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Since the beginning of the Covid-19 pandemic, public health authorities
across the globe have implemented policies, such as lockdowns, in an attempt
to reduce population mobility and, consequently, person-to-person contacts.
It is well known that lockdowns reduce mobility, but to what extent does this
reduction in mobility lead to lower infection rates? In this paper we extend
the endemic-epidemic modeling framework in a principled manner, incorpo-
rating temporally changing mobility network data and quantifying the risk
associated with travelling throughout the first year of the pandemic in two
Spanish communities.

1. Introduction. The relationship between mobility and Covid-19 is of utmost impor-
tance, as mobility-reducing policies, such as lockdowns and travel restrictions, are often used
to thwart the spread of such infectious diseases. Countless studies have attempted to quan-
tify the effectiveness of mobility reductions by using a variety of data sources and statistical
methods. Cellphone-derived mobility data is well suited for this purpose, as we can use it to
quantify the severity of a lockdown as well as relate it to case counts via a statistical model
such as a generalized linear model or infectious disease model. Slater et al. (2022) showed
that mobility data better captures spatial heterogeneity in Covid-19 case counts than spa-
tial proximity in Bayesian spatial models. Furthermore, cellphone-derived mobility data can
capture changes in the temporal dimension, a limitation in existing mobility models for infec-
tious disease surveillance data (Meyer and Held (2014)). However, the temporal relationship
between mobility and case counts poses great modeling challenges, as the correlation be-
tween the two changes in each wave, with high correlation in the first wave and little/negative
correlation in subsequent waves (Gottumukkala et al. (2021)). We argue that, since mobility
affects the reproduction rate of infectious diseases (as opposed to the absolute counts), we can
indeed infer the impact of mobility on case counts using a spatiotemporal infectious disease
model.

In the last two decades, a class of infectious disease models, known as endemic-epidemic
models, have gained popularity due to their simplicity and forecasting ability (Held, Höhle
and Hofmann (2005)). A simple version of these models can be written as

Yt |Yt−1 ∼ Pois(λt ),

λt = ω + αYt−1,

where Yt is the number of cases at time t , ω is the “endemic” component which describes
new cases that are not explained by previous cases, and αYt−1 is the “epidemic component”
which describes new cases that are directly attributable to previous cases. These models have
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since been extended to include temporally changing α (Held et al. (2006)), multiple diseases
(Paul, Held and Toschke (2008)), random effects (Paul and Held (2011)), seasonal effects
(Held and Paul (2012)), serial interval distributions of disease (Bracher and Held (2022)), and
more. Endemic-epidemic models overcome the computational difficulties of fitting classic
compartmental (SIR) models and are an attractive alternative when an abundance of data is
available (Wakefield, Dong and Minin (2019)).

An example of a multivariate, or in the context of this paper, multiregion endemic-
epidemic model is

Yit |Y t−1 ∼ Pois(λit ),

λit = ωit + α
∑
j

vjiYj,t−1,
(1)

where Yit is the number of cases in region i at time t , i and j are region indicators, and vji ’s
represent (potentially asymmetric) weights between regions j and i. Typically, these weights
are row-normalized (sum to 1), but this is not necessary. Some common weights are functions
of physical distance or proximity, such as those suggested in Paul, Held and Toschke (2008),

vji = 1

Ne(j)
,

or those suggested in Meyer and Held (2014),

vji = (oji + 1)−ρ,

where Ne(j) is the number of regions sharing a border (neighbors) with region j , oji is the
minimum number of region borders you would have to cross to get from region j to i, and ρ

is a parameter to be estimated. These weights tend to work well because they are good proxy
for the number of people moving between regions and, resultingly, contact rates between in-
fectious and susceptible people. More interestingly, these weights have been combined with
or replaced by other data sources to more accurately estimate the contact rates between in-
dividuals of different regions. For instance, Schrödle, Held and Rue (2012) used assymetric
mobility weights to model the spread of Coxiellosis in Swiss cows. Geilhufe et al. (2014)
used mobility data to estimate the relationship between distance and mobility and to define
their weights based on this relationship. Meyer and Held (2017) estimate contact rates be-
tween age groups using external data and combine these data with spatial proximity weights
and used this as an estimate for contact rates between age groups across various regions.
Fritz and Kauermann (2022) build weights based on estimated social connectedness via so-
cial media data. Grimée et al. (2022) created temporally changing weights by combining
border closure, proximity, and mobility data to assess the effectiveness of lockdowns during
the Covid-19 pandemic and to estimate case counts under counterfactual scenarios. Celani
and Giudici (2022) incorporated mobility weights to assess the effectiveness of containment
measures in Italy. Each of these works show that proximity weights can be supplemented or
replaced with external data to improve forecasting or inference.

Much of the methodological progress surrounding endemic-epidemic models aims to im-
prove forecasting ability based on the framework presented in Gneiting and Raftery (2007).
Consequently, the applications of these models tend to lack interpretability. When the goal is
learning about the biological properties of an infectious disease, we must make every effort to
ensure our model parameters have clear meanings and that our results are biologically plau-
sible. Covariates introduced should be done so carefully and should effect model parameters
in a way that are consistent with infectious disease dynamics.

In this paper we derive a mobility extended spatiotemporal endemic-epidemic model
where contact rates are a temporally changing function of mobility. In doing so, we ensure
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interpretability of our important parameters and, carefully, specify the functional form of the
reproduction number via data exploration methods. We use this model to infer the risk associ-
ated with travelling during the first 12–15 months of the Covid-19 pandemic in two Spanish
autonomous communities using high-resolution areal mobility networks derived from cell-
phone GPS signals.

This paper is structured as follows. We introduce the data that motivated this work in
Section 2 and present our model and methods in Section 3. In Section 4 we apply our model
to two Spanish communities, inferring the risk associated with travelling in both. We end
with a discussion of our model results, limitations, and future work.

2. Data. This paper focusses on Madrid and Castilla–Leon, two communities in Spain.
Madrid, with a population of approximately 6.8 million, is home to Madrid City, the capital of
Spain. Castilla–Leon is geographically the largest community in Spain, with a population of
2.5 million, and is thus much more rural than the community of Madrid. Each community is
divided into smaller subregions (Madrid has 179 subregions, Castilla–Leon has 245), which
are depicted in Figure 4. We obtain weekly mobility network data for the trips between and
within each of these subregions, alongside Covid-19 cases. The mobility data used in this
paper is a temporal extension of that used in Slater et al. (2022), where it was shown that static
mobility networks improved the fit of classic spatial models for Covid-19 in two Spanish
communities. These data can be downloaded from Ministerio de Transportes Movilidad Y
Agends Urbana, Gobierno de España (2022) and are described in detail in Ponce-de Leon
et al. (2021). Although daily mobility data is available, we aggregated it by week to match
the resolution of the case data, avoiding the well-known day-of-the-week effect of Covid-19
case reporting (Slater, Brown and Rosenthal (2021)).

For Castilla–Leon, the weekly case data from March 1, 2020, to March 7, 2021, was ob-
tained from the open data portal of Castilla–Leon (General Directorate of Information Sys-
tems, Quality and Pharmaceutical Provision (2022)). For Madrid, case data from March 1,
2020, to May 9, 2021, was obtained from Epidemiological Surveillance Network of Madrid
(Epidemiological Surveillance Network of Madrid (2022)). For both communities, cases
were identified using PCR tests up until October 7, 2020, after which antigen tests were
also utilized. Note that nearing the end of our Madrid case data, vaccines were being ad-
ministered to the public and thus should be accounted for. Country level vaccine data was
obtained from Ministerio de Sanidad, Gobierno De España (2022a), where by the end of our
study period, 28.7% of the population had received at least one dose (Pfizer, Moderna, As-
traZeneca, Janssen), while 11.5% were fully vaccinated (received two doses). Although we
don’t expect this to have a substantial impact on our results, the effect of vaccines should at
least be explored.

Daily testing data was acquired from the Government of Spain Ministry of Health website
(Ministerio de Sanidad, Gobierno De España (2022b)). Testing data was only available at the
community level, which we aggregated by week.

Aggregated mobility, case count, and testing data are shown in Figure 1. Mean daily mo-
bility for the study period is depicted in Figure 2.

3. Methodology. In this section we start by introducing a single-region version of a
mobility-extended endemic-epidemic model, a derivation inspired by Bauer and Wakefield
(2018). We then extend this model to a multiregion model and describe reasonable assump-
tions that make implementing this model computationally feasible. We then describe the care-
ful processes of accounting for delayed reporting, serial intervals, and underreporting, while
retaining interpretability of our model. We conclude the section with an explanation of the
summary statistics used in this paper, followed by our inference methodology.
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FIG. 1. Time series of cases, trips, and tests between March 2020 and March 2021 (Castilla–Leon), and March
2020 and May 2021 (Madrid).

3.1. Single region model. In epidemiology the force of infection at time t , λt , is defined
as the rate at which susceptible individuals become infected. Mathematically, we write it as
(Halloran, Longini and Struchiner (2010))

λt = Ct−1 ×Pt−1 × It−1

N
,

where Ct−1 is the rate of contacts between an infectious person and susceptibles individuals
at time t − 1, Pt−1 is the probability of infection given a contact between an infectious and
susceptible individual, It−1 is the number of infectious individuals at time t − 1, meaning
that It−1

N
is the prevalence at time t − 1 (where N is the population). For simplicity, we

will assume It−1 = Yt−1, that the number of infectious individuals equals the number of
cases, but will later relax this assumption. Typically, the number of contacts is assumed to be
constant (frequency dependent) or proportional to the population size N (density dependent).
Distinguishing between these is inconsequential in our models, as we will see later. However,
in this paper we assume Ct is a function of mobility, w, which is the number of trips as
described in Section 2. That is, we assume that the contacts function takes the form

Ct−1 = c0 +
D∑

d=1

cdwt−d,

where the c0, . . . , cD are unknown constants and D is some small integer (i.e., 1, 2, or 3)
chosen by the analyst. If we assume a serial interval of one week (relaxed in later sections),
the cases this week, Yt , were caused by cases in the previous week, Yt−1. However, the reason
for including higher lags of mobility is because it is possible that a case that appeared in the
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FIG. 2. Mean daily trips between regions, arranged by total rowwise mobility for improved visual clarity. The
darkness of the pixel indicates higher amounts of mobility. The diagonal line indicates that there is generally more
mobility within regions than there is between other pairs of regions.
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quantity Yt should have appeared in Yt−1, due to a case at Yt−2, but was delayed because they
didn’t immediately produce a positive test. We can’t differentiate between a reporting delay
and a longer serial interval, so we hope that inclusion of Yt−2 in our model will account for
both. Mobility data included in this way has been shown to improve forecasting ability of
univariate endemic-epidemic models (Douwes-Schultz et al. (2022)). If we assume that the
per-contact probability of infection is time constant Pt−1 = p (an assumption that could be
relaxed based on available data), then our force of infection is

λt =
(
c0 +

D∑
d=1

cdwt−d

)
× p × Yt−1

N

= c0p
Yt−1

N
+

(
D∑

d=1

cdp · wt−d

)
Yt−1

N

= αAR Yt−1

N
+

(
D∑

d=1

αmob
d wt−d

)
Yt−1

N
,

where αAR = c0p and αmob
d = cdp are parameters representing the “autoregressive” and “mo-

bility” components of the model and will be estimated from data. Note that we are estimating
the product α = pc, so assuming time constant p and c leads to time constant α’s. Given
that the first major variants didn’t start to appear until early 2021 (Alpha/Beta/Gamma, and
later Omnicron), a time constant p seems reasonable, as disease characteristics likely didn’t
change much in this time period. If this model were extended well into 2021, we could al-
low the α’s to change as variants are introduced. If we make the additional assumption that
infected people are equally likely to move as the rest of the population, then αmob

d can be
interpreted as the number of infections at time t per infected trip at time t − d , and αAR is the
number of new infections at time t per infection at time t −1, but not related to mobility. This
assumption may not be as problematic as it may sound, as people can be infectious several
days prior to showing any symptoms (He et al. (2020)) and thus likely not to change their
behavior in this time.

Bauer and Wakefield (2018) show that when the number of susceptibles ≈ N , the number
of infections at time t is approximately Poisson distributed

Yt |Yt−1 ∼ Pois(λt ).

Furthermore, it is common, and mathematically convenient, to assume that there is some
number infections, αEX, that come from outside the region, not related to the previous cases
Yt−1. In doing so, we arrive at an extension of the univariate endemic-epidemic model (Held,
Höhle and Hofmann (2005)),

Yt |Yt−1 ∼ Pois
(
λ

†
t

)
,

λ
†
t = αEX + αARYt−1 +

(
D∑

d=1

αmob
d wt−d

)
Yt−1.

(2)

This model can be thought of as a branching process with immigration, with reproduction
number, αAR + ∑D

d=1 αmob
d wt−d , that linearly depends on mobility, and an immigration of

αEX. This implies that mobility only effects the reproduction rate of the disease and does not
relate directly to the case counts. This is an attractive property of this model, as mobility can
only cause infections in the next generation if infectious people from the previous generation
move around. This is because our model assumes that such movements are directly related
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to the number of contacts between susceptible and infectious individuals, where each con-
tact will lead to an infection with probability p. If the effect of mobility is small, then the
reproduction number will be almost entirely described by the constant αAR. In other words,
αAR can be thought of as an autoregressive term that relates previous cases to current cases,
or it can be thought of as the intercept in the line relating the reproduction number to mobil-
ity.

It should be noted that the models in this paper assume that the reproduction number is
independent of observed cases, given mobility. We justify this decision as follows. There
are two main ways that observed cases may impact the reproduction number. The first way
is through behaviour change, in that people will likely change their behaviour if they hear
that the case count is rising. However, we expect that this behaviour change will (at least
somewhat) be captured by changes in mobility. For example, companies encouraging em-
ployees to work from home will likely lower the reproduction number, but this is because
it is reducing the number of person-to-person contacts, which should be reflected in a re-
duction in mobility. The second way that the observed case counts can impact reproduc-
tion numbers is through heard immunity, in that some fraction of the population will no
longer be susceptible for some period of time. However, during the duration of our study,
this fraction is small (0 to 10%) and thus including additional parameters to account for cur-
rent prevalence in the reproduction number would likely do very little for improving model
fit.

αEX represents an influx of cases caused by infectious people outside our dataset infecting
susceptibles in our region. When regions are large, this number should be relatively small. In-
cluding αEX serves to prevent our branching process from dying out, which will be especially
helpful in the multiregion case when there are small subregions with low amounts of mobility.
In some applications this component is appropriately referred to as an “endemic” component,
as it may describe predictable yearly fluctations/periodicities in disease incidence. However,
even cases that arise in an “endemic” are often still attributable previous cases, but with a
more predictable/periodic pattern, and can be thought of as the “background rate of disease”
(Gordis (2013)). This interpretation is common in endemic-epidemic models and models that
predated them (Knorr-Held and Richardson (2003)). Covid-19 had not yet reached endemic
status, thus estimating the background rate of infection is challenging. Thus, we believe the
term “exogenous” is more appropriate for our application and should be viewed as factors
influencing the absolute number of cases in a region, as opposed to the infectiousness of the
disease.

Note that is is common in the endemic-epidemic literature to use a negative binomial like-
lihood to account for conditional overdispersion. However, this is done purely for practical
reasons, as this distribution does not arise in the derivation from a discrete-time SIR model
(Wakefield, Dong and Minin (2019)). We consider negative binomial models briefly in the
application section of this paper.

An alternative way to view model (2) is using the competing risks framework as in Bauer
and Wakefield (2018). That is, we can view the exogenous, autoregressive, and movement
terms as their own individual Poisson process, and the total force of infection, indicated by
†, is the sum of three Poisson random variables with mean

λ
†
t = λEX

t + λAR
t + λmob

t .

In other words, a susceptible can be infected in one of three ways, all with some positive
probability. Furthermore, we can compute the proportion of cases attributable to movement

(PCAtM) at time t as λmob
t

λ
†
t

. We will use this measure and its associated uncertainty to as-

sess the association between mobility and infection. We will now extend our model to the
multiregion case.
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3.2. Multiregion model. Now that we are dealing with more than one geographic region
(245 regions for Castilla–Leon, 179 for Madrid), we must define a regionwise force of in-
fection. The force of infection, λjit , is defined as the rate at which infectious individuals in
region j infect susceptible individuals in region i at time t . Similar to the univariate case, we
can write this mathematically as

λjit = Cji,t−1pji,t−1
yj,t−1

Nj

=
(
cji,t−1pji,t−1 +

D∑
d=1

cmob
ji,t−dpji,t−1wji,t−d

)
yj,t−1

Nj

=
(
αjit +

D∑
d=1

αmob
ji,t−dwji,t−d

)
yj,t−1

Nj

,

where αjit = cji,t−1pji,t−1 is number of cases in region i attributed to a single case in region
j that is not accounted for by mobility, pjit is the (potentially time-varying) probability that
an infectious individual in region j infects an individual in region i, and wji,t−d is the number
of trips from region j to region i at time t − d . αmob

jit = cmob
jit pjit is the of number cases in

region i caused by an infected trip from region j to i. As is, the number of model parameters
grow at a rate of O(I 2 × T ) where I is the number of regions and T is the number of time
points. Given that we will be dealing with hundreds of subregions, we simplify the problem
by making the following assumptions:

• We assume that αjit is temporally constant and is equal to the sum of an autoregressive
term and a spatial term: αjit = αAR

i + α
spat
i

∑
j∼i vji , where vji = 1

|Ne(j)| , with j ∼ i rep-
resenting all the neighbours of i, and |Ne(j)| being the number regions sharing a border
(neighbors) with region j .

• We assume that αmob
jit is temporally constant, and does not depend on the origin j , but only

on the destination i: αmob
ji,t−d = αmob

i,d . Note that not making these assumptions pertaining to
temporal constancy may lead to identifiability issues.

• For every i, t there are j independent Poisson processes (with mean λjit ) competing to
infect susceptibles in region i. Since the sum of Poisson processes is Poisson, we arrive at
λit = ∑

j λjit .

The number of parameters to be estimated is now O(I), which is much more computationally
feasible. Adding an exogenous component, αEX

i , for each region, leads us to an extension of
the multiregion endemic-epidemic model

Yit |Y t−1 ∼ Pois
(
λ

†
it

)
λ

†
it = αEX

i︸︷︷︸
λEX

it

+αAR
i

Yi,t−1

Ni︸ ︷︷ ︸
λAR

it

+α
spat
i

∑
j∼i

vji

Yj,t−1

Nj︸ ︷︷ ︸
λ

spat
it

+
D∑

d=1

αmob
id

∑
j

wji,t−d

Yj,t−1

Nj

.

︸ ︷︷ ︸
λmob

it

(3)

If the αmob
d ’s are found to be close to 0, then this model reduces to a typical endemic-epidemic

model, as seen frequently in the literature. Note that we also consider a negative binomial
likelihood with mean λ

†
it and overdispersion parameters ψi .

3.3. Delayed reporting, serial intervals, and incubation periods. The modeling chal-
lenges caused by delayed reporting of cases is closely tied with the serial interval of infection
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and to the incubation period. The serial interval for Covid-19 has been estimated to be be-
tween four and seven days, while the incubation period is between four and nine days (Alene
et al. (2021)). These quantities can vary between individuals and can be hard to measure
due to delayed reporting/testing. García-García et al. (2021) showed that, in Spain, cases
may have peaked several days before the observed peak in cases, but the delay varied across
Spanish provinces. Although we don’t attempt to estimate any of these factors individually,
we may be able to account for their combination by including additional time lags in our
model. Bracher and Held (2022) showed that including cases from several time units in the
past improved forecasting ability of endemic-epidemic models in the presence of random se-
rial intervals. Following their guidance, we assume that the number of cases at time t is a
weighted average of cases at s time points in the past. Our force of infection is now

λjit =
(
αAR

i + α
spat
i

∑
j∼i

vji +
D∑

d=1

αmob
i,d wji,t−d

)
S∑

s=1

ρs

Yj,t−s

Nj

=
(
αAR

i + α
spat
i

∑
j∼i

vji

) S∑
s=1

ρs

Yj,t−s

Nj

+
D∑

d=1

αi,dwji,t−d

∑
1≤s<d

ρs

Yj,t−s

Nj

,

(4)

where
∑S

s=1 ρs = 1. Note that, in the second term, we exclude terms where the mobility lag
is higher than the cases lag (e.g Yt−2, wt−1), as we don’t suspect any reporting delay with our
mobility data. If someone tests positive at t − 2, when they move at time t − 1, they should
no longer be infectious; thus, their mobility won’t contribute to new cases.

It remains to specify D and S. In determining D, we first consider a univariate model for
case counts: Yt |Yt−1 ∼ Poisson(λt ) with λt = φtYt−1 where φt is the effective reproduction
number at time t . If we solve for φt and replace λt with Yt , then we arrive at a crude estimate
of Rt (Crude Rt ) φt ≈ Yt

Yt−1
. To determine how many mobility lags to include in our model, we

visually examine the relationship of wt−h with Yt

Yt−1
for various lags h > 0 using scatterplots.

If wt−h has a strong relationship with Yt

Yt−1
, then we include this in our model.

Determining S is more challenging, but we can be fairly confident that S ≤ 2, as it is fairly
unlikely that a case would take three or more weeks from primary case to cause a secondary
case, given that the serial interval and incubation period are likely less than seven and nine
days, respectively (Alene et al. (2021)). Thus, we will investigate values of S = 1 and S = 2.

3.4. Underreporting. Epidemic curves are well known to suffer from underreporting and
underascertainment (since our model can’t distinguish between the two, we will simply use
the term underreporting to encompass both). The number of cases is usually an underesti-
mate of the number of infections, because of testing capacity limitations and asymptomatic
or minimally symptomatic cases going undetected. This is troublesome when conducting in-
ference, as our estimate of the α’s will be affected by the reporting probability. There are
several methods that account for underreporting, such as those in Wakefield, Dong and Minin
(2019) or Bracher and Held (2021), but this is still an open problem in endemic-epidemic
modelling, and we don’t provide a perfect solution here.

A computationally simple method to account for underreporting is to adjust the intensity
parameter for changes in testing via a log-linear model,

(5) Yit |Y t−1 ∼ Pois
(
γtλ

†
it

)
,

where γt ∈ [0,1], log(γt ) = βtest log( xt

maxt (xt )
), where xt is the number of tests performed at

time t . This method assumes that the effect of testing is time constant. In Madrid this assump-
tion seemed reasonable, and hence this method was employed. We present our estimated γt

in Appendix E of the Supplementary Material (Slater et al. (2025)).
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In Castilla–Leon, however, a method that accounts for time-varying reporting effects is re-
quired. Although Bracher and Held (2021) present methods for estimating endemic-epidemic
model parameters in the presence of binomially thinned (underreported) case counts, it is un-
clear how these methods would generalize to the multivariate, mobility augmented case. We,
therefore, present a novel approach (presented in Appendix E), which will be used as a sen-
sitivity analysis in Castilla–Leon.

3.5. Summary statistics. Although the parameters in our model are interpretable them-
selves, it is really their combinations that allow us to answer meaningful epidemiological
questions about infectious diseases. Examples of such questions are: What was the effective
reproduction number of Covid-19 in the first year of the pandemic? How many infected trips
does it take to lead to a new infection? What proportion of cases are attributable to mobil-
ity? These are all examples of questions that can be answered by combining estimates of our
model parameters.

The basic reproduction number, R0, is a succinct way to describe the infectiousness of a
disease and is defined as the average number of secondary cases caused by an index primary
case in a fully susceptible population (Diekmann, Heesterbeek and Britton (2013)). When
dealing with more than one region (or some other strata), measuring R0 is nontrivial. Rewrit-
ing (1) in matrix form, we obtain

λt = ω + αY t−1

with αij = αvij . Diekmann, Heesterbeek and Metz (1990) use a limit argument to show that,
after a large number of generations, the typical number of primary cases, given secondary
cases, is well described by the dominant eigenvalue of α (assuming α is irreducible and
aperiodic). They thus define R0 to be this dominant eigenvalue. We don’t believe that this
argument extends well to the case when α is temporally changing, since α only “acts” on Y

for ≈ 1 generation (this is assuming that the generation time is one time unit). However, in
keeping with the endemic-epidemic modelling literature, we will present dominant eigenval-
ues over time where possible, as it is likely a good representation of infectiousness, but we
suspect it is biased and is more noisy than R0 should be. Furthermore, since we are estimat-
ing infectiousness over time in a population with a changing proportion of susceptibles, we
consider dominant eigenvalues to be estimates of the effective reproduction number, Rt .

Where possible, we compute the dominant eigenvalue of the matrix with entries

(6) αAR
i I{i=j} + α

spat
i vji +

D∑
d=1

(
αmob

i,d wji,t−d

)
,

where I is the indicator function. We will plot this over time t .
Reproduction numbers measure the number of new cases stemming from old cases, but

we also want to quantify the number of new cases stemming from the mobility of infectious
people. We summarize the number of new infections per infected trip over time as∑

i (
∑D

d=1 αmob
i,d

∑
j wji,t−d

Yj,t−1
Nj

)∑
i

∑D
d=1

∑
j wji,t−d

Yj,t−1
Nj

.

Although this may look cumbersone, it is simply a weighted average of the αmob
i,d ’s over time.

Furthermore, we can look at the number of infections per infected trip at the region level by
summing over t instead of i. This formula can be easily modified in the presence of a serial
interval.
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3.6. Inference. All model parameters were estimated using Bayesian Markov chain
Monte Carlo. In particular, we used the No-U-Turn sampler readily available in Stan (Car-
penter et al. (2017)) and its associated R package (Stan Development Team (2021)). Weakly
informative/vague priors were used for inference (see Table B1 in Appendix B of the Supple-
mentary Material (Slater et al. (2025)) for complete table of priors). Four chains with 1000
interations, with the first half being warmup were used for each model. Trace plots were used
to visually assess convergence of Markov chains. R̂ values with a threshold of 1.01, as de-
scribed in Vehtari et al. (2021), were also used to determine an appropriate level of mixing.
Note that a handful of parameters in the model for underreporting presented in Appendix
E did not meet this threshold and hence should be interpreted with caution. Since each of
our summary statistics is a function of the model parameters, we can easily obtain credible
intervals for each statistic by using draws from the joint posterior.

For model comparison we approximate leave-one-out cross-validation using Pareto
smoothed importance sampling (PSIS) implemented in the loo R-package (Vehtari et al.
(2024)).

4. Application. In this section we apply our model to two Spanish communities sep-
arately. In Section 4.1.1 we treat all of Castilla–Leon as a single region, which is mainly
used as an exploratory analysis to inform our multiregion (spatial) model. In 4.1.2 we apply
our multiregion model to the 245 subregions of Castilla–Leon and quantify the risk associ-
ated with travelling during the pandemic. We then apply our model to the 179 subregions of
Madrid in Section 4.2.

4.1. Assessing the risk associated with travelling in Castilla–Leon.

4.1.1. Castilla–Leon—aggregated model. A plot of the case, test, and mobility data for
all of Castilla–Leon is shown in Figure 2a. As noted by other authors, there is often a large
time lag between a peak in mobility and the subsequent peak in cases, and this effect appears
to change over time (Gottumukkala et al. (2021)). However, mobility should only affect the
relative change in the number of infections, as mobility can only affect cases through current
infectious individuals coming into contact with susceptibles. To examine the relationship
between mobility and infectiousness, we compute the Crude Rt over time and look at the
cross-correlation between it and mobility. We found that mobility at time t − 2 and t − 1
show strong correlation with the Crude Rt at time t , followed by a sharp drop in correlation
(0.27 to 0.08) when mobility is lagged by three or more time units. For this reason we will
consider the following mean as a starting point:

λt = αEX + αARyt−1 + αmob
1 wt−1yt−1 + αmob

2 wt−2yt−1.

The fitted values of this model are shown in Appendix A of the Supplementary Material
(Slater et al. (2025)). This plot suggests that mobility is explaining the majority of the case
counts. However, this seems too large and warrants investigation. If we plot the Crude Rt vs.
the mobility (shown in Appendix A), we can see that there are two extremely high leverage
points with high mobility and Crude Rt . These two points correspond to the first weeks of
March 2020, prior to lockdowns, and there were no mask mandates or policies enacted to
slow the spread. As a result of these high leverage points, the effect of mobility (slope of the
solid line in Figure A3 in Appendix A) is too high. Although this plot is an oversimplification
of exactly what our model is doing when estimating the effect of mobility, they warrant our
attention. If we remove these points, the least squares line becomes much shallower and fits
the Crude Rt estimates much better, as seen in Figure A3.

We now fit the model without the first three weeks of March, with the results shown in
Figure A2 in Appendix A, where the autoregressive component is much more substantial
relative to the mobility component. For this reason we will exclude these first three weeks of
data when extending our model to multiple regions.



MOBILITY NETWORKS AND COVID-19 TRAVEL RISK 67

TABLE 1
Percentage of cases attributable to movement (PCAtM) for various models fit to Castilla–Leon and Madrid data.

In models with a serial interval (SI), ρ1 is presented. Posterior medians and 95% credible intervals (CrI) are
presented for PCAtM, while posterior medians are presented for ρ1. Expected log predictive density, estimated

using leave-one-out cross-validation, is presented. Note that roughly 3% of Pareto k were above 0.7 for the
Castilla models, while roughly 1.5% were above 0.7 for the Madrid models, indicating potential reliability issues

with PSIS-LOOCV

PCAtM (95% CrI) ρ1 ˆelpdloo-cv

Castilla 1. No SI, No testing 44.96 (43.75, 46.31) – 134,352.3
2. No SI, testing 43.79 (42.55, 44.88) – 134,459.0
3. SI, no testing, additional lag 56.99 (55.95, 58.03) 0.99996 135,044.2
4. No SI, no testing, additional lag 57.01 (55.94, 57.98) – 134,996.7

Madrid 1. No SI, with testing 17.00 (16.11, 18.03) – 86,181.6
2. SI, with testing 14.00 (13.12, 15.02) 0.00001 85,857.4
3. SI, with testing (no Madrid City) 28.54 (26.76, 30.68)

4.1.2. Castilla–Leon—multiregion model. The results of fitting the multiregion model is
summarized in Figure 3. The movement component appears to be the strongest, followed
by the autoregressive component and the spatial component. In some regions the movement
component was very small, while it dominated the infections in others. Given that our results
can be sensitive to one or two time points, we suspect that the region-level mobility effects
are noisy. However, the aggregation of them is more likely to produce a clear signal.

When adjusting for testing, using the method described by equation (5), we found that
the estimated γt was very close to 1. This may be due to a time-dependent effect of testing
on the the number of reported cases. Another explanation is that that we may need region-
level testing data to tease out the potentially spatially heterogenous effect. For this reason we
did not control for testing in Castilla–Leon, acknowledge this as a limitation, and explore it
further in Appendix E of the Supplementary Material (Slater et al. (2025)). This may cause
underestimation of PCAtM, dominant eigenvalues, and infections per infected trip.

The proportion of cases attributable to movement (PCAtM) is presented in Table 1 for four
different models:

1. No serial interval, two mobility lags, and no testing adjustment.
2. No serial interval, two mobility lags, and testing adjustment.
3. Serial interval of two weeks, three mobility lags, and no testing adjustment.
4. No serial interval, three mobility lags, and no testing adjustment.

Adjusting for testing had little effect on the PCAtM. Similarly, using a serial interval of two
weeks (as opposed to one week) had little effect on the PCAtM, but the additional mobility
lag seems to be accounting for additional cases. However, the elpdloo-cv is lowest for model
1, and we focus our results on this model.

The proportion of cases attributable to movement (PCAtM) and the trips per infection for
each region is shown in Figures 4a and 4b. Both the PCAtM and the trips per infection show a
high amount of heterogeneity between regions. The temporal variation in trips per infection,
averaged across Castilla–Leon are shown in Figure 5a. Based on this model, it takes roughly
70 infected trips to see a new infection.

The temporally changing dominant eigenvalues computed from (6) are shown in Figure 6.
The dominant eigenvalue exceeding 1 seems to correspond with increases in case counts in
Castilla–Leon, with the exception of the third viral wave. This may be due to properties of the
virus at this time (such as a new variant), the drastic increase in testing that we had trouble
accounting for, or some other confounding factors.
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FIG. 3. Results of our multiregion mobility extended endemic-epidemic model. For both Castilla–Leon (left) and
Madrid (right), we present the results for the entire region, alongside a region that showed a strong mobility effect
(Eras de Renueva and El Álamo), and a region showing a weaker mobility effect (Parquesol and Alcobendas). The
95% credible interval for each model component is presented, alongside their aggregation (λ†

t ). Observed case
counts are shown as black points. The locations of the regions, depicted in (c)–(f), are shown in Appendix F of the
Supplementary Material (Slater et al. (2025)). Note that the endemic and spatial components were neglible and
thus were omitted for improved visual clarity.

For completeness we refit Model 1 using a negative binomial likelihood. We found that the
PCAtM was larger than the one presented in Table 1. However, the uncertainty was larger in
each model component, and the model fit was deemed inappropriate based on visual inspec-
tion and PSIS. Thus, the additional flexibility in the model did not lead to an improved model
fit.
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FIG. 4. Spatial distribution of proportion of cases attributable to movement (PCAtM) and the number of trips
associated with one new infection. The trips per infection in Madrid City (white region in d) was calculated to be
3753.

4.2. Assessing the risk associated with travelling in the community of Madrid. For com-
pleteness we present the results for Madrid with two major caveats: (1) a single large region
(Madrid City) contains 49.6% of the community of Madrid’s population and 51% of the
Covid-19 cases, and (2) the intraregional mobility in Madrid City (10.2% of the community
of Madrid’s mobility) shows a highly different pattern (see Figure C1 in Appendix C of the
Supplementary Material (Slater et al. (2025))) than the rest of the mobility in the community,
with a peak during the first lockdown. Since the trend in case counts is roughly the same as
the rest of the region, but the mobility is highly different, we do not believe that our model
accurately captures the relationship between mobility and infectiousness in Madrid City.

Figure 2b displays time series of weekly trips, tests, and cases aggregated across the com-
munity of Madrid. After removing the first three weeks of data (as with Castilla–Leon) and
correcting for changes in testing, we find that our assumption regarding the reproduction
number being a linear function of mobility is reasonable (see Figure C2 in Appendix C). Fur-
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FIG. 5. Temporal variation of number of trips associated with one new infection. Madrid City was excluded
from this analysis, as the data quality issues caused this number to be implausibly high. The posterior median,
alongside 95% credible intervals are presented.

thermore, we adjusted the per-contact-probability of infection for vaccinations (as described
in Appendix D of the Supplementary Material (Slater et al. (2025))) but found no substantial
difference in our results.

The proportion of cases attributable to movement (PCAtM) is presented in Table 1 for
three different models:

1. No serial interval, three mobility lags, and testing adjustement.
2. Serial interval, three mobility lags, and testing adjustment.
3. Serial interval, excluding Madrid City, and testing adjustment.

Noting that Model 3 is simply a subset of Model 2, the fit of Model 3 is shown in Figure 3.
Mobility accounts for a substantial proportion of the cases, but the autoregressive term ex-
plains the most. In the model with the serial interval, ρ1 was very close to zero, indicating
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FIG. 6. Posterior median and 95% credible interval of Rt in Castilla–Leon. An Rt > 1 will generally lead to an
increase in cases.

that the model with the serial interval is more appropriate. However, this may have occurred
due to the lag one mobility effect being very small, and our model is avoiding including that
term.

The spatial distribution of the PCAtM is shown in Figure 4c. Note that the regions with a
low PCAtM tend to be very close to Madrid City, while the regions with high PCAtM don’t
show a spatial pattern. This may seem unintuitive, as we may expect a higher PCAtM around
Madrid City due to gravity. However, it is likely that people stopped commuting in and out
of Madrid City, causing within-Madrid City trips to replace incoming/outgoing trips. Lower
amounts of mobility in the regions surrounding Madrid City will ultimately lead to lower
PCAtMs in those regions.

The number of infections per infected trip is shown both spatially and temporally in Fig-
ures 4d and 5b. Figure 4d suggests that the trips required for a new infection are spatially
correlated, indicated by the clusters of regions of the same colour. Figure 5b suggests that,
excluding Madrid City, roughly 140 infected trips are required for a new infection to arise.

5. Discussion. In this paper we developed an infectious disease model where the num-
ber of contacts between people is a linear function of trips between regions. We showed that
this model is an extension of endemic-epidemic models frequently found in the literature.
We applied this model to two Spanish communities with the intention of quantifying the risk
associated with travelling in each community. In Castilla–Leon we found that we could re-
late just under half of the trips to our cellphone mobility data, while this was much lower in
Madrid. The potential reason for the disparity in results is that Madrid is much more popula-
tion dense and has a city centre with over half the Covid-19 cases of the entire province. This
causes potential underestimation of the PCAtM and trips per infection, as our Madrid model
is likely underestimating the importance of mobility. Our model appears to work better when
regions are small, as our cellphone mobility data is more informative.

We found that this class of models is sensitive to large changes in case counts that occurred
early in the pandemic as well as rapid changes in testing capacity. Although we took great
care in specifying each model component, developing robust methods for modeling the in-
fectiousness of the disease when using this class of models should be researched further. We
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stress the importance that exploratory and diagnostic plots can greatly improve inference and
interpretation when using endemic-epidemic or any infectious disease model.

One strength of this work is that we utilize rich mobility data and spatial data to model dis-
ease spread through a carefully parametrized infectious disease model. In doing so, we were
able to assign a number to the risk associated with travelling during a pandemic. This frame-
work can be easily extended to include other spatial/temporal covariates, such as mask usage,
if such data are available. We explored adjusting the α’s for the stringency index, which is
an aggregate measure of how strict policies are in specific regions (Hale et al. (2021)). How-
ever, this index was extremely highly correlated with mobility and thus was not appropriate
to include in our model, as they are largely measuring the same thing.

A further strength of this work is that it was done during a time period prior to mass vac-
cinations and the introduction of the major Covid-19 variants, which could have confounded
our analysis. This could also be viewed as a limitation, as we could have allowed the α’s to
change when the major variants (e.g Omnicron) arose and could easily account for higher
vaccination rates using the methodology from this paper. In our analysis of the community of
Madrid, too few people had been vaccinated for it to make any major difference in our results.
Ideally, we would have mobility data over the course of the entire pandemic so that we could
see how the risk associated with travelling changes with new variants and increasing levels
of immunity in the population.

A limitation of our work that we must emphasize is that we cannot associate individual
trips to individual infections and thus cannot infer causality. Although we are confident that
mobility is required for Covid-19 to spread, we cannot be sure that the trips recorded in our
data are causing cases according to our model specification, as there may be confounding
factors associated with between-region mobility and case counts.

This work opens the door for many avenues of future research. First, robust methods for
modeling infectiousness as a function of mobility (or any covariate) would be extremely use-
ful. For instance, a method utilizing quantiles would be insensitive to rapid changes in the
observed cases. Furthermore, although this paper presents a novel method for modelling re-
production numbers based on mobility, we need to further theoretically examine how we de-
fine reproduction numbers (i.e., the dominant eigenvalue of the next-generation matrix) from
this class of models. Furthermore, we need to rethink how to estimate temporally chang-
ing reproduction numbers from this class of models, especially as the model becomes more
complex.

Although this study has focussed on Covid-19, we want to emphasize that the model and
associated principles can be extended to a wide variety of infectious diseases and various
forms of network data. Extensions and simplifications should be made on a case-by-case
basis and should be guided by careful data exploration.

Data availability. Code and data are available at https://github.com/JustinJSlater/
mobilityCovid.
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