STA 2111 (Graduate Probability I), Fall 2025

Homework #2 Assignment: worth 10% of final course grade.

Due: Thursday Nov. 13, either: **(a)** Hardcopy in class by 2:10 PM **sharp**, or **(b)** electronic submission (see instructions on course web page) by 1:45 PM **sharp**, both in <u>Toronto time</u>.

GENERAL NOTES:

- Homework assignments are to be solved by each student <u>individually</u>. You may discuss questions in general terms with other students, and look up general topics in books and internet. But you must solve the problems on your <u>own</u>, and do all of your <u>own</u> writing, <u>without</u> any assistance from other students nor from any AI/chatbot/chatGPT/etc software.
- You should provide very <u>complete</u> solutions, <u>EXPLAINING ALL REASONING</u> very clearly. Make your homework <u>neat</u> and readable, e.g. typeset in latex or printed clearly.
- Late penalty: 1–5 minutes late is -5%; 5–15 minutes late is -10%; otherwise if x days late then $-20\% \times \text{ceiling}(x)$. So, please don't be late!

THE ACTUAL ASSIGNMENT:

- 1. [5] Let $A_1, A_2, ...$ be <u>independent</u> events. Let Y be a random variable which is measurable with respect to $\sigma(A_n, A_{n+1}, ...)$ for each $n \in \mathbb{N}$. Prove there is some $x \in \mathbb{R}$ such that $\mathbf{P}(Y = x) = 1$. [Hints: You may wish to consider $\mathbf{P}(Y \le y)$. And don't forget Kolmogorov.]
- **2.** Let X be a <u>non-negative</u> random variable with P(X > 0) > 0.
- (a) [3] Prove that there must exist some $n \in \mathbb{N}$ such that $\mathbf{P}(X \ge 1/n) > 0$.
- (b) [3] Prove that we must have $\mathbf{E}(X) > 0$.
- **3.** For each of the following conditions, <u>either</u> give an <u>example</u> of a random variable X defined on Lebesgue measure on [0,1] satisfying those conditions, <u>or</u> prove that <u>no such</u> random variable exists.
- (a) [3] $X \ge 0$, and $\mathbf{E}(X) = 3$, and $\mathbf{P}(X \ge 7) = 1/2$.
- (b) [3] E(X) = 3, and $P(X \ge 7) = 1/2$.
- (c) [3] $\mathbf{E}(X) = 3$, and $\mathbf{Var}(X) = 4$, and $\mathbf{P}(X \le 0) = 1/2$.
- 4. Let Y be any non-negative random variable.
- (a) [3] Prove that $Y \mathbf{1}_{Y>0} = Y$. [Hint: Consider separately $Y(\omega) = 0$ and $Y(\omega) > 0$.]
- (b) [5] Assuming that $0 < \mathbf{E}(Y^2) < \infty$, prove that $\mathbf{P}(Y > 0) \ge [\mathbf{E}(Y)]^2/\mathbf{E}(Y^2)$. [Hints: apply Cauchy-Schwarz with $X = \mathbf{1}_{Y>0}$. And don't forget part (a).]
- **5.** Suppose X and $\{X_n\}$ are all random variables defined on some $(\Omega, \mathcal{F}, \mathbf{P})$ where Ω is <u>countable</u> and $\mathcal{F} = 2^{\Omega}$, and that $\{X_n\} \to X$ in probability.
- (a) [4] Prove that if $\omega \in \Omega$ with $\mathbf{P}(\{\omega\}) > 0$, then for all $\epsilon > 0$, there is $N \in \mathbf{N}$ such that $\mathbf{P}(|X_n X| \ge \epsilon) < \mathbf{P}(\{\omega\})$ for all $n \ge N$.
- (b) [4] Prove that $\{X_n\} \to X$ almost surely. [Hint: Part (a) might help.]

- **6.** Let $\{I_j\}_{j=1}^{\infty}$ be independent random variables, with $I_1 \sim \text{Uniform}\{1, 2, \dots, 9\}$, $I_2 \sim \text{Uniform}\{10, 11, 12, \dots, 99\}$, $I_3 \sim \text{Uniform}\{100, 101, 102, \dots, 999\}$, and in general, I_j is chosen uniformly from the set of all positive integers having j digits.
- Then, define $\{X_n\}_{n=1}^{\infty}$ by: $X_n = 7$ if $n = I_j$ for some j, otherwise $X_n = 5$.
- (a) [4] Prove or disprove that $\{X_n\} \to 5$ in probability.
- (b) [4] Prove or disprove that $\{X_n\} \to 5$ almost surely.
- 7. Let $\{X_n\}$ be random variables defined on Uniform[0,1], with $|X_n(\omega)| < \infty$ and $\lim_{n\to\infty} X_n(\omega) = X(\omega)$ for each fixed $\omega \in [0,1]$. Suppose for each $n \in \mathbb{N}$, $\mathbf{E}|X_n| < \infty$, and also $X_{n+1}(\omega) \leq X_n(\omega)$ for all $\omega \leq 1/2$, and $X_{n+1}(\omega) \geq X_n(\omega)$ for all $\omega > 1/2$.
- (a) [3] Prove that $\lim_{n\to\infty} \mathbf{E}(X_n \mathbf{1}_{(\frac{1}{2},1]}) = \mathbf{E}(X \mathbf{1}_{(\frac{1}{2},1]}).$
- (b) [5] Prove that $\lim_{n\to\infty} \mathbf{E}(X_n\mathbf{1}_{[0,\frac{1}{2}]}) = \mathbf{E}(X\mathbf{1}_{[0,\frac{1}{2}]})$. [Hint: What can you say about $Y_n = X_1\mathbf{1}_{[0,\frac{1}{2}]} X_n\mathbf{1}_{[0,\frac{1}{2}]}$? And, remember that $\mathbf{E}|X_1| < \infty$.]
- (c) [3] Assuming $\mathbf{E}|X| < \infty$, prove that $\lim_{n \to \infty} \mathbf{E}(X_n) = \mathbf{E}(X)$.
- (d) [5] Without assuming that $\mathbf{E}|X| < \infty$, find an example of such $\{X_n\}$ where $\mathbf{E}(X)$ is undefined, i.e. $\mathbf{E}(X^+) = \mathbf{E}(X^-) = \infty$, and hence $\lim_{n\to\infty} \mathbf{E}(X_n) \neq \mathbf{E}(X)$.

[END; total points = 60]