
6

Optimizing and Adapting the Metropolis
Algorithm

Jeffrey S. Rosenthal

University of Toronto, Toronto, ON

6.1 Introduction

Many modern scientific questions involve high-dimensional data and compli-
cated statistical models. For example, data on weather consist of huge numbers
of measurements across spatial grids, over a period of time. Even in simpler
settings, data can be complex: for example, Bartolucci et al. (2007) consider
recurrence rates for melanoma (skin cancer) patients after surgery. The prob-
ability of recurrence for an individual may depend on physical or biological
characteristics of their cancerous lesion, as well as other factors.

Typically, a statistical model for high-dimensional data not only involves a
large number of variables but also a correspondingly large number of parame-
ters, which are often represented by a vector θ of some dimension d. To assess
the relevance of specific variables for disease recurrence, and to build models
that give a risk of recurrence for any given individual, researchers often use
Bayesian analysis; see, e.g., Box and Tiao (1973), Gelman et al. (2003) and
Carlin and Louis (2009). In this framework, the parameter vector is assumed
to follow some probability distribution (of dimension d), and the challenge is
to combine a “prior” distribution for θ (typically based on background infor-
mation about the scientific area) with data that are collected, so as to produce
a “posterior” distribution for θ. This probability distribution, call it π(θ), can
then be used to answer important scientific questions (e.g., is the size of a can-
cerous lesion related to the risk of recurrence after surgery?) and to calculate
specific probabilities (e.g., this person has a 20% probability of a recurrence
within the next five years).

One challenge for Bayesian analysis in situations where the data and pa-
rameter vectors are high dimensional is that it is difficult or impossible to
compute probabilities based on the posterior distribution. If there is some
outcome A of interest (e.g., the outcome that a specific individual’s cancer

94 Optimizing and Adapting the Metropolis Algorithm

will recur), then its probability is given by an integral over A, written

Π(A) =

∫
A

π(x) dx. (6.1)

Also, the expected (average) value of any particular quantity h (e.g., the size
of the lesion if the cancer does recur) is also given by an integral (now over
the state space X of all possible vectors), namely

Eπ(h) =

∫
X
h(x)π(x) dx. (6.2)

So, to draw conclusions from a Bayesian statistical model, “all” we have to
do is compute integrals like (6.1) and (6.2).

Unfortunately, integrals like (6.1) and (6.2) are sometimes very difficult
to compute. For example, one commonly-used posterior density (correspond-
ing to a “variance components model” in which individuals are divided into
groups) is given by the formula

π(V,W, µ, θ1, . . . , θK) = C e−b1/V V −a1−1

× e−b2/WW−a2−1e−(µ−a3)2/2b3V −K/2W−
1
2

∑K
i=1 Ji

× exp

−
K∑
i=1

(θi − µ)2/2V −
K∑
i=1

Ji∑
j=1

(Yij − θi)2/2W

 .

Here K is the number of different groups (i.e., the number of different values
θi), V , W and µ are additional unknown parameters of the model, while
the ai, bi and Yij are known constants. A typical application might have,
say, K = 19, so that π is a 22-dimensional function. In such cases, direct
computation of integrals like (6.1) and (6.2), using calculus tricks or numerical
integration or anything else, appears to be impossible, and alternative methods
must be sought (Evans and Swartz, 2000). What can be done to compute
estimates of quantities like Eπ(h) in such complicated cases?

6.2 Monte Carlo Algorithms

One answer to this question is provided by Monte Carlo algorithms. These
algorithms, named after the famous casino in Monaco, use randomness to
estimate quantities like (6.1) and (6.2). Surprisingly, this turns out to be very
helpful!

The most basic (“classical”) form of Monaco requires us to sample from π,
i.e., generate a sequence of independent d-dimensional random vectors (vari-
ables) X1, . . . , XM which each follow the density π, i.e., each have probabilities

J. S. Rosenthal 95

given by Pr(Xi ∈ A) =
∫
A
π(x) dx for all (measurable) A ⊂ X . We can then

use this random sample to estimate quantities like (6.2), by

Eπ(h) ≈ 1

M

M∑
i=1

h(Xi). (6.3)

If the Monte Carlo sample size M is sufficiently large, then by the Law of Large
Numbers the estimate (6.3) will be close to the true expected value (6.2).

Classical Monte Carlo can be very effective, and is widely used for lots
of different applications. However, in many cases (such as the above variance
components example), it is infeasible to directly sample from π in this sense,
i.e., there is no known way to run a computer program which will produce the
required sequence of vectors Xi. This state of affairs presented a serious lim-
itation to the use of Monte Carlo algorithms in Bayesian statistical inference
problems, until it was largely solved with the introduction of Markov chain
Monte Carlo algorithms, as we now discuss.

6.3 Markov Chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) algorithms were first developed in the
statistical physics community by Metropolis et al. (1953), and later expanded
by statisticians such as Hastings (1970) before being introduced into the wider
statistical community by Gelfand and Smith (1990). They do not use or re-
quire a sequence of independent vectors Xi as above. Instead, they define a
dependent sequence, more precisely a Markov chain, with each new vector
Xi+1 constructed using the previously-constructed vector Xi.

Suppose we can define a sequence of vectors X0, X1, . . ., where each Xi+1 is
constructed using the previous Xi, such that for large n, Xn is approximately
a sample (i.e., observation) from π. That is, for large n,

Pr(Xn ∈ A) ≈
∫
A

π(x) dx

for all A ⊂ X . This situation is worse than for classical Monte Carlo as
in (6.3), since it is just approximate, and furthermore the random vectors Xn

are no longer independent but rather are each constructed sequentially using
the previous vector. Nevertheless, it is sometimes true that if M is sufficiently
large, then we can still approximate Eπ(h) by

Eπ(h) ≈ 1

M −B

M∑
i=B+1

h(Xi). (6.4)

96 Optimizing and Adapting the Metropolis Algorithm

That is, we still average many values together, similar to (6.3), even though
they are no longer independent. Also, by convention we drop the first B “burn-
in” observations since they might be too heavily influenced by our initial values
X0 and hence bias our estimate.

So when is an approximation like (6.4) valid? It turns out that this ap-
proximation holds as M → ∞ provided that the Markov chain is ergodic for
π, i.e., that the chain’s probabilities converge to those of π in the sense that,
for all A ⊂ X ,

lim
n→∞

Pr(Xn ∈ A) =

∫
A

π(x) dx.

This raises the question of how to define a computationally simple Markov
chain (Xn) which guarantees that, as n→∞,

Pr(Xn ∈ A) →
∫
A

π(x) dx.

By standard Markov chain theory, this will hold if the updating rules for
(Xn) are irreducible (i.e., the chain can eventually get to anywhere in X), and
aperiodic (i.e., the chain doesn’t have any forced cyclical behavior), and leave
the density π stationary (i.e., if it starts distributed according to π, then it
will remain distributed according to π at all future times too). How can we
ensure that those conditions hold?

6.4 Metropolis Algorithm

An answer to this question was developed in the physics community over fifty
years ago (Metropolis et al., 1953). Specifically, given a (possibly important
and complicated and high-dimensional) target density π on some state space
X ⊂ Rd (with π(x) = 0 for x ∈ Rd \ X), the original Metropolis algorithm
proceeds as follows.

First, choose a symmetric d-dimensional increment distribution Q; the
most common choice is Q = N (0,Σ) for some fixed covariance matrix Σ like
Σ = c Id. Here N (0,Σ) is a d-dimensional Normal (Gaussian) distribution,
and Id is the d× d identity matrix.

Also, choose some initial vector X0. Then, iteratively for n = 1, 2, . . .,
compute Xn from Xn−1 as follows:

1. Let Yn = Xn−1 + Zn, where (Zn) ∼ Q are independent and
identically distributed (“proposal”).

2. Let α = π(Yn)/π(Xn−1) if this ratio is smaller than 1; otherwise,
set α = 1 (“acceptance probability”).

J. S. Rosenthal 97

3a. With probability α, let Xn = Yn (“accept”).

3b. Otherwise, with probability 1− α, let Xn = Xn−1 (“reject”).

Steps 2, 3a, and 3b can all be accomplished by drawing a random variable Un
uniformly between 0 and 1, and then setting

Xn =

 Yn if Un ≤ π(Yn)/π(Xn−1),

Xn−1 if Un > π(Yn)/π(Xn−1).

Intuitively, the above acceptance probabilities α are useful because they
encourage the algorithm to accept more moves toward larger values of π. More
precisely, the formula for α turns out to be exactly the right one to ensure
that the Markov chain (Xn) leaves the density π stationary, a key property for
convergence (as discussed at the end of the previous section). Furthermore, the
irreducibility property will almost always hold, e.g., it is guaranteed if Q has
an everywhere-positive density like N (0,Σ). And, the aperiodicity property is
essentially never a problem since the algorithm will eventually reject and thus
avoid cyclic behavior. So, this simple algorithm has all the right properties to
guarantee that, as n → ∞, Pr(Xn ∈ A) → π(A). It follows that we can use
this algorithm to estimate Eπ(h) as in (6.4). Good!

The only problem is that sometimes the Metropolis algorithm will be too
inefficient, i.e., it will take far too long (i.e., require too many iterations) to
provide a decent approximation to π, which is a very important considera-
tion; see, e.g., Rosenthal (1995). In some cases, even running the algorithm
for months on the world’s fastest computers would not provide a remotely
reasonable approximation to π. Overcoming such problems has often necessi-
tated new and more complicated MCMC algorithms; see, e.g., Bélisle et al.
(1993), Neal (2003), Jain and Neal (2004), and Hamze and de Freitas (2012).
In a different direction, detecting convergence of MCMC to π is so challenging
that some authors have developed perfect sampling algorithms which guaran-
tee complete convergence at the expense of a more complicated algorithm;
see, e.g., Propp and Wilson (1996), Murdoch and Green (1998) or Fill et al.
(2000). However, such perfect sampling algorithms are often infeasible to run,
so we do not discuss them further here.

All of this raises the question of how to improve or optimize the speed
of convergence of the Metropolis algorithm, for example by modifying the
increment distribution Q, as we discuss next.

6.5 Goldilocks Principle

To illustrate the Metropolis optimization issues, consider the very simple case
where π = N (0, 1), i.e., where the target density is just the standard Normal

98 Optimizing and Adapting the Metropolis Algorithm

FIGURE 6.1: The trace plot (left) and histogram (right), along with the
mound-shaped target density for a one-dimensional Metropolis algorithm with
too small a proposal scaling σ, showing slow mixing and poor convergence.

distribution. (Of course we wouldn’t actually need to use MCMC in such a
simple case.) Assume that the proposal distribution is given by Q = N (0, σ2).
Our question of interest is, how should we choose σ?

As a first try, let’s choose a small value of σ, say σ = .1, and run the
Metropolis algorithm for 1000 iterations with that σ. The corresponding trace
plot, graphing the values of the Markov chain (horizontal axis) at each itera-
tion n (vertical axis), is shown in Figure 6.1 (left panel). Looking at this trace
plot, we can see that the chain moves very slowly. It starts at the value zero,
and takes many hundreds of iterations before it moves appreciably away from
zero. In particular, it does not do a very good job of exploring the superposed
mound-shaped target density. This is also illustrated by the histogram of those
1000 iterations, in Figure 6.1 (right panel), which does not match up very well
with the target density.

As a second try, let’s choose a large value of σ, say σ = 25, and again
run the algorithm for 1000 iterations. The trace plot in this case is shown in
Figure 6.2 (left panel). In this case, when the chain finally accepts a move, it
jumps quite far, which is good. However, since it proposes such large moves,
it hardly ever accepts them. (Indeed, it accepted just 5.4% of the proposed
moves, compared to 97.7% when σ = .1.) So, this chain doesn’t perform very
well either, as illustrated by the histogram in Figure 6.2 (right panel), which
again does not match up very well with the target density.

As a third try, let’s choose a compromise value of σ, say σ = 2.38, and again
run the algorithm for 1000 iterations. In this case, the chain performs very well.
It accepts a medium fraction of its proposals (44.5%), and moves reasonably

J. S. Rosenthal 99

FIGURE 6.2: The trace plot (left) and histogram (right), along with the
mound-shaped target density for a one-dimensional Metropolis algorithm with
too large a proposal scaling σ, again showing slow mixing and poor conver-
gence.

FIGURE 6.3: The trace plot (left) and histogram (right), along with the
mound-shaped target density for a one-dimensional Metropolis algorithm with
a good choice of proposal scaling σ, showing much better mixing and conver-
gence properties.

100 Optimizing and Adapting the Metropolis Algorithm

far when it does accept. It thus explores the target density efficiently and well,
as illustrated by the trace plot in Figure 6.3 (left panel). Furthermore it now
provides fairly good samples from the target distribution, as illustrated by the
histogram in Figure 6.3 (right panel).

We learn from this that it is best to choose values of the proposal incre-
ment scaling σ which are between the two extremes, i.e., not too small and not
too big, but rather “just right” (as the little girl Goldilocks says in the clas-
sic children’s fairy tale The Three Bears; http://w8r.com/the-colorful-
story-book/the-three-bears). Correspondingly, the acceptance rate (i.e.,
the percentage of proposed moves which are accepted) should be far from 0%
but also far from 100%.

6.6 Optimal Scaling

The above intuition was made more precise in a pioneering paper by Roberts
et al. (1997). They decided to consider a Metropolis algorithm (Xn) in dimen-
sion d, with increment distribution

Q = N
(

0,
`2

d
Id

)
for some fixed scaling constant ` > 0, and take the limit as d→∞. The beauty
of their approach was that they could compute the speed of the algorithm in
this limit, as an explicit (but messy and uncomputable) function h(`) of the
scaling constant `. They then argued that the best choice of ` is the one which
maximizes the limiting speed h(`). This provided a clear standard for how to
optimize the Metropolis algorithm.

The story gets even better. Roberts and his collaborators also considered
the asymptotic acceptance rate, i.e., the fraction of Metropolis proposals that
would be accepted in the limit as d → ∞, and they computed an explicit
function A(`) for this as well. They then showed that the limiting speed h(`)
has a simple relation to the asymptotic acceptance rate A(`). This in turn
allowed them to compute that if `opt is the value of ` which maximizes the
speed h(`), then A(`opt) ≈ .234 = 23.4%, a specific number that does not
depend on any unknown quantities about π or anything else. This means that,
at least under their (strong) assumptions, the optimal acceptance probability
is 23.4%, which leads to the fastest limiting speed regardless of the target
density π.

This provides a clear, simple rule for tuning Metropolis algorithms: adjust
the proposal scaling ` so that the acceptance rate is roughly 23.4%. This rule
appears to be quite robust, i.e., .234 is often a nearly optimal acceptance
rate even if the theorem’s formal assumptions are not satisfied. It has been

J. S. Rosenthal 101

implemented in numerous applied papers and software, including the hugely
popular WinBUGS computer package (Lunn et al., 2000).

A number of authors have attempted to weaken and generalize the origi-
nal strong assumptions; see e.g., Bédard (2007, 2008), Bédard and Rosenthal
(2008), Beskos et al. (2009), and Sherlock and Roberts (2009). Corresponding
results have been developed for Langevin MCMC algorithms (Roberts and
Rosenthal, 1998), and for simulated tempering algorithms (Atchadé et al.,
2011; Roberts and Rosenthal, 2013). It is also known that any acceptance
rate between about 15% and 50% is still reasonably efficient (though 23.4%
is best); see, e.g., Figure 3 in Roberts and Rosenthal (2001). Over all, this
school of research has been very influential in guiding both applied usage and
theoretical investigations for MCMC.

6.7 Proposal Shape

Despite the .234 rule’s great success, an algorithm’s acceptance rate is just
a single scalar quantity which does not completely control the algorithm’s
efficiency. To illustrate this, consider the 20-dimensional target density π =
N (0,Σ∗), where Σ∗ is a 20-dimensional covariance matrix generated randomly
as Σ∗ = M>M with M being a 20× 20 matrix consisting of independent and
identically distributed N (0, 1) entries, which shall remain fixed throughout
the remainder of this chapter, and M> is the transpose of M . We shall try
running Metropolis algorithms on this density.

Based on the discussion in Section 6.6, we use an increment distribution
of the form Q = N (0, σ2 I20), where we try to adjust σ so that the resulting
acceptance rate is approximately .234. After some experimenting, we take
σ = .5, leading to an acceptance rate of .228 (close enough). Figure 6.4 shows
the trace plot (left panel) and histogram (right panel) of the first coordinate of
this run. The mixing and convergence aren’t so bad, given the relatively large
dimension, but they aren’t great either. Indeed, the performance appears to
be similar to our earlier one-dimensional example’s first attempt with σ = .1:
it only slowly explores the support of π.

Next, we instead try the increment distribution

Q = N
(

0,
(2.38)2

20
Σ∗

)
,

which we shall justify later. This leads to an acceptance rate of .252 (again,
close enough). Figure 6.5 shows the trace plot (left panel) and histogram
(right panel) of the first coordinate of this run. Direct inspection (as well
as more precise measurements like squared jumping distance and functional
variance, not discussed here) indicate that this choice of Q, despite leading to
a very similar acceptance rate (approximately .234), actually performs much

102 Optimizing and Adapting the Metropolis Algorithm

FIGURE 6.4: The trace plot (left) and histogram (right), along with the
mound-shaped target density of the first coordinate of a 20-dimensional
Metropolis algorithm with proposal scaling proportional to the identity ma-
trix, showing slow mixing and poor convergence.

FIGURE 6.5: The trace plot (left) and histogram (right), along with the
mound-shaped target density of the first coordinate of a 20-dimensional
Metropolis algorithm with proposal scaling proportional to the target covari-
ance matrix Σ∗, showing much faster mixing and much better convergence
properties.

J. S. Rosenthal 103

better, exploring the support of π and converging to the correct probabilities
much more efficiently. This confirms that there is more to the story than
just acceptance rate, and indeed that the shape of the proposal distribution
(determined by the proposal covariance matrix, in this case (2.38)2Σ∗/20) is
also very important.

This concept was formalized by Roberts and Rosenthal (2001). They
proved that under strong assumptions (similar to before), the optimal Gaus-
sian proposal distribution is given (to three significant figures) by

Q = N
(

0,
(2.38)2

d
Σπ

)
, (6.5)

where Σπ is the d × d covariance matrix of the target density π, rather than
Q = N (0, σ2Id) for some σ2. Furthermore, with this choice, the asymptotic
acceptance rate will again be approximately .234. And, as before, this result
appears to be robust in the sense of being nearly optimal even when the strong
assumptions do not hold.

6.8 Adaptive MCMC

The optimization result of the previous section requires us to know and use the
target covariance matrix Σπ. Now, in most realistic situations, Σπ would not
be known in advance, and indeed would be at least as difficult to estimate as
the quantity Eπ(h) of ultimate interest. How can we optimize the Metropolis
algorithm in such situations?

In a pioneering paper, Haario et al. (2001) proposed to optimize the algo-
rithm adaptively. That is, even if we don’t know the optimal algorithm at the
beginning, the computer can learn it during the run, and update the algorithm
“on the fly” as it proceeds.

In its simplest form, this algorithm finds an approximately optimal incre-
ment distribution by replacing the unknown target d×d covariance matrix Σπ
by the sample d× d covariance Σn = cov(X0, . . . , Xn−1) of the vectors visited
so far during the run. If those Xi are indeed good approximate samples from
π, then Σn will be a good approximation to Σπ, and hence

Q = N
(

0,
(2.38)2

d
Σn

)
can be used (after an initial phase, e.g., for n ≥ 40 only) as a good approxi-
mation to the optimal proposal (6.5). If not, then the algorithm will not work
well initially, but it will hopefully improve as it goes.

Now, Σn is easily computed, so this algorithm is quite feasible to run in
practice. Running it on the above 20-dimensional target density π = N (0,Σ∗),

104 Optimizing and Adapting the Metropolis Algorithm

FIGURE 6.6: The trace plot (left) and histogram (right), along with the
mound-shaped target density of the first coordinate of a 20-dimensional adap-
tive Metropolis algorithm with proposal scaling computed from previous itera-
tions, showing fairly rapid mixing and good convergence properties, especially
in later iterations (top of left plot).

the resulting trace plot and histogram of the first coordinate are shown in
Figure 6.6. Direct inspection, and precise measurements, both indicate that
this algorithm performs poorly during the initial phase (bottom of left plot),
but then performs very well later on (top of left plot), exploring the support of
π nearly as efficiently as the optimal algorithm presented above, even though
it does not require any prior knowledge about Σπ.

Adaptive MCMC algorithms have recently been used in a number of dif-
ferent statistical applications, and often lead to significant speed-ups, even
in hundreds of dimensions; see, e.g., Roberts and Rosenthal (2009), Craiu
et al. (2009), Giordani and Kohn (2010) and Richardson et al. (2011). On
the other hand, adaptive MCMC algorithms use previous iterations to de-
termine their future transitions, so they violate the Markov property which
provides the justification for conventional MCMC. This raises the question
of whether adaptive MCMC algorithms are valid, i.e., whether they converge
(asymptotically, at least) to the target density π.

The answer to this question is “no” in general. However it is “yes” un-
der various conditions; see, e.g., Andrieu and Moulines (2006), Haario et al.
(2001), Atchadé and Rosenthal (2005), Roberts and Rosenthal (2007), Saks-
man and Vihola (2010), Fort et al. (2012) and Latuszyński et al. (2013). In
particular, Roberts and Rosenthal (2007) show that adaptive algorithms will
still converge to the target density π provided they satisfy two fairly mild
conditions: “Diminishing Adaptation” (the algorithm adapts by less and less

J. S. Rosenthal 105

as time goes on), and “Containment” (the chain never gets too lost, in the
sense that it remains bounded in probability). Conditions such as these have
been used to formally justify adaptive algorithms in many examples; see, e.g.,
Roberts and Rosenthal (2009) and Richardson et al. (2011). Adaptive MCMC
appears to hold great promise for improving statistical computation in many
application areas in the years ahead.

6.9 Summary

We summarize the points made in this chapter as follows.

a) The Metropolis algorithm is very important in many applications.

b) This algorithm sometimes runs so slowly that computations are infeasible;
thus, optimization of the algorithm can be crucial.

c) The simplest optimization result is the Goldilocks Principle that the ac-
ceptance rate should be far from 0, but also far from 1.

d) A more detailed result says that the optimal acceptance rate is .234 under
certain strong assumptions (though the conclusion appears to be fairly
robust even when the assumptions are not satisfied).

e) Another theorem says that the optimal increment distribution is
N
(
0, (2.38)2Σπ / d

)
, again under strong assumptions (though again with

a fairly robust conclusion).

f) When certain key information is unknown (e.g., Σπ), it may still be pos-
sible to adapt toward the optimal algorithm. Such adaption is not valid
in general, but is valid under various conditions such as “Diminishing
Adaptation” and “Containment.” It can eventually lead to tremendous
speed-ups, even in very high dimensions.

g) In short, to improve statistical computation in important applied areas,
optimization and adaption may well be worth the trouble!

Acknowledgments

This work was financed in part by the Natural Sciences and Engineering Re-
search Council of Canada. The author thanks the editors and reviewers for
many detailed comments.

106 Optimizing and Adapting the Metropolis Algorithm

About the Author

Jeffrey S. Rosenthal is a professor of statistics at the University of Toronto.
He received his BSc from the University of Toronto and his PhD in Mathe-
matics from Harvard University. His research interests include Markov Chain
Monte Carlo algorithms and interdisciplinary applications. He has also pub-
lished two textbooks, and a general-interest book about probability. He has
received the 2006 CRM–SSC Prize, the 2007 COPSS Award, and the 2013
SSC Gold Medal for research. He is a fellow of the Institute of Mathematical
Statistics and was elected a fellow of the Royal Society of Canada in 2012.

Bibliography

Andrieu, C. and Moulines, É. (2006). On the ergodicity properties of some adap-
tive Markov Chain Monte Carlo algorithms. The Annals of Applied Probability,
16:1462–1505.

Atchadé, Y. F., Roberts, G. O., and Rosenthal, J. S. (2011). Towards optimal scaling
of Metropolis-Coupled Markov Chain Monte Carlo. Statistics and Computing,
21:555–568.

Atchadé, Y. F. and Rosenthal, J. S. (2005). On adaptive Markov Chain Monte Carlo
algorithms. Bernoulli, 11:815–828.

Bartolucci, A. A., Singh, K. P., and Bae, S. (2007). Analyzing clinical trial data via
the Bayesian multiple logistic random effects model. In MODSIM 2007 conference
proceedings, Modelling and Simulation Society of Australia and New Zealand, pp.
2861–2866.

Bédard, M. (2007). Weak convergence of Metropolis algorithms for non-i.i.d. target
distributions. The Annals of Applied Probability, 17:1222–1244.

Bédard, M. (2008). Optimal acceptance rates for Metropolis algorithms: Moving
beyond 0.234. Stochastic Processes and their Applications, 118:2198–2222.

Bédard, M. and Rosenthal, J. S. (2008). Optimal scaling of Metropolis algorithms:
Heading toward general target distributions. The Canadian Journal of Statistics,
36:483–503.

Bélisle, C., Romeijn, H. E., and Smith, R. L. (1993). Hit-and-run algorithms for gen-
erating multivariate distributions. Mathematics of Operations Research, 18:255–
266.

Beskos, A., Roberts, G., and Stuart, A. (2009). Optimal scalings for local
Metropolis–Hastings chains on nonproduct targets in high dimensions. The An-
nals of Applied Probability, 19:863–898.

J. S. Rosenthal 107

Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis.
Addison-Wesley, Reading, MA.

Carlin, B. P. and Louis, T. A. (2009). Bayesian Methods for Data Analysis, Third
Edition. CRC Press, Boca Raton, FL.

Craiu, R. V., Rosenthal, J. S., and Yang, C. (2009). Learn from thy neighbor:
Parallel-chain and regional adaptive MCMC. Journal of the American Statistical
Association, 104:1454–1466.

Evans, M. J. and Swartz, T. B. (2000). Approximating Integrals via Monte Carlo
and Deterministic Methods. Oxford University Press, Oxford.

Fill, J. A., Machida, M., Murdoch, D. J., and Rosenthal, J. S. (2000). Extension of
Fill’s perfect rejection sampling algorithm to general chains. In Proceedings of the
Ninth International Conference “Random Structures and Algorithms” (Poznan,
1999), volume 17, pp. 290–316.

Fort, G., Moulines, É., and Priouret, P. (2012). Convergence of adaptive and inter-
acting Markov Chain Monte Carlo algorithms. The Annals of Statistics, 39:3262–
3289.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85:398–409.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian Data
Analysis, Second Edition. Chapman & Hall, London.

Giordani, P. and Kohn, R. (2010). Adaptive independent Metropolis–Hastings by
fast estimation of mixtures of normals. Journal of Computational and Graphical
Statistics, 19:243–259.

Haario, H., Saksman, E., and Tamminen, J. (2001). An adaptive Metropolis algo-
rithm. Bernoulli, 7:223–242.

Hamze, F. and de Freitas, N. (2012). Intracluster moves for constrained discrete-
space MCMC. CoRR, abs/1203.3484.

Hastings, W. (1970). Monte Carlo sampling methods using Markov Chains and their
applications. Biometrika, 57:97–109.

Jain, S. and Neal, R. M. (2004). A split-merge Markov Chain Monte Carlo procedure
for the Dirichlet process mixture model. Journal of Computational and Graphical
Statistics, 13:158–182.

 Latuszyński, K., Roberts, G. O., and Rosenthal, J. S. (2013). Adaptive Gibbs sam-
plers and related MCMC methods. The Annals of Applied Probability, 23:66–98.

Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS: A Bayesian
modelling framework: Concepts, structure, and extensibility. Statistics and Com-
puting, 10:325–337.

108 Optimizing and Adapting the Metropolis Algorithm

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953). Equations of state calculations by fast computing machines. The Journal
of Chemical Physics, 21:1087–1092.

Murdoch, D. J. and Green, P. J. (1998). Exact sampling from a continuous state
space. Scandinavian Journal of Statistics, 25:483–502.

Neal, R. M. (2003). Slice sampling (with discussion). The Annals of Statistics,
31:705–767.

Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov Chains
and applications to statistical mechanics. In Proceedings of the Seventh Interna-
tional Conference on Random Structures and Algorithms (Atlanta, GA, 1995),
9:223–252.

Richardson, S., Bottolo, L., and Rosenthal, J. S. (2011). Bayesian models for sparse
regression analysis of high dimensional data. In Bayesian Statistics 9, pp. 539–560.
Oxford University Press.

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). Weak convergence and optimal
scaling of random walk Metropolis algorithms. The Annals of Applied Probability,
7:110–120.

Roberts, G. O. and Rosenthal, J. S. (1998). Optimal scaling of discrete approxima-
tions to Langevin diffusions. Journal of the Royal Statistical Society, Series B,
60:255–268.

Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis–
Hastings algorithms. Statistical Science, 16:351–367.

Roberts, G. O. and Rosenthal, J. S. (2007). Coupling and ergodicity of adaptive
MCMC. Journal of Applied Probability, 44:458–475.

Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC. Journal
of Computational and Graphical Statistics, 18:349–367.

Roberts, G. O. and Rosenthal, J. S. (2013). Minimising MCMC variance via diffu-
sion limits, with an application to simulated tempering. The Annals of Applied
Probability, in press.

Rosenthal, J. S. (1995). Minorization conditions and convergence rates for Markov
Chain Monte Carlo. Journal of the American Statistical Association, 90:558–566.
[Correction: p. 1136].

Saksman, E. and Vihola, M. (2010). On the ergodicity of the adaptive Metropolis
algorithm on unbounded domains. The Annals of Applied Probability, 20:2178–
2203.

Sherlock, C. and Roberts, G. O. (2009). Optimal scaling of the random walk
Metropolis on elliptically symmetric unimodal targets. Bernoulli, 15:774–798.

