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MINIMISING MCMC VARIANCE VIA DIFFUSION LIMITS,
WITH AN APPLICATION TO SIMULATED TEMPERING

BY GARETH O. ROBERTS AND JEFFREY S. ROSENTHAL1

University of Warwick and University of Toronto

We derive new results comparing the asymptotic variance of diffusions
by writing them as appropriate limits of discrete-time birth–death chains
which themselves satisfy Peskun orderings. We then apply our results to sim-
ulated tempering algorithms to establish which choice of inverse tempera-
tures minimises the asymptotic variance of all functionals and thus leads to
the most efficient MCMC algorithm.

1. Introduction. Markov chain Monte Carlo (MCMC) algorithms are very
widely used to approximately compute expectations with respect to complicated
high-dimensional distributions; see, for example, [7, 24]. Specifically, if a Markov
chain {Xn} has stationary distribution π on state space X , and h :X → R with
π |h| < ∞, then π(h) := ∫

h(x)π(dx) can be estimated by 1
n

∑n
i=1 h(Xi) for

suitably large n. This estimator is unbiased if the chain is started in station-
arity (i.e., if X0 ∼ π ), and in any case has bias only of order 1/n. Further-
more, it is consistent provided the Markov chain is φ-irreducible. Thus, the ef-
ficiency of the estimator is often measured in terms of the asymptotic variance
Varπ(h,P ) := limn→∞ 1

n
Varπ(

∑n
i=1 h(Xi)) (where the subscript π indicates that

{Xn} is in stationarity): the smaller the variance, the better the estimator.
An important question in MCMC research is how to optimise it, that is, how

to choose the Markov chain optimally; see, for example, [10, 15]. This leads to
the question of how to compare different Markov chains. Indeed, for two differ-
ent φ-irreducible Markov chain kernels P1 and P2 on X , both having the same
invariant probability measure π , we say that P1 dominates P2 in the efficiency or-
dering, written P1 � P2, if Varπ(h,P1) ≤ Varπ(h,P2) for all L2(π) functionals
h :X → R, that is, if P1 is “better” than P2 in the sense of being uniformly more
efficient for estimating expectations of functionals.

It was proved by Peskun [18] for finite state spaces, and by Tierney [25] for
general state spaces (see also [15, 16]), that if P1 and P2 are discrete-time Markov
chains which are both reversible with respect to the same stationary distribution π ,
then a sufficient condition for P1 � P2 is that P1(x,A) ≥ P2(x,A) for all x ∈ X
and A ∈ F with x /∈ A, that is, that P1 dominates P2 off the diagonal.
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Meanwhile, diffusion limits have become a common way to establish asymp-
totic comparisons of MCMC algorithms [2–5, 20–22]. Specifically, if P1,d and
P2,d are two different Markov kernels in dimension d (for d = 1,2,3, . . .), with
diffusion limits P1,∗ and P2,∗ respectively as d → ∞, then one way to show that
P1,d is more efficient than P2,d for large d is to prove that P1,∗ is more effi-
cient that P2,∗. This leads to the question of how to establish that one diffusion
is more efficient than another. In some cases (e.g., random-walk Metropolis [20],
and Langevin algorithms [21]), this is easy since one diffusion is simply a time-
change of the other. But more general diffusion comparisons are less clear; for
example, the processes’ spectral gaps

1 − sup
{∫

h(y)P (x, dy) :
∫

h(y)π(dy) = 0,

∫
h2(y)π(dy) = 1

}

can be ordered directly by using Dirichlet forms, but this does not lead to bounds
on the asymptotic variances.

In this paper, we develop (Section 2) a new comparison of asymptotic variance
of diffusions. Specifically, we prove (Theorem 1) that if Pi are Langevin diffu-
sions with respect to the same stationary distribution π , with variance functions
σ 2

i (for i = 1,2), then if σ 2
1 (x) ≥ σ 2

2 (x) for all x, then P1 � P2, that is, P1 is more
efficient than P2. (We note that Mira and Leisen [12, 17] extended the Peskun or-
dering in an interesting way to continuous-time Markov processes on finite state
spaces, and on general state spaces when the processes have generators which can
be represented as Gif (x) = ∫

f (y)Qi(x, dy) and which satisfy the condition that
Q1(x,A \ {x}) ≥ Q2(x,A \ {x}) for all x and A. However, their results do not ap-
pear to apply in our context, since generators of diffusions involve differentiation
and thus do not admit such representation.)

We then consider (Section 3) simulated tempering algorithms [10, 14], and in
particular the question of how best to choose the intermediate temperatures. It was
previously shown in [1], generalising some results in the physics literature [11, 19],
that a particular choice of temperatures (which leads to an asymptotic temperature-
swap acceptance rate of 0.234) maximises the asymptotic L2 jumping distance,
that is, limn→∞ E(|Xn −Xn−1|2). (Indeed, this result has already influenced adap-
tive MCMC algorithms for simulated tempering; see, for example, [9].) However,
the previous papers did not prove a diffusion limit, nor did they provide any com-
parisons of Markov chain variances. In this paper, we establish (Theorem 6) diffu-
sion limits for certain simulated tempering algorithms. We then apply our diffusion
comparison results to prove (Theorem 7) that the given choice of temperatures does
indeed minimise the asymptotic variance of all functionals.

2. Comparison of diffusions. Let π :X → (0,∞) be a C1 target density
function, where X is either R or some finite interval [a, b]. We shall consider
nonexplosive Langevin diffusions Xσ on X with stationary density π , satisfying

dXσ
t = σ

(
Xσ )

dBt + (1
2σ 2(

Xσ
t

)
logπ ′(Xσ

t

) + σ
(
Xσ

t

)
σ ′(Xσ

t

))
dt(1)
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for some C1 function σ :X → [k, k] for some fixed 0 < k < k < ∞, and with
reflecting boundaries at a and b in the case X = [a, b].

For two such diffusions Xσ1 and Xσ2 , we write (similarly to the above) that
Xσ1 � Xσ2 , and say that Xσ1 dominates Xσ2 in the efficiency ordering, if for all
L2(π) functionals f :X → R,

lim
T →∞T −1/2 Var

(∫ T

0
f

(
Xσ1

s

)
ds

)
≤ lim

T →∞T −1/2 Var
(∫ T

0
f

(
Xσ2

s

)
ds

)
.

We wish to argue that if σ1(x) ≥ σ2(x) for all x, then Xσ1 � Xσ2 . Intuitively,
this is because Xσ1 “moves faster” than Xσ2 , while maintaining the same station-
ary distribution. Indeed, if σ1 and σ2 are constants, then this result is trivial (and
implicit in earlier works [20–22]), since then X

σ1
t has the same distribution as X

σ2
ct

where c = σ1/σ2 > 1; that is, Xσ1 accomplishes the same sampling as Xσ2 in a
shorter time, so it must be more efficient. However, if σ1 and σ2 are nonconstant
functions, then the comparison of Xσ1 and Xσ2 is less clear.

To make theoretical progress, we assume:

(A1) π is log-Lipschitz function on X ; that is, there is L < ∞ with∣∣logπ(y) − logπ(x)
∣∣ ≤ L|y − x|, x, y ∈ X .(2)

(A2) Either (a) X is a bounded interval [a, b], and the diffusions Xσ have re-
flecting boundaries at a and b, or (b) X is all of R, and π has exponentially-
bounded tails; that is, there is 0 < K < ∞ and r > 0 such that

π(x + y) ≤ π(x)e−ry, x > K,y > 0

and

π(x − y) ≤ π(x)e−ry, x < −K,y > 0.

In case (A2)(b), we can then find sufficiently large q ≥ K such that∑
i

|i/m|≥q

π(i/m) ≤ (1/4)
∑
i

π(i/m) for all m ∈ N(3)

[where the sums in (3) must be finite due to (2)], and then set

Q = inf
{
π(x) : |x| ≤ q + 1

}
,(4)

which must be positive by continuity of π and compactness of the interval [−q−1,

q + 1].
Our main result is then the following.

THEOREM 1. If Xσ1 and Xσ2 are two Langevin diffusions of the form (1) with
respect to the same density π , with variance functions σ1 and σ2 respectively, and
if σ1(x) ≥ σ2(x) for all x ∈ X , then assuming (A1) and (A2), we have Xσ1 � Xσ2 .
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2.1. Proof of Theorem 1. To prove Theorem 1, we introduce auxiliary pro-
cesses for each m ∈ N. Given σ :X → R, let S = 2keL, and let Zm,σ be a discrete-
time birth and death process on the discrete state space Xm := {i/m; i ∈ Z} in
case (A2)(b), or Xm := {i/m; i ∈ Z} ∩ [a, b] in case (A2)(a), with transition prob-
abilities given by

P
(
i/m, (i + 1)/m

) = 1

2S

(
σ 2(i/m) + σ 2((i + 1)/m)π((i + 1)/m)

π(i/m)

)
,

P
(
i/m, (i − 1)/m

) = 1

2S

(
σ 2(i/m) + σ 2((i − 1)/m)π((i − 1)/m)

π(i/m)

)

and

P(i/m, i/m) = 1 − P
(
i/m, (i + 1)/m

) − P
(
i/m, (i − 1)/m

)
.

(In case (A2)(a), any transitions which would cause the process to move out of the
interval [a, b] are instead given probability 0.) These transition rates are chosen
to satisfy detailed balance with respect to the stationary distribution πm on Xm

given by πm(i/m) = π(i/m)/
∑

x∈Xm
π(x) [and S is chosen to be large enough to

ensure that P(i/m, (i + 1)/m) + P(i/m, (i − 1)/m) ≤ 1].
In terms of Zm,σ , we then let {Yσ

m,t }t≥0 be the continuous-time version of Zm,σ ,
speeded up by a factor of m2S/2, that is, defined by Yσ

m,t = Z
m,σ

�m2St/2
 for t ≥ 0.
(Here and throughout, �r
 is the floor function which rounds r down to the next
integer, e.g. �6.8
 = 6 and �−2.1
 = −3.) It then follows that Ym,t converges
to Xm,σ , as stated in the following lemma (whose proof is deferred until the end
of the paper, since it uses similar ideas to those of the following section).

LEMMA 2. Assuming (A1) and (A2), as m → ∞, the processes Yσ
m converge

weakly (in the Skorokhod topology) to Xσ .

We then apply the usual discrete-time Peskun ordering to the Zm,σ processes,
as follows.

LEMMA 3. Suppose that σ1(x) ≥ σ2(x) for all x ∈ R. Then Zm,σ1 � Zm,σ2 .

PROOF. By inspection, the fact that σ1(x) ≥ σ2(x) implies that

P
(
Z

m,σ1
(i+1)/m = j + 1 | Zm,σ1

i/m = j
) ≥ P

(
Z

m,σ2
(i+1)/m = j + 1 | Zm,σ2

i/m = j
)

and

P
(
Z

m,σ1
(i+1)/m = j − 1 | Zm,σ1

i/m = j
) ≥ P

(
Z

m,σ2
(i+1)/m = j − 1 | Zm,σ2

i/m = j
)
.

It follows that Zm,σ1 dominates Zm,σ2 off the diagonal. The usual discrete-time
Peskun ordering [18, 25] thus implies that Zm,σ1 � Zm,σ2 . �
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To continue, let

V∗(f, σ ) := lim
T →∞T −1 Varπ

(∫ T

0
f

(
Xσ

s

)
ds

)
,

which we assume satisfies the usual relation

V∗(f, σ ) =
∫ ∞
−∞

Covπ

(
f

(
Xσ

0
)
, f

(
Xσ

s

))
ds.

Also, let

Vm(f,σ ) := lim
n→∞n−1 Varπ

(
mn∑
i=1

f
(
Z

m,σ
i

))
,

which we assume satisfies the usual relation

Vm(f,σ ) =
∞∑

i=−∞
Covπ

(
f

(
Z

m,σ
0

)
, f

(
Z

m,σ
i

))
.

(In both cases, the subscript π indicates that the process is assumed to be in sta-
tionarity, all the way from time −∞ to ∞.) We then have the following.

LEMMA 4. Let Gm be the spectral gap of the process Zm,σ . Assume there
is some constant g > 0 such that Gm ≥ g/m2 for all m. Then for all bounded
functions f : R → R, limm→∞(m2S/2)Vm(f,σ ) = V∗(f, σ ).

PROOF. Let

Am,t = Covπ

[
f

(
Z

m,σ
0

)
, f

(
Z

m,σ

�m2St/2

)]

and let

A∗,t = Covπ

[
f

(
Xσ

0
)
, f

(
Xσ

t

)]
.

Then

V∗(f, σ ) =
∫ ∞
∞

A∗,t dt

and (since �m2St/2
 is a step-function of t , with steps of size m2S/2)

Vm(f,σ ) =
∫ ∞
−∞ Am,t dt

m2S/2
.

Now, by Lemma 2, since f is bounded,

lim
m→∞Am,t = A∗,t .

To continue, let F be the forward operator corresponding to the chain Zm,σ , that
is, Fh(x) = E[h(Z

m,σ
1 ) | Z

m,σ
0 = x]. Then since F is reversible, it follows from

Lemma 2.3 of [13] that∥∥F t
∥∥ = ‖F‖t = sup

{
Covπ

[
h1

(
Z

m,σ
0

)
, h2

(
Z

m,σ
t

)]
: Varπ(h1) = Varπ(h2) = 1

}
.
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Letting v = Varπ [f (X)], we then have, for all m ∈ N and t ≥ 0, that

Am,t = Covπ

[
f

(
Z

m,σ
0

)
, f

(
Z

m,σ

�m2St/2

)]

≤ sup
{
Covπ

[
h
(
Z

m,σ
0

)
, h

(
Z

m,σ

�m2St/2

)]

:h ∈ L2(π),Varπ
[
h(X)

] = v
}

= v
∥∥F �m2St/2
∥∥ = v‖F‖�m2St/2
 = v(1 − Gm)�m2St/2


≤ v
(
1 − g/m2)�m2St/2
 ≤ v

(
e−g/m2)m2St/2 = ve−gSt/2.

Hence,

Vm(f,σ ) =
∫ ∞
−∞

Am,t dt ≤ 2
∫ ∞

0
Am,t dt ≤ 4v/gS < ∞.

Hence, by the dominated convergence theorem,

lim
m→∞

∫ ∞
−∞

Am,t dt = lim
m→∞

∫ ∞
−∞

A∗,t dt,

that is,

lim
m→∞

(
m2S/2

)
Vm(f,σ ) = V∗(f, σ )

as claimed. �

To make use of Lemma 4, we need to bound the spectral gaps of the Zm,σ

processes. We do this using a capacitance argument; see, for example, [23]. Let

κm = inf
A⊆Xm

0<π(A)≤1/2

1

πm(A)

∑
x∈A

Pm

(
x,AC)

πm(x)

be the capacitance of Zm,σ . We prove

LEMMA 5. The capacitance κm satisfies that

κm ≥ min
(

ke−Lr

2m
,
Qke−2L/m

2m

)
,

where the quantities L and Q are defined in (2) and (4), respectively, and where

the bound reduces to simply κm ≥ ke−Lr
2m

in case (A2)(a).

PROOF. We consider two different cases [only the second of which can occur
in case (A2)(a)]:

(i) ∃a ∈ A with |a| ≤ q . Then, since πm(A) ≤ 1/2, there is j ∈ Z with |j/m| ≤
q and j/m ∈ A and either (j + 1)/m ∈ AC or (j − 1)/m ∈ AC . Assume WOLOG
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that (j + 1)/m ∈ AC . We will need the following estimate on
∑

j∈Z π(j/m). For
x ∈ [i/m, (i + 1)/m),

π(x) ≥ π(i/m)e−L(x−i/m)

so that∫ (i+1)/m

i/m
π(x) ≥ π(i/m)

∫ 1/m

0
e−Lu du = π(i/m)

(
1 − e−L/m

L

)

= π(i/m)e−L/m

(
eL/m − 1

L

)
≥ π(i/m)e−L/m

(
L/m

L

)

= π(i/m)e−L/m

m
.

Therefore summing both sides over all i ∈ Z,

1 =
∫ ∞
−∞

π(x)dx ≥ e−L/m

m

∑
i∈Z

π(i/m),

whence ∑
i∈Z

π(i/m) ≤ meL/m.

Then ∑
x∈A

Pm

(
x,AC)

πm(x) ≥ πm(j/m)Pm

(
j/m, (j + 1)/m

)

= πm(j/m)(1/2)σ 2(j/m)e−L/m

≥ (
π(j/m)/m

)
(k/2)e−2L/m

≥ Qke−2L/m/2m.

(ii) A ⊆ (−∞, q)∪(q,∞). Let a ∈ A with π(a) = max{π(x) :x ∈ A}. Assume
WOLOG that a > 0. Then∑

x∈A

Pm

(
x,AC)

πm(x) ≥ πm(a)Pm

(
a, a − (1/m)

)

≥ ke−L/mπ(a)
/ ∑

i
|i/m|≥a

π(i/m)

≥ ke−L/mπ(a)
/[

2
∞∑

j=0

π(a)e−rj/m

]

= 1

2
ke−L/m[

1 − e−r/m] ≤ 1

2
ke−L(r/m).
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Thus, in either case, the conclusion of the lemma is satisfied. �

Now, it is known (e.g., [23]) that the spectral gap can be bounded in terms of
the capacitance, specifically that Gm ≥ κ2

m/2. Thus, for m ≥ 1,

Gm ≥ [
min

(1
2ke−L(r/m),Qke−2L/m/2m

)]2
/2

≥ [
min

(1
2ke−L(r/m),Qke−2L/2m

)]2
/2

= g/m2,

where g = [min(1
2ke−Lr,Qke−2L/2)]2/2 > 0. This together with Lemma 2

shows that the conditions of Lemma 4 are satisfied. Hence, by Lemma 4,
limm→∞(m2S/2)Vm(f,σ ) = V∗(f, σ ) for all bounded functions f .

On the other hand, by Lemma 3, Zm,σ1 � Zm,σ2 , that is, Vm(f,σ1) ≤ Vm(f,σ2).
Hence, for all bounded functions f ,

V∗(f, σ1) = lim
m→∞

(
m2S/2

)
Vm(f,σ1)

≤ lim
m→∞

(
m2S/2

)
Vm(f,σ2)(5)

= V∗(f, σ2).

Finally, if f is in L2 but not bounded, then letting

fm(x) =
⎧⎨
⎩

m, f (x) > m,
f (x), −m ≤ f (x) ≤ m,
−m, f (x) < −m,

we have by the monotone (or dominated) convergence theorem that V∗(f, σ1) =
limm→∞ V∗(fm,σ1) and V∗(f, σ2) = limm→∞ V∗(fm,σ2). Hence, it follows
from (5) that V∗(f, σ1) ≤ V∗(f, σ2) for all L2(π) functions f . That is, Xσ1 � Xσ2 ,
thus proving Theorem 1.

3. Simulated tempering diffusion limit. We now apply our results to a ver-
sion of the simulated tempering algorithm. Specifically, following [1], we consider
a d-dimensional target density

fd(x) = edK
d∏

i=1

f (xi)(6)

for some unnormalised one-dimensional density function f : R → [0,∞), where
K = − log(

∫
f (x) dx) is the corresponding normalising constant. (Although (6) is

a very restrictive assumption, it is known [2–5, 20, 22] that conclusions drawn from
this special case are often approximately applicable in much broader contexts.)
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We consider simulated tempering in d dimensions, with inverse-temperatures cho-

sen as follows: β
(d)
0 = 1, and β

(d)
i+1 = β

(d)
i − �(β

(d)
i )

d1/2 for some fixed C1 function
� : [0,1] → R. (The question then becomes, what is the optimal choice of �.) As
for when to stop adding new temperature values, we fix some χ ∈ (0,1) and keep
going until the temperatures drop below χ ; that is, we stop at temperature β

(d)
k(d)

where k(d) = sup{i :β(d)
i ≥ χ}.

We shall consider a joint process (y
(d)
n ,Xn), with Xn ∈ Rd , and with y

(d)
n ∈

Ed := {β(d)
i ;0 ≤ i ≤ k(d)} defined as follows. If yn−1 = β

(d)
i [where 0 < i <

k(d)], then the chain proceeds by choosing Xn−1 ∼ f β , then proposing Zn to
be βi+1 or βi−1 with probability 1/2 each, and finally accepting Zn with the usual
Metropolis acceptance probability. (A proposed move to β

(d)
−1 or β

(d)
k(d)+1 is auto-

matically rejected.) We assume, as in [1], that the chain then immediately jumps
to stationary at the new temperature, that is, that mixing within a temperature is
infinitely more efficient than mixing between temperatures.

The process (y
(d)
n ,Xn) is thus a Markov chain on the state space Ed × Rd , with

joint stationary density given by

fd(β, x) = edK(β)
d∏

i=1

f β(xi),

where K(β) = − log
∫

f β(x) dx is the normalising constant.
We now prove that the {y(d)

n } process has a diffusion limit (similar to random-
walk Metropolis and Langevin algorithms, see [20–22]), and furthermore the
asymptotic variance of the algorithm is minimised by choosing the function � that
leads to an asymptotic temperature acceptance rate .= 0.234. Specifically, we prove
the following:

THEOREM 6. Under the above assumptions, the {y(d)
n } inverse-temperature

process, when speeded up by a factor of d , converges in the Skorokhod topology
as d → ∞ to a diffusion limit {Xt }t≥0 satisfying

dXt =
[
2�2	

(−�I 1/2

2

)]1/2

dBt

(7)

+
[
�(X)�′(X)	

(−I 1/2�

2

)
− �2

(
�I 1/2

2

)′
φ

(−I 1/2�

2

)]
dt

for Xt in (χ,1) with reflecting boundaries at both χ and 1. Furthermore, the speed
of this diffusion is maximised, and the asymptotic variance of all L2 functionals
is minimised, when the function � is chosen so that the asymptotic temperature
acceptance rate is equal to 0.234 (to three decimal places).
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Then, combining Theorems 1 and 6, we immediately obtain:

THEOREM 7. For the above simulated tempering algorithm, for any L2 func-
tional f , the choice of � which minimises the limiting asymptotic variance V∗(f ) =
limm→∞ Vm(f ), is the same as the choice which maximises σ(x), that is, is the
choice which leads to an asymptotic temperature acceptance probability of 0.234
(to three decimal places).

REMARK. In this context, it was proved in [1] that as d → ∞, the choice
of � leading to an asymptotic temperature acceptance rate .= 0.234 maximises the
expected squared jumping distance of the {y(d)

n } process. However, the question
of whether that choice would also minimise the asymptotic variance for any L2

function was left open. That question is resolved by Theorem 7.

3.1. Proof of Theorem 6. The key computation for proving Theorem 6 will be
given next, but first we require some additional notation. We let int(Ed) denote
Ed \ {1, β

(d)
k(d)}. We also denote by G(d) the generator of the inverse-temperature

process {y(d)
n } and set H to be the set of all functions h ∈ C2[χ,1] with h′(χ) =

h′(1) = 0. We also let G∗ be the generator of the diffusion given in (7), defined,
for all functions h ∈ H , by

G∗h = σ 2(x)h′′(x)

2
+ μ(x)h′(x), h ∈ H,(8)

where

μ(x) = �(x)�′(x)	

(−I 1/2�

2

)
− �2

(
�I 1/2

2

)′
φ

(−I 1/2�

2

)

and

σ 2(x) = 2�2	

(−�I 1/2

2

)
.(9)

To proceed, we apply the powerful weak convergence theory of [8]. We do
this using a technique for limiting reflecting processes similar to the arguments
in Ward and Glynn [26]. We first note that by page 17 and Chapter 8 of [8], the
set {(h,G∗h);h ∈ H } forms a core for the generator of the diffusion process de-
scribed above in (7) (i.e., the closure of the restriction of the generator to that set
is again equal to the generator itself). Hence, by Theorems 1.6.1 and 4.2.11 of [8],
we need to show that, for any pair (h,G∗h) with h ∈ H , there exists a sequence
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(hd, dG(d)hd)d∈N such that

lim
d→∞ sup

x∈Ed

∣∣h(x) − hd(x)
∣∣ = 0(10)

and

lim
d→∞ sup

x∈Ed

∣∣G∗h(x) − dG(d)hd(x)
∣∣ = 0.(11)

To establish this convergence on int(Ed), we can simply let hd = h (see
Lemma 8 below). However, to establish the convergence on the boundary of Ed

(Lemma 9), we need to modify h slightly [without destroying the convergence on
int(Ed)]. We do this as follows. First, given any h ∈ H , we let

hd(x) = h
(
γd(x)

)
,

where

γd(x) = (1 − χ)x + χ − χd

1 − χd

,

so that hd is just like h except “stretched” to be defined on [χd,1] instead of just
on [χ,1]. Here we set χd = β

(d)
k(d), and χ+

d = β
(d)
k(d)−1; thus χd ≤ χ ≤ χ+

d . Notice

that since χd → χ as d → ∞, hd and its first and second derivatives converge to h

and its corresponding derivatives uniformly for x ∈ [χd,1] as d → ∞.
Finally, given the function h, we let η(x) to be any smooth function: [χ,1] → R

satisfying

η′(χ) = h′′(χ)�(χ)/2 and η′(1) = h′′(1)�(1)/2

and then set

hd(x) = hd(x) + d−1/2η
(
γd(x)

) = h
(
γd(x)

) + d−1/2η
(
γd(x)

)
,

so that hd(x) is similar to hd(x) except with the addition of a separate O(d−1/2)

term (which will only be relevant at the boundary points, i.e., in Lemma 9 below).
In particular, (10) certainly holds.

In light of the above discussion, Theorem 6 will follow by establishing (11),
which is done in Lemmas 8 and 9 below.

LEMMA 8. For all h ∈ H ,

lim
d→∞ sup

x∈int(Ed)

∣∣dG(d)h(x) − G∗h(x)
∣∣ = 0(12)
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and

lim
d→∞ sup

x∈int(Ed)

∣∣dG(d)hd(x) − G∗h(x)
∣∣ = 0.(13)

PROOF. We begin with a Taylor series expansion for G(d). Since the compu-
tations shall get somewhat messy, we wish to keep only higher-order terms, so for

simplicity we shall use the notation
r(d)≈ to mean that the expansion holds up to

terms of order 1/r(d), uniformly for x ∈ Ed , as d → ∞ [e.g., LHS
d≈ RHS means

that limd→∞ supx∈Ed
d(LHS−RHS) = 0]. Then for bounded C2 functionals h, we

have (combining the two h′′ terms together) that for β
(d)
i ∈ int(Ed):

G(d)h
(
β

(d)
i

) d≈ h′(β(d)
i )

2

[
α+(

β
(d)
i+1 − β

(d)
i

) + α−(
β

(d)
i−1 − β

(d)
i

)]

+ h′′(β(d)
i )

2

[(
β

(d)
i+1 − β

(d)
i

)2
α+]

d≈ h′(β(d)
i )

2

[
α+(

β
(d)
i+1 − β

(d)
i

) + α−(
β

(d)
i−1 − β

(d)
i

)]

+ h′′(β(d)
i )

2

[(
β

(d)
i+1 − β

(d)
i

)2
α+]

= h′(β(d)
i )

2

α−�(β
(d)
i−1) − α+�(β

(d)
i )

d1/2

+ h′′(β(d)
i )

2

[
�(β

(d)
i )2α+

d

]
,

where α+ is the probability of accepting an upwards move, and α− is the proba-
bility of accepting a downwards move.

To continue, we let g = logf , and

M(β) = Eβ(g) =
∫

logf (x)f β(x) dx∫
f β(x) dx

and

I (β) = Varβ(g) =
∫
(logf (x))2f β(x) dx∫

f β(x) dx
− M(β)2.

It follows, as in [1], that M ′(β) = I (β) and K ′(β) = −M(β), so K ′′(β) =
−M ′(β) = −I (β). We also define g = g − M(β).

For shorthand, we write β = β
(d)
i , and � = �(β

(d)
i ), and � = �(β

(d)
i−1), and ε =

β
(d)
i−1 − β

(d)
i = �/d1/2, and ε = β

(d)
i − β

(d)
i+1 = �/d1/2, and I = I (β) and K ′′ =

K ′′(β) and K ′′′ = K ′′′(β).
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Then, with X ∼ f β ,

α− = E
[
1 ∧ f

β+ε
d (X)edK(β+ε)

f
β
d (X)edK(β)

]

= E

[
1 ∧ exp

((
K(β + ε) − K(β)

)
d + εdM(β) + ε

d∑
i=1

g(Xi)

)]

d1/2

≈ E
[
1 ∧ exp

(
dε2

2
K ′′ + dε3

6
K ′′′ + N

(
0, Iε2d

))]
(14)

= E
[
1 ∧ exp

(
�2

2
K ′′ + ε�2

6
K ′′′ + N

(
0, I�2))]

= 	

(
−I 1/2�

2
+ ε�K ′′′

6I 1/2

)

+ exp
(
ε�2K ′′′/6

)
	

(
−I 1/2�

2
− ε�K ′′′

6I 1/2

)
.

Similarly,

α+ = E
[
1 ∧ f

β−ε
d (X)edK(β−ε)

f
β
d (X)edK(β)

]

= E

[
1 ∧ exp

((
K(β − ε) − K(β)

)
d − εdM(β) − ε

d∑
i=1

g(Xi)

)]

1≈ E
[
1 ∧ exp

(
dε2

2
K ′′ − N

(
0, Iε2d

))]

= E
[
1 ∧ exp

(
�2

2
I − ε�2

6
K ′′′ − N

(
0, I�2))]

= 	

(
−I 1/2�

2
− ε�K ′′′

6I 1/2

)

+ exp
(−ε�2K ′′′/6

)
	

(
−I 1/2�

2
− ε�K ′′′

6I 1/2

)
.

Hence

α+(
β

(d)
i

) d1/2

≈ 	

(
−I 1/2(β

(d)
i )�

2
− ε�K ′′′(β(d)

i )

6I 1/2(β
(d)
i )

)

+ exp
(−ε�2(

β
(d)
i

)
K ′′′(βi)/6

)
	

(
−I 1/2(β

(d)
i )�

2
+ ε�K ′′′(β(d)

i )

6I 1/2(β
(d)
i )

)
.



144 G. O. ROBERTS AND J. S. ROSENTHAL

A first order approximation of this expression is

α+(
β

(d)
i

) 1≈ 2	

(
−I 1/2(β

(d)
i )�

2

)
.

Next, we note that in the current setting, β is itself marginally a Markov chain
with uniform stationary distribution among all temperatures. In fact it is a birth
and death process, and hence reversible. So, by detailed balance,

α− = α+(
β

(d)
i − �/

√
d
)
.

Therefore,

α−(
β

(d)
i

) = α+(
β

(d)
i − �/

√
d
)

d1/2

≈ α+(
β

(d)
i

)

− (�(β
(d)
i )I 1/2(β

(d)
i ))′

2

( −�√
d

)
φ

(
−I 1/2(β

(d)
i )�

2
− ε�K ′′′(β(d)

i )

6I 1/2(β
(d)
i )

)

− exp
(−ε�2(

β
(d)
i

)
K ′′′(βi)/6

)(�(β(d)
i )I 1/2(β

(d)
i ))′

2

×
( −�√

d

)
φ

(
−I 1/2(β

(d)
i )�

2
+ ε�K ′′′(β(d)

i )

6I 1/2(β
(d)
i )

)
.

Then, since �
d1/2

≈ � + ε�′ d1/2

≈ � + ε�′ = � + ��′
d1/2 , we compute that

μ
(
β

(d)
i

) d1/2

≈ 1

2d1/2

[
−α+� +

(
� + ��′

d1/2

)

×
(
α+(

β
(d)
i

)

− (�(β
(d)
i )I 1/2(β

(d)
i ))′

2

×
( −�√

d

)
φ

(
−I 1/2(β

(d)
i )�

2
− ε�K ′′′(β(d)

i )

6I 1/2(β
(d)
i )

)

− exp
(−ε�2(

β
(d)
i

)
K ′′′(βi)/6

)(�(β(d)
i )I 1/2(β

(d)
i ))′

2

×
( −�√

d

)
φ

(
−I 1/2(β

(d)
i )�

2
+ ε�K ′′′(β(d)

i )

6I 1/2(β
(d)
i )

))]
.
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Hence, ignoring all lower order terms,

μ
(
β

(d)
i

) d1/2

≈ 1

2d1/2

[
−�

(�(β
(d)
i )I 1/2(β

(d)
i ))′

2

×
( −�√

d

)
φ

(
−I 1/2(β

(d)
i )�

2
− ε�K ′′′(β(d)

i )

6I 1/2(β
(d)
i )

)

− � exp
(�(β

(d)
i )I 1/2(β

(d)
i ))′

2

×
( −�√

d

)
φ

(
−I 1/2(β

(d)
i )�

2
+ ε�K ′′′(β(d)

i )

6I 1/2(β
(d)
i )

)

+ 2	(−I 1/2(β
(d)
i )�/2)��′

d1/2

]

d1/2

≈ 1

d

[
−�2 (�(β

(d)
i )I 1/2(β

(d)
i ))′

2
φ

(
−I 1/2(β

(d)
i )�

2

)

+ 	

(
−I 1/2(β

(d)
i )�

2

)
��′

]
.

Similarly σ 2(β
(d)
i ) is to first order

2�2

d
	

(
−I 1/2(β

(d)
i )�

2

)

so that we can write (for 0 < β < 1)

Gdh
d≈ 1

d

(
�2	

(
−I 1/2(β

(d)
i )�

2

)
h′′(β)

+
[
	

(
−I 1/2(β

(d)
i )�

2

)
��′

− �2 (�(β
(d)
i )I 1/2(β

(d)
i ))′

2
φ

(
−I 1/2(β

(d)
i )�

2

)]
h′(β)

)
.

However, this expression is just d−1G∗h, thus establishing (12).
Finally, to establish (13), we note that in this case the terms d−1/2η(γd(x)) and

hd(x) − h(x) are both lower-order and do not affect the limit. Hence, (13) follows
directly from (12). �

The uniformity over int(Ed) for h (as opposed to hd ) in the proof of Lemma 8
does not extend to the boundary of Ed . (If it did, then the proof of Theorem 6
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would be complete simply by setting hd = h and applying Lemma 8.) However,
the following lemma shows that with the definition of hd used here, the extension
to the boundary does indeed hold.

LEMMA 9. For all h ∈ H , for x = 1 and for x = χd ,

lim
d→∞

∣∣dG(d)hd(x) − G∗h(x)
∣∣ = 0.

PROOF. We prove the case when x = χd ; the case x = 1 is similar but some-
what easier (since then x does not depend on d).

Mimicking the Taylor expansion of Lemma 8,

G(d)hd(χd)
d≈ h′

d(χd)[α−(χ+
d − χd)]

2

+ h′′
d(χd)

4

[(
χd − χ+

d

)2
α−]

= h′
d(χd)

2

α−�(χ+
d )

d1/2 + h′′
d(χd)

4

[
�(χd)2α−

d

]

d≈ α−�(χ+
d )

2d1/2

(
h′(χ) + η′(χ)d−1/2)

+ h′′
d(χd)

4

[
�(χd)2α−

d

]
.

Thus since h′(χ) = 0, this expression equals

h′′
d(χd)

2

[
�(χd)2α−

d

]
.

Next we note from (14) that

α− 1≈ 2	

(
−I 1/2�

2

)
.

Hence, the above results show that

lim
d→∞dGdhd(χd) = �2(χ)h′′(χ)	

(
−I 1/2�

2

)
.

In light of formulae (8) and (9), this completes the proof. �

Finally, we provide the missing proof from Section 2.1.
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PROOF OF LEMMA 2. We first compute that, to first order as h ↘ 0 and
m → ∞, writing x = i/m and e = 1/m, we have

E
(
Yσ

m,t+h − Yσ
m,t

∣∣∣ Yσ
m,t = i

m

)

≈
(

m2Sh

2

)(
1

m

)(
1

2S

)

×
[
σ 2

(
i

m

)
+ π((i + 1)/m)σ 2((i + 1)/m)

π(i/m)

− σ 2
(

i

m

)
− π((i − 1)/m)σ 2((i − 1)/m)

π(i/m)

]

= hm

4

[
π(x + e)σ 2(x + e)

π(x)
− π(x − e)σ 2(x − e)

π(x)

]

≈ hm

4

[((
π(x) + eπ ′(x)

)(
σ 2(x) + e

(
σ 2)′

(x)
)

− (
π(x) − eπ ′(x)

)(
σ 2(x) − e

(
σ 2)′

(x)
))

/π(x)
]

= hm

4

[
2eπ ′(x)σ 2(x) + 2eπ(x)(σ 2)′(x)

π(x)

]

= hm

4
(2e)

[
(logπ)′(x)σ 2(x) + 2σ(x)σ ′(x)

]

= h

[
1

2
(logπ)′(x)σ 2(x) + σ(x)σ ′(x)

]

and also

E
((

Yσ
m,t+h − Yσ

m,t

)2
∣∣∣ Yσ

m,t = i

m

)

≈
(

m2Sh

2

)(
1

2S

)(
1

m2

)[
2σ 2(x) + 2σ 2(x)

] = h
[
σ 2(x)

]
.

A comparison with (1) then shows that Yσ
m satisfies the same first and second mo-

ment characteristics as Xσ
t , so that Xσ

t is indeed the correct putative limit.
In light of these calculations, the formal proof of this lemma then proceeds along

standard lines. Indeed, case (a) is just a simpler version of the proof of Theorem 6
above, and case (b) follows from standard arguments about using the uniform con-
vergence of generators (e.g., [8], Chapter 8) to establish the approximation of birth
and death processes by diffusions; see, for example, Theorem 4.1 of Chapter 5 on
page 387 of [6]. �
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4. Discussion. This paper has linked the usual Peskun ordering on asymp-
totic variance of discrete-time Markov chains, to asymptotic variance of diffusion
processes. It has then applied these results to simulated tempering algorithms, by
proving that the inverse-temperatures of such algorithms converge (in an appropri-
ate limit) to a diffusion. By maximising the speed of the resulting diffusion, it has
obtained results about the optimal choice of the temperature spacings.

We believe that Theorem 1 could be useful in other contexts as well, whenever
we wish to compare two Langevin diffusion algorithms directly, or alternatively
whenever we wish to compare two discrete-time processes which both have ap-
propriate diffusion limits.

Of course, Theorem 1 requires assumptions (A1) and (A2). These are primarily
just regularity assumptions, which would likely be satisfied in most applications of
interest. On the other hand, the “exponentially-bounded tails” aspect of assump-
tion (A2) is more than technical; rather, it provides us with some control over the
extreme tail excursions of the processes which we consider, and we suspect that
our limiting results might fail if no such control is provided.

Finally, our simulated tempering diffusion limit is only proven under the rather
strong and artificial assumption (6) involving a product form of the target density.
Indeed, this assumption is central to our method of proof. However, as mentioned
earlier, it is known [2–5, 20, 22] that the general conclusions in this special case
often hold in greater generality, either approximately in numerical simulation stud-
ies, or theoretically through more general methods of proof. In a similar spirit, we
believe that the simulated tempering diffusion limit proven herein would approxi-
mately hold numerically in greater generality. In addition, it might be possible to
prove a stronger version of our diffusion limit, with weaker assumptions, though
such proofs would get rather technical and we do not pursue them here.
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