
64

(4y2 − y4) dy = 15
64

[41
3
y3 − 1

5
y5)]
∣∣∣y=2

y=0
= 15

64
[41

3
(23 −

03)− 1
5
(25 − 05)] = 1. Phew!

Suggested Homework: 2.7.4, 2.7.7, 2.7.8, 2.7.9, 2.7.14, 2.7.15, 2.7.16.

Conditioning and Independence for Discrete Random Variables

• Suppose X and Y are discrete with joint probability function pX,Y given (in

tabular form) by:
Y = 5 Y = 6 pX(x)

X = 2 0.0 0.1 0.1
X = 3 0.1 0.2 0.3
X = 4 0.2 0.4 0.6

pY (y) 0.3 0.7

(Meaning that pX,Y (2, 5) = 0.0, pX,Y (3, 5) = 0.1, pX,Y (4, 6) = 0.4, etc.)
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(Marginals pX(x) and pY (y) are also shown, found by summing.)

→ Then we can compute e.g. P(Y = 5 |X = 3) = P(X=3, Y=5)
P(X=3)

= 0.1
0.3

= 1/3.

→ Similarly P(Y = 6 |X = 3) = P(X=3, Y=6)
P(X=3)

= 0.2
0.3

= 2/3.

→ Can write this as pY |X(5 | 3) = 1/3, pY |X(6 | 3) = 2/3, otherwise pY |X(x | 3) = 0.

→ So, pY |X(· | 3) is a proper probability function (≥ 0, and sums to 1): the

conditional distribution of Y given that X = 3.

→ Also, P(X = 2 |Y = 6) = P(X=2, Y=6)
P(Y=6)

= 0.1
0.7

= 1/7, and P(X = 3 |Y =

6) = 2/7, and P(X = 4 |Y = 6) = 4/7. So, pX|Y (2 | 6) = 1/7, pX|Y (3 | 6) = 2/7,

pX|Y (4 | 6) = 4/7, the conditional distribution of X given that Y = 6.

→ Exercise: Find pX |Y (x | 5) for all x ∈ R, i.e. the conditional distribution of X

given that Y = 5.

• In general, pX|Y (x | y) = P(X=x, Y=y)
P(Y=y)

, and pY |X(y |x) = P(X=x, Y=y)
P(X=x)

.

→ Then e.g. P(a ≤ Y ≤ b |X = x) =
∑

a≤y≤b P(Y = y |X = x) =
∑

a≤y≤b pY |X(y|x) =∑
a≤y≤b

pX,Y (x,y)

pX(x)
= P(a≤Y≤b,X=x)

P(X=x)
, as it should.

• Definition: Two random variables X and Y are independent if the events {X ∈ B}
and {Y ∈ C} are independent for all subsets B,C ⊆ R, i.e. if we always have

P(X ∈ B, Y ∈ C) = P(X ∈ B) P(Y ∈ C).

→ For example, if we take B = (−∞, x] and C = (−∞, y], this means that

P(X ≤ x, Y ≤ y) = P(X ≤ x) P(Y ≤ y), i.e. FX,Y (x, y) = FX(x)FY (y) for all

x, y ∈ R. (Equivalent definition.)

→ For discrete random variables X and Y , it suffices that the events {X = x}
and {Y = y} are independent, i.e. P(X = x, Y = y) = P(X = x) P(Y = y), i.e.

pX,Y (x, y) = pX(x) pY (y) for all x, y ∈ R.

→ Then for any B and C, we have P(X ∈ B, Y ∈ C) =
∑

x∈B
∑

y∈C pX,Y (x, y) =∑
x∈B

∑
y∈C pX(x) pY (y) =

(∑
x∈B pX(x)

) (∑
y∈C pY (y)

)
= P(X ∈ B) P(Y ∈ C).

• If X and Y are discrete and independent, then pX |Y (x | y) = P(X=x, Y=y)
P(Y=y)

=
P(X=x) P(Y=y)

P(Y=y)
= P(X = x), and similarly pY |X(y |x) = P(Y = y).

→ This means the values of Y do not affect the probabilities for X.

→ In above example, X and Y are not independent, since e.g. pX,Y (3, 5) = 0.1

but pX(3) pY (5) = (0.3)(0.3) = 0.09 6= 0.1.

Suggested Homework: 2.8.1, 2.8.2, 2.8.5, 2.8.9, 2.8.10, 2.8.12, 2.8.13, 2.8.20.

Conditioning and Independence for Continuous Random Variables

• Suppose X and Y have joint density function fX,Y (x, y). Conditionals?

• Does P(a ≤ Y ≤ b |X = x) even make sense?

→ No, since P(X = x) = 0, so we can’t divide by it.

→ Trick: Do it anyway!
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• Intuitively, imagine replacing the event {X = x} by the event {x ≤ X ≤ x+ε} for

small ε > 0, so that P(x ≤ X ≤ x+ε) > 0. In fact, P(x ≤ X ≤ x+ε) =
∫ x+ε

x
fX(u) du.

→ If fX is continuous at x, and ε > 0 is small, then P(x ≤ X ≤ x+ ε) ≈ ε fX(x).

→ [“First-order approximation”: formally, limε↘0
1
ε

∫ x+ε

x
fX(u) du = fX(x).]

→ But also, if fX,Y is continuous at (x, y) for a ≤ y ≤ b, then P(x ≤ X ≤
x+ ε, a ≤ Y ≤ b) =

∫ b
a

∫ x+ε

x
fX,Y (u, y) du dy ≈ ε

∫ b
a
fX,Y (x, y) dy.

→ So, P(a ≤ Y ≤ b |x ≤ X ≤ x+ ε) ≈ ε
∫ b
a fX,Y (x,y) dy

ε fX(x)
=
∫ b
a

fX,Y (x,y)

fX(x)
dy.

• Therefore, we define the conditional density of Y given that X = x, to be the

density function fY |X(y |x) =
fX,Y (x,y)

fX(x)
, valid whenever fX(x) > 0.

→ Then we say that P(a ≤ Y ≤ b |X = x) =
∫ b
a
fY |X(y |x) dy :=

∫ b
a

fX,Y (x,y)

fX(x)
dy.

• Definition: X and Y are independent if fX,Y (x, y) = fX(x) fY (y) for “all” x, y ∈ R,

or equivalently if fY |X(y |x) = fY (y) whenever fX(x) > 0.

→ Then for anyB and C, we have P(X ∈ B, Y ∈ C) =
∫
y∈C

∫
x∈B fX,Y (x, y) dx dy =∫

y∈C

∫
x∈B fX(x) fY (y) dx dy =

(∫
x∈B fX(x) dx

) (∫
y∈C fY (y) dy

)
= P(X ∈ B) P(Y ∈ C).

• Previous running example: fX,Y (x, y) = 15
32
xy2 for 0 ≤ y ≤ x ≤ 2, otherwise 0.

→ Found that fX(x) = (5/32)x4 for 0 ≤ x ≤ 2, otherwise 0.

→ And that fY (y) = 15
64

(4y2 − y4) for 0 ≤ y ≤ 2, otherwise 0.

→ Hence, for 0 ≤ y ≤ x ≤ 2, we have fY |X(y |x) =
fX,Y (x,y)

fX(x)
=

15
32
xy2

(5/32)x4
= 3x−3y2.

→ So e.g. P(0 ≤ Y ≤ 1 |X = 3/2) =
∫ 1

0
fY |X(y | 3/2) dy =

∫ 1

0
(3(3/2)−3y2) dy =

3(3/2)−3 1
3
(13 − 03) = (3/2)−3 = 8/27.

→Also P(0 ≤ Y ≤ 3/2 |X = 3/2) =
∫ 3/2

0
fY |X(y | 3/2) dy =

∫ 3/2

0
(3(3/2)−3y2) dy =

3(3/2)−3 1
3
((3/2)3 − 03) = (3/2)−3(3/2)3 = 1. Makes sense since here 0 ≤ Y ≤ X.

→ Here fX,Y (x, y) 6= fX(x) fY (y), and fY |X(y |x) 6= fY (y), so not independent.

• Summary: X and Y are independent if and only if any one of:

→ P(X ∈ B, Y ∈ C) = P(X ∈ B) P(Y ∈ C) for all B,C ⊆ R. (general)

→ FX,Y (x, y) = FX(x)FY (y) for all x, y ∈ R. (general)

→ pX,Y (x, y) = pX(x) pY (y) for all x, y ∈ R. (discrete)

→ pY |X(y |x) = pY (y) for “all” x, y ∈ R, or vice-versa. (discrete)

→ fX,Y (x, y) = fX(x) fY (y) for “all” x, y ∈ R. (abs. continuous)

→ fY |X(y |x) = fY (y) for “all” x, y ∈ R, or vice-versa. (abs. continuous)

Suggested Homework: 2.8.3, 2.8.4, 2.8.7, 2.8.8, 2.8.14, 2.8.15, 2.8.17.

————————— END WEDNESDAY #7 —————————

Multivariable Change-Of-Variable – Discrete

• Suppose X and Y are discrete, with joint probability function pX,Y (x, y).

• Suppose (Z,W ) = h(X, Y ), for some function h : R2 → R2.
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• Then what is pZ,W (z, w) := P(Z = z,W = w)?

• By the Law of Total Probability,

pZ,W (z, w) = P(h(X, Y ) = (z, w)) =
∑
{pX,Y (x, y) : h(x, y) = (z, w)} .

• Similar to one-variable case. Not difficult.

Suggested Homework: 2.9.6, 2.9.9.

Multivariable Change-Of-Variable – Continuous

• Recall one-variable case: If Y = h(X), where h : R → R is differentiable and

strictly increasing or decreasing, then fY (y) = fX
(
h−1(y)

) / ∣∣h′(h−1(y)
)∣∣.

• Two-variable version? Trickier!

→ Now (Z,W ) = h(X, Y ), where h : R2 → R2.

→ i.e., Z = h1(X, Y ) and W = h2(X, Y ).

→ Need h to be (two-dimensional) differentiable, and one-to-one (invertible).

→ Then fZ,W (z, w) = fX,Y
(
h−1(z, w)

) / ∣∣Jh(h−1(z, w)
)∣∣.

→ Here Jh is the Jacobian determinant: Jh(x, y) = det

(
∂h1
∂x

∂h1
∂y

∂h2
∂x

∂h2
∂y

)
.

→ See e.g. Textbook’s Example 2.9.2 and Example 2.9.3 (page 111).

• e.g. Let U and V be independent Uniform[0,1].

→ Then let Z =
√

2 log(1/U) cos(2πV ) and W =
√

2 log(1/U) sin(2πV ).

→ What are the distributions of Z and W?

→ Fact (textbook pp. 111–112): Z and W are independent, and are both . . .

Normal(0,1)!! This is important! Best way to simulate normal random variables.

Suggested Homework: 2.9.2, 2.9.3, 2.9.4, 2.9.5, 2.9.11.

• Note: We are omitting a few related topics from the end of Chapter 2, e.g.:

→ Order Statistics (when you sort the sample values, from smallest to largest).

→ Simulating probability distributions on a computer: algorithms.

→ All interesting! Check them out! Try the exercises! Ask me questions!

[END OF TEXTBOOK CHAPTER #2]

Expected Values: Discrete Case

• Intuitively, the expected or average or mean value of a random variable is what

it equals “on average”.

→ e.g. If P(X = 0) = P(X = 12) = 1/2, then E(X) = 6, the average value.

→ e.g. If P(X = 0) = 2/3 and P(X = 12) = 1/3, then E(X) = 4: weighted av.
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• Definition: If X is a discrete random variable, then its expected value is given by

E(X) =
∑

x∈R x P(X = x) =
∑

x∈R x pX(x). (Also sometimes written as µX .)

→ If P(X = xi) = pi where pi ≥ 0 and
∑

i pi = 1, then E(X) =
∑

i xi pi.

• e.g. If P(X = 0) = P(X = 12) = 1/2, E(X) = 0(1/2) + 12(1/2) = 6.

→ Or, if P(X = 0) = 2/3 and P(X = 12) = 1/3, E(X) = 0(2/3) + 12(1/3) = 4.

→ Or, if X = c is constant, i.e. P(X = c) = 1, then E(X) = c(1) = c.

• e.g. IfX is the number showing on a fair six-sided die, then E(X) =
∑

x∈R xP(X =

x) =
∑6

k=1 k (1/6) = (1 + 2 + 3 + 4 + 5 + 6)/6 = 21/6 = 3.5. (Not 3!)

• e.g. If X ∼ Bernoulli(θ), then E(X) = 0(1− θ) + 1(θ) = θ.

• e.g. Suppose Y ∼ Binomial(n, θ). What is E(Y )?

→Well, E(Y ) =
∑

y∈R y P(Y = y) =
∑n

k=0 k
(
n
k

)
θk(1−θ)n−k =

∑n
k=0 k

n!
(n−k)! k!

θk(1−
θ)n−k =

∑n
k=1 n

(n−1)!
(n−k)! (k−1)!

θk(1− θ)n−k = nθ
∑n

k=1

(
n−1
k−1

)
θk−1(1− θ)n−k.

→ Now, set j = k − 1, and use the Binomial Theorem again:

E(Y ) = nθ
∑n−1

j=0

(
n−1
j

)
θj(1− θ)n−1−j = nθ[θ + (1− θ)]n−1 = nθ. Easier way?

→ e.g. Shoot n = 10 free throws, prob θ = 1/4 on each: E(# successes) = 2.5.

• e.g. If Z ∼ Geometric(θ), then E(Z) =
∑

z∈R z P(Z = z) =
∑∞

k=0 k (1− θ)k θ =??

→ Trick: Here (1− θ) E(Z) =
∑∞

k=0 k (1− θ)k+1 θ =
∑∞

`=0 ` (1− θ)`+1 θ.

→ Letting k = `+ 1, this equals
∑∞

k=1(k − 1) (1− θ)k θ.
→ Hence, E(Z)− (1− θ) E(Z) =

∑∞
k=1(1) (1− θ)k θ = 1−θ

1−(1−θ) θ = 1− θ.

→ But E(Z)− (1− θ) E(Z) = θE(Z). Hence, E(Z) = 1−θ
θ

. Phew!

→ e.g. if θ = 1/2 then E(Z) = 1, but if θ = 1/5 then E(Z) = 4.

• e.g. If X ∼ Poisson(λ), then E(X) =
∑

x∈R xP(X = x) =
∑∞

k=0 k e
−λλk/k! =

e−λλ
[∑∞

k=1 λ
k−1/(k − 1)!

]
= e−λλ

[∑∞
`=0 λ

`/`!
]

= e−λλ [eλ] = λ.

• e.g. Suppose P(X = 2) = 1/2, P(X = 4) = 1/4, P(X = 8) = 1/8, and in general

P(X = 2k) = 2−k for k = 1, 2, 3, . . ..

→ Then E(X) =
∑∞

k=1(2k)(2−k) =
∑∞

k=1(1) =∞.

→ So, E(X) =∞, even though P(X <∞) = 1. Infinite expectation!

• Can also sum to get expectations of functions of discrete random variables:

→ If Z = g(X), then E(Z) = E(g(X)) =
∑
z∈R

z P(Z = z) =
∑
x∈R

g(x) P(X = x).

→ Or, if Z = h(X, Y ), E(Z) =
∑
z∈R

z P(Z = z) =
∑

x,y∈R
h(x, y) P(X = x, Y = y).

→ (Here Z is also discrete; and get the same expected value either way.)

• e.g. if X ∼ Binomial(3, 1/4), then know E(X) = 3(1/4) = 3/4, but also

E(5X2) =
∑

x∈R 5x2 P(X = x) =
∑3

k=0 5k2
(

3
k

)
(1/4)k(3/4)3−k

= 5(0)2
(

3
0

)
(1/4)0(3/4)3+5(1)2

(
3
1

)
(1/4)1(3/4)2+5(2)2

(
3
2

)
(1/4)2(3/4)1+5(3)2

(
3
3

)
(1/4)3(3/4)0

= 0 + 5 · 1 · 3 · 32/43 + 5 · 4 · 3 · 3/43 + 5 · 9 · 1 · 1/43 = 45/8 = 5.625.

Suggested Homework: 3.1.1, 3.1.2, 3.1.3, 3.1.8, 3.1.9, 3.1.10, 3.1.14.
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• If Z = aX + bY , where a, b ∈ R, and X and Y are discrete random variables,

E(Z) =
∑

z∈R z P(Z = z) =
∑

x,y∈R(ax+ by) P(X = x, Y = y)

= a
∑

x,y∈R xP(X = x, Y = y) + b
∑

x,y∈R y P(X = x, Y = y)

= a
∑

x∈R x
∑

y∈R P(X = x, Y = y) + b
∑

y∈R y
∑

x∈R P(X = x, Y = y)

= a
∑

x∈R xP(X = x) + b
∑

y∈R y P(Y = y) = aE(X) + bE(Y ). Linear property.

• If Y ∼ Binomial(n, θ), then we can think of Y as Y = X1 +X2 + . . .+Xn where

each Xi ∼ Bernoulli(θ). (e.g. Xi = 1 if you score on the ith free throw, otherwise 0)

→ By linearity, E(Y ) = E(X1) + E(X2) + . . .+ E(Xn) = θ + θ + . . .+ θ = nθ.

→ Same answer as before! Easier!

—————————— END MONDAY #8 ——————————

• e.g. Suppose X ∼ Binomial(5, 1/4), and Y ∼ Geometric(1/3), and Z = 2X − 6Y .

→ Then from linearity and the above calculations, E(Z) = E(2X−6Y ) = 2 E(X)−
6 E(Y ) = 2[(5)(1/4)]− 6[2/3

1/3
] = −19/2 = −9.5.

• Caution: This is only for linear functions! e.g. If X ∼ Bernoulli(1/2), then

E(X2) = E(X) = 1/2, which is not the same as
(
E(X)

)2
= (1/2)2 = 1/4.

• Suppose X and Y are discrete, and X ≤ Y , i.e. X(s) ≤ Y (s) for all s ∈ S.

→ Or more generally, suppose that P(X ≤ Y ) = 1.

→ Let Z = Y −X. Then Z is discrete, and P(Z ≥ 0) = 1.

→ So, P(Z = z) = 0 whenever z < 0.

→ Hence, E(Z) =
∑

z∈R z P(Z = z) =
∑

z∈[0,∞) z P(Z = z) ≥ 0.

→ But E(Z) = E(Y −X) = E(Y )−E(X), so E(Y )−E(X) ≥ 0, i.e. E(X) ≤ E(Y ).

→ This is the monotonicity property: If P(X ≤ Y ) = 1, then E(X) ≤ E(Y ).

Suggested Homework: 3.1.4, 3.1.5, 3.1.11(a), 3.1.15, 3.1.16.

• Also, expectation preserves products of independent random variables:

→ Suppose X and Y are discrete random variables which are independent.

→ Then E(XY ) =
∑

x,y∈R xy P(X = x, Y = y) =
∑

x,y∈R xy P(X = x) P(Y =

y) =
(∑

x∈R xP(X = x)
)(∑

y∈R y P(Y = y)
)

= E(X) E(Y ). Useful!

• e.g. Suppose X ∼ Binomial(5, 1/4), and Y ∼ Geometric(1/3), and X and Y are

independent, and Z = XY .

→ Then E(Z) = E(XY ) = E(X) E(Y ) = [(5)(1/4)] [2/3
1/3

] = 10/4 = 2.5.

• e.g. Suppose X ∼ Bernoulli(1/2) and Y = X, and let Z = XY .

→ Then E(X) = 1/2, and E(Y ) = 1/2, and E(Z) = E(XY ) = E(X2) = 1/2.

→ So E(XY ) 6= E(X) E(Y ). Why not? Because X and Y are not independent!

Suggested Homework: 3.1.11(b), 3.1.12, 3.1.17, 3.1.20.
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Expected Values: Absolutely Continuous Case

• If X is continuous, then P(X = x) = 0, so
∑

x∈R xP(X = x) = 0. Useless!

→ Can we still “add up” the values times their probabilities?

→ Yes, by integrating instead of summing!

• Definition: If X is an absolutely continuous random variable, then its expected

value is given by the integral E(X) =
∫∞
−∞ x fX(x) dx. (Sometimes written as µX .)

→ Intuitively, we are adding up values times little “bits” of probability.

• e.g. If X ∼ Uniform[0, 1], then what is E(X)? We compute that:

E(X) =
∫∞
−∞ x fX(x) dx =

∫ 1

0
x (1) dx = 1

2
x2
∣∣∣x=1

x=0
= 1

2
(12 − 02) = 1

2
.

• e.g. If X ∼ Uniform[L,R], then what is E(X)? We compute that:

E(X) =
∫∞
−∞ x fX(x) dx =

∫ R
L
x ( 1

R−L) dx = 1
2
x2 ( 1

R−L)
∣∣∣x=R

x=L
= 1

2
( 1
R−L)(R2 − L2) =

1
2

( 1
R−L)(R− L)(R + L) = 1

2
(R + L).

→ e.g. If X ∼ Uniform[−8, 2], then E(X) = 1
2
(−8 + 2) = −3. Negative!

• If Y ∼ Exponential(λ), then E(Y ) =
∫∞
−∞ y fY (y) dy =

∫∞
0
y λe−λy dy = ??

→ Need to use “integration by parts”!

→ Set u(y) = y and v(y) = −e−λy, then du = dy and dv = λe−λy dy.

→ Then E(Y ) =
∫∞

0
u dv = u(y)v(y)

∣∣∣y=∞

y=0
−
∫∞

0
du v = −ye−λy

∣∣∣y=∞

y=0
−
∫∞

0
dy (−e−λy) =

−0 + 0 +
∫∞

0
e−λy dy = − 1

λ
e−λy

∣∣∣y=∞

y=0
= − 1

λ
(0− 1) = 1

λ
. (Not λ.)

• If Z ∼ Normal(0, 1), then E(Z) =
∫∞
−∞ z φ(z) dz =

∫∞
−∞ z

1√
2π
e−z

2/2 dz = ??

→ The integrand is an “odd” function, so by symmetry, E(Z) = 0.

• Now suppose W ∼ Normal(µ, σ2). Then what is E(W )?

→ Well, this means that W = µ+ σZ where Z ∼ Normal(0, 1).

→ So, maybe E(W ) = E(µ+ σZ) = µ+ σ E(Z) = µ+ 0 = µ? Yes, because . . .

• Expectation still satisfies the same general properties as for discrete r.v.:

• Can still calculate expectations of functions of abs. cont. random variables:

→ If Z = g(X), then E(Z) = E(g(X)) =
∫∞
−∞ g(x) fX(x) dx.

→ Or, if Z = h(X, Y ), then E(Z) =
∫∞
−∞

∫∞
−∞ h(x, y) fX,Y (x, y) dx dy.

→ (If Z is abs. cont. or discrete, then get the same expected value either way.)

• Expectation is still linear! Let Z = aX + bY , where a, b ∈ R, and X and Y are

jointly absolutely continuous random variables. Then:

E(Z) =
∫∞
−∞

∫∞
−∞(ax+ by) fX,Y (x, y) dx dy

= a
∫∞
−∞

∫∞
−∞ x fX,Y (x, y) dx dy + b

∫∞
−∞

∫∞
−∞ y fX,Y (x, y) dx dy

= a
∫∞
−∞ x

(∫∞
−∞ fX,Y (x, y) dy

)
dx+ b

∫∞
−∞ y

(∫∞
−∞ fX,Y (x, y) dx

)
dy

= a
∫∞
−∞ x fX(x) dx+ b

∫∞
−∞ y fY (y) dy = aE(X) + bE(Y ).

• And, still monotone: If P(X ≤ Y ) = 1, and Z = Y −X, then fZ(z) = 0 whenever

z < 0, so E(Z) =
∫∞

0
z fZ(z) dz ≥ 0, so E(Y −X) ≥ 0, so E(X) ≤ E(Y ).
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• And, still preserves products of independent random variables:

→ Assume X and Y are jointly absolutely continuous, and independent.

→ Then E(XY ) =
∫∞
−∞

∫∞
−∞ x y fX,Y (x, y) dx dy =

∫∞
−∞

∫∞
−∞ x y fX(x) fY (y) dx dy =( ∫∞

−∞ x fX(x) dx
)( ∫∞

−∞ y fY (y) dy
)

= E(X) E(Y ).

Suggested Homework: 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.2.6, 3.2.7, 3.2.9, 3.2.10,

3.2.12, 3.2.14, 3.2.15.

Variance and Standard Deviation

• Suppose X has expected value E(X), or µX . Does that tell us everything?

• e.g. X1 ∼ Uniform[4.9, 5.1], X2 ∼ Uniform[4, 6], X3 ∼ Uniform[0, 10].

→ Then E(X1) = 5, and E(X2) = 5, and E(X3) = 5. All the same.

→ But X1 is always very close to 5, while X3 can be quite far away. (X2 medium.)

• The variance of any random variable X is Var(X) := E[(X − µX)2].

→ A measure of how far X usually is from µX .

→ Why not E(X − µX)? Always zero! Useless!

→ Why not E(|X − µX |)? That turns out to be less convenient . . .

• So, we’ll stick with Var(X) := E[(X − µX)2].

→ But Var(X) has “squared units” (e.g. if X in meters (m), then Var(X) is in

meters-squared (m2)). This can be awkward.

→ So, often use the standard deviation, Sd(X) :=
√

Var(X) =
√

E[(X − µX)2].

• e.g. X ∼ Bernoulli(θ). Then µX = θ, so Var(X) = E[(X − θ)2] = (0 − θ)2(1 −
θ) + (1− θ)2(θ) = −θ2 + θ3 + θ − θ3 = −θ2 + θ = θ(1− θ).

• By linearity, we always have Var(X) := E[(X−µX)2] = E[X2−2XµX +(µX)2] =

E[X2]− 2E[X]µX + (µX)2 = E[X2]− (µX)2.

→ So, if X ∼ Bernoulli(θ), then could instead compute Var(X) by: Var(X) =

E[X2]− (µX)2 = 02(1− θ) + 12(θ)− (θ)2 = θ − θ2 = θ(1− θ). Easier?

• Suppose Y ∼ Uniform[0, 1]. Know µY = 1/2.

→ And, E(Y 2) =
∫∞
−∞ y

2 fY (y) dy =
∫ 1

0
y2 (1) dy = 1

3
y3
∣∣∣y=1

y=0
= 1

3
(13 − 03) = 1

3
.

→ Hence, Var(Y ) = E(Y 2)− (µY )2 = (1/3)− (1/2)2 = (1/3)− (1/4) = 1/12.

→ So then Sd(Y ) =
√

Var(Y ) =
√

1/12 = 1/
√

12 = 1/(2
√

3).

• Suppose Z ∼ Uniform[L,R] (where L < R). Know that µZ = (L+R)/2.

→ And, E(Z2) =
∫∞
−∞ z

2 fZ(z) dz =
∫ R
L
z2 1

R−L dz = 1
3(R−L)

z3
∣∣∣z=R
z=L

= 1
3(R−L)

(R3 −
L3) = 1

3(R−L)
(R− L)(R2 +RL+ L2) = 1

3
(R2 +RL+ L2).

→ Hence, Var(Z) = E(Z2)− (µZ)2 = 1
3
(R2 +RL+ L2)− (L+R

2
)2.

→ After a bit of algebra (exercise!), this works out to . . . (R− L)2/12.

→ So then Sd(Z) =
√

Var(Z) = (R− L)/
√

12.
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• e.g. if X1 ∼ Uniform[4.9, 5.1], X2 ∼ Uniform[4, 6], and X3 ∼ Uniform[0, 10], then:

Var(X1) = (0.2)2/12
.
= 0.0033, Var(X2) = (1)2/12 = 1/12

.
= 0.083, and Var(X3) =

(10)2/12 = 100/12
.
= 8.33. So Var(X3)� Var(X2)� Var(X1), which makes sense.

• In general, (X − µX)2 ≥ 0, so always have Var(X) := E[(X − µX)2] ≥ 0.

→ But Var(X) = E[X2]− (µX)2, so E[X2]− (µX)2 ≥ 0, i.e. E[X2] ≥ (µX)2.

→ And, since (µX)2 ≥ 0, always have Var(X) = E[X2]− (µX)2 ≤ E[X2], too.

• If a, b ∈ R, then Var(aX + b) = E[(aX + b−µaX+b)
2] = E[(aX + b− aµX − b)2] =

E[(a(X−µX))2] = a2 E[(X−µX)2] = a2 Var(X). (Note: a2, not a. And b irrelevant.)

→ Hence, Sd(aX + b) =
√

Var(aX + b) =
√
a2 Var(X) = |a| Sd(X).

→ What about Var(X + Y ) or Var(aX + bY )? Later!

• e.g. W ∼ Exponential(λ). Know µW := E(W ) = 1/λ. Var(W ) = ??

→ Well, E(W 2) =
∫∞
−∞w

2 fW (w) dw =
∫∞

0
w2 λe−λw dw.

→ Integration by parts (check!): this = 0− 0 +
∫∞

0
2w e−λw dw.

→ Integration by parts again: this = 0− 0 +
∫∞

0
2 1
λ
e−λw dw.

→ But
∫∞

0
e−λw dw = − 1

λ
e−λw

∣∣∣w=∞

w=0
= − 1

λ
(0− 1) = 1

λ
.

→ So, E(W 2) = 2 1
λ

1
λ

= 2/λ2.

→ Then Var(W ) = E(W 2)− (µW )2 = (2/λ2)− (1/λ)2 = 1/λ2. Phew!

→ Hence, Sd(W ) = 1/λ.

• e.g. Z ∼ Normal(0, 1). We know µZ := E(Z) = 0.

→ Also E(Z2) =
∫∞
−∞ z

2 1√
2π
e−z

2/2 dz.

→ Then, integration by parts with u = z and v = −e−z2/2 and dv = z e−z
2/2 dz

gives E(Z2) = 0− 0 +
∫∞
−∞

1√
2π
e−z

2/2 dz =
∫∞
−∞ φ(z) dz = 1 since φ is a density.

→ Hence, Var(Z) = 1− (µz)
2 = 1−02 = 1. (As expected.) Also Sd(Z) =

√
1 = 1.

• Now suppose W ∼ Normal(µ, σ2), where σ > 0. What is Var(W )?

→ Well, this means that W = µ+ σZ where Z ∼ Normal(0, 1).

→ So, Var(W ) = Var(µ+ σZ) = σ2 Var(Z) = σ2. Also Sd(W ) =
√
σ2 = σ.

• Suppose X ∼ Poisson(λ). Know E(X) = λ. What is Var(X)?

→ We compute that: E(X2) =
∑∞

k=0 k
2e−λ λ

k

k!
= λe−λ

∑∞
k=1

(
(k−1) + 1

)
λk−1

(k−1)!
=

λe−λ
(
λ
∑∞

k=2
λk−2

(k−2)!
+
∑∞

k=1
λk−1

(k−1)!

)
= λe−λ

(
λeλ + eλ

)
= λ2 + λ.

→ Then Var(X) = E(X2)− (E(X))2 = (λ2 + λ)− (λ)2 = λ. Phew! Simple!

Suggested Homework: 3.3.1(b), 3.3.2(a,c), 3.3.4(first four), 3.3.10(first four),

3.3.11(first three).

————————— END WEDNESDAY #8 —————————
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Covariance and Correlation

• We know that E(X + Y ) = E(X) + E(Y ). What about Var(X + Y )?

• Well, Var(X + Y ) = E[(X + Y − µX+Y )2] = E[(X + Y − µX − µY )2] = E[((X −
µX) + (Y − µY ))2] = E[(X − µX)2 + (Y − µY )2 + 2(X − µX)(Y − µY )].

• This equals Var(X) + Var(Y ) + 2 Cov(X, Y ), where

Cov(X, Y ) := E[(X − µX)(Y − µY )] is the covariance of X and Y .

→ We always have Cov(X, Y ) = Cov(Y,X).

→ If Cov(X, Y ) > 0, then X and Y tend to increase together.

→ If Cov(X, Y ) < 0, then X and Y tend to increase oppositely.

• Special case: If Y = X, then Cov(X, Y ) = Cov(X,X) = E[(X −µX)(X −µX)] =

E[(X − µX)2] = Var(X). In particular, Cov(X,X) ≥ 0.

→ Or, if Y = −X, then Cov(X, Y ) = Cov(X,−X) = E[(X − µX)(−X − µ−X)] =

E[−(X − µX)2] = −Var(X). In particular, Cov(X,−X) ≤ 0.

• If X and Y are independent, then Cov(X, Y ) = E[(X − µX)(Y − µY )]

= E[X − µX ] E[Y − µY ] = [µX − µX ] [µY − µY ] = 0 · 0 = 0.

→ Then Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X, Y ) = Var(X) + Var(Y ).

→ That is: variances add for sums of independent random variables.

→ Since Sd(X) =
√

Var(X), can also write Sd(X + Y ) =
√

Sd(X)2 + Sd(Y )2 .

→ (“propagation of uncertainty” for independent sums; e.g. quantum mechanics?)

• e.g. If Y ∼ Binomial(n, θ), then we can think of Y as Y = X1 + X2 + . . . + Xn

where each Xi ∼ Bernoulli(θ) and they are independent.

→ By independence, Cov(Xi, Xj) = 0 for all i 6= j.

→ Hence, Var(Y ) = Var(X1) + Var(X2) + . . .+ Var(Xn) = θ(1− θ) + θ(1− θ) +

. . .+ θ(1− θ) = nθ(1− θ). This gives the variance of the Binomial(n, θ) distribution!

• In general, by multiplying out, we have Cov(X, Y ) = E[(X − µX)(Y − µY )] =

E[XY − µXY −XµY + µXµY ] = E[XY ]− µXµY − µXµY + µXµY = E[XY ]− µXµY .

→ (Just like how Var(X) = E[X2]− (µX)2. Makes sense.)

• We know that E(aX + bY ) = aE(X) + bE(Y ), and Var(aX + b) = a2 Var(X).

But what about Cov(aX + bY, Z)?

→ Well, Cov(aX + bY, Z) = E[(aX + bY − µaX+bY )(Z − µZ)]

= E[(aX + bY − aµX − bµY )(Z − µZ)] = E[(a(X − µX) + b(Y − µY ))(Z − µZ)]

= aE[(X − µX)(Z − µZ)] + bE[(Y − µY ))(Z − µZ)] = aCov(X,Z) + bCov(Y, Z).

→ Similarly, Cov(X, aY + bZ) = aCov(X, Y ) + bCov(X,Z). (“bilinear”)

• Let X ∼ Uniform[5, 9], and Y ∼ Exponential(3), with X and Y independent.

→ Then Cov(X, Y ) = 0 (by independence).

→ And if Z = 3X + 2Y and W = X − 5Y , then

Cov(Z,W ) = Cov(3X + 2Y,X − 5Y ) = 3 Cov(X,X − 5Y ) + 2 Cov(Y,X − 5Y )

= 3 Cov(X,X)− 15 Cov(X, Y ) + 2 Cov(Y,X)− 10 Cov(Y, Y )
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= 3 Var(X)− 15(0) + 2(0)− 10 Var(Y ) = 3 (42/12)− 10(1/32) = 26/9.

• Fact: If X ∼ Normal(µ1, σ
2
1), and Y ∼ Normal(µ2, σ

2
2), with X and Y indepen-

dent, then X + Y is also normal (!). (Textbook Problem 2.9.14.)

→ What mean and variance?

→ By linearity and independence, E(X + Y ) = E(X) + E(Y ) = µ1 + µ2, and

Var(X + Y ) = Var(X) + Var(Y ) = σ2
1 + σ2

2, so X + Y ∼ Normal(µ1 + µ2, σ
2
1 + σ2

2).

• Suppose now that Y = cX for some constant c ∈ R.

→ Then Var(Y ) = c2 Var(X), so Sd(Y ) = |c| Sd(X), and Sd(X) Sd(Y ) = |c|Var(X).

→ Also, Cov(X, Y ) = Cov(X, cX) = cCov(X,X) = cVar(X).

→ So, if c ≥ 0, then Cov(X, Y ) = Sd(X) Sd(Y ).

→ Or, if c < 0, then Cov(X, Y ) = −Sd(X) Sd(Y ).

• Prop: these are the extremes, i.e. always−Sd(X) Sd(Y ) ≤ Cov(X, Y ) ≤ Sd(X) Sd(Y ).

→ That is, we always have −
√

Var(X) Var(Y ) ≤ Cov(X, Y ) ≤
√

Var(X) Var(Y ).

• Proof: Use the “Cauchy-Schwarz Inequality” that −||u|| ||v|| ≤ u · v ≤ ||u|| ||v||.
→ Here the “vector space” is all random variables with finite variance.

→ And, the “dot product” is X · Y = Cov(X, Y ).

→ So, ‖X‖ =
√
X ·X =

√
Cov(X,X) =

√
Var(X) = Sd(X).

→ So, the result follows by setting u = X and v = Y .

• The correlation of X and Y is Corr(X, Y ) = Cov(X, Y )
/√

Var(X) Var(Y ).

→ So we always have −1 ≤ Corr(X, Y ) ≤ 1.

→ Corr(X, Y ) is a “normalised” version of Cov(X, Y ).

→ Can also be written as Corr(X, Y ) = Cov(X, Y )
/

[Sd(X) Sd(Y )].

→ (Requires first computing µX , µY , Var(X), Var(Y ), Cov(X, Y ), . . . .)

• Now suppose that Y is a constant r.v., e.g. Y = 5. Then what is Cov(X, 5)?

→ Well, Cov(X, Y ) := E[(X − µX)(Y − µY )] = E[(X − µX)(5− 5)] = 0.

→ Of course! And what about Corr(X, 5)?

→ Well, Var(Y ) = 0, so Corr(X, Y ) = Cov(X,Y )√
Var(X) Var(Y )

= 0
0
. Undefined!

→ Correlation is only defined for non-constant r.v.: Var(X) > 0 and Var(Y ) > 0.

• e.g. Suppose Z = c Y for some c > 0. How is Corr(X,Z) related to Corr(X, Y )?

→ Here Var(Z) = c2 Var(Y ), so Sd(Z) =
√

Var(Z) =
√
c2 Var(Y ) = c Sd(Y ).

→ But also, Cov(X,Z) = Cov(X, cY ) = cCov(X, Y ).

→ Hence, Corr(X,Z) = Cov(X,Z)
Sd(X) Sd(Z)

= cCov(X,Y )
Sd(X) cSd(Y )

= Cov(X,Y )
Sd(X) Sd(Y )

= Corr(X, Y ).

→ That is, Corr(X, cY ) = Corr(X, Y ). Unaffected by the constant scale c > 0.

• If instead Z = c Y where c < 0, then
√
c2 = −c, so Corr(X, cY ) = −Corr(X, Y ).

→ So, the sign of c is still important! (But not its magnitude.)

• We always have Corr(X,X) = Cov(X,X)
Sd(X) Sd(X)

= Var(X)
Var(X)

= 1.
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→ And, Corr(X, cX) = sign(c), i.e. = 1 if c > 0, or = −1 if c < 0.

→ And what about if c = 0? . . .

Suggested Homework: 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.7, 3.3.10, 3.3.11, 3.3.12, 3.3.13,

3.3.14, 3.3.15, 3.3.29, 3.3.30.

[Reminder: Extra Prof office hours tomorrow; see web page.]

[Reminder: Midterm #2 this Wednesday Nov 15 in EX200.]

—————————— END MONDAY #9 ——————————

(Midterm #2.)

————————— END WEDNESDAY #9 —————————

• e.g. Suppose pX,Y (5, 1) = pX,Y (5, 9) = pX,Y (7, 3) = pX,Y (7, 7) = 1/4, otherwise 0.

What is Cov(X, Y )? And, are X and Y independent? Diagram:

→ Here µX := E(X) =
∑

x∈R x pX(x) =
∑

x,y∈R x pX,Y (x, y) = 5(1/4) + 5(1/4) +

7(1/4) + 7(1/4) = 6.

→ And µY := E(Y ) =
∑

y∈R y pY (y) =
∑

x,y∈R y pX,Y (x, y) = 1(1/4) + 9(1/4) +

3(1/4) + 7(1/4) = 5.

→ Also E(XY ) =
∑

x,y∈R xy pX,Y (x, y) = (5)(1)(1/4)+(5)(9)(1/4)+(7)(3)(1/4)+

(7)(7)(1/4) = 30.

→ So, Cov(X, Y ) = E(XY )−µXµY = 30− (6)(5) = 0, i.e. E(XY ) = E(X) E(Y ).

→ Hence, also, Corr(X, Y ) = Cov(X,Y )√
Var(X) Var(Y )

= 0, too. (“Uncorrelated”)

→ And also Var(X + Y ) = Var(X) + Var(Y ), since Cov(X, Y ) = 0.

→ So, does that mean that X and Y must be independent?

→ No, since e.g. pX(5) = 1/4 + 1/4 = 1/2 > 0 and pY (3) = 1/4 > 0, but

pX,Y (5, 3) = 0 6= pX(5) pY (3). So, X and Y are not independent!

→ Conclusion: independent ⇒ uncorrelated, but uncorrelated 6⇒ independent.

Markov’s Inequality

• Suppose X ≥ 0, and E(X) = 5. Can P(X > 100) be very large?

→ No, since then we would have E(X) ≥ (100) P(X > 100)� 5.

→ Indeed, to make E(X) = 5, we need to have (100) P(X > 100) ≤ 5.

• Markov’s Inequality: If X ≥ 0, and a > 0, then P(X ≥ a) ≤ E(X)
/
a.

• Proof: Define a new random variable Z by Z = a IX≥a.

→ That is, Z = a whenever X ≥ a, otherwise Z = 0.
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→ Then if X ≥ a, then Z = a, so X ≥ Z.

→ Or, if X < a, then Z = 0, so X ≥ Z (since we’ve assumed X ≥ 0).

→ Either way, X ≥ Z. So, by monotonicity, E(X) ≥ E(Z).

→ But E(Z) = E[a IX≥a] = aP(X ≥ a). So, E(X) ≥ a P(X ≥ a).

• e.g. If X ≥ 0 and E(X) = 5, then must have P(X ≥ 100) ≤ 5/100 = 1/20.

→ Also, P(X ≥ 1000) ≤ 5/1000 = 1/200. Small!

• But this is only for non-negative random variables. Better is . . .

Chebychev’s Inequality

• Let Y be any random variable, with finite mean µY .

→ If Var(Y ) is small, then Y will usually be close to µY . More precise?

• Chebychev’s Inequality: For any a > 0, P(|Y − µY | ≥ a) ≤ Var(Y )
/
a2.

• Proof: Let X = (Y −µY )2 ≥ 0. Then by Markov’s Inequality, P(|Y −µY | ≥ a) =

P((Y − µY )2 ≥ a2) ≤ E((Y − µY )2)
/
a2 = Var(Y )

/
a2.

• e.g. Suppose Z has mean 5 and variance 9. Then, P(Z ≥ 17) = P(Z − 5 ≥ 12) ≤
P(|Z − 5| ≥ 12) ≤ 9/122 = 9/144 = 1/16 = 0.0625. Unlikely!

→ And, this is true for any random variable with this mean and variance.

→ If we also knew that Z ≥ 0, then we could use Markov’s inequality directly to

get that P(Z ≥ 17) ≤ E(Z)/17 = 5/17
.
= 0.294. (Weaker bound.)

Suggested Homework: 3.6.1, 3.6.2, 3.6.3, 3.6.4, 3.6.5, 3.6.6, 3.6.8, 3.6.9, 3.6.10,

3.6.11, 3.6.12, 3.6.13, 3.6.14, 3.6.15, 3.6.18.

[END OF TEXTBOOK CHAPTER #3]

Convergence of Random Variables

• Suppose we flip 100 coins.

→ Will the number of Heads be close to 50? How close?

→ Will the fraction of Heads be close to 0.5?

→ If we flip 1,000 coins, will it be closer to 0.5?

→ Maybe? Usually? For sure??

• [Try it in R: e.g. “mean( rbinom(1000,1,1/2) )”, “mean( rgeom(1000,1/5) )”,

“mean( rpois(1000,3) )”, “mean( rexp(1000,3) )”]

• If we flip n coins as n→∞, will the fraction get even closer to 1/2?

→ Will the fraction converge to 1/2? For sure? In what sense?

→ What does it mean for a random quantity to converge??
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Convergence in Probability

• Defn: A sequence X1, X2, X3, . . . of random variables converges in probability to

another random variable (or constant) Y if: For all ε > 0, limn→∞ P(|Xn−Y | ≥ ε) = 0.

→ Or, equivalently: For all ε > 0, limn→∞ P(|Xn − Y | < ε) = 1.

→ Sometimes written as: {Xn}
P→ Y , or just Xn

P→ Y .

• e.g. Suppose Xn ∼ Bernoulli( 1
n
), i.e. P(Xn=1) = 1

n
and P(Xn=0) = 1− 1

n
.

→ Does Xn → 0 in probability, i.e. Xn
P→ 0?

→ For any ε > 0, P(|Xn − 0| ≥ ε) ≤ P(Xn 6=0) = P(Xn=1) = 1
n
, and this

probability → 0 as n→∞. So, yes, Xn
P→ 0.

• In general, for any ε > 0, P(|Xn − Y | ≥ ε) ≤ P(Xn 6= Y ).

→ So, if limn→∞ P(Xn 6= Y ) = 0, then Xn
P→ Y .

• e.g. Let U ∼ Uniform[0, 1], and Xn = IU≤(1/2)+(1/2n), and Y = IU≤1/2.

→ Does Xn → Y in probability?

→ For any ε > 0, P(|Xn − Y | ≥ ε) ≤ P(Xn 6= Y ) = P(Xn = 1 and Y = 0) =

P[1/2 < U ≤ (1/2) + (1/2n)] = 1/2n, and this probability → 0 as n→∞. Yes!

• e.g. Let Y ∼ Uniform[0, 5], and Xn = (1 + 1
n
)Y . Does Xn → Y in probability?

→ Here |Xn − Y | = |(1 + 1
n
)Y − Y | = 1

n
Y ≤ 5/n.

→ Now, for any ε > 0, if n > 5/ε, then 5/n < ε.

→ Hence, for all n > 5/ε, we must have |Xn − Y | ≤ 5/n < ε.

→ This means that for all n > 5/ε, P(|Xn − Y | ≥ ε) = 0.

→ So, yes, limn→∞ P(|Xn − Y | ≥ ε) = 0, i.e. Xn → Y in probability. Yes!

• e.g. Flip an infinite sequence of fair coins.

→ Let Xn = Inth coin Heads, i.e. Xn = 1 if the nth coin is Heads, otherwise 0.

→ Does Xn → 1/2 in probability?

→ No! For 0 < ε < 1/2, we have P(|Xn − (1/2)| ≥ ε) = 1, not → 0.

→ But suppose instead we let Mn = 1
n
(X1 +X2 + . . .+Xn).

→ Then Mn is the fraction of Heads in the first n coins.

→ Does Mn → 1/2 in probability? Maybe!

Suggested Homework: 4.2.1, 4.2.2, 4.2.6, 4.2.7, 4.2.8, 4.2.14, 4.2.17.

—————————— END MONDAY #10 ——————————

Weak Law of Large Numbers (WLLN)

• Theorem: For any sequence of random variablesX1, X2, X3, . . . which are independent,

and each have the same mean µ, and each have variance ≤ v for some constant v <∞,

if Mn = 1
n
(X1 +X2 + . . .+Xn), then Mn → µ in probability.
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• Proof: We need to understand Mn better.

→ First, by linearity, E(Mn) = 1
n
[E(X1) + E(X2) + . . .+ E(Xn)] = 1

n
[nµ] = µ.

→ Then, since the {Xn} are independent, Var(Mn) = ( 1
n
)2[Var(X1) + Var(X2) +

. . .+ Var(Xn)] ≤ ( 1
n
)2[v + v + . . .+ v] = ( 1

n
)2[n v] = v/n. (Not just v.)

→ Now, let ε > 0, and consider P(|Mn − µ| ≥ ε).

→ Use Chebychev’s Inequality! Since E(Mn) = µ, therefore

P(|Mn − µ| ≥ ε) ≤ Var(Mn)/ε2 ≤ v/nε2, which → 0 as n→∞.

→ So, Mn → µ in probability.

• Often assume the {Xn} are i.i.d., i.e. independent and identically distributed.

→ “identically distributed” means the Xn all have the same probabilities.

→ That is, P(a ≤ Xn ≤ b) is the same for all n (for any a < b).

→ In particular, the Xn all have the same mean µ and variance v.

→ Fact: If {Xn} i.i.d., then the WLLN doesn’t even need v <∞.

• e.g. Flip an infinite sequence of fair coins, with Xn = Inth coin Heads.

→ Then {Xn} independent (and i.i.d.), with E(Xn) = 1/2 =: µ, and Var(Xn) =

(1/2)(1− (1/2)) = 1/4 =: v <∞.

→ So, if Mn = 1
n
(X1 + X2 + . . . + Xn) is the fraction of Heads on the first n fair

coin flips, then by WLLN, Mn → µ = 1/2 in probability.

→ Hence, P(|Mn − (1/2)| ≥ ε)→ 0 for all ε > 0.

→ e.g. ε = 0.003: P(|Mn − (1/2)| ≥ 0.003)→ 0.

→ So, for all sufficiently large n, P(|Mn − (1/2)| ≥ 0.003) < 0.01 (say).

→ In particular, for those n, P(Mn− (1/2) ≥ 0.003) < 0.01, i.e. P(Mn ≥ 0.503) <

0.01, i.e. P(Mn < 0.503) > 0.99, etc.

• e.g. Roll an infinite sequence of fair dice, with Xn the result of the nth roll.

→ Then {Xn} independent (and i.i.d.), and E(Xn) = 3.5 =: µ.

→ What about Var(Xn)? Well, E(X2
n) =

∑
x∈R x

2 P(Xn = x) =
∑6

k=1 k
2 (1/6) =

91/6. So Var(Xn) = 91/6− (3.5)2 .
= 2.92 =: v <∞.

→ (Or, simpler: We always have 1 ≤ Xn ≤ 6, so |Xn − 3.5| ≤ 2.5, so Var(Xn) =

E(|Xn − 3.5|2) ≤ (2.5)2 =: v <∞, since we only need the variances to be bounded.)

→ (Or, even simpler: since {Xn} i.i.d., don’t need to check variance.)

→ So, if Mn = 1
n
(X1 +X2 + . . .+Xn) is the average value on the first n fair dice,

then by WLLN, Mn → µ = 3.5 in probability.

• e.g. Repeatedly take free throws, with independent probability θ = 1/4 of scoring

each time. Let Xn = Iscore on nth attempt.

→ Then {Xn} independent, E(Xn) = θ =: µ, and Var(Xn) = θ(1− θ) =: v <∞.

→ So, if Mn = 1
n
(X1 + X2 + . . . + Xn) is the fraction of scores on the first n

attempts, then by WLLN, Mn → µ = 1/4 in probability.

→ So, after e.g. 1,000 attempts, you will probably have about 250 scores.
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• Again repeatedly take free throws, with independent probability θ = 1/4 of scoring

each time. How many attempts to score 500 times?

→ Let Xn be the number of misses just before the nth score (i.e., in between the

(n− 1)th and nth scores).

→ Then Xn ∼ Geometric(1/4), so E(Xn) = (1− θ)/θ = (3/4)/(1/4) = 3.

→ Let Zn = Xn + 1, so Zn is the total number of attempts for the nth score.

→ So, E(Zn) = E(Xn) + 1 = 4.

→ Then, W := “# attempts to score 500 times” = Z1 + Z2 + . . .+ Z500.

→ Fact: Geometric(1/4) has finite variance, which we’ll call v <∞.

→ (Actually v = (1− θ)/θ2, see Problem 3.3.18, but we don’t need that.)

→ (Or, even simpler: since {Xn} and {Zn} i.i.d., don’t need to check variance.)

→ So, if Mn = 1
n
(Z1 + Z2 + . . .+ Zn), then by WLLN, Mn → 4 in probability.

→ So, M500 ≈ 4, i.e. W := Z1 + Z2 + . . .+ Z500 ≈ (4)(500) = 2000.

→ So, it will probably take about 2000 attempts to score 500 free throws.

Suggested Homework: 4.2.3, 4.2.4, 4.2.5, 4.2.10, 4.2.11. Optional: 4.2.12, 4.2.13.

Convergence Almost Surely (a.s.) (with Probability 1)

• Why is the above called just the “weak” law of large numbers?

→ e.g. For a sequence of fair coins, we know Mn
P→ 1/2.

→ This means that for large n, probably Mn ≈ 1/2.

→ But does this mean the random sequence Mn actually converges to 1/2?

→ What does that sort of convergence even mean?

• e.g. Define a sequence of r.v. X1, X2, X3, . . . as follows.

→ Most of the Xn are equal to 5.

→ However, one of variables X1, X2, . . . , X9 is selected (uniformly at random) and

is instead set to be equal to 7. (But the rest are still equal to 5.)

→ And, one of variables X10, X11, . . . , X99 is selected (uniformly at random) and

is instead set to be equal to 7. (But the rest are still equal to 5.)

→ And, one of variables X100, X101, . . . , X999 is selected (uniformly at random)

and is instead set to be equal to 7. (But the rest are still equal to 5.)

→ And, one of variables X1000, X1001, . . . , X9999 is selected (uniformly at random)

and is instead set to be equal to 7. (But the rest are still equal to 5.)

→ And so on. For each k = 1, 2, 3, . . ., one of the Xn for those n which have

exactly k digits is selected (uniformly at random) and is instead set to be equal to 7.

→ So, when we’re done, the sequence X1, X2, X3, . . . looks something like:

5,5,5,7,5,5,5,5,5,5,5,5,. . . ,5,5,7,5,5,. . . . . . ,5,5,7,5,5, . . . . . . . . . ,5,5,7,5,5,. . . . . . . . . . . .

• Does this sequence X1, X2, X3, . . . converge to 5 in probability?

→ Well, for 1 ≤ n ≤ 9, P(Xn = 7) = 1/9 and P(Xn = 5) = 1− [1/9].
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→ And, for 10 ≤ n ≤ 99, P(Xn = 7) = 1/90 and P(Xn = 5) = 1− [1/90].

→ And, for 100 ≤ n ≤ 999, P(Xn = 7) = 1/900 and P(Xn = 5) = 1− [1/900].

→ And, for 1000 ≤ n ≤ 9999, P(Xn = 7) = 1/9000 and P(Xn = 5) = 1− [1/9000].

→ In general, if n has k digits (in base 10), then we compute that:

P(Xn = 7) = 1/(9 · 10k−1) and P(Xn = 5) = 1− [1/(9 · 10k−1].

→ [To be fancy, we could write this as: P(Xn = 7) = 1/(9 · 10blog10(n)c).]

→ The key is that limn→∞ P(Xn = 7) = 0 and limn→∞ P(Xn = 5) = 1.

→ Hence, for any ε > 0, limn→∞ P(|Xn − 5| ≥ ε) ≤ limn→∞ P(|Xn − 5| 6= 0) =

limn→∞ P(Xn = 7) = 0.

→ So, yes, {Xn} → 5 in probability, i.e. Xn
P→ 5.

• Okay, great. But does the actual sequence {Xn} actually converge to 5?

→ Recall that it looks something like:

5,5,5,7,5,5,5,5,5,5,5,5,. . . ,5,5,7,5,5,. . . . . . ,5,5,7,5,5, . . . . . . . . . ,5,5,7,5,5,. . . . . . . . . . . .

→ So, even though it usually equals 5, it still equals 7 infinitely often.

→ But Xn → 5 as a sequence means: For all ε > 0, there is N ∈ N such that for

all n ≥ N , we have |Xn − 5| ≤ ε.

→ This cannot ever hold (for any 0 < ε < 2), since an infinite number of the Xn

equal 7, with |Xn−5| = |7−5| = 2 > ε. That is, Xn → 5 as a sequence is impossible!

→ Conclusion: P(Xn → 5 as a sequence of numbers) = 0. Can never happen!

• So, just because Xn
P→ 5, that does not mean that P(Xn → 5 as a sequence) = 1;

that probability could still be 0. In this sense, convergence in probability is “weak”.

• Defn: A sequence X1, X2, X3, . . . of r.v. converges almost surely or converges a.s.

or converges with probability 1 to another r.v. Y if P(Xn → Y as a sequence) = 1,

i.e. P(limn→∞Xn = Y ) = 1. This is sometimes written as: Xn
a.s.→ Y .

• So, in the above example Xn
P→ 5, but Xn 6

a.s.→ 5. i.e. we do not have Xn
a.s.→ 5.

• However, the converse always holds – convergence almost surely is “stronger”:

• Theorem: If Xn
a.s.→ Y , then Xn

P→ Y . [That is, if {Xn} converges to Y almost

surely (i.e. with probability 1), then it also converges to Y in probability.]

• Proof: Fix ε > 0, and let An be the event that there is some m ≥ n with

|Xm − Y | ≥ ε. That is, An = {∃ m ≥ n with |Xm − Y | ≥ ε}.
→ Or, as functions: An = {s ∈ S : ∃ m ≥ n with |Xm(s)− Y (s)| ≥ ε}.
→ If s ∈

⋂∞
n=1An, this means we can always find some m ≥ n with |Xm(s) −

Y (s)| ≥ ε, i.e. the sequence {Xn(s)} does not converge as a sequence to Y (s).

→ This shows: P
(
{Xn} does not converge as a sequence to Y

)
≥ P

(⋂∞
n=1 An

)
.

→ But if Xn
a.s.→ Y , then P

(
{Xn} does converge as a sequence to Y

)
= 1, so

P
(
{Xn} does not converge as a sequence to Y

)
= 0. Hence, P

(⋂∞
n=1An

)
= 0.

→ So what? Well, here An+1 ⊆ An, i.e. the {An} are decreasing.

→ So, by Continuity of Probabilities, limn→∞ P(An) = P(
⋂∞
n=1 An) = 0.
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→ But P(|Xn − Y | ≥ ε) ≤ P(An), so limn→∞ P(|Xn − Y | ≥ ε) = 0.

→ Since this is true for any ε > 0, we must have Xn
P→ Y .

• Intuition from the proof: For all ε > 0, as n→∞, . . .

→ For X
P→ Y , just need P(|Xn − Y | ≥ ε)→ 0.

→ But for X
a.s.→ Y , need P(∃ m ≥ n with |Xm − Y | ≥ ε)→ 0. (Stronger.)

Suggested Homework: 4.3.1, 4.3.2, 4.3.5, 4.3.10, 4.3.16, 4.3.17, 4.3.18, 4.3.19,

4.3.21, 4.3.22.

Strong Law of Large Numbers (SLLN)

• Theorem: For any sequence of random variables X1, X2, X3, . . . which are i.i.d.,

each with the same mean µ, if Mn = 1
n
(X1 + X2 + . . . + Xn), then Mn → µ almost

surely (i.e., a.s.) (i.e., with probability 1) (i.e., Mn
a.s.→ µ).

→ Proof in more advanced books, e.g. http://probability.ca/grprob

→ Then, of course, also Mn
P→ µ, too. (WLLN)

• e.g. Flip an infinite sequence of fair coins, with Xn = Inth coin Heads.

→ Then {Xn} i.i.d., with E(Xn) = 1/2 =: µ.

→ So, if Mn = 1
n
(X1 + X2 + . . . + Xn) is the fraction of Heads on the first n fair

coin flips, then by WLLN, Mn → µ = 1/2 in probability.

→ Hence, for all ε > 0, P(|Mn − (1/2)| ≥ ε)→ 0.

→ So, for all sufficiently large n, i.e. P(Mn < 0.503) > 0.99, etc.

→ But the SLLN says more: P(Mn → 1/2) = 1.

→ So, for all ε > 0, P(|Mn − 0.5| ≤ ε for all sufficiently large n) = 1.

→ So e.g. P(Mn < 0.503 for all sufficiently large n) = 1.

→ In particular, P(∃ n : Mn < 0.503) = 1.

→ That is, P(∃ n : X1 +X2 + . . .+Xn < (0.503)n) = 1. etc.

• Try it out in R! File http://probability.ca/Rslln (first choose theta):

N = 1000; M = rep(NA, N); X = rbinom(N, 1, theta)

for (i in 1:N) M[i] = mean(X[1:i])

plot(M, type=’l’, col="blue", ylim=c(0,1), xlab="n", ylab="Mn")

abline(h=theta, col="red", lty="dotted")

Suggested Homework: 4.3.3, 4.3.4, 4.3.6, 4.3.7, 4.3.8, 4.3.9, 4.3.11, 4.3.12.

————————— END WEDNESDAY #10 —————————

Central Limit Theorem (CLT)

• Suppose X1, X2, . . . are independent and identically distributed, each with finite

mean µ and finite variance σ2. What can we say about the probabilities of their sum?

→ Let Sn = X1 +X2 + . . .+Xn. So the average is 1
n
Sn.
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→ We know that 1
n
Sn → µ. But how close?

→ What is the probability distribution of 1
n
Sn − µ?

• Frequency histograms in R – file http://probability.ca/Rclt (first choose theta):

numrep=1000; N=1000; D = rep(NA,numrep)

for (i in 1:numrep) { X = rbinom(N, 1, theta); D[i] = mean(X) - theta }
hist(D, col="blue", xlab="Mn - mean", ylab="frequency", main="", breaks="Free")

• How does the frequency distribution look?

→ Usually centered near 0 (makes sense).

→ Width is fairly small (how small?).

→ Shape is approximately . . . normal!?!

• For center, the mean is E[ 1
n
Sn − µ] = 1

n
(nµ)− µ = µ− µ = 0. (Of course.)

• For width, let’s compute the standard deviation:

→Well, since the {Xi} are i.i.d., Var( 1
n
Sn−µ) = ( 1

n
)2 Var(Sn) = 1

n2 Var(X1 +X2 +

. . .+Xn) = 1
n2 [Var(X1) + Var(X2) + . . .+ Var(Xn)] = 1

n2 [nVar(Xi)] = 1
n

Var(Xi).

→ So, if Var(Xi) = σ2, then Var( 1
n
Sn − µ) = σ2/n. Small! Narrow!

→ So, Var
(

[ 1
n
Sn−µ]

/√
σ2/n

)
= Var

(
1
n
Sn−µ

)/
(
√
σ2/n)2 =

(
σ2/n

)/
(σ2/n) = 1.

• So, let Zn = [ 1
n
Sn − µ]

/√
σ2/n = Sn−nµ√

nσ
. Then E(Zn) = 0, and Var(Zn) = 1.

→ Check: E(Sn) = nµ, and Sd(Sn) =
√
nσ, so Zn := Sn−nµ√

nσ
has mean 0, var 1.

→ But is it really approximately normal??

• Theorem (CLT): The probabilities of Zn converge to those of Z ∼ Normal(0, 1).

→ This means that for each z ∈ R, limn→∞ P(Zn ≤ z) = P(Z ≤ z).

→ i.e. FZn(z)→ FZ(z) =: Φ(z) for all z ∈ R. (Convergence in distribution)

→ Equivalently, limn→∞ P(Sn ≤ nµ+
√
nσz) = P(Z ≤ z) ≡ Φ(z).

→ Or, limn→∞ P( 1
n
Sn ≤ µ+ σ√

n
z) = P(Z ≤ z) ≡ Φ(z). (e.g. z = 0: lim = 1/2)

→ Equivalently, Sn−nµ√
nσ
≈ Z, and 1

n
Sn ≈ µ+ σ√

n
Z, where Z ∼ Normal(0, 1).

→ So, not only does 1
n
Sn converge to µ (which we already knew from the Laws of

Large Numbers), but its deviations from µ are O(1/
√
n), with normal probabilities.

• Idea of proof: Use “moment-generating functions”. (Textbook: Section 3.4.)

→ For any random variable X, its moment-generating function is the function

mX(s) defined by mX(s) = E[esX ] for all s ∈ R.

→ Assume that mX(s) <∞, at least in a neighbourhood of s = 0.

→ (If not, can instead use the characteristic function cX(s) = E[eisX ] where

i =
√
−1 . . . similar but more complicated . . . )

→ Useful properties, e.g. m′X(s) = d
ds
mX(s) = d

ds
E[esX ] = E[ ∂

∂s
esX ] = E[XesX ],

so m′X(0) = E[X]. Similarly m′′X(0) = E[X2], m′′′X(0) = E[X3], and in general for any

k ∈ N we have m
(k)
X (0) = E[Xk]. (“moments”)

→ We need one key property: If limn→∞mXn(s) = mX(s) for all s, at least in a

neighbourhood of s = 0, then for all x ∈ R, limn→∞ P(Xn ≤ x) = P(X ≤ x), i.e.
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limn→∞ FXn(x) = FX(x), i.e. Xn converges to X in distribution.

→Oh, also, ifX and Y are independent, thenmX+Y (s) = E[es(X+Y )] = E[esX esY ] =

E[esX ] E[esY ] = mX(s)mY (s).

• So, how can we prove the Central Limit Theorem?

→ Show that E(esZn)→ E(esZ) for all s ∈ R, where Z ∼ Normal(0, 1).

• For starters, if Z ∼ Normal(0, 1), then mZ(s) = E[esZ ] =
∫∞
−∞ e

sz 1√
2π
e−z

2/2 dz =
1√
2π

∫∞
−∞ e

sz−(z2/2) dz = 1√
2π

∫∞
−∞ e

−(z−s)2/2+(s2/2) dz = es
2/2 1√

2π

∫∞
−∞ e

−(z−s)2/2 dz.

→ 1√
2π

∫∞
−∞ e

−(z−s)2/2 dz = 1√
2π

∫∞
−∞ e

−w2/2 dw = 1, so mZ(s) = es
2/2 (1) = es

2/2.

• So, we need to show that mZn(s) := E(esZn)→ es
2/2 for all s ∈ R.

• Let Yi = (Xi − µ)/σ, so also i.i.d., with E(Yi) = 0, and Var(Yi) = σ2/σ2 = 1.

→ Then Zn = Sn−nµ√
nσ

= (X1+X2+...+Xn)−nµ√
nσ

= 1√
n
(Y1 + Y2 + . . .+ Yn).

→ So, mZn(s) = m 1√
n

(Y1+Y2+...+Yn)(s) = m 1√
n
Y1

(s) . . .m 1√
n
Yn

(s).

→ Then, since {Yn} are i.i.d., mZn(s) =
[
m 1√

n
Y1

(s)
]n

.

→ But m 1√
n
Y1

(s) = E[e
s( 1√

n
Y1)

] = E[e(s/
√
n)Y1 ] = mY1(s/

√
n).

→ So, mZn(s) =
[
m 1√

n
Y1

(s)
]n

=
[
mY1(s/

√
n)
]n

.

• Now, mY1(0) = E[e0Y1 ] = E[e0] = 1.

→ And, m′Y1(0) = E[Y1] = 0.

→ And, m′′Y1(0) = E[(Y1)2] = Var(Y1) = 1.

→ Then we can use a Taylor series expansion around s = 0:

→ For small s, mY1(s) ≈ 1 + 0 · s+ 1 · s2
2!

+O(s3) ≈ 1 + s2

2
+O(s3).

→ Hence, as n→∞, mY1(s/
√
n) ≈ 1 + (s/

√
n)2

2
= 1 + s2

2n
+O(n−3/2).

→ So, mZn(s) =
[
mY1(s/

√
n)
]n ≈ [1 + s2

2n
+O(n−3/2)

]n
.

• Finally, for any a ∈ R, as n→∞, [1 + a
n
]n → ea.

→ Hence, mZn(s) =
[
mY1(s/

√
n)
]n ≈ [1 + s2

2n

]n → es
2/2, as required.

—————————— END MONDAY #11 ——————————

Normal Approximations

• Okay, so we know that as n→∞, P(Sn−nµ√
nσ
≤ z)→ Φ(z).

• Hence, for “reasonably large” n, we must have P(Sn−nµ√
nσ
≤ z) ≈ Φ(z).

→ How large? Depends on the distribution of the Xi.

→ Rough “rule of thumb”: Pretty good approximation if n ≥ 30 . . .

• Example: Suppose {Xn} are i.i.d. ∼ Poisson(4).

→ What is a good approximation to P(X1 +X2 + . . .+X900 ≥ 3700)?

→ Here µ := E(Xi) = λ = 4, and σ := Sd(Xi) =
√

Var(Xi) =
√
λ = 2.
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→ Let S900 = X1 +X2 + . . .+X900.

→ Then P(X1 +X2 + . . .+X900 ≥ 3700) = P(S900 ≥ 3700)

= P

(
S900 − 900(4)√

900 (2)
≥ 3700− 900(4)√

900 (2)

)
= P

(
S900 − 900(4)√

900 (2)
≥ 5/3

)
= P (Z900 ≥ 5/3) ≈ P (Z ≥ 5/3) = P (Z ≤ −5/3) = Φ(−5/3)

.
= 0.0478 .

→ Here the value of Φ(−5/3) can found from software [e.g. “pnorm(−5/3)” in R],

or from a table like Table D.2. (Both use numerical integration.)

→ [On an exam, if there is no table, you could just leave it as “Φ(−2)”.]

• Example: Suppose {Xn} are independent, each ∼ Uniform[2, 5].

→ What is a good approximation to P(X1 +X2 + . . .+X400 ≤ 1420)?

→ Here µ := E(Xi) = (2 + 5)/2 = 3.5, and σ := Sd(Xi) =
√

Var(Xi) =√
(5− 2)2/12

.
= 0.866.

→ Let S400 = X1 +X2 + . . .+X400.

→ Hence, P(X1 +X2 + . . .+X400 ≤ 1420) = P(S400 ≤ 1420)

= P

(
S400 − 400(3.5)√

400 (0.866)
≤ 1420− 400(3.5)√

400 (0.866)

)
.
= P

(
S400 − 400(3.5)√

400 (0.866)
≤ 1.15

)
≈ P (Z ≤ 1.15) = Φ(1.15) = 1− Φ(−1.15)

.
= 1− 0.1251 = 0.8749 .

Suggested Homework: 4.4.5, 4.4.6, 4.4.7, 4.4.12, 4.4.13, 4.4.22, 4.4.23.

Estimation and Confidence Intervals

• Fact: Φ(−1.96)
.
= 0.025. So, if Z ∼ Normal(0, 1), then P(Z ≤ −1.96)

.
= 0.025,

and P(Z ≥ +1.96)
.
= 0.025, so P(−1.96 ≤ Z ≤ +1.96)

.
= 1− 0.025− 0.025 = 0.95:

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

ph
i(x

)

95%
2.5% 2.5%

→ That is, Z will be between −1.96 and +1.96 with probability 0.95, or 95%, or

“19 times out of 20”.

• So, if Sn−nµ√
nσ
≈ Z, then P(−1.96 ≤ Sn−nµ√

nσ
≤ +1.96) ≈ 0.95, too.

• Probability interpretation: P(nµ− 1.96
√
nσ ≤ Sn ≤ nµ+ 1.96

√
nσ) ≈ 0.95.

→ Tells us the probabilities for Sn, if we know µ and σ.

• e.g. If {Xn} i.i.d. ∼ Exponential(5), then µ = 1/5 and σ = 1/5, so if Sn =

X1 +X2 + . . .+Xn, then P(1
5
(n− 1.96

√
n) ≤ Sn ≤ 1

5
(n+ 1.96

√
n) ≈ 0.95.
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→ So e.g. with n = 200, we get P(34.45 ≤ X1 +X2 + . . .+X200 ≤ 45.54) ≈ 0.95.

→ That is, X1 +X2 + . . .+X200 will “usually” be in the interval [34.5, 45.5].

→ Try it in R: sum( rexp(200,5) )

• Statistics interpretation: P( 1
n
Sn − 1.96 σ√

n
≤ µ ≤ 1

n
Sn + 1.96 σ√

n
) ≈ 0.95.

→ Different perspective: Trying to “estimate” µ, if we know Sn (and σ?).

→ Statistics: Observe the variable values, then estimate the parameter(s).

→ By LLN, a good estimate of µ is Mn := 1
n
Sn. But how accurate is it?

• Well, if Mn := 1
n
Sn, then P(Mn − 1.96 σ√

n
≤ µ ≤Mn + 1.96 σ√

n
) ≈ 0.95.

→ Sometimes write Xn := 1
n
Sn, so P(Xn − 1.96 σ√

n
≤ µ ≤ Xn + 1.96 σ√

n
) ≈ 0.95.

• Example: Suppose X1, X2, . . . , X500 ∼ Uniform[a− 1, a+ 1].

→ Suppose we observe the values X1, X2, . . . , X500, but a is unknown.

→ Well, here n = 500, and µ = E[Xi] = [(a−1) + (a+1)]/2 = a.

→ Also σ = Sd(Xi) =
√

[R− L]2/12 =
√

[(a+1)− (a−1)]2/12 =
√

1/3
.
= 0.577.

→ But if Mn := 1
n
Sn, then P(Mn − 1.96 σ√

n
≤ µ ≤Mn + 1.96 σ√

n
) ≈ 0.95.

→ Hence, P(M500 − 1.96 0.577√
500
≤ a ≤M500 + 1.96 0.577√

500
) ≈ 0.95.

→ That is, P(M500 − 0.051 ≤ a ≤M500 + 0.051) ≈ 0.95.

→ Hence, a will “usually” be in the interval [M500 − 0.051, M500 + 0.051].

• In the above example, suppose we observe that X1 +X2 + . . .+X500 = 29.

→ Then M500 = 29
500

.
= 0.058, so [M500 − 0.051, M500 + 0.051] = [0.007, 0.109].

→ Can we say that P(0.007 ≤ a ≤ 0.109) ≈ 0.95?

→ Not really, since a is not random (just unknown) – so no probabilities!

→ And yet, we’re still fairly “confident” that a is in [0.007, 0.109].

→ Here, [0.007, 0.109] is called a 95% confidence interval for a.

→ [Aside: Alternative “Bayesian” perspective treats parameters like a as random.]

• In general, recall that P( 1
n
Sn − 1.96 σ√

n
≤ µ ≤ 1

n
Sn + 1.96 σ√

n
) ≈ 0.95.

→ Hence, [ 1
n
Sn − 1.96 σ√

n
, 1
n
Sn + 1.96 σ√

n
] is a 95% confidence interval for µ.

• The value 95% is “usual”, but other values are also possible. (e.g. 99%, etc.)

→ e.g. Φ(−3)
.
= 0.00135, so P(−3 ≤ Z ≤ 3)

.
= 1− 0.00135− 0.00135 = 0.9973.

→ So, P( 1
n
Sn − 3 σ√

n
≤ µ ≤ 1

n
Sn + 3 σ√

n
) ≈ 0.9973. (textbook: “virtual certainty”)

→ Hence, [ 1
n
Sn − 3 σ√

n
, 1
n
Sn + 3 σ√

n
] is a 99.73% confidence interval for µ.

• Suppose now that Y ∼ Binomial(n, θ).

→ Then we can think of Y as Y = X1+X2+. . .+Xn where each Xi ∼ Bernoulli(θ)

and they are independent. (e.g. Xi = 1 if you score on the ith free throw, otherwise 0)

→ So, Mn = 1
n
Y , and µ = θ, and σ =

√
θ(1− θ).

→ Suppose θ is unknown. 95% confidence interval?

→ Well, we know that P(Mn − 1.96 σ√
n
≤ µ ≤Mn + 1.96 σ√

n
) ≈ 0.95.
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→ That is, P(Mn − 1.96
√
θ(1− θ)/n ≤ θ ≤Mn + 1.96

√
θ(1− θ)/n) ≈ 0.95.

→ So, [Mn−1.96
√
θ(1− θ)/n, Mn+1.96

√
θ(1− θ)/n] is 95% confidence interval.

→ Problem: θ is unknown! What to do?

→ Usual solution: By LLN, probably Mn ≈ θ. So, approximate the true standard

deviation σ =
√
θ(1− θ) by the estimate σn :=

√
Mn(1−Mn). (“standard error”)

→ So, use the interval [Mn− 1.96
√
Mn(1−Mn)/n, Mn + 1.96

√
Mn(1−Mn)/n].

→ [Aside: sometimes “standard error” is taken to mean the estimate of σ divided

by
√
n, e.g.

√
Mn(1−Mn)/n. So, best to just say “estimate of σ”.]

• Aside. Alternative solution: always have θ(1− θ) ≤ (1/2)(1/2) = 1/4.

→ So, use the “conservative” interval [Mn − 1.96/2
√
n, Mn + 1.96/2

√
n] instead.

→ (Here “conservative” means the interval is a little bit larger than necessary, i.e.

the probability that µ will be within the interval is a little bit more than 95%. So,

the interval is slightly “wasteful”, but still okay and useful, and more reliable.)

• Now, the above discussion is in terms of general n and Sn (or Mn := Sn/n).

→ If we observe a specific value of Sn for some specific n, then we can get a specific

quantitative confidence interval.

• Example: Suppose you’re shooting free throws, and score 86 out of 250 of them.

→ The number of scores is S250 ∼ Binomial(250, θ), with θ unknown.

→ Here n = 250, and µ = θ (unknown).

→ Also σ =
√
θ(1− θ), unknown. (But ≤ 1/2.)

→ So, if Mn := 1
n
Sn, then P(Mn − 1.96 σ√

n
≤ θ ≤Mn + 1.96 σ√

n
) ≈ 0.95.

→ Hence, P(M250−1.96
√
θ(1− θ)/250 ≤ θ ≤M250 +1.96

√
θ(1− θ)/250) ≈ 0.95.

→ 95% confidence interval: [M250−1.96
√
θ(1− θ)/250, M250+1.96

√
θ(1− θ)/250].

→ Usual solution: θ ≈ 86/250
.
= 0.344, so θ(1− θ) .

= 0.344(1− 0.344)
.
= 0.226.

→ Then M250 − 1.96
√
θ(1− θ)/250

.
= (86/250)− 1.96

√
0.226/250

.
= 0.285.

→ And, M250 + 1.96
√
θ(1− θ)/250

.
= (86/250) + 1.96

√
0.226/250

.
= 0.403.

→ Hence, [0.285, 0.403] is a 95% confidence interval for θ.

• Aside. Alternative conservative solution in above example: Use that θ(1−θ) ≤ 1/4.

→ So, M250 − 1.96
√
θ(1− θ)/250 ≥ (86/250)− 1.96/2

√
250

.
= 0.282.

→ And, M250 + 1.96
√
θ(1− θ)/250 ≤ (86/250)− 1.96/2

√
250

.
= 0.406.

→ Hence, [0.282, 0.406] is a “conservative” 95% confidence interval for θ.

Suggested Homework: 4.5.4, 4.5.7, 4.5.8, 4.5.9, 4.5.10, and the following.

Q1. Suppose Y ∼ Binomial(600, θ), where θ is unknown. Suppose we observe that

there were 483 out of 600 successes. Based on these observations, compute a 95%

confidence interval for θ, and also a 99.73% confidence interval for θ.

Q2. Suppose {Xn} are i.i.d. ∼ Uniform[µ− 5, µ+ 5], where µ is unknown. Compute

a 95% confidence interval for µ, both:

(a) in terms of general n and Sn.

(b) based on the observation that X1 +X2 + . . .+X64 = 300.
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Q3. Suppose {Xn} are i.i.d. ∼ Exponential(λ), where λ is unknown. Compute a 95%

confidence interval for λ. [Hint: What is µ? And, how to approximate σ?]

Q4. Suppose {Xn} are i.i.d. ∼ Poisson(λ), where λ is unknown. Compute a 95%

confidence interval for λ. [Recall that Poisson(λ) has mean λ and variance λ.]

Q5. Suppose {Xn} are i.i.d. ∼ Uniform[0, a], where a is unknown. Compute a 95%

confidence interval for a. [Hint: What are µ and σ in terms of a?]

Monte Carlo Approximations

• e.g. Suppose U ∼ Uniform[0, 1]. What is µ := E
(
U3
[

sin(U4) + cos(U5)
]
e−U

6
)

?

→ In principle, this equals
∫ 1

0
u3[sin(u4) + cos(u5)]e−u

6
du. How to compute??

→ One method: Use a “Monte Carlo algorithm”. What is that?

→ A wealthy region in Monaco with yachts and a big casino?

→ A nice place for a conference?

→ Well, yes . . . but also a method of computing by using randomness.

→ To compute µ := E
(
U3[sin(U4) + cos(U5)]e−U

6)
, first generate i.i.d. random

values U1, U2, . . . , Un ∼ Uniform[0, 1] on a computer.
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→ Then set Xi = U3
i [sin(U4

i ) + cos(U5
i )]e−U

6
i , for i = 1, 2, 3, . . ..

→ Since the {Ui} are i.i.d., therefore the {Xi} are i.i.d. too.

→Now, recall that E[g(X)] =
∫∞
−∞ g(x) fX(x) dx. Hence, E(Xi) := E

(
U3
i [sin(U4

i )+

cos(U5
i )]e−U

5
i

)
] =

∫ 1

0
u3[sin(u4) + cos(u5)]e−u

6
(1) du ≡ µ for each i.

→ Hence, if Mn = 1
n
Sn := 1

n
(X1 +X2 + . . .+Xn), then Mn ≈ µ for large n.

→ That is, Mn (observed) is a good estimate of µ (unknown).

→ I ran it in R, with n = 50, 000:

U = runif(50000); sum( U^3*(sin(U^4)+cos(U^5))*exp(-U^6) ) / 50000

→ I got S50000 = 11319.6, which gives estimate = Mn = 11319.6/50000
.
= 0.2264.

→ Accurate??

• Well, [ 1
n
Sn − 1.96 σ√

n
, 1
n
Sn + 1.96 σ√

n
] is a 95% confidence interval for µ.

→ σ unknown, but |Xn| ≤ 2, so σ2 := Var(Xn) ≤ E[(Xn)2] ≤ 4, and σ ≤ 2.

→ So, [ 1
n
Sn − 1.96 2√

n
, 1
n
Sn + 1.96 2√

n
] is a 95% confidence interval.

→ In our case, this works out to:

= [ 1
50000

(11319.6)− 1.96 2√
50000

, 1
50000

(11319.6) + 1.96 2√
50000

]
.
= [0.209, 0.244].

→ So, 95% confident that µ := E[U3(sin(U4) + cos(U5))e−U
6
] ∈ [0.209, 0.244].

→ Of course, µ isn’t really random. Good estimate? Inside interval??

→ Numerical integration in Mathematica: µ
.
= 0.2258 ≈Mn. Yes, inside! Good!

• Can also use Monte Carlo to estimate the value of integrals!

→ Idea: first re-write the integral as an expected value.

• e.g. Compute I :=
∫ 1

0
ecos(x) dx.

→ Use calculus? Too hard! (No closed-form solution?)

→ Instead, note that I = E[ecos(U)] where U ∼ Uniform[0, 1].

→ So, as before, first generate random i.i.d. values U1, U2, . . . , Un ∼ Uniform[0, 1].

→ Then set Xi = ecos(Ui), so µ := E[Xi] = I. And σ ≤
√

E[(Xi)2] ≤
√
e2 = e.

→ Then 1
n
Sn ≈ µ, so 1

n
Sn gives a good estimate of I.

→ And, [ 1
n
Sn − 1.96 e√

n
, 1
n
Sn + 1.96 e√

n
] is a conservative 95% conf. int. for I.

• Many other integrals can also be converted to expected values:

→ e.g.
∫ 8

5
cos(x7) dx =

∫ 8

5
[3 cos(x7)] 1

3
dx = E[3 cos(X7)] whereX ∼ Uniform[5, 8].

→ e.g.
∫∞

0
cos(x7) e−5x dx =

∫∞
0

[1
5

cos(x7)] 5e−5x dx = E[1
5

cos(Y 7)] where Y ∼
Exponential(5).

→ e.g.
∫∞
−∞ cos(x7) e−x

2/2 dx =
∫∞
−∞[
√

2π cos(x7)] 1√
2π
e−x

2/2 dx = E[
√

2π cos(Z7)]

where Z ∼ Normal(0, 1).

→ And sums too, e.g.
∑∞

j=0 cos(j7) (2/3)j =
∑∞

j=0[3 cos(j7)] [1 − (1/3)]j(1/3) =

E[3 cos(X7)] where X ∼ Geometric(1/3).

→ etc. And then each one can be approximated by similar Monte Carlo, too!
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Suggested Homework: 4.5.1, 4.5.2, 4.5.3, 4.5.5, 4.5.6, 4.5.11, 4.5.12.

World’s Oldest Monte Carlo: Buffon’s Needle

• A Monte Carlo method from 1733, to compute the value of π!

• Suppose we toss a needle randomly onto a lined surface.

→ Suppose the needle length L is equal to the space between the lines.

→ Try it out in R: source("http://probability.ca/mc/Rbuffon"); buffon()

• What is the probability that a needle will touch a line?

→ Well, let α be the angle that the needle makes with the line direction.

→ Then in terms of α, the needle covers vertical distance L sin(α).

→ So, the probability it touches a line is L sin(α)
L

= sin(α).

→ e.g. If α = 0◦, then prob = 0. If α = 90◦, prob = 1. If α = 30◦, prob = 1/2.

→ But this depends on α, which is random. Need to average!

• That is, the probability that the needle will touch the line is equal to the average

value of sin(α), as α ranges over all of its possible (random) values.

→ Here α ∼ Uniform[0◦, 180◦], i.e. α ∼ Uniform[0, π] in radians.

→ So, P(needle touches line) = E[sin(α)] = 1
π

∫ π
0

sin(x) dx = 1
π
[− cos(x)]

∣∣∣x=π

x=0

= 1
π
[− cos(π) + cos(0)] = 1

π
[−(−1) + (1)] = 2/π. (Depends on π!)

• Suppose we throw a large number N of needles, of which M touch a line.

→ Then, we know that each one had success probability θ = 2/π.

→ So, for large N , we should have M/N ≈ θ = 2/π.

→ This means that π ≈ 2N/M , so 2N/M is a possible estimate of π.

→ This is a Monte Carlo method to approximately compute π!

→ Try it out in R: source("http://probability.ca/mc/Rbuffon"); buffon()

• First proposed by George-Louis Leclerc, Comte de Buffon, back in 1733 (!).

• In 1864, injured civil war Captain O.C. Fox experimented three times:

→ #1: N=500, est=3.1780. #2: N=530, est=3.1423. #3: N=590, est=3.1416.

• (See the textbook Challenge 4.5.25 and Discussion 4.5.28.)

• Aside: There are other, better ways to estimate π:

→ π/4 = arctan(1) = 1− 1
3

+ 1
5
− 1

7
+ . . .. [trigonometry / calculus]

→ π = 3 + 4
2·3·4 + 4

4·5·6 + 4
6·7·8 + 4

8·9·10
+ . . .. [Nilakantha, India, 1444–1550]

→ But Buffon’s Needle is more fun. And it uses probabilities!

Distributions Related to the Normal

• Because of the CLT, the normal distribution is extremely important!

→ Nearly everything becomes approximately normal for large n.
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• So, other distributions related to the normal also become important:

• If X1, X2, . . . , Xn ∼ Normal(0, 1) are i.i.d., then the distribution of their sum of

squares X2
1 + X2

2 + . . . + X2
n is called the chi-squared distribution with n degrees of

freedom, also written χ2(n).

• If Z,X1, X2, . . . , Xn ∼ Normal(0, 1) are i.i.d., the distribution of Z√
(X2

1+X2
2+...+X2

n)/n

is called the t-distribution with n “degrees of freedom”, sometimes written t(n).

• If X1, X2, . . . , Xm, Y1, Y2, . . . , Yn,∼ Normal(0, 1) are i.i.d., then the distribution of
(X2

1+X2
2+...+X2

m)/m

(Y 2
1 +Y 2

2 +...+Y 2
n )/n

is called the F -distribution with m and n degrees of freedom.

• The above distributions all have corresponding densities, and expected values,

and variances, and various interesting properties. (See textbook Section 4.6.)

→ And their probabilities can be computed by statistical software (e.g. R).

→ And some statistics textbooks even have tables of their values.

→ And they are used for lots of statistical tests and analyses. (See e.g. the second

half of the textbook, and the follow-up course STA261.)

—————————— END MONDAY #12 ——————————

Final Announcements

•No lecture this Wednesday. (I will still come to class in case you have questions.)

• Please complete the online course evaluation!

• During the coming days: TA tutorials and office hours (and Piazza).

• Instructor Office Hours: Fri Dec 8 from 1:10 to 2:30 in SS 2125. [Exam Jam]

• AND MOST IMPORTANT OF ALL:

FINAL EXAM: Sat Dec 9 from 2:00 to 5:00 pm, in NEW ROOMS by Last Name:

** MP 102 A–HU; MP 103 HUA–NA; MP 202 NE–WA; MP 203 WE–Z.

All in the MP (physics) building, NOT in other buildings!

***** Good luck on the exam, and with all of your future studies! *****
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