Supplement for the end of Section 4.4 (page 132) of

"A First Look at Stochastic Processes" (2019)

by Jeffrey S. Rosenthal

(4.4.s1) Remark. We assumed above that the generator G was bounded, i.e. $\sup_{i,j\in S} |g_{ij}| < \infty$. If this condition is violated, then strange behaviour can occur¹. For example, suppose $S = \{1, 2, 3, ...\}$, with $g_{i,i+1} = 2^i$ and $g_{ii} = -2^i$ for all $i \in S$, and $g_{ij} = 0$ otherwise. Then this process can only increase, by 1 each time. Furthermore, the expected time to increase from ito i+1 is equal to $1/g_{i,i+1} = 2^{-i}$. Hence, starting from $X_0 = 1$, the expected time to increase all the way to infinity is equal to $\sum_{i=1}^{\infty} 2^{-i} = 1$. That is, in a finite time (equal to one second, on average), the process will escape all the way to infinity, and hence "vanish". This property is called being *explosive*. Clearly, for such processes, formulas for $P^{(t)}$ such as (4.4.7) no longer hold.

¹I thank Tom Salisbury for discussing this issue with me.